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Asymptotic symmetries and conservation laws 163

6.3 Conservation laws—the teleparallel theory 168

A simple model 168
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Preface

The concept of a unified description of the basic physical interactions has evolved

in parallel with the development of our understanding of their dynamical struc-

ture. It has its origins in Maxwell’s unification of electricity and magnetism in the

second half of the nineteenth century, matured in Weyl’s and Kaluza’s attempts

to unify gravity and electromagnetism at the beginning of the last century, and

achieved its full potential in the 1970s, in the process of unifying the weak and

electromagnetic and also, to some extent, the strong interactions. The biggest bar-

rier to this attractive idea comes from the continual resistance of gravity to join the

other basic interactions in the framework of a unified, consistent quantum theory.

As the theory of electromagnetic, weak and strong interactions developed,

the concept of (internal) gauge invariance came of age and established itself as an

unavoidable dynamical principle in particle physics. It is less well known that the

principle of equivalence, one of the prominent characteristics of the gravitational

interaction, can also be expressed as a (spacetime) gauge symmetry. This book

is intended to shed light upon the connection between the intrinsic structure of

gravity and the principle of gauge invariance, which may lead to a consistent

unified theory.

The first part of this book, chapters 1–6, gives a systematic account of the

structure of gravity as a theory based on spacetime gauge symmetries. Some basic

properties of space, time and gravity are reviewed in the first, introductory chapter.

Chapter 2 deals with elements of the global Poincaré and conformal symmetries,

which are necessary for the exposition of their localization; the structure of

the corresponding gauge theories is explored in chapters 3 and 4. Then, in

chapters 5 and 6, we present the basic features of the Hamiltonian dynamics

of Poincaré gauge theory, discuss the relation between gauge symmetries and

conservation laws and introduce the concept of gravitational energy and other

conserved charges. The second part of the book treats the most promising

attempts to build a unified field theory containing gravity, on the basis of the

gauge principle. In chapters 7 and 8 we discuss the possibility of constructing

gravity as a field theory in flat spacetime. Chapters 9–11 yield an exposition

of the ideas of supersymmetry and supergravity, Kaluza–Klein theory and string

theory—these ideas can hardly be avoided in any attempt to build a unified theory

of basic physical interactions.

xi



xii Preface

This book is intended to provide a pedagogical survey of the subject of

gravity from the point of view of particle physics and gauge theories at the

graduate level. The book is written as a self-contained treatise, which means

that I assume no prior knowledge of gravity and gauge theories on the part of the

reader. Of course, some familiarity with these subjects will certainly facilitate

the reader to follow the exposition. Although the gauge approach differs from the

more standard geometric approach, it leads to the same mathematical and physical

structures.

The first part of the book (chapters 2–6) has evolved from the material

covered in the one-semester graduate course Gravitation II, taught for about

20 years at the University of Belgrade. Chapters 9–11 have been used as the basis

for a one-semester graduate course on the unification of fundamental interactions.

Special features

The following remarks are intended to help the reader in an efficient use of the

book.

Examples in the text are used to illustrate and clarify the main exposition.

The exercises given at the end of each chapter are an integral part of the

book. They are aimed at illustrating, completing, applying and extending the

results discussed in the text.

Short comments on some specific topics are given at the end of each

chapter, in order to illustrate the relevant research problems and methods

of investigation.

The appendix consists of 13 separate sections (A–M), which have different

relationships with the main text.

– Technical appendices J and M (Dirac spinors, Fourier expansion) are

indispensable for the exposition in chapters 9 and 11.

– Appendices A, H and I (internal local symmetries, Lorentz and Poincaré

group) are very useful for the exposition in chapters 3 (A) and 9 (H, I).

– Appendices C, D, E, F, G and L (de Sitter gauge theory, scalar–tensor

theory, Ashtekar’s formulation of general relativity, constraint algebra

and gauge symmetries, covariance, spin and interaction of massless

particles, and Chern–Simons gravity) are supplements to the main

exposition, and may be studied according to the reader’s choice.

– The material in appendices B and K (differentiable manifolds, symmetry

groups and manifolds) is not necessary for the main exposition. It gives

a deeper mathematical foundation for the geometric considerations in

chapters 3, 4 and 10.

The bibliography contains references that document the material covered in

the text. Several references for each chapter, which I consider as the most

suitable for further reading, are denoted by the symbol •.



Preface xiii

Chapters 4, 7 and 8 can be omitted in the first reading, without influencing

the internal coherence of the exposition. Chapters 9–11 are largely

independent of each other, and can be read in any order.
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Friedrich Hehl and Eckehard Mielke. I am especially grateful for their valuable
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Chapter 1

Space, time and gravitation

Theories of special and general relativity represent a great revolution in our

understanding of the structure of space and time, as well as of their role in

the formulation of physical laws. While special relativity (SR) describes the

influence of physical reality on the general properties of and the relation between

space and time, the geometry of spacetime in general relativity (GR) is connected

to the nature of gravitational interaction. Perhaps the biggest barrier to a

full understanding of these remarkable ideas lies in the fact that we are not

always ready to suspect the properties of space and time that are built into our

consciousness by everyday experience.

In this chapter we present an overview of some aspects of the structure

of space, time and gravitation, which are important for our understanding of

gravitation as a gauge theory. These aspects include:

the development of the principle of relativity from classical mechanics and

electrodynamics, and its influence on the structure of space and time; and

the formulation of the principle of equivalence, and the introduction of

gravitation and the corresponding geometry of curved spacetime.

The purpose of this exposition is to illuminate those properties of space, time and

gravitation that have had an important role in the development of GR, and still

have an influence on various attempts to build an alternative approach to gravity

(Sciama 1969, Weinberg 1972, Rindler 1977, Hoffmann 1983).

1.1 Relativity of space and time

Historical introduction

In order to get a more complete picture of the influence of relativity theories on

the development of the concepts of space and time, we recall here some of the

earlier ideas on this subject.

1



2 Space, time and gravitation

In Ancient Greece, the movement of bodies was studied philosophically.

Many of the relevant ideas can be found in the works of Aristotle (fourth century

BC) and other Greek philosophers. As an illustration of their conception of the

nature of movement, we display here the following two statements.

The speed of a body in free fall depends on its weight; heavy bodies fall

faster than lighter ones.

The earth is placed at the fixed centre of the universe.

While the first statement was so obvious that practically everyone believed in

it, different opinions existed about the second one. One of the earliest recorded

proposals that the earth might move belongs to the Pythagorean Philolaus (fifth

century BC). Two centuries later, the idea appeared again in a proposal of the

Greek astronomer Aristarchus (third century BC). However, it was not persuasive

for most of the ancient astronomers. From a number of arguments against the

idea of a moving earth, we mention Aristotle’s. He argued that if the earth were

moving, then a stone thrown straight up from the point A would fall at another

point B, since the original point A would ‘run away’ in the direction of earth’s

movement. However, since the stone falls back at the same point from which it is

thrown, he concluded that the earth does not move.

For a long time, the developments of physics and astronomy have been

closely connected. Despite Aristarchus, the ancient Greek astronomers continued

to believe that the earth is placed at the fixed centre of the universe. This

geocentric conception of the universe culminated in Ptolemy’s work (second

century AD). The Ptolemaic system endured for centuries without major

advances. The birth of modern astronomy started in the 16th century with the

work of Copernicus (1473–1543), who dared to propose that the universe is

heliocentric, thus reviving Aristarchus’ old idea. According to this proposal, it is

not the earth but the sun that is fixed at the centre of everything, while the earth and

other planets move around the sun. The Danish astronomer Brahe (1546–1601)

had his own ideas concerning the motion of planets. With the belief that the clue

for all answers lies in measurements, he dedicated his life to precise astronomical

observations of the positions of celestial bodies. On the basis of these data Kepler

(1571–1630) was able to deduce his well known laws of planetary motion. With

these laws, it became clear how the planets move; a search for an answer to the

question why the planets move led Newton (1643–1727) to the discovery of the

law of gravitation.

A fundamental change in the approach to physical phenomena was made

by the Italian scientist Galileo Galilei (1564–1642). Since he did not believe in

Aristotle’s ‘proofs’, he began a systematic analysis and experimental verification

of the laws of motion. By careful measurement of spatial distances and time

intervals during the motion of a body along an inclined plane, he found new

relations between distances, time intervals and velocities, that were unknown in

Aristotle’s time. What were Galileo’s answers to the questions of free fall and the

motion of the earth?
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Studying the problem of free fall, Galileo discovered that all bodies fall with

the same acceleration, no matter what their masses are nor what they are

made of. This is the essence of the principle of equivalence, which was used

later by Einstein (1879–1955) to develop GR.

Trying to understand the motion of the earth, Galileo concluded that the

uniform motion of the earth cannot be detected by means of any internal

mechanical experiment (thereby overturning Aristotle’s arguments about the

immobile earth). The conclusion about the equivalence of different (inertial)

reference frames moving with constant velocities relative to each other,

known as the principle of relativity, has been of basic importance for the

development of Newton’s mechanics and Einstein’s SR.

Let us mention one more discovery by Galileo. The velocity of a body

moving along an inclined plane changes in time. The cause of the change is

the gravitational attraction of that body and the earth. When the attraction is

absent and there is no force acting on the body, its velocity remains constant.

This is the well known law of inertia of classical mechanics.

The experiments performed by Galileo may be considered to be the origin of

modern physics. His methods of research and the results obtained show, by their

simplicity and their influence on future developments in physics, all the beauty

and power of the scientific truth. He studied the motion of bodies by asking where

and when something happens. Since then, measurements of space and time have

been an intrinsic part of physics.

The concepts of time and space are used in physics only with reference

to physical objects. What are these entities by themselves? ‘What is time—if

nobody asks me, I know, but if I want to explain it to someone, then I do not

know’ (St Augustine; a citation from J R Lucas (1973)). Time and space are

connected with change and things that change. The challenge of physics is not to

define space and time precisely, but to measure them precisely.

Relativity of motion and the speed of light

In Galileo’s experiments we find embryos of the important ideas concerning space

and time, ideas which were fully developed later in the works of Newton and

Einstein.

Newton’s classical mechanics, in which Galileo’s results have found a

natural place, is based on the following three laws:

1. A particle moves with constant velocity if no force acts on it.

2. The acceleration of a particle is proportional to the force acting on it.

3. The forces of action and reaction are equal and opposite.

Two remarks will clarify the content of these laws. First, the force appearing

in the second law originates from interactions with other bodies, and should be

known from independent considerations (e.g. Newton’s law of gravitation). Only
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then can the second law be used to determine the acceleration stemming from

a given force. Second, physical quantities like velocity, acceleration, etc, are

defined always and only relative to some reference frame.

Galilean principle of relativity. The laws of Newtonian mechanics do not

always hold in their simplest form, as stated earlier. If, for instance, an observer is

placed on a disc rotating relative to the earth, he/she will sense a ‘force’ pushing

him/her toward the periphery of the disc, which is not caused by any interaction

with other bodies. Here, the acceleration is not a consequence of the usual force,

but of the so-called inertial force. Newton’s laws hold in their simplest form only

in a family of reference frames, called inertial frames. This fact represents the

essence of the Galilean principle of relativity (PR):

PR: The laws of mechanics have the same form in all inertial frames.

The concepts of force and acceleration in Newton’s laws are defined relative

to an inertial frame. Both of them have the same value in two inertial frames,

moving relative to each other with a constant velocity. This can be seen by

observing that the space and time coordinates† in two such frames S and S′ (we

assume that S′ moves in the x-direction of S with constant velocity v) are related

in the following way:

x ′ = x − vt y ′ = y z′ = z t ′ = t . (1.1)

These relations, called Galilean transformations, represent the mathematical

realization of the Galilean PR. If a particle moves along the x-axis of the frame S,

its velocities, measured in S and S′, respectively, are connected by the relations

u′1 = u1 − v u′2 = u2 u′3 = u3 (1.2)

representing the classical velocity addition law (u1 = dx/dt , etc). This law

implies that the acceleration is the same in both frames. Also, the gravitational

force m1m2/r2, for instance, has the same value in both frames.

Similar considerations lead us to conclude that there is an infinite set of

inertial frames, all moving uniformly relative to each other. What property singles

out the class of inertial frames from all the others in formulating the laws of

classical mechanics?

Absolute space. In order to answer this and other similar questions, Newton

introduced the concept of absolute space, that is given a priori and independently

of the distribution and motion of matter. Each inertial frame moves with a constant

velocity relative to absolute space and inertial forces appear as a consequence of

the acceleration relative to this space.

† Standard coordinates in inertial frames are orthonormal Cartesian spatial coordinates (x, y, z) and

a time coordinate t .
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Trying to prove the physical relevance of acceleration relative to absolute

space, Newton performed the following experiment. He filled a vessel with water

and set it to rotate relative to the frame of distant, fixed stars (absolute space).

The surface of the water was at first flat, although the vessel rotated. Then, due

to the friction between the water and the vessel, the water also began to rotate, its

surface started to take a concave form, and the concavity increased until the water

was rotating at the same rate as the vessel. From this behaviour Newton drew the

conclusion that the appearance of inertial forces (measured by the concavity of

the surface of water) does not depend on the acceleration relative to other objects

(the vessel), but only on the acceleration relative to absolute space.

Absolute space did not explain the selected role of inertial frames; it only

clarified the problem. Introduction of absolute space is not consistent within

classical mechanics itself. The physical properties of absolute space are very

strange. Why can we only observe accelerated and not uniform motion relative to

absolute space? Absolute space is usually identified with the frame of fixed stars.

Well-founded objections against absolute space can be formulated in the form of

the following statements:

The existence of absolute space contradicts the internal logic of classical

mechanics since, according to Galilean PR, none of the inertial frames can

be singled out.

Absolute space does not explain inertial forces since they are related to

acceleration with respect to any one of the inertial frames.

Absolute space acts on physical objects by inducing their resistance to

acceleration but it cannot be acted upon.

Thus, absolute space did not find its natural place within classical mechanics, and

the selected role of inertial frames remained essentially unexplained.

The speed of light. Galilean PR holds for all phenomena in mechanics. In the

last century, investigation of electricity, magnetism and light aroused new interest

in understanding the PR. Maxwell (1831–79) was able to derive equations which

describe electricity and magnetism in a unified way. The light was identified

with electromagnetic waves, and physicists thought that it propagated through a

medium called the ether. For an observer at rest relative to the ether, the speed

of light is c = 3 × 1010 cm s−1, while for an observer moving towards the light

source with velocity v, the speed of light would be c′ = c + v, on the basis of

the classical velocity addition law. The ether was for light the same as air is for

sound. It was one kind of realization of Newton’s absolute space. Since it was

only in the reference frame of ether that the speed of light was c, the speed of

light could be measured in various reference frames and the one at rest relative

to the ether could be found. If there was one such frame, PR would not hold

for electromagnetism. The fate of absolute space was hidden in the nature of

electromagnetic phenomena.
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Although the classical velocity addition law has many confirmations in

classical mechanics, it does not hold for the propagation of light. Many

experiments have shown that

c′ = c.

The speed of light is the same in all inertial frames, at all times and in all

directions, independently of the motion of the source and/or the observer. This

fact represents a cornerstone of SR. It contradicts classical kinematics but must

be accepted on the basis of the experimental evidence. The constancy of the speed

of light made the ether unobservable and eliminated it from physics forever.

A convincing experimental resolution of the question of the relativity of light

phenomena was given by Michelson and Morley in 1887. They measured the

motion of the light signal from a source on the moving earth and showed that its

velocity is independent of the direction of motion. From this, we conclude that

since the motion of an observer relative to the ether is unobservable, the PR

also holds for light phenomena; and

the speed of light does not obey the classical velocity addition law, but has

the same value in all inertial frames.

Note that in the first statement the PR puts all inertial frames on an equal footing

without implying Galilean transformations between them, since these contain the

classical velocity addition law, which contradicts the second statement. Thus, it

becomes clear that the PR must take a new mathematical form, one that differs

from (1.1).

From space and time to spacetime

The results of previous considerations can be expressed in the form of the two

postulates on which SR is based.

The first postulate is a generalization of Galilean PR not only to light

phenomena, but to the whole of physics and is often called Einstein’s principle

of relativity.

P1. Physical laws have the same form in all inertial frames.

Although (P1) has a form similar to Galilean PR, the contents of the two are

essentially different. Indeed, Galilean PR is realized in classical mechanics in

terms of Galilean transformations and the classical velocity addition law, which

does not hold for light signals. The realization of (P1) is given in terms of Lorentz

transformations, as we shall soon see.

The second postulate is related to the experimental fact concerning the speed

of light.

P2. The speed of light is finite and equal in all inertial frames.
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The fact that the two postulates are not in agreement with the classical

velocity addition law cannot be explained within Newtonian mechanics. Einstein

found a simple explanation of this puzzle by a careful analysis of the space

and time characteristics of physical events. He came to the conclusion that the

concepts of time and space are relative, i.e. dependent on the reference frame of

an observer.

The moment at which an event happens (e.g. the flash of a bulb) may be

determined by using clocks. Let TA be a clock at point A; the time of an event

at A is determined by the position of the clock hands of TA at the moment of

the occurrence of that event. If the clock T1 is at A1, and the bulb is placed at

some distant point A2, then T1 does not register the moment of the bulb flash at

A2, but the moment the signal arrives at A1. We can place another clock at A2

which will measure the moment of the flash, but that is not enough. The clocks

T1 and T2 have to be synchronized: if the time of the flash at A2 is t2, then the

time of the arrival of the signal at A1, according to T1, must be t1 = t2+ (the

travelling time of the signal). By this procedure we have defined the simultaneity

of distant events: taking into account the travelling time of the signal we know

which position of the clock hands at A1 is synchronized with the bulb flash at A2.

A set of synchronized clocks T1,T2, . . . , disposed at all points of reference

frame S, enables the measurement of time t of an arbitrary event in S. According

to this definition, the concept of simultaneity of two events is related to a given

inertial reference frame S. This notion of simultaneity is relative, as it depends on

the inertial frame of an observer.

Using similar arguments, we can conclude that space lengths and time

intervals are also relative quantities.

Lorentz transformations. Classical ideas about space and time, which are

expressed by Galilean transformations, have to be changed in accordance with

postulates (P1) and (P2). These postulates imply a new connection between two

inertial frames S and S′, which can be expressed by the Lorentz transformation of

coordinates:

x ′ = x − vt√
1 − v2/c2

t ′ = t − vx/c2

√
1 − v2/c2

y ′ = y z′ = z.

(1.3)

In the limit of small velocities v, the Lorentz transformation reduces to the

Galilean one.

From (1.3) we obtain a new law for the addition of velocities:

u′1 =
u1 − v

1 − u1v/c2
u′2 = u2, u′3 = u3. (1.4)

The qualitative considerations concerning the relativity of space and time

can now be put into a precise mathematical form.
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We begin by the relativity of lengths. Consider a rigid rod fixed in an inertial

frame S′, whose (proper) length is �x ′ = x ′2 − x ′1. The length of the rod in

another inertial frame S is determined by the positions of its ends at the same

moment of the S-time: �x = x2(t) − x1(t). From expressions (1.3) it follows

that �x = �x ′
√

1 − v2/c2. The length of the moving rod, measured from S, is

less than its length in the rest frame S′, �x < �x ′. This effect is called the length

contraction.

In order to clarify the relativity of time intervals, we consider a clock fixed in

S′. Its ‘tick’ and ‘tack’ can be described by coordinates (x ′, t ′1) and (x ′, t ′2). Using

Lorentz transformation (1.3), we obtain the relation �t ′ = �t
√

1 − v2/c2, which

shows that the time interval between two strikes of the clock is shortest in its rest

frame, �t ′ < �t . Since the rate assigned to a moving clock is always longer than

its proper rate, we talk about time dilatation. An interesting phenomenon related

to this effect is the so-called twin paradox.

Both length contraction and time dilatation are real physical effects.

Four-dimensional geometry. The connection between the space and time

coordinates of two inertial frames, moving with respect to one other with some

velocity v, is given by the Lorentz transformation (1.3). It is easily seen that the

general transformation between the two inertial frames includes spatial rotations

and translations as well as time translations. The resultant set of transformations is

known as the set of Poincaré transformations. Since these transformations ‘mix’

space and time coordinates, it turns out that it is more natural to talk about four-

dimensional spacetime than about space and time separately. Of course, although

space and time have equally important roles in spacetime, there is a clear physical

distinction between them. This is seen in the form of the Lorentz transformation,

and this has an influence on the geometric properties of spacetime.

The invariance of the expression s2 = c2t2 − x2 − y2 − z2 with respect

to the Poincaré transformations represents a basic characteristic of the spacetime

continuum—the Minkowski space M4. The points in M4 may be labelled by

coordinates (t, x, y, z), and are called events. The expression s2 has the role

of the squared ‘distance’ between the events (0, 0, 0, 0) and (t, x, y, z). In the

same way as the squared distance in the Euclidean space E3 is invariant under

Galilean transformations, the expression s2 in M4 is invariant under Poincaré

transformations. It is convenient to introduce the squared differential distance

between neighbouring events:

ds2 = c2 dt2 − dx2 − dy2 − dz2. (1.5a)

This equation can be written in a more compact, tensor form:

ds2 = ηµν dxµ dxν (1.5b)

where dxµ = (dt, dx, dy, dz), ηµν = diag(+,−,−,−) is the metric of M4, and

a summation over repeated indices is understood.



Gravitation and geometry 9

Lorentz transformations have the form x ′µ = �µ
νxν , where the coefficients

�µ
ν are determined by equation (1.3). The set of four quantities which transform

according to this rule is called a vector of M4. The geometric formalism can be

further developed by introducing general tensors; Lorentz transformations can be

understood as ‘rotations’ in M4 (since they do not change the ‘lengths’ of the

vectors), etc. The analogy with the related concepts of Euclidean geometry is

substantial, but not complete. While Euclidean metric is positive definite, i.e. ds2

is positive, the Minkowskian metric is indefinite, i.e. ds2 may be positive, negative

or zero. The distance between two points in M4 may be zero even when these

points are not identical. However, this does not lead to any essential difference in

the mathematical treatment of M4 compared to the Euclidean case. The indefinite

metric is a mathematical expression of the distinction between space and time.

The geometric formulation is particularly useful for the generalization of this

theory and construction of GR.

1.2 Gravitation and geometry

The principle of equivalence

Clarification of the role of inertial frames in the formulation of physical laws is

not the end of the story of relativity. Attempts to understand the physical meaning

of the accelerated frames led Einstein to the general theory of space, time and

gravitation.

Let us observe possible differences between the inertial and gravitational

properties of a Newtonian particle. Newton’s second law of mechanics can be

written in the form F = mia, where mi is the so-called inertial mass, which

measures inertial properties (resistance to acceleration) of a given particle. The

force acting on a particle in a homogeneous gravitational field g has the form

Fg = mg g, where mg is the gravitational mass of the particle, which may

be regarded as the gravitational analogue of the electric charge. Experiments

have shown that the ratio mg/mi is the same for all particles or, equivalently,

that all particles experience the same acceleration in a given gravitational field.

This property has been known for a long time as a consequence of Galileo’s

experiments with particles moving along an inclined plane. It is also true in an

inhomogeneous gravitational field provided we restrict ourselves to small regions

of spacetime. The uniqueness of the motion of particles is a specific property of

the gravitational interaction, which does not hold for any other force in nature.

On the other hand, all free particles in an accelerated frame have the same

acceleration. Thus, for instance, if a train accelerates its motion relative to the

earth, all the bodies on the train experience the same acceleration relative to

the train, independently of their (inertial) masses. According to this property,

as noticed by Einstein, the dynamical effects of a gravitational field and an

accelerated frame cannot be distinguished. This is the essence of the principle

of equivalence (PE).
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PE. Every non-inertial frame is locally equivalent to some gravitational

field.

The equivalence holds only locally, in small regions of space and time, where

‘real’ fields can be regarded as homogeneous.

Expressed in a different way, the PE states that a given gravitational field

can be locally compensated for by choosing a suitable reference frame—a freely

falling (non-rotating) laboratory. In each such frame, all the laws of mechanics or,

more generally, the laws of physics have the same form as in an inertial frame. For

this reason, each freely falling reference frame is called a locally inertial frame.

PE′. At every point in an arbitrary gravitational field we can choose a

locally inertial frame in which the laws of physics take the same form

as in SR.

We usually make a distinction between the weak and strong PE. If we restrict

this formulation to the laws of mechanics, we have the weak PE. On the other

hand, if ‘the laws of physics’ means all the laws of physics, we have Einstein’s

PE in its strongest form (sometimes, this ‘very strong’ version of the PE is

distinguished from its ‘medium-strong’ form, which refers to all non-gravitational

laws of physics) (for more details see, for instance, Weinberg (1972) and Rindler

(1977)).

In previous considerations we used Newtonian mechanics and gravitation

to illustrate the meaning of the (weak) PE. As previously mentioned, the first

experimental confirmation of the equality of mi and mg (in suitable units) was

given by Galileo. Newton tested this equality by experiments with pendulums of

equal length but different composition. The same result was verified later, with

a better precision, by Eötvös (1889; with an accuracy of 1 part in 109), Dicke

(1964; 1 part in 1011) and Braginsky and Panov (1971; 1 part in 1012). Besides,

all experimental evidence in favour of GR can be taken as an indirect verification

of the PE.

The PE and local Poincaré symmetry. It is very interesting, but not widely

known, that the PE can be expressed, using the language of modern physics, as

the principle of local symmetry. To see this, we recall that at each point in a given

gravitational field we can choose a locally inertial reference frame S(x) (on the

basis of the PE). The frame S(x) can be obtained from an arbitrarily fixed frame

S0 ≡ S(x0) by

translating S0, so as to bring its origin to coincide with that of S(x) and

performing Lorentz ‘rotations’ on S0, until its axes are brought to coincide

with those of S(x).

Four translations and six Lorentz ‘rotations’ are the elements of the Poincaré

group of transformations, the parameters of which depend on the point x at which
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the locally inertial frame S(x) is defined. Since the laws of physics have the

same form in all locally inertial frames (on the basis of the PR), these Poincaré

transformations are symmetry transformations. Thus, an arbitrary gravitational

field is characterized by the group of local, x-dependent Poincaré transformations,

acting on the set of all locally inertial frames. When the gravitational field

is absent, we return to SR and the group of global, x-independent Poincaré

transformations.

Physics and geometry

The physical content of geometry. The properties of space and time cannot

be deduced by pure mathematical reasoning, omitting all reference to physics.

There are many possible geometries that are equally good from the mathematical

point of view, but not so many if we make use of the physical properties of

nature. We believed in Euclidean geometry for more than 2000 years, as it was

very convincing with regard to the description of physical reality. However, its

logical structure was not completely clear. Attempts to purify Euclid’s system

of axioms led finally, in the 19th century, to the serious acceptance of non-

Euclidean geometry as a logical possibility. Soon after that, new developments

in physics, which resulted in the discovery of SR and GR, showed that non-

Euclidean geometry is not only a mathematical discipline, but also part of physics.

We shall now try to clarify how physical measurements can be related to the

geometric properties of space and time.

For mathematicians, geometry is based on some elementary concepts (such

as a point, straight line, etc), which are intuitively more or less clear, and certain

statements (axioms), which express the most fundamental relations between these

concepts. All other statements in geometry can be proved on the basis of

some definite mathematical methods, which are considered to be true within a

given mathematical structure. Thus, the question of the truthfulness of a given

geometric statement is equivalent to the question of the ‘truthfulness’ of the

related set of axioms. It is clear, however, that such a question has no meaning

within the geometry itself.

For physicists, the space is such as is seen in experiments; that space is, at

least, the space relevant for physics. Therefore, if we assign a definite physical

meaning to the basic geometric concepts (e.g. straight line ≡ path of the light

ray, etc), then questions of the truthfulness of geometric statements become

questions of physics, i.e. questions concerning the relations between the relevant

physical objects. This is how physical measurements become related to geometric

properties.

Starting from physically defined measurements of space and time in SR,

we are naturally led to introduce the Minkowskian geometry of spacetime. To

illustrate what happens in GR, we shall consider the geometry on a flat disc,

rotating uniformly (relative to an inertial frame) around the axis normal to its

plane, passing through the centre of the disc. There is an observer on the disc,
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a) b)

Figure 1.1. Approximate realization (a) of a curved surface (b).

trying to test spacetime geometry by physical measurements. His/her conclusions

will also be valid locally for true gravitational fields, on the basis of the PE.

Assume that the observer sits at the centre of the disc, and has two identical

clocks: one of them is placed at the centre, the other at some point on the

periphery. The observer will see that the clock on the periphery is running

slower (time dilatation from SR). Consequently, clocks at various positions in the

gravitational field run faster or slower, depending on the local strength of the field.

There is no definition of time that is pertinent to the whole spacetime in general.

The observer will also conclude that the length of a piece of line orthogonal to the

radius of the disc will be shortened (length contraction from SR). Therefore, the

ratio of the circumference of the circle to its radius will be smaller than 2π , so

that the Euclidean geometry of space does not hold in GR.

Geometry of curved surfaces. We have seen that in spacetime, within a limited

region, we can always choose a suitable reference frame, called the local inertial

frame. Taking spacetime apart into locally inertial components, we can apply the

laws of SR in each such component and derive various dynamical conclusions.

Reconstruction of the related global dynamical picture, based on the PE (and

some additional, simple geometric assumptions), gives rise to GR.

This procedure for dissecting spacetime into locally inertial components,

out of which we can reconstruct, using the PE, the global structure of spacetime

containing the gravitational field, can be compared geometrically with an attempt

to build a curved surface, approximately, from a lot of small, plane elements

‘continuously’ bound to each other (figure 1.1). A locally flat surface is a

geometric analogue of locally inertial spacetime.

GR makes essential use of curved spaces (or, more accurately curved

spacetimes). Since the curved, four-dimensional spacetime cannot be visualized,

let us try to understand the basic features of curved spaces by considering a

two-dimensional surface X2. We shall focus our attention on those geometric

properties of X2, which could be determined by an intelligent, two-dimensional

being entirely confined to live and measure in the surface, a being that does

not know anything about the embedding Euclidean space E3. Such properties

determine the intrinsic geometry on X2.
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Figure 1.2. Vector components change under the parallel transport.

On a general surface we cannot set up Cartesian coordinates; the best we

can do is to introduce two arbitrary families of coordinate lines and label them by

uα = (u1, u2). These curvilinear (or Gaussian) coordinates do not always have a

direct geometric interpretation.

Let us now imagine a surface X2 embedded in E3, and consider a point

P in X2 with Cartesian coordinates (x, y, z) in E3; since P is in X2, these

coordinates can be expressed as functions of uα . The squared distance between

two neighbouring points in X2, P(x, y, z) and Q(x +dx, y+dy, z+dz), is given

by ds2 = dx2 + dy2 + dz2. Going over to uα we obtain

ds2 = gαβ duα duβ (1.6)

where the set of functions gαβ(u
1, u2) defines the metric on X2. The metric is

an essential intrinsic property of X2, independent of its embedding in E3. A

two-dimensional continuum X2, equipped with a squared differential distance

according to (1.6), becomes the metric space, G2 = (X2, g) (it is now clear

that the symbol X2 is used to denote an abstract two-dimensional continuum,

disregarding all metric properties of the real surface).

Studying the motion of particles in X2 our observer could have arrived at the

idea of the tangent vector, a = (a1, a2). Consider, further, two tangent vectors a

and b, defined at neighbouring points P and Q. If we wish to compare these two

vectors we have to know how one of them can be transported to the position of

the other. This transport is called parallel transport. The continuum X2 together

with the parallel transport law, denoted by Ŵ, is called a linearly connected (or

affine) space, L2 = (X2, Ŵ).

The components of a vector in curvilinear coordinates are expected to change

under parallel transport. This can be easily seen by considering the parallel

transport of a vector in a plane, using polar coordinates (r, θ). As shown in

figure 1.2, if the unit vector a at point P has components (ar = 1, aθ = 0), after

parallel transport from P to Q its components become (ar = cosϕ, aθ = sin ϕ).

A two-dimensional observer should determine the rule of parallel transport

of vectors in accordance with his/her own experience. This rule is generally

independent of the concept of a metric. If X2 is equipped with a rule of
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parallel transport and the independent concept of a metric, we obtain the linearly

connected metric space (X2, Ŵ, g) = (L2, g) = (G2, Ŵ).

It is very probable that our two-dimensional observer will demand that

the lengths of vectors should remain unchanged under parallel transport. After

adopting this very natural property, which relates Ŵ and g, the linearly connected

metric space becomes the Riemann–Cartan space U2. The usual surfaces have

some additional geometric structure, and belong to the class of Riemann spaces

V2.

This discussion was slightly more general than strictly necessary for studying

surfaces embedded in E3, in order to emphasize that the intrinsic geometry on X2

is defined in terms of

the metric g and

the rule of parallel transport Ŵ.

These basic concepts of the intrinsic geometry of surfaces can be extended

directly to spaces with higher dimensions, although in this case we lose the

intuitive geometric picture.

Any Riemann space is locally Euclidean, i.e. its metric is positive definite

(ds2 > 0). A slight generalization of this case, that consists in admitting

metrics that are pseudo-Euclidean, leads to a pseudo-Riemannian geometry or

Riemannian geometry with an indefinite metric.

Relativity, covariance and Mach’s ideas

Relativity and covariance. We have seen previously that inertial frames play

a particularly important role in SR. Einstein considered this to be an expression

of the incompleteness of SR. He wanted to generalize the relativity of inertial

motions to the relativity of all motions, including accelerated ones. This idea can

be formulated as the general principle of relativity:

General PR: The form of physical laws is the same in all reference

frames.

Equations expressing physical laws are often formulated using specific

coordinates. Thus, for instance, spatial positions in an inertial laboratory L can be

determined using Cartesian coordinates (x, y, z) or the coordinates obtained from

these by a rotation around the z-axis for a fixed angle ϕ. If we allow the angle ϕ to

change with time as ϕ = ωt , new coordinates can be naturally attached to a new

physical reference frame, rotating relative to L with the angular velocity ω around

the z-axis. We see that coordinate transformations can be interpreted as describing

transitions from one to another laboratory (the so-called active interpretation).

Thus, it becomes clear that the general PR can be realized with the help of the

principle of general covariance:
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General covariance: The form of physical laws does not depend on the

choice of coordinates.

General covariance is a technical way to express the general PR.

When mathematicians study the geometric properties of space, they use

certain geometric objects with properties that do not depend on the choice of

coordinates. The covariance means that physical laws can be expressed in terms

of these geometric objects. In classical physics such objects are tensors, so that

covariant equations must be tensorial.

General covariance seems to be a powerful principle which determines

acceptable forms of physical equations. Is it really so? The next example shows

a certain triviality of this principle. Consider Newton’s second law in an inertial

frame S, ma = F, which is invariant under the group of Galilean transformations

G. Going over to a non-inertial frame S̃ that has linear acceleration a0 and angular

velocity ω relative to S, Newton’s equation transforms into

ma = F − ma0 − 2mω × v − mω̇ × r − mω × (ω × r). (1.7)

The transition from S to S̃ can be described as a Galilean transformation (a spatial

translation combined with a rotation) with time-dependent parameters. The set

of these transformations forms a group, denoted as G̃, which is larger than the

Galilean group G. In this way we obtained the G̃-covariant form of Newton’s

equation. Other physical equations can also be covariantized in a similar manner,

which means that covariance implies that there are no stringent conditions on the

form of the physical equations.

It is important to note that equation (1.7) is completely determined by its

original form in S and the process of covariantization. The original equation

has Galilean symmetry, and the covariantization ‘knows’ of this property, since

it is based on G̃ transformations. Using modern language, we can describe this

procedure as an incomplete localization of Galilean symmetry, based on time-

dependent parameters. Since the procedure does not depend on the form of the

original equation but only on its global symmetry, it is clear that covariantization

does not restrict the form of physically acceptable equations.

In spite of this conclusion, we know that Einstein’s covariant equations have

experimental consequences that are essentially different from those of Newton’s

theory of gravity, so that general covariance still seems to be an important

principle for physics. This dilemma can be resolved in the following way. If

we restrict ourselves to weak gravitational fields for simplicity, we obtain an

approximate, non-covariant form of Einstein’s theory, known as the Pauli–Fierz

field theory in M4. Comparing this field theory with Newton’s action-at-a-

distance theory we easily find significant differences; in particular, these theories

have different global symmetries (Poincaré and Galilean, respectively). It is

therefore quite natural that their physical contents are essentially different. This

difference has nothing to do with the covariance of Einstein’s equations.
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After clarifying this point, we are now ready to conclude that general

covariance by itself does not have any physical content. However, we should note

that Einstein related covariance to the PE, so that general covariance (transition to

accelerated frames) represents an important technical procedure for introducing

the gravitational field into any physical theory. Thus, Einstein’s theory of gravity

is obtained by unifying the principle of general covariance with the PE:

General covariance + PE ⇒ theory of gravity.

Here, general covariance stands essentially for the general PR, while the PE tells

us not only how to introduce gravity, but also the kind of physics we have in the

absence of gravity.

General covariance is only a statement about the effects of gravity, it does

not imply the validity of SR in locally inertial frames. Although the local validity

of SR is usually assumed, theoretically it is not necessary; for instance, we could

assume Galilean relativity in locally inertial frames. This is particularly clear if

we think of gravity as a locally invariant theory.

Covariance and symmetry. Although the concepts of general covariance and

symmetry have certain formal similarities, they are, in fact, essentially different.

In order to illustrate this difference, consider the interval in G4 = (X4, g),

ds2 = gµν(x) dxµ dxν (1.8a)

which is expressed in some coordinate system K . This equation is covariant with

respect to general coordinate transformations x → x ′ = x ′(x), since it has the

same form in the new coordinate system K ′ as it had in K :

ds2 = g′µν(x
′) dxµ′

dxν ′. (1.8b)

Here, the coordinate transformation induces a related functional change in the

metric, gµν → g′µν , where the prime denotes a new function. Now, if we restrict

ourselves to those transformations that do not change the form of the metric,

g′µν(x) = gµν(x), we obtain symmetry transformations (or isometries) of the

space G4.

To see the meaning of this definition in Minkowski space, let us consider

equation (1.8a) in an inertial frame S, where gµν = ηµν is the metric of M4. If

we look for coordinate transformations that do not change the form of the metric,

we obtain Poincaré transformations. They express the symmetry of physical laws

under transition from one inertial frame to another in M4.

Mach’s principle. In his attempts to build GR, Einstein was led by the idea

of abolishing the privileged role of inertial frames from physics. Even if it

were possible to develop a satisfactory theory of gravity within SR, he would

not have stopped there—he had to go beyond SR. On this route he was greatly



Gravitation and geometry 17

influenced by the ideas of the philosopher E Mach (1836–1916), who gave the

first constructive critique of Newton’s understanding of inertia and absolute space,

and proposed a new approach to these questions.

The conclusion drawn by Newton on the basis of his experiment with a

rotating vessel (that the acceleration of the water with respect to the vessel does

not produce inertial forces, they are produced only by the acceleration of the water

with respect to absolute space) cannot be considered as well founded. Newton’s

experiment only shows that the rotation of the water relative to a small vessel

produces no noticeable inertial forces. It is not clear how the experiment would

have turned out if the vessel had been more massive—these were the suspicions

raised by Mach. He believed that water rotating relative to a very massive vessel

would remain flat, since it would be at rest with respect to the very close and

massive vessel, while the water that does not rotate would be curved, since its

motion with respect to the vessel would be accelerated. In other words, inertial

forces are caused by the acceleration of the water relative to the average mass

distribution in the universe, not with respect to absolute space.

We shall now illustrate the difference between Newton and Mach by another

example. Consider an elastic sphere that is rotating relative to some inertial frame,

getting larger at the equator. How does the sphere ‘know’ that it is rotating and

hence must deform? Newton might have said that it was accelerated relative to

absolute space, which thereby causes the inertial forces that deformed it. Mach

would have said that the sphere was accelerated relative to distant masses in the

universe, which was the cause of deformation.

It is interesting to observe that both Newton and Mach explained the

appearance of inertial forces by the acceleration of a body, not by its velocity.

Why is that so? Mach’s considerations were general in nature, he was not able to

give any quantitative description of these ideas. The inertial influence of cosmic

matter was clearly defined in Einstein’s GR (inertia is a manifestation of the

geometry of spacetime, geometry is affected by the presence of matter) which,

to some extent, realizes Mach’s abstract ideas in a concrete physical theory.

Mach’s principle can be roughly expressed in the form of the following (not

completely independent) statements:

Space as such plays no role in physics; it is merely an abstraction from the

totality of spatial relations between material objects.

The inertial properties of every particle are determined by its interaction with

all the other masses in the universe.

Any motion is relative and can be determined only with respect to all the

other masses in the universe.

Inertial forces are caused by an acceleration of a body relative to the average

mass distribution in the universe.

It is often believed that Mach’s principle is so general that it cannot be checked

experimentally so that, essentially, it has no physical content. Yet, there are
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examples showing clearly that this is not so. In spite of this, there is still no

direct experimental verification (Rindler 1977).

Bearing in mind the strong influence of Mach’s principle on Einstein, it

is interesting to clarify to what extent this principle has been justified by GR.

We can say that GR has realized only some of Mach’s ideas; indeed, solutions

of Einstein’s field equations are determined not only by matter distribution,

but also by boundary conditions. Hence, the same mass distribution may give

rise to different gravitational fields. Mach wanted to abolish space in its own

right and replace it with the relative configuration of matter; Einstein retained

spacetime but made it non-absolute. Although Mach’s principle helped stimulate

the development of GR, there is no reason today to consider it as a basic principle

of physics.

Perspectives of further developments

Einstein’s theory of gravity predicted a number of physical effects which can be

completely verified experimentally. Nevertheless, we should stress that certain

properties of this theory deserve critical analysis.

GR is characterized by the existence of singularities, which are generic

features of solutions describing both localized physical systems (black holes) and

cosmology (big bang). A spacetime singularity can be intuitively characterized

by an infinite growth of some physical quantities in some regions of spacetime

and the analogous pathological behaviour of the related geometric objects. Both

cosmology and black holes represent very interesting phenomena in gravitational

physics—their features cast light on the intrinsic limitations of GR and serve as a

signpost towards a new, consistent approach to gravitation.

The standard cosmological model predicts that at some finite time in the past,

the universe was in a singular state (big bang). For many years it was generally

believed that this prediction was due merely to the simplifying assumptions of the

model. However, the singularity theorems of GR have shown that singularities are

generic features of cosmological solutions. We expect that the singular behaviour

can be avoided either by modifying classical GR and/or by taking quantum effects

into account.

General singularity theorems also apply to black holes—gravitational objects

that inevitably arise at the endpoint of the thermonuclear evolution of some stars.

After a finite proper time all the matter of the star meets at one point, where the

density of matter and the curvature of spacetime become infinite.

A cosmological singularity means that there existed a moment of time in the

past, such that nothing before that moment, even time itself, did not have any

sense, did not exist. The singularity of the black hole is related to the future, and

means that for an observer falling into the black hole, there will come a moment

at which not only the observer’s life will end, but also time itself will go out of

existence. In these extreme conditions, where the density of matter becomes very

large and the predictions of GR contradict the fundamental concepts of classical
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physics, quantum effects must be taken into account. Could these effects alone

remove the singularity or do we need to modify classical GR—that is the question

for the future.

Gravity is the only basic physical interaction for which no consistent

quantum formulation exists. Some people think that in order to construct quantum

gravity we need to radically change our understanding of the structure of space

and time. If this were correct, it would be the second time in the last century that

gravity has played a key role in the development of our concepts of space and

time.

Many attempts to quantize gravity have been unsuccessful. We do not

now whether the remarkable ideas of gauge symmetry, supergravity, Kaluza–

Klein theory or string theory will lead us to a unified, quantum theory of the

fundamental interactions. The former successes of these ideas motivate us to

study them carefully in the hope that they will bring us closer to a consistent

formulation of quantum gravity and its unification with the other fundamental

interactions.



Chapter 2

Spacetime symmetries

The physics of elementary particles and gravitation is successfully described by

Lagrangian field theory. The dynamical variables in this theory are fields φ(x)

and the dynamics is determined by a function of the fields and their derivatives,

L(φ, ∂µφ), called the Lagrangian. Equations of motion are given as the Euler–

Lagrange equations of the variational problem δφ I = 0 for the action integral

I =
∫

d4x L.

In physical processes at low energies the gravitational field does not play

a significant role, since the gravitational interaction is extremely weak. The

structure of spacetime without gravity is determined by the relativity principle

and the existence of a finite, maximal velocity of propagation of physical signals.

The unity of these two principles, sometimes called Einstein’s relativity principle,

represents the basis for special relativity theory. Spacetimes based on Einstein’s

relativity have the structure of the Minkowski space M4. The equivalence of

inertial reference frames is expressed by the Poincaré symmetry in M4.

Due to the fact that some physical constants are dimensional, the physical

world is not invariant under a change of scale. In physical processes at high

energies, where dimensional constants become practically negligible, we expect

scale invariance to appear, so that the relevant symmetry becomes the Weyl

symmetry or, the even higher, conformal symmetry. Conformal symmetry is a

broken symmetry in basic physical interactions. Of particular interest for string

theory is conformal symmetry in two dimensions.

Bearing in mind the importance of these spacetime symmetries in particle

physics, in this chapter we shall give a review of those properties of Poincaré

and conformal symmetries that are of interest for their localization and the

construction of related gravitational theories. Similar ideas can be, and have been,

applied to other symmetry groups. Understanding gravity as a theory based on

local spacetime symmetries represents an important step towards the unification

of all fundamental interactions.

20
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2.1 Poincaré symmetry

Poincaré transformations

The Minkowski spacetime M4 is a four-dimensional arena, successfully used

to describe all physical phenomena except gravitation. The physical observer

in spacetime uses some reference frame, usually associated with an imagined

extension of a physical object, and endowed with coordinates xµ (µ = 0, 1, 2, 3),

serving to identify physical events. In M4 preferred reference frames, called

inertial frames, exist. An inertial observer can always choose coordinates, global

inertial coordinates, such that the infinitesimal interval between points P(x) and

Q(x + dx) has the form

ds2 = ηµνdxµ dxν (2.1)

where ηµν = (1,−1,−1,−1) is the metric tensor in the inertial frame S(x).

Since the interval between P and Q does not depend on the choice of reference

frame, the transition to another reference frame S′(x ′) implies

ηµν dxµ dxν = g′µν(x
′) dx ′µ dx ′ν

where g′µν is the metric in S′. The new reference frame is inertial if there exist

coordinates x ′µ such that g′µν = ηµν , i.e. if the form of the metric is not changed

by the transition S → S′.
The form variation of a field F(x), δ0 F(x) ≡ F ′(x) − F(x), should be

clearly distinguished from its total variation, δF(x) ≡ F ′(x ′) − F(x). When

x ′ − x = ξ is infinitesimally small, we get

δF(x) ≈ δ0 F(x)+ ξµ∂µF(x).

Form variation and differentiation are commuting operations. Coordinate

transformations x → x ′ which do not change the form of the metric define the

isometry group of a given space. The isometry group of M4 is the group of global

Poincaré transformations P(1, 3).

In order to find out the form of infinitesimal Poincaré transformations, let us

consider the coordinate transformation

xµ → x ′µ = xµ + ξµ(x) (2.2)

relating the metrics ηµν and g′µν by the equation

g′µν(x
′) = ∂xλ

∂x ′µ
∂xρ

∂x ′ν
ηλρ ≈ ηµν − (ξµ,ν + ξν,µ).

Form invariance of the metric is now expressed by the following Killing equation:

δ0ηµν ≡ g′µν(x)− ηµν ≈ −(ξµ,ν + ξν,µ) = 0. (2.3)
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Expanding ξµ(x) in a power series in x ,

ξµ(x) = εµ + ωµ
νxν + ωµ

νρxνxρ + · · ·

with εµ, ωµ
ν, . . . constant parameters, condition (2.3) yields

ωµν + ωνµ = 0, εµ = arbitrary

while the remaining parameters vanish. Thus, the infinitesimal, global Poincaré

transformations,

ξµ(x) = εµ + ωµ
νxν (2.4)

are defined in terms of ten constant parameters ωµν = −ωνµ and εµ (Lorentz

rotations and translations).

Finite Poincaré transformations are inhomogeneous, linear transformations

x ′µ = �µ
νxν + aµ

where the matrix � = (�µ
ν) is determined by the form invariance of the

Minkowski metric: η = �T η�.

Lie algebra and its representations

In order to define the action of the Poincaré group on fields and introduce the

related generators and their Lie algebra, let us first consider a field ϕ(x), which is

scalar with respect to the transformations (2.4): ϕ′(x ′) = ϕ(x). As a consequence,

the change of form of ϕ is given by

δ0ϕ(x) = −(ωµ
νxν + εµ)∂µϕ(x).

If we define the generators of the transformation of a general field φ(x) by

δ0φ(x) = ( 1
2
ωµν Mµν + εµPµ)φ(x) (2.5)

their coordinate representation in the case of a scalar field has the form

Mµν = xµ∂ν − xν∂µ ≡ Lµν Pµ = −∂µ.

We can easily verify that they satisfy the Lie algebra

[Mµν, Mλρ ] = ηνλMµρ − ηµλMνρ − (λ ↔ ρ) ≡ 1
2

fµν,λρ
τσ Mτσ

[Mµν , Pλ] = ηνλPµ − ηµλPν

[Pµ, Pν] = 0.

(2.6)

In the general case of an arbitrary field φ the generators have the form

Mµν = Lµν +�µν Pµ = −∂µ (2.7)
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where �µν is the spin part of Mµν .

Example 1. A change in the Dirac spinor field ψα(x) under the action of the

Poincaré group is given by ψ ′(x ′) = S(ω)ψ(x), where S(ω) is a matrix satisfying

S−1γ µS = �µ
νγ

ν , and the γ µ are the Dirac matrices. For infinitesimal

transformations �µ
ν = δ

µ
ν + ωµ

ν , we find that S = 1 + 1
8
ωµν[γµ, γν], i.e.

�D
µν = 1

4
[γµ, γν] ≡ σµν .

The vector field V µ(x) transforms as V ′µ(x ′) = �µ
νV ν(x). For

infinitesimal transformations we have �µ
ν = δ

µ
ν + ωµ

ν = δ
µ
ν + 1

2
ωλρ(�1

λρ)
µ
ν ,

therefore

(�1
λρ)

µ
ν = δ

µ
λ ηρν − δµρ ηλν .

The procedure described in this example can be directly generalized and

used to find the form of generators for a general field φ(x), transforming as

φ′(x ′) = S(ω)φ(x) under Poincaré transformations.

The same result can be obtained by using another approach, known in

group theory as the method of induced representations. This method gives a

prescription of how to extend any representation of the Lorentz subgroup on φ(0)

to a representation of the Poincaré group on φ(x), using the definition of φ(x)

and the algebra of generators. To demonstrate the procedure, let us first introduce

finite Poincaré transformations on fields:

φ′(x) = (Gφ)(x) G(ω, a) = exp( 1
2
ω · M + a · P) (2.8)

where ω and a are the parameters of transformation and ω · M ≡ ωµν Mµν . In

particular, translations and Lorentz transformations are represented as

T (a) = exp(a · P) �(ω) = exp( 1
2
ω · M).

The generators P and M act on fields and change their form in accordance with

the algebra (2.6).

Next, we introduce the field φu obtained by translation from φ(0):

φu = T (u)φ(0).

Using the relation T (x)φu = φx+u we can conclude that the translation generator

acts on φu as (Pµφ)u = (−∂µφ)u , which implies φu = φ(−u).

The action of the Lorentz rotation on φu yields

φ′
u ≡ �(ω)φu = T (ū)�(ω)φ(0) (2.9)

where ū is implicitly defined by �(ω)T (u) = T (ū)�(ω) (figure 2.1). For

infinitesimal ω we find that

(1 + 1
2
ω · M)eu·P = eu·Pe−u·P(1 + 1

2
ω · M)eu·P

= eu·P(1 + 1
2
ω · M + [ 1

2
ω · M, u · P])

= exp[(uµ + ωµ
νuν)Pµ](1 + 1

2
ω · M)
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T(u)
�u�(0)

�'u�'(0)

���� ����

Figure 2.1. Construction of the Lorentz generators.

so that ūµ = uµ + ωµ
νuν . Here we used the formula

e−B AeB = A + [A, B] + 1
2! [[A, B], B] + · · ·

and the algebra of the Poincaré group. A similar result can be found for finite

transformations. Finally, the action of Lorentz transformation on φ(0) in (2.9) is

realized as a linear transformation acting on the spinorial indices of φ(0) (which

are not explicitly written),

φ′(0) = �(ω)φ(0) = eω·�/2φ(0)

where �µν is a matrix representation of Mµν . In this way we find that

φ′(−u) = T (ū)eω·�/2φ(0) = eω·�/2φ(−ū)

since T (ū) commutes with the matrix part and acts directly on φ(0). Now, if

we perform an additional translation T (−2u), and introduce the natural notation

x = u, the final result takes the form:

φ′(x) = eω·�/2φ(x̃) x̃µ ≡ xµ − ωµ
νxν . (2.10a)

The differential version of this relation reads as

δ0φ(x) = 1
2
ωµν(Lµν +�µν)φ(x) (2.10b)

and proves the general form of generator (2.7).

The basic result of this consideration is equation (2.10a), which can be

rewritten as φ′(x ′) = S(ω)φ(x), where S(ω) = exp(ω · �/2). Such a

transformation law is typical for relativistic field theories. The same method can

be used to study other groups with a similar basic structure (Bergshoeff 1983,

Sohnius 1985).

Invariance of the action and conservation laws

Invariance of a theory under spacetime transformations can be expressed in terms

of some restrictions on the Lagrangian that are different from the case of internal
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symmetries. To show this, consider an action integral defined over a spacetime

region !,

I (!) =
∫

!

d4x L(φ, ∂kφ; x)

where we allow for the possibility that Lmay depend explicitly on x . The change

of I (!) under spacetime transformations x ′ = x + ξ(x) has the form

δ I =
∫

!′
d4x ′L′(φ′(x ′), ∂ ′kφ

′(x ′); x ′)−
∫

!

d4x L(φ(x), ∂kφ(x); x).

Introducing the Jacobian ∂(x ′)/∂(x) ≈ 1 + ∂µξ
µ, we see that the action integral

is invariant if (Kibble 1961)

�L ≡ δ0L+ ξµ∂µL+ (∂µξ
µ)L = 0 (2.11)

where

δ0L ≡ L(φ + δ0φ, ∂kφ + δ0∂kφ; x)− L(φ, ∂kφ; x)

= ∂L

∂φ
δ0φ + ∂L

∂φ,k
δ0φ,k .

The Lagrangian L satisfying the invariance condition (2.11) is usually called

an invariant density. The following two remarks will be useful for further

applications:

(i) This derivation is based on the assumption that δ0ηµν = 0.

(ii) Condition (2.11) can be relaxed by demanding a weaker condition �L =
∂µ�

µ; in this case the action changes by a surface term, but the equations of

motion remain invariant.

If we now replace the Poincaré expressions for ξµ and δ0φ in (2.11), the

coefficients multiplying ωµν/2 and ξµ vanish yielding

∂L

∂φ
�µνφ + ∂L

∂φ,ρ
[�µν∂ρ − (ηνρ∂µ − ηµρ∂ν)]φ = 0

∂µL− ∂L

∂φ
∂µφ − ∂L

∂φ,ν
∂µφ,ν = 0.

(2.12)

The first identity is the condition of Lorentz invariance, while the second one,

related to translational invariance, is equivalent to the absence of any explicit x

dependence in L, as we could have expected.

Conserved currents. The expression for �L can be rewritten as

�L = δL

δφ
δ0φ + ∂µ Jµ Jµ ≡ ∂L

∂φ,µ
δ0φ + Lξµ
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where δL/δφ ≡ ∂L/∂φ−∂µ(∂L/∂φ,µ). Then, assuming the equations of motion

to hold, δL/δφ = 0, the invariance condition leads to the differential conservation

law:

∂µ Jµ = 0 Jµ = 1
2
ωνλMµ

νλ − ενTµ
ν (2.13)

where Tµ
ν and Mµ

νλ are the canonical currents—the energy–momentum and

angular momentum tensors, respectively,

Tµ
ν =

∂L

∂φ,µ
∂νφ − δµν L

Mµ
νλ = (xνTµ

λ − xλTµ
ν)− Sµ

νλ

(2.14)

and Sµ
νλ is the canonical spin tensor,

Sµ
νλ = − ∂L

∂φ,µ
�νλφ.

We note that the canonical energy–momentum tensor is, in general, not

symmetric.

Since the parameters ωνλ and εν are constant, equation (2.13) implies the

conservation of energy–momentum and angular momentum currents:

∂µTµ
ν = 0

∂µMµ
νλ = 0 or ∂µSµ

νλ = Tνλ − Tλν .
(2.15)

This is a typical case of Noether’s theorem, stating that to each parameter of

a continuous symmetry in the Lagrangian, there corresponds a differentially

conserved current. The integral over the three-space of the null component of

the current defines the related ‘charge’:

Pν =
∫

d3x T 0ν

Mνλ =
∫

d3x M0νλ =
∫

d3x (xνT 0λ − xλT 0ν − S0νλ).

(2.16)

It should be stressed that the usual conservation in time of these charges does

not hold automatically, but only if the related flux integrals through the boundary

of the three-space vanish (this is particularly important in electrodynamics and

gravitation).

The canonical currents (2.14) can be defined even when the Lagrangian is

not Poincaré invariant, but then, of course, they are not conserved.

Example 2. The canonical energy–momentum tensor for the scalar field,

described by the Lagrangian LS = 1
2
∂µϕ∂

µϕ + λϕ4, has the form

Tµν = ∂µϕ∂νϕ − ηµνLS
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while the spin tensor vanishes.

For the antisymmetrized Dirac Lagrangian, LD = 1
2
(iψ̄γ k∂

↔
kψ − 2mψ̄ψ),

with ∂
↔

k ≡ ∂
→

k − ∂
←

k , we find that

Tµ
ν = 1

2
iψ̄γ µ∂

↔
νψ − δµν LD Sµ

νλ = 1
2
iεµνλσ ψ̄γ5γ

σψ.

In both cases, we can easily check the conservation laws by making use of

the equations of motion.

The Belinfante tensor. The angular momentum Mνλ is composed from two

parts: the first one is the integral of moments of T 0λ, the second is the integral of

the spin tensor. However, it is possible to modify the energy–momentum tensor

in such a way that the value of the four-momentum Pν remains unchanged, while

the angular momentum reduces effectively to the first part only (Treiman et al

1972). To show this, we note that the replacement

Tµν → Tµν + ∂λWλµν

where Wλµν = −Wµλν , does not change the value of the integral defining Pµ.

Using this ambiguity we can define the Belinfante tensor,

T
µν

B = Tµν − 1
2
∂λ(S

µνλ + Sνµλ − Sλνµ) (2.17)

which is symmetric: T
µν

B − T
νµ

B = Tµν − T νµ + ∂λSλνµ = 0. The integral

defining the angular momentum can be now simplified:

Mνλ =
∫

d3x (xνT 0λ
B − xλT 0ν

B ).

The physical significance of the Belinfante tensor in Einstein’s GR will be

clarified in chapter 3.

Thus, the conservation laws of the energy–momentum and angular

momentum currents, i.e. translational and Lorentz invariance, can be expressed

by two properties of a single object—the Belinfante tensor:

∂µT
µν

B = 0 T
µν

B = T
νµ
B . (2.18)

These two relations are equivalent to conditions (2.15).

2.2 Conformal symmetry

Conformal transformations and Weyl rescaling

Conformal coordinate transformations. We have seen that Poincaré

transformations can be defined as the coordinate transformations in M4 that do

not change the form of the metric ηµν . Conformal transformations of coordinates
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in M4 are defined by demanding that the form of the metric is changed according

to the following simple rule:

g′µν(x) = s(x)ηµν s(x) > 0. (2.19)

These transformations leave the light-cone structure (ds2 = 0) and the

‘angles’ between vectors invariant, and define the group of conformal coordinate

transformations C(1, 3).

When s(x) is close to 1, an infinitesimal change in the form of the metric

tensor is given by the relation δ0ηµν = g′µν(x) − ηµν = [s(x) − 1]ηµν , which,

together with equation (2.3), leads to

−(ξµ,ν + ξν,µ) = (s − 1)ηµν .

This result remains unchanged if we replace M4 with a D-dimensional

Minkowski space MD . Transition to MD is useful for discussing the specific

properties of the conformal group C(1, D − 1) in D = 2. By observing that

contraction of the last equation yields −2(∂ · ξ) = (s − 1)D, we obtain

ξµ,ν + ξν,µ = 2
D
(∂ · ξ)ηµν (2.20a)

We shall refer to this equation as the conformal Killing equation in MD . It implies

that

[ηµν�+ (D − 2)∂µ∂ν]∂ · ξ = 0 (2.20b)

where we can clearly see the specific nature of the case D = 2, which will be

analysed later.

Now going back to D > 2, let us look for a solution of (2.20) using a power

series expansion for ξµ(x). It follows that the third derivatives of ξ must vanish,

so that the general solution is, at most, quadratic in x :

ξµ(x) = εµ + ωµ
νxν + ρxµ + (cµx2 − 2c · xxµ). (2.21)

In D = 4 the solution is determined with 15 constant parameters: 10

parameters (εµ, ωµν) correspond to Poincaré transformations, one parameter

ρ defines dilatations (or scale transformations), and four parameters cµ define

special conformal transformations (SCT). Note that conformal coordinate

transformations in M4 are nonlinear.

Weyl rescaling. There is a transformation group in physics which is similar

to C(1, 3) in appearance, but has an essentially different structure. These

transformations change the metric according to the rule

ηµν → gr
µν(x) = e2λ(x)ηµν (2.22a)

and are called Weyl or conformal rescalings. If the set of dynamical variables

also involves some other fields φ, Weyl rescaling is extended by

φ(x) → φr (x) = ewλ(x)φ(x) (2.22b)
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where w is a real number, called the weight, or Weyl dimension, of the field φ.

The weight of the metric η is, by convention, taken to be wη = 2.

Weyl rescaling looks like a C(1, 3) transformation in which the coordinate

part is neglected. The set of Weyl rescalings defines the Abelian group Wr, while

the group of conformal transformations C(1, 3) is non-Abelian. The collection

of all C(1, 3) and Wr transformations is known as the extended conformal group

(Fulton et al 1962).

Conformal algebra and finite transformations

In order to find the form of the Lie algebra of C(1, 3), we shall start with a field

ϕ(x), which is scalar under the transformations (2.21). Then,

δ0ϕ(x) = −[ωµ
νxν + εµ + ρxµ + (cµx2 − 2c · xxµ)]∂µϕ(x).

After introducing the generators of C(1, 3) for a general field φ(x),

δ0φ(x) = ( 1
2
ωµν Mµν + εµPµ + ρD + cµKµ)φ(x) (2.23)

we easily obtain their form in the space of scalar fields:

Mµν = Lµν Pµ = −∂µ

D = −x · ∂
Kµ = 2xµx · ∂ − x2∂µ.

These generators define the Lie algebra of the conformal group C(1, 3):

[Mµν , Mλρ ] = 1
2

fµν,λρ
στ Mστ

[Mµν , Pλ] = ηνλPµ − ηµλPν [Pµ, Pν ] = 0

[Mµν , D] = 0 [Pµ, D] = −Pµ [D, D] = 0

[Mµν , Kλ] = ηνλKµ − ηµλKν

[Pµ, Kν] = 2(Mµν + ηµν D)

[D, Kµ] = −Kµ [Kµ, Kν] = 0.

(2.24)

The first three commutators define the Poincaré algebra. The generators

(M, P, D) define a subalgebra corresponding to the Weyl group W (1, 3).

In the general case of an arbitrary field φ the generators have the form

Mµν = Lµν +�µν Pµ = −∂µ

D = −x · ∂ +�

Kµ = (2xµx · ∂ − x2∂µ)+ 2(xν�µν − xµ�)+ κµ

(2.25)
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where �µν ,� and κµ are matrix representations of Mµν , D and Kµ, acting

on the components of φ. The result can be obtained by the method of induced

representations, as in the case of the Poincaré algebra, using

φ′(0) = exp( 1
2
ω ·� + ρ�+ c · κ)φ(0).

If φ belongs to an irreducible representation of the Lorentz group, the

relation [�µν,�] = 0 implies, on the basis of Schur’s lemma, that � is

proportional to the unit matrix,

� = d I (2.26a)

where d is a real number, known as the scale dimension of φ. Then, from

[�, κµ] = −κµ we find that

κµ = 0. (2.26b)

Scale transformations. Conformal transformations defined by the generators

(2.25) refer to a general representation of the conformal group, and may be

different from the usual general coordinate transformations (GCT) based on

(2.21). Thus, for instance, a scale transformation and the related GCT of ηµν
are given by

ξµ = ρxµ : δ0ηµν = ρDηµν = ρdηηµν δ̃oηµν = −2ρηµν

where dη is the scale dimension of η. The usual choice dη = 0 yields the natural

geometric dimension of η and leads to a very simple scale transformation rule,

δ0ηµν = 0, but it differs from δ̃0η. To ‘explain’ the difference, consider an

extended conformal transformation of η, consisting of a GCT with ξµ = ρxµ

and a Weyl rescaling with ewρ ≈ 1 +wρ:

(δ̃0 + δw)ηµν = (−2ρ +wηρ)ηµν .

In tensor analysis, quantities of this type are called tensor densities of weight w.

Hence, a general scale transformation of η, with dη = 0, can be interpreted as a

GCT of the tensor density, provided wη = 2.

The same interpretation may be given to SCTs. Conformal transformations

in Riemann spaces will be studied in chapter 4.

Example 3. The dynamics of the free scalar field is determined by the Lagrangian

LS = 1
2
ηµν∂µϕ∂νϕ − 1

2
m2ϕ2. Under scale transformations,

δxµ = ρxµ δ0ϕ = −ρ(x · ∂ − d)ϕ δ0η
µν = 0

the Lagrangian changes as δ0LS = −ρ[x · ∂LS + (1 − d)(∂ϕ)2 + dm2ϕ2]. If we

adopt d(ϕ) = −1, it follows

δ0LS = −ρ[(x · ∂ + 4)LS + m2ϕ2].
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Since the invariance condition (2.11) has the form δ0L+ ρ(x · ∂ + 4)L = 0, it is

fulfilled only for m = 0.

Example 4. The free Dirac field is described by the antisymmetrized Lagrangian

LD (example 2). If we apply scale transformations,

δxµ = ρxµ δ0ψ = −ρ(x · ∂ − d)ψ δ0ηµν = 0

the change in LD is δ0LD = −ρ[x · LD + (1 − 2d) 1
2
iψ̄γ · ∂

↔
ψ + 2dmψ̄ψ]. The

choice d(ψ) = −3/2 yields

δ0LD = −ρ[(x · ∂ + 4)LD + mψ̄ψ]

and, again, the action is invariant only for m = 0.

Similar arguments show that the theory of the free electromagnetic field is

scale invariant if d(A) = −1.

The scale dimension d determines the transformation law of dynamical

variables (fields) under dilatations, whereas dimensional parameters are left

unchanged. Dilatations are different from the transformations of dimensional

analysis, which scale not only dynamical variables, but also dimensional

parameters. The field φ1 = lnφ has the same scale dimension as φ, although

its natural dimension is higher for n units.

If scale invariance holds in nature, the relation eρD P2e−ρD = e2ρ P2 defines

the transformation law of masses. This implies that (i) the mass spectrum is

either continuous (if m2 �= 0) or (ii) all the masses vanish. Both possibilities

are unacceptable, as they contradict the properties of the physical mass spectrum.

Scale invariance is a broken symmetry in a world with non-vanishing, discrete

masses.

Finite transformations. Finite elements of C(1, 3) in the space of fields, which

are connected to identity, have the form

G(ω, a, ρ, c) = exp( 1
2
ω · M + a · P + ρD + c · K ) (2.27)

where ω, a, ρ and c are finite parameters. We shall now find the form of the finite

conformal transformations of coordinates in M4. Finite Poincaré transformations

and dilatations (Weyl group) are easily found from the corresponding infinitesimal

expressions:

T (a)xµ = xµ + aµ �(ω)xµ = �µ
ν(ω)x

ν

D(ρ)xµ = eρxµ.
(2.28)

To find finite SCT, we first introduce the inversion:

x ′µ = I xµ = −xµ/x2 x2 ≡ ηµνxµxν �= 0. (2.29)
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This discrete transformation is also conformal, since g′µν(x) = ηµν/(x
2)2. The

importance of inversion is expressed by the following theorem (Dubrovin et al

1979):

Every smooth conformal transformation of a pseudo-Euclidean

(Euclidean) space of dimension D ≥ 3 can be given as a composition

of isometry, dilatation and inversion.

Now, consider the following composite transformation:

K (c)xµ = I · T (−c) · I xµ = xµ + cµx2

1 + 2c · x + c2x2
. (2.30)

K (c) is conformal, as a composition of inversion and translation, and for small

cµ it reduces to the infinitesimal SCT; therefore, K (c) represents the finite SCT.

Nonlinearity. The conformal algebra is isomorphic to that of the group

SO(2, 4). The latter may be considered as a set of pseudo-orthogonal

transformations in a six-dimensional flat space M6 with the metric ηab =
(ηµν,−1, 1). Since the generators of these transformations, mab, satisfy the

SO(2, 4) Lie algebra, the isomorphism is proved by establishing the following

correspondence:

Mµν → mµν Pµ → mµ4 + mµ5

Kµ → mµ4 − mµ5 D → m45.

The geometric meaning of the nonlinearity of conformal transformations

can be clarified by considering the connection between C(1, 3) and SO(2, 4).

The coordinate SO(2, 4) transformations in M6 are linear. By projecting these

transformations on M4 we obtain a nonlinear realization of the group SO(2, 4),

that coincides with the action of C(1, 3) on M4. The fact that the orbital part of

Kµ can be expressed in terms of Pµ and Lµν (with x dependent coefficients) is a

direct consequence of such a specific realization.

Conformal symmetry and conserved currents

Since conformal transformations are consistent with δ0ηµν = 0, the conformal

invariance of a theory can be expressed by condition (2.11), where ξ and δ0φ are

given by equations (2.21) and (2.23), respectively. For translations and Lorentz

transformations δ0φ has the form (2.5), while for dilatations and SCTs we have

δD
0 φ = −ρ(x · ∂ − d)φ

δK
0 φ = cµ[(2xµx · ∂ − x2∂µ)+ 2(xν�µν − xµd)]φ.

(2.31)
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Vanishing of the coefficients multiplying the Poincaré parameters in (2.11) yields

the conditions (2.12); vanishing of the coefficients multiplying ρ and cµ leads to

new conditions (Treiman et al 1972):

− ∂L

∂φ
dφ + ∂L

∂φ,ν
(−d + 1)φ,ν − 4L = 0 (2.32a)

2xµ

[
−∂L

∂φ
dφ + ∂L

∂φ,ν
(−d + 1)φ,ν − 4L

]
+ 2Vµ = 0 (2.32b)

where

Vµ ≡ ∂L

∂φ,ν
(�µν − ηµνd)φ. (2.33)

In this derivation, conditions (2.12) of Poincaré invariance are used.

If the scale dimension is chosen so that

d(fermion field) = − 3
2

d(boson field) = −1

the kinetic energy term of a typical Lagrangian satisfies condition (2.32a) for

scale invariance. These values for d correspond to the canonical dimensions of

fields, in units of length, as they ensure that the kinetic part of the action has

dimension zero. Scale invariance requires that d(L) = −4, i.e. that L does not

contain any dimensional parameters.

Equation (2.32b) shows that for conformal invariance two conditions must be

fulfilled: (i) the theory should be scale invariant; and (ii) the quantity Vµ should

be a total divergence,

Vµ = ∂λσ
λµ. (2.34)

Indeed, in this case δ I = 2
∫

cµV µ d4x is a surface term that does not influence

the equations of motion. Remarkably, the second condition turns out to be true

for all renormalizable field theories (involving spins 0, 1
2

and 1), although scale

invariance is, in general, broken. Consequently, for these theories conformal

invariance is equivalent to scale invariance.

The invariance of the theory, in conjunction with the equations of motion,

leads to the differential conservation law for the current Jµ, as in (2.13). Using

expressions (2.21) and (2.31) for ξ and δ0φ, we obtain

Jµ = 1
2
ωνλMµ

νλ − ενTµ
ν − ρDµ + cν Kµ

ν (2.35)

where Dµ and Kµ
ν are the canonical dilatation and (special) conformal currents,

respectively:

Dµ = xνTµν − ∂L

∂φ,µ
dφ (2.36a)

Kµ
ν = (2xνxλ − δλν x2)Tµ

λ + 2
∂L

∂φ,µ
xλ(�νλ − ηνλd)φ − 2σµ

ν . (2.36b)

With constant parameters, the condition ∂ · J = 0 yields (2.15) and

∂µDµ = 0 ∂µKµ
ν = 0. (2.37)
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The improved energy–momentum tensor. In the previous section we

introduced the Belinfante tensor, the properties of which express translation and

Lorentz invariance in a very simple way. The conformal current Dµ is similar to

expression (2.14) for Mµ
νλ, in the sense that it involves a term containing Tλρ ,

and an extra term. The extra term in Mµ
νλ is removed by introducing a new

energy–momentum tensor, the Belinfante tensor. Can we use the same idea once

again?

The answer is affirmative for a large class of theories. To simplify the

exposition, let us consider the case of a scalar field ϕ,

LS = 1
2
∂µϕ∂

µϕ + λϕ4. (2.38)

Since the canonical and Belinfante energy–momentum tensors are the same, it

follows that

Dµ = xνT
µν
B + 1

2
∂µϕ2.

Now, we define

θµν = T
µν

B − 1
6
(∂µ∂ν − ηµν∂2)ϕ2. (2.39)

The added term is symmetrical and divergenceless, so it does not change any

essential property of the Belinfante tensor and makes no contribution to Pµ and

Mµν . Using θµν instead of the Belinfante tensor in Dµ yields

Dµ = xνθ
µν + 1

6
∂ν(x

ν∂µϕ2 − xµ∂νϕ2).

The last term can be dropped as a divergence of an antisymmetric tensor, leading

to

Dµ = xνθ
µν . (2.40)

From this result we easily obtain

∂µDµ = θµµ. (2.41)

Thus, in analogy with the construction of the Belinfante tensor, we can introduce

a new, improved energy–momentum tensor θµν , such that the Poincaré and scale

symmetry can be expressed in terms of the properties of a single tensor (Callan et

al 1970, Coleman 1973a, b):

∂µθ
µν = 0 θµν = θνµ θµµ = 0. (2.42)

Next, we shall try to express the conformal current Kµ ≡ cνKµν in terms of

θµν . For the scalar field theory (2.38) we find that

V µ = 1
2
∂µϕ2 σµν = 1

2
ηµνϕ2.

It follows from (2.36) that

Kµ = ξ K
λ T

µλ

B + (c · x∂µ − cµ)ϕ2.
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Introducing θµν we find that

Kµ = −ξ K
λ θµλ + 1

6
∂λ(Xλµ − Xµλ)

where Xλµ ≡ −ξλK ∂
µϕ2 + 2cλxµϕ2. The last term can be dropped without loss,

so that, finally,

Kµ = −ξ K
λ θµλ. (2.43)

From this it follows that

∂µKµ = 2(∂ · ξ K )θµµ (2.44)

by using the conformal Killing equation for ξK . Thus, for scalar field theory

conformal invariance reduces to scale invariance.

Several comments are now in order.

(a) In contrast to the Belinfante tensor, θµν cannot be constructed for an arbitrary

field theory. Indeed, if such a construction were possible, scale invariance would

imply conformal invariance, which is not always true. There are examples of field

theories which are scale invariant, but not conformally invariant.

(b) The improved energy–momentum tensor can be constructed whenever Vµ is

a total divergence. This is true for many field theories, but not for all. Explicit

computation shows that V µ = 0 for spin- 1
2

and spin-1 renormalizable field

theories. In these theories θµν has the same form as in (2.39), and expressions

(2.40) and (2.43) for Dµ and Kµν , respectively, are also unchanged, so that both

scale and conformal invariance are measured by θµµ.

(c) Although we can modify the energy–momentum tensor without changing

the related conservation laws, various definitions may have different dynamical

significance. The role of θµν in gravitational theories will be examined in

chapter 4.

Conformal transformations in D = 2

In two dimensions the conformal Killing equation still has the solutions (2.21),

but since now the third derivatives of ξ(x) are not required to vanish, there are

infinitely many other solutions, too. As a consequence, the algebra of conformal

transformations is infinite-dimensional (Ginsparg 1990).

The conformal Killing equation in D = 2 has the form

∂0ξ
0 = ∂1ξ

1 ∂0ξ
1 = ∂1ξ

0. (2.45a)

Going to the light-cone coordinates, x± = (x0 ± x1)/
√

2, these equations imply

∂+ξ− = 0 ⇒ ξ− = ξ−(x−)

∂−ξ+ = 0 ⇒ ξ+ = ξ+(x+).
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It is now convenient to go over to Euclidean space, x = x1, y = ix0, and

introduce complex coordinates:

x+ = z̄ = (x − iy)/
√

2 − x− = z = (x + iy)/
√

2

ξ+(x+) = ξ̄ (z̄) − ξ−(x−) = ξ(z).

Then, the conformal Killing equations become the Cauchy–Riemann equations of

complex analysis,

∂xξ
x = ∂yξ

y ∂xξ
y = −∂yξ

x (2.45b)

and the conformal transformations correspond to analytic or anti-analytic

mappings:

z′ = z + ξ(z) z̄′ = z̄ + ξ̄ (z̄).

These mappings conserve the intersection angles between curves in the complex

plane.

Every solution ξ(z) that is regular at z = 0 can be expanded in a Taylor

series,

ξ(z) = a−1 + a0z + a1z2 + · · · (2.46)

and depends on an infinite number of parameters (a−1, a0, a1, . . .). To find the

algebra of these transformations we shall consider a scalar analytic function F ,

F ′(z′) = F(z). The change of F under the transformations z′ = z + anzn+1,

n ≥ −1, is given by

δ0 F(z) = an Ln F(z) Ln ≡ −zn+1∂z n ≥ −1. (2.47)

The generators of anti-analytic transformations are denoted by L̄n . The Lns and

L̄ns satisfy the (classical) Virasoro algebra:

[Ln, Lm ] = (n − m)Ln+m [L̄n, L̄m ] = (n − m)L̄n+m (2.48)

while the Lns and L̄ms commute†.

The quantity

L(z) =
∑

n≥−1

an Ln = −
∑

n≥−1

anzn+1∂z

that generates conformal transformations with parameter (2.48), is regular as

z → 0. To investigate the behaviour of L(z) as z → ∞, we perform the change

of variables z = 1/w:

L(z) = −
∑

n≥−1

anw
−n−1 ∂w

∂z
∂w =

∑

n≥−1

anw
1−n∂w.

† The Virasoro algebra can be extended by the generators {Ln, L̄n |n < −1}, which are not regular

at z = 0. The form of the algebra remains unchanged.
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The regularity as w → 0 allows only values n ≤ 1. Thus, only the conformal

transformations generated by {L±1, L0} are well-defined on the whole Riemann

sphere C2 ∪ {∞}. The generators {L±1, L0} define a subalgebra of the Virasoro

algebra:

[L±1, L0] = ±L±1 [L+1, L−1] = 2L0.

The same is true for {L̄±1, L̄0}.
The generators {L±1, L0} ∪ {L̄±1, L̄0} define the global conformal group

in D = 2—the group of conformal transformations that are well-defined and

invertible on the whole Riemann sphere. The precise correspondence with the

earlier results reads:

P0 = L̄−1 − L−1 M01 = L0 − L̄0 K0 = L1 − L̄1

P1 = L−1 + L̄−1 D = L0 + L̄0 K1 = L1 + L̄1.
(2.49)

The finite form of the global conformal transformations is given by the linear

fractional (or Möbius) transformations:

LF : z → az + b

cz + d
ad − bc = 1.

Introducing the SL(2,C) matrices

M =
(

a b

c d

)
det M = 1

wee can show that LF and SL(2,C)/Z2 are isomorphic mappings (matrices M

and −M correspond to the same LF transformation). Conformal transformations

(2.28) and (2.30) are expressed by the LF mappings in the following way:

T :
(

1 a

0 1

)
� :

(
eiω/2 0

0 e−iω/2

)

D :
(

eρ/2 0

0 e−ρ/2

)
K :

(
1 0

−2c̄ 1

)

where a and c are complex, and ω and ρ real parameters.

The existence of local conformal transformations, in addition to the global

ones, is unique to two dimensions. We should note that only the global conformal

transformations define a true group, since the remaining ones do not have inverses

on the whole Riemann sphere.

Spontaneously broken scale invariance

The physical properties of classical field theory are determined with respect to the

ground state (or vacuum), which is defined as the state of lowest energy. In the

language of quantum theory, field excitations around the ground state are called
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particle excitations and their energy, momentum, etc, are defined with respect to

the ground state.

It is instructive to investigate a theory involving a set of n real, scalar fields

ϕ = (ϕa),

L =
∑

1
2
∂µϕ

a∂µϕa − U(ϕ). (2.50)

From the form of the Hamiltonian,

H =
∑

1
2
(∂αϕ

a)2 + U(ϕ)

we conclude that the state of lowest energy is one for which ϕ is a constant,

(ϕa)0 = va , provided the values va are the minima of the potential U(ϕ).

There is no reason why an invariance of the Lagrangian, described by a group

G, should also be an invariance of the ground state. Physical symmetries depend

essentially on the structure of the ground state and can be realized in the following

ways (Coleman 1975).

(i) The symmetry may be manifest, in which case the ground state has the same

symmetry as the Lagrangian and the field components within each irreducible

multiplet of G have the same mass. Manifest symmetry may be broken explicitly

by adding a non-invariant term to L.

(ii) The symmetry may be spontaneously broken (or hidden). This is the case

when the ground state is not invariant under G. The masses within G-multiplets

are now not equal. If G is a continuous internal symmetry, then, assuming some

additional conditions, the mass spectrum is characterized by Goldstone’s theorem,

which tells us that the theory must contain massless bosons, one for each broken

infinitesimal symmetry of the ground state. (Gauge theories do not obey those

additional conditions.)

Example 5. If the number of scalar fields in (2.50) is n = 3, and

U(ϕ) = λ

4! (ϕ
2 − v2)2 ϕ2 ≡

∑
(ϕa)2

the Lagrangian is invariant under SO(3) rotations, ϕa → Ra
bϕ

b. The minima of

U lie on the sphere ϕ2 = v2; it is irrelevant which point on this sphere is chosen

as the ground state. Let us choose v1 = 0, v2 = 0, v3 = v. Then, rotations in the

planes 1–2 and 1–3 are not symmetries of the ground state, while rotations around

the third direction leave the ground state invariant. In order to examine physical

consequences, let us define new fields by

ϕ1 = η1 ϕ2 = η2 ϕ3 = v + η3.

When the potential is expressed in terms of the new fields, we easily find that η1

and η2 are massless. The number of massless fields is equal to the number of

generators that break the symmetry of the ground state.
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Now, we shall examine scale invariance from this point of view. Mass terms

in the Lagrangian explicitly break scale invariance. Can we interpret these terms

as a consequence of spontaneous symmetry breaking?

The essential features of the problem can be seen by considering the massive

Dirac field. The mass term can easily be made scale invariant by introducing

a massless, scalar field ϕ, with scale dimension d(ϕ) = −1 (transforming as

ϕ′(x ′) = e−ρϕ(x) under x ′ = eρx). Indeed, the replacement mψ̄ψ → λψ̄ψϕ,

combined with an additional free term for ϕ, yields the scale-invariant result:

L′ = ψ̄ iγ · ∂ψ − λψ̄ψϕ + 1
2
∂µϕ∂

µϕ. (2.51a)

Here, both ψ and ϕ are massless fields. Let us now assume that there exists some

mechanism for spontaneous symmetry breaking, such that in the ground state we

have (ϕ)0 = v (λv = m). Then, to describe excitations around the ground state

we shall introduce a new field by the exponential parametrization,

ϕ = veσ/v = v + σ + · · ·

which is, in its lowest order, equivalent to ϕ = v + σ . The new field transforms

inhomogeneously under the broken symmetry: σ ′(x ′) = σ(x)−ρv. Expressed in

terms of σ(x), the Lagrangian L′ takes the form

L′ = ψ̄ iγ · ∂ψ − λvψ̄ψeσ/v + 1
2
v2∂µeσ/v∂µeσ/v. (2.51b)

This Lagrangian has spontaneously broken scale symmetry: the field σ(x) is the

Goldstone boson, and ψ(x) becomes massive.

It is interesting to note that L′ has not only scale, but also special conformal

symmetry. On the other hand, if the ground-state value of ϕ is (ϕ)0 = v,

both scale and special conformal symmetries are spontaneously broken and we

have only one Goldstone boson. This unusual situation is a consequence of the

nonlinear realization of the conformal group in M4.

Hidden scale invariance can be explicitly broken by adding a suitable term

to the Lagrangian. A choice

Lm = − 1
16

m2
σ v

2[e4σ/v − (1 + 4σ/v)] (2.52)

represents a mass term for σ , as is easily seen by Taylor expansion in σ .

Exercises

1. Check that the theory of the free Dirac field is Poincaré invariant.

2. Construct the canonical energy–momentum tensor for scalar field theory,

defined by

LS = 1
2
(∂ϕ)2 + gx2ϕ.

Show that it is not a conserved quantity while the angular momentum is

conserved.



40 Spacetime symmetries

3. Find the Belinfante tensor for

(a) the free Dirac field,

(b) the scalar field with ϕ4 interaction and

(c) the free electromagnetic field.

4. Show that

(a) if ξµ is a solution of the Killing equation in M4, then ∂ν∂ρξ
µ = 0;

(b) if ξµ satisfies the conformal Killing equation in M4, then ∂ν∂ρ∂λξ
µ = 0.

5. Calculate the conformal factor s(x) characterizing the coordinate

transformation of the metric ηµν under (a) dilatations, (b) SCTs and

(c) inversions.

6. Show that by applying the inversion to the right and left of a Lorentz

transformation (dilatation), we obtain a Lorentz transformation (dilatation)

again.

7. (a) Calculate the action of I · T (−c) · I on xµ.

(b) Show that infinitesimal SCTs satisfy the condition x ′µ/x ′2 = xµ/x2 +
cµ, which is equivalent to I K (c) = T (−c)I . Check whether this is true

for finite SCTs.

8. Using the conformal Lie algebra prove the relations

(1 + ρD)eu·P = e(1+ρ)u·P(1 + ρD)+O(ρ2)

(1 + c · K )eu·P = e(u
µ+cµu2−2c·uuµ)Pµ

× (1 + c · K + 2cµuνMµν − 2c · u D)+O(c2).

Then, find the general form of the generators D and K in the field space.

9. Consider an extended conformal transformation of η, consisting of the GCT

with ξµ = cµx2 − 2c · xxµ and Weyl rescaling with e−2wc·x ≈ 1 − 2wc · x .

Can this transformation be interpreted as an SCT of η, with dη = 0?

10. Consider a six-dimensional space M6 in which the metric, in coordinates ya ,

has the form gab = (ηµν,−1, 1). On the hypercone y2 ≡ gab ya yb = 0

introduce the coordinates

xµ = yµ/k k ≡ y4 + y5.

Show that the action of SO(2, 4) on M6 induces the conformal

transformation of coordinates xµ.

11. Show that the Lagrangian of a scalar field LS(ϕ, ∂ϕ), that satisfies

the conditions of scale invariance in M4, has the general form LS =
f (∂µϕ∂

µϕ/ϕ4)ϕ4. Find the form of LS in the case of conformal invariance.

12. Show that every Lagrangian in M4 consisting of

(a) a free Lagrangian for massless fields ϕ,ψ or Aµ and

(b) an interaction of the form

ϕ4 ϕψ̄ψ ϕψ̄γ5ψ

Aµψ̄γµψ Aµ[ϕ∗(∂µϕ)− (∂µϕ
∗)ϕ] AµAµϕ

∗ϕ
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defines a scale-invariant theory. Check also the conformal invariance of

these Lagrangians.

13. Investigate the scale and conformal invariance of the theory of massless

Dirac and scalar fields, with the interaction λψ̄γ µψ∂µϕ.

14. Investigate the scale and conformal invariance of the theory of massless field

of spin 3
2

, defined by the Lagrangian

L = − 1
2
εµνλρψ̄µγ5γν∂ρψλ ψµ = (ψµα).

15. Check that the generators P, M, D and K , defined in (2.49), satisfy the

conformal Lie algebra.

16. Prove that LF and SL(2,C)/Z2 are isomorphic mappings.

17. Find mappings LF corresponding to the conformal transformations (2.28)

and (2.30).

18. Find the divergence of the dilatation current corresponding to the explicit

breaking of the dilatation symmetry by the term (2.52).



Chapter 3

Poincaré gauge theory

It is well known that the existence and interaction of certain fields, such as

the electromagnetic field, can be closely related to the invariance properties

of the theory. Thus, if the Lagrangian of matter fields is invariant under

phase transformations with constant parameters α, the electromagnetic field can

be introduced by demanding invariance under extended, local transformations,

obtained by replacing α with a function of spacetime points, α → α(x). This

idea was generalized by Yang and Mills (1954) to the case of SU(2) symmetry.

Studying these internal local symmetries (appendix A) is particularly interesting

from the point of view of the generalization to local spacetime symmetries.

On the other hand, it is much less known that Einstein’s GR is invariant

under local Poincaré transformations. This property is based on the principle of

equivalence, and gives a rich physical content to the concept of local or gauge

symmetry. Instead of thinking of local Poincaré symmetry as derived from the

principle of equivalence, the whole idea can be reversed, in accordance with the

usual philosophy of gauge theories. When the gravitational field is absent, it

has become clear from a host of experiments that the underlying symmetry of

fundamental interactions is given by the Poincaré group. If we now want to make

a physical theory invariant under local Poincaré transformations, it is necessary

to introduce new, compensating fields, which, in fact, represent gravitational

interactions.

Compensating fields cancel all the unwanted effects of local

transformations and enable the existence of local symmetries.

Localization of Poincaré symmetry leads to the Poincaré gauge theory of

gravity, which contains GR as a special case (Kibble 1961, Sciama 1962). Here,

in contrast to GR, at each point of spacetime there exists a whole class of local

inertial frames, mutually related by Lorentz transformations. Using this freedom,

allowed by the principle of equivalence, we can naturally introduce not only

energy–momentum, but also the spin of matter fields into gravitational dynamics.

42
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The exposition of Poincaré gauge theory (PGT) will be followed by the

corresponding geometric interpretation, leading to Riemann–Cartan spacetime

U4. Then, we shall study in more detail two simple but important cases: Einstein–

Cartan theory, representing a direct generalization of GR, and teleparallel theory.

We shall also give a short account of some general dynamical features of the new

gravitational theory.

3.1 Poincaré gauge invariance

We shall now analyse the process of transition from global to local Poincaré

symmetry and find its relation to the gravitational interaction (Kibble 1961).

Other spacetime symmetries (de Sitter, conformal, etc) can be treated in an

analogous manner.

Localization of Poincaré symmetry

We assume that the spacetime has the structure of Minkowski space M4. At each

point of M4, labelled by coordinates xµ, we can define a local Lorentz reference

frame, represented by an orthonormal tetrad—a set of four orthonormal, tangent

vectors ei(x), ei · e j = ηi j . In global inertial coordinates xµ, we can always

choose the tetrad such that it coincides with a coordinate frame eµ(x) (a set of four

vectors, tangent to coordinate lines at x), i.e. ei = δ
µ

i eµ. Here, the Latin indices

(i, j, . . .) refer to local Lorentz frames, while the Greek indices (µ, ν, . . .) refer to

coordinate frames. Later, when we come to more general spaces, this distinction

will become geometrically more important.

A matter field φ(x) in spacetime is always referred to a local Lorentz frame

and its transformation law under the Poincaré group is of the form

δ0φ = ( 1
2
ω · M + ε · P)φ = ( 1

2
ω ·� + ξ · P) ≡ Pφ. (3.1)

The matter Lagrangian LM = LM(φ, ∂kφ) is assumed to be invariant under

global Poincaré transformations, which yields the conservation of the energy–

momentum and angular momentum tensors. If we now generalize Poincaré

transformations by replacing ten constant group parameters with some functions

of spacetime points, the invariance condition (2.11) is violated for two reasons.

First, the old transformation rule of ∂kφ,

δ0∂kφ = P∂kφ + ωk
i∂iφ ≡ Pk

i∂iφ (3.2a)

is changed into

δ0∂kφ = P∂kφ − ξν ,k∂νφ + 1
2
ωi j

,k�i jφ. (3.2b)

The second reason is that ∂µξ
µ �= 0. Thus, after using the conservation laws

(2.15), we obtain

�LM = 1
2
ωi j

,µSµ
i j − (ξ i

,µ − ωi
µ)T

µ
i �= 0.
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The violation of local invariance can be compensated for by certain modifications

of the original theory.

Covariant derivative. Let us first eliminate non-invariance stemming from

the change in the transformation rule of ∂kφ. This can be accomplished by

introducing a new Lagrangian

L′
M = LM(φ,∇kφ) (3.3)

where ∇kφ is the covariant derivative of φ, which transforms according to the

‘old rule’ (3.2a):

δ0∇kφ = P∇kφ + ωk
i∇iφ. (3.4)

The new Lagrangian satisfies δL′
M ≡ δ0L

′
M + ξ · ∂L′

M = 0.

To show this, we begin by introducing the ω-covariant derivative, which

eliminates the ωi j
,µ term in (3.2b):

∇µφ = ∂µφ + δ0(ω)φ|ω→Aµ = (∂µ + Aµ)φ Aµ ≡ 1
2

Ai j
µ�i j (3.5)

where δ0(ω) = δ0(ω, ξ = 0) and Ai j
µ are compensating fields. The condition

δ0∇µφ = P∇µφ − ξν ,µ∇νφ (3.6)

determines the transformation properties of Aµ:

δ0 Aµ = [P, Aµ] − ξν ,µAν − ω,µ ω ≡ 1
2
ωi j�i j

δ0 Ai j
µ = ωi

s As j
µ + ω j

s Ais
µ − ωi j

,µ − ξλ,µAi j
λ − ξλ∂λAi j

µ.
(3.7)

If we now rewrite equation (3.6) as

δ0∇µφ = Pµ
ν∇νφ − (ξν ,µ − ων

µ)∇νφ

we see that the last term, which is proportional to ∇νφ, can be eliminated by

adding a new compensating field Aµ
k :

∇kφ = δ
µ

k ∇µφ − Aµ
k∇µφ. (3.8a)

Since this expression is homogeneous in ∇µφ, we can introduce the new variables

hk
µ = δ

µ
k − Aµ

k , and write

∇kφ = hk
µ∇µφ. (3.8b)

The transformation properties of hk
µ follow from equations (3.4) and (3.6):

δ0hk
µ = ωk

shs
µ + ξµ,λhk

λ − ξλ∂λhk
µ. (3.9)
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Matter field Lagrangian. Up to now we have found the Lagrangian L′
M such

that δL′
M = 0. In the second step of restoring local invariance to the theory, we

have to take care of the fact that ∂µξ
µ �= 0 in (2.11). This is done by multiplying

L′
M by a suitable function of the fields:

L̃M = �L′
M. (3.10)

This expression satisfies the invariance condition (2.11) provided that

δ0�+ ∂µ(ξ
µ�) = 0.

Here, coefficients of the local parameters and their derivatives should vanish.

Coefficients of the second derivatives of parameters vanish since � does not

depend on field derivatives, coefficients of ξν vanish since � does not depend

explicitly on x , while those of ωi j
,ν vanish if � is independent of Ai j

ν . The

remaining two conditions are:

ξµ,ν :
∂�

∂hk
µ

hk
ν + δνµ� = 0

ωi j : ηik
∂�

∂hk
µ

h j
µ − η j k

∂�

∂hk
µ

hi
µ = 0.

After multiplying the first equation by bs
ν , the inverse of hk

µ,

bk
µhk

ν = δνµ bk
µhs

µ = δk
s

we easily find a solution for �:

� = [det(hk
µ)]−1 = det(bk

µ) ≡ b. (3.11)

The solution is defined up to a multiplicative factor, which is chosen so that

� → 1 when hk
µ → δ

µ
k , and the second equation is automatically satisfied.

The final form of the modified Lagrangian for matter fields is

L̃M = bLM(φ,∇kφ). (3.12)

It is obtained from the original Lagrangian LM(φ, ∂kφ) in two steps:

– by replacing ∂kφ → ∇kφ (the minimal coupling) and

– multiplying LM by b.

The Lagrangian L̃M satisfies the invariance condition (2.11) by construction,

hence it is an invariant density.

Example 1. The free scalar field in Minkowski space is given by the Lagrangian

LS = 1
2
(ηkl∂kϕ∂lϕ − m2ϕ2). Localization of Poincaré symmetry leads to

L̃S = 1
2
b(ηkl∇kϕ∇lϕ − m2ϕ2) = 1

2
b(gµν∂µϕ∂νϕ − m2ϕ2)
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where gµν = ηklhk
µhl

ν and ∇kϕ = hk
µ∂µϕ.

Similarly, the Dirac Lagrangian LD = 1
2
(iψ̄γ k∂

↔
kψ − 2mψ̄ψ) becomes

L̃D = 1
2
b(iψ̄γ k∇

↔
kψ − 2mψ̄ψ) ∇

↔
k ≡ ∇

→
k − ∇

←
k

where ∇kψ = hk
µ(∂µ + Aµ)ψ , ∇kψ̄ = ψ̄(∂

←
µ − Aµ)hk

µ, Aµ ≡ 1
2

Ai j
µσi j .

Comments. After localizing the Poincaré transformations, we could think

that the Lorentz part can be absorbed into ξµ(x), and lose its independence.

However, field transformation law (3.1) shows that the Lorentz part preserves

its independence.

The form of transformation law (3.1) motivates us to ask whether we can

treat ξµ and ωi j , instead of εµ and ωµν , as independent parameters. In the

case of global Poincaré transformations this is not possible; for instance, the

transformation defined by ξµ = 0, ωi j �= 0 is not an allowed one. When

the symmetry is localized, the answer to this question is affirmative, due to the

transformation laws of compensating fields.

When we go from global to local Poincaré group, the translation generator

Pi = −∂i should be replaced with P̃i = −∇i . The group of local Lorentz

rotations and local translations has a more general structure than the original

Poincaré group, as can be seen from the commutation relations of the new

generators.

In order to have a clear geometric interpretation of the local transformations,

it is convenient to generalize our previous convention concerning the use of Latin

and Greek indices. According to transformation rules (3.7) and (3.9), the use

of indices in Ai j
µ and hk

µ is in agreement with this convention: these fields

transform as local Lorentz tensors with respect to Latin indices and as world

(coordinate) tensors with respect to Greek indices. We can also check that

local Lorentz tensors can be transformed into world tensors and vice versa, by

multiplication with hk
µ or bk

µ. The term −ωi j
,µ in (3.7) shows that Ai j

µ is a

potential (an analogous term appears in δ0 Aµ
k).

The explicit form of the spin matrix �i j , appearing in ∇µφ, depends only

on the Lorentz transformation properties of φ. It is, therefore, natural to extend

the ω-covariant derivative∇µ to any quantity transforming linearly under Lorentz

transformations, ignoring its ξ transformations. Thus, for instance,

∇µhk
ν = [∂µ + 1

2
Ai j

µ(�
1
i j )]kshs

ν = ∂µhk
ν − As

kµhs
ν

∇µH kl = [∂µ + 1
2

Ai j
µ(�

2
i j )]kl

rs H rs = ∂µH kl + Ak
sµH sl + Al

sµH ks

where �1
i j and �2

i j are the vector and tensor representations of �i j :

(�1
i j )

k
s = (δk

i η j s − δk
jηis )

(�2
i j )

kl
rs = (�1

i j )
k

rδ
l
s + (�1

i j )
l
sδ

k
r .



Poincaré gauge invariance 47

Field strengths. We succeeded in modifying the original matter Lagrangian by

introducing gauge potentials, so that the invariance condition (2.11) also remains

true for local Poincaré transformations. In order to construct a free Lagrangian

for the new fields hk
µ and Ai j

µ, we shall first introduce the corresponding field

strengths. Let us calculate the commutator of two ω-covariant derivatives:

[∇µ,∇ν]φ = (∂µAν − ∂ν Aµ + [Aµ, Aν])φ = 1
2

F i j
µν�i jφ

F i j
µν = ∂µAi j

ν − ∂ν Ai j
µ + Ai

sµAs j
ν − Ai

sν As j
µ.

(3.13)

The Lorentz field strength F i j
µν transforms as a tensor, in conformity with its

index structure:

δ0 F i j
µν = ωi

s Fs j
µν + ω j

s F is
µν + ξρ ,µF i j

ρν + ξρ ,ν F i j
µρ − ξλ∂λF i j

µν .

Since ∇kφ = hk
µ∇µφ, the commutator of two ∇k-covariant derivatives will differ

from (3.13) by an additional term containing the derivatives of hk
µ:

[∇k,∇l ]φ = 1
2

F i j
kl�i jφ − Fs

kl∇sφ (3.14a)

where

F i j
kl = hk

µhl
ν F i j

µν

Fs
kl = hk

µhl
ν(∇µbs

ν −∇νbs
µ) ≡ hk

µhl
ν Fs

µν .
(3.14b)

The quantity F i
µν is called the translation field strength. Jacobi identities for the

commutators of covariant derivatives imply the following Bianchi identities:

(first) ερµλν∇µFs
λν = ερµλν Fs

kλνbk
µ

(second) ερλµν∇λF i j
µν = 0.

The free Lagrangian must be an invariant density depending only on the

Lorentz and translation field strengths, so that the complete Lagrangian of matter

and gauge fields has the form

L̃ = bLF(F i j
kl,F

i
kl )+ bLM(φ,∇kφ). (3.15)

Conservation laws and field equations

The invariance of the Lagrangian in a gauge theory for an internal symmetry

leads, after using the equations of motion, to covariantly generalized differential

conservation laws. The same thing also happens in PGT.

1. Let us denote the set of field variables by Q A = (φ, bk
µ, Ai j

µ). The

invariance condition (2.11) can be written as

�L = δL

δQ A

δ0 Q A + ∂µ Jµ = 0 Jµ ≡ ∂L

∂Q A,µ

δ0 Q A + Lξµ
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where δ0 Q A is determined by equations (2.5), (3.7b), and the relation

δ0bk
µ = ωk

sbs
µ − ξλ,µbk

λ − ξλ∂λbk
µ (3.16)

which follows from (3.9). Those terms in �L that contain derivatives of

parameters ωi j and ξµ can be transformed so that these derivatives appear only in

a form of four-divergences:

δL

δbk
µ

(−ξν ,µbk
ν) = ξν∂µ

(
δL

δbk
µ

bk
ν

)
− ∂µ

(
δL

δbk
µ

bk
νξ

ν

)

δL

δAi j
µ

(−ωi j
,µ − ξν ,µAi j

ν) = ξν∂µ

(
δL

δAi j
µ

Ai j
ν

)
+ ωi j ∂µ

(
δL

δAi j
µ

)

− ∂µ

[
δL

δAi j
µ

(ωi j + ξν Ai j
ν)

]
.

After that, the invariance condition takes the form

�L = −ξν Iν + 1
2
ωi j Ii j + ∂µ�

µ = 0. (3.17)

Integrating this expression over a four-dimensional domain !, and imposing the

requirement that the parameters ξ and ω, together with their first derivatives,

vanish on the boundary of !, we obtain −ξν Iν + 1
2
ωi j Ii j = 0, so that �L = 0

reduces to

∂µ�
µ = 0. (3.18a)

Since, further, ξ and ω are arbitrary within !, it follows that

Iν = 0 Ii j = 0. (3.18b)

These identities completely determine the content of the differential conservation

laws.

2. In what follows we shall restrict our discussion to the case L = L̃M. Let us

first introduce canonical and covariant energy–momentum and spin currents for

matter fields,

T̃µ
ν =

∂L̃M

∂φ,µ
φ,ν − δµν L̃M S̃µ

i j = −∂L̃M

∂φ,µ
�i jφ (3.19)

T̃ ′µ
ν =

∂L̃M

∂∇µφ
∇νφ − δµν L̃M S̃ ′µ

i j = − ∂L̃M

∂∇µφ
�i jφ (3.20)

as well as the corresponding dynamical quantities:

τµν = hk
µ δL̃M

δhk
ν
= − δL̃M

δbk
µ

bk
ν σµ

i j = − δL̃M

δAi j
µ

. (3.21)
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We assume that the equations of motion for matter fields are satisfied, δL̃M/δφ =
0. Demanding that the coefficients of ∂ξ and ∂ω in (3.18b) vanish, we obtain the

equality of the covariant and dynamical currents:

τµν = T̃ ′µ
ν σµ

i j = S̃ ′µ
i j . (3.22)

Conditions (3.18a) yield covariantly generalized conservation laws for the

energy–momentum and angular momentum currents:

bk
µ∇ντ

ν
k = τ νk Fk

µν + 1
2
σ ν

i j F i j
µν

∇µσ
µ

i j = τi j − τ j i .
(3.23)

Similar analysis can be applied to the complete Lagrangian (3.15).

3. The equations of motion for matter fields, obtained from (3.15), have the

covariant form:

δφ : ∂̄L̃M

∂φ
−∇µ

∂L̃M

∂∇µφ
= 0 (3.24a)

where ∂̄L̃M/∂φ = [∂L̃M(φ,∇ku)/∂φ]u=φ .

Example 2. The equation of motion for a free scalar field has the form

δϕ : b−1∂µ(bgµν∂νϕ)+ m2ϕ = 0.

Since ∇µ = ∂µ in the space of the Lorentz scalars (no Latin indices), this equation

is obviously covariant. The canonical currents,

T̃µ
ν = b∂µϕ∂νϕ − δµν L̃S S̃µ

i j = 0

are equal to the corresponding covariant and dynamical ones.

For the free Dirac Lagrangian L̃D, the equations of motion for ψ̄ are

δψ̄ : (iγ k∇k + iγ k Vk − m)ψ = 0

where 2Vk = b−1∂µ(bhk
µ)+ Aks

s = b−1∇µ(bhk
µ), and similarly for ψ . These

equations have the covariant form (3.24a). The canonical and covariant currents

are given as

T̃µ
ν = 1

2
ibψ̄γ µ∂

↔
νψ − δµν L̃D S̃µ

i j = 1
2
ibhkµεki j s ψ̄γ5γ

sψ

T̃ ′µ
ν = 1

2
ibψ̄γ µ∇

↔
νψ − δµν L̃D S̃ ′µ

i j = S̃µ
i j

while τµν = T̃ ′µ
ν and σµ

i j = S̃ ′µ
i j , as expected.
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In order to write down the equations of motion for gauge fields, it is useful

to introduce the notation

f µk = − ∂̄L̃F

∂bk
µ

πk
µν = ∂L̃F

∂bk
µ,ν

= − ∂L̃F

∂Fk
µν

f µi j = − ∂̄L̃F

∂Ai j
µ

πi j
µν = ∂L̃F

∂Ai j
µ,ν

= − ∂L̃F

∂F i j
µν

where ∂̄L̃F/∂bk
µ denotes the partial derivative of L̃F = bLF(F i

kl , F i j
kl),

calculated by keeping F i
λρ, F i j

λρ = constant,

∂L̃F

∂bk
µ

= ∂̄L̃F

∂bk
µ

+ 1

2

∂L̃F

∂F i
λρ

∂F i
λρ

∂bk
µ

and similarly for ∂̄L̃F/∂Akl
µ. After that we find that

δbk
µ : −∇ν(πk

µν)− f µk = τµk

δAi j
µ : −∇ν(πi j

µν)− f µi j = σµ
i j .

(3.24b)

Example 3. Let us consider the gauge field Lagrangian L̃F = −abF , where a

is a constant, and F ≡ hi
µh j

ν F i j
µν (Einstein–Cartan theory). Here, πk

µν =
f µi j = 0, and the equations of motion have the form:

2ab(Fµ
k − 1

2
hk

µF) = τµk − 2a∇ν(H
µν

i j ) = σµ
i j

where H
µν

i j ≡ b(hi
µh j

ν − h j
µhi

ν).

On the equivalence of different approaches

The idea of local Poincaré symmetry was proposed and developed in the papers by

Utiyama (1956) and Kibble (1961) (see also Sciama 1962). Utiyama introduced

the fields Ai j
µ by localizing the Lorentz symmetry, while the hk

µ were treated

as given functions of x (although at a later stage these functions were regarded

as dynamical variables). This rather unsatisfactory procedure was substantially

improved by Kibble, who showed that the quantities hk
µ, just like Ai j

µ, can

be introduced as compensating fields if we consider the localization of the full

Poincaré group.

To compare our approach with Kibble’s, we note that he started by

considering Minkowski spacetime, in which infinitesimal transformations (2.4)

induce the total field variation δφ = 1
2
ωi j�i jφ, which is equivalent to (2.5).

Also, ξµ(x) and ωi j (x) are treated from the very beginning as independent gauge

parameters, which makes the geometric interpretation of the theory more direct.

The use of the form variation δ0φ instead of the total variation δφ brings our

approach closer to the spirit of gauge theories of internal symmetries, since δ0φ
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realizes the representation of the Poincaré group in the space of fields φ. However,

the transformation properties of the gauge fields, as well as the form of the

covariant derivative, are independent of these details, so that the final structure

is the same.

In order to preserve the geometric meaning of translation, the original

Poincaré generator Pµ = −∂µ should be replaced by the covariant derivative

−∇µ. If we demand that the matter field transformation δ0φ has the same

geometric meaning after localization of the symmetry as it had before, the

expression for δ0φ should be changed to

δ∗0φ = ( 1
2
ωi j�i j − ξν∇ν)φ (3.25)

(Hehl et al 1976). It follows from the relation δ∗0φ = δ0φ − 1
2
ξν Ai j

ν�i jφ that

δ∗0φ and δ0φ differ by a local Lorentz rotation with parameter �ωi j = −ξν Ai j
ν .

Therefore, invariance under δ0φ implies invariance under δ∗φ and vice versa and

the two approaches are equivalent.

All three formulations are thus seen to be essentially equivalent approaches

to the localization of Poincaré symmetry.

3.2 Geometric interpretation

Up to this point, we have not given any geometric interpretation to the new fields

hk
µ and Ai j

µ. Such an interpretation is possible and useful, and leads to a new

understanding of gravity.

Riemann–Cartan space U4

In this subsection we give a short exposition of Riemann–Cartan geometry in

order to be able to understand the geometric meaning of PGT (Hehl et al 1976,

Choquet-Bruhat et al 1977; see also appendix B).

The differentiable manifold. Spacetime is often described as a ‘four-

dimensional continuum’, since any event in spacetime can be determined by four

real numbers: (t, x, y, z). In SR, spacetime has the structure of Minkowski space

M4. In GR, spacetime can be divided into ‘small, flat parts’ in which SR holds

(on the basis of the principle of equivalence), and these pieces are ‘sewn together’

smoothly. Although spacetime looks like M4 locally, it may have quite different

global properties.

This picture of spacetime can be compared with a two-dimensional surface

which is ‘smooth’, so that a small piece of it, in the neighbourhood of a given

point, can be approximated by the tangent plane at that point. On the other

hand, the whole surface may be quite different from the plane. Mathematical

generalization of a ‘smooth’ surface leads to the concept of a differentiable

manifold.
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It is natural to start with the very simple but abstract concept of topological

space, which allows a precise formulation of the idea of continuity. A topological

space consists of a set of points X , and a given collection τ of subsets of X ,

which are defined as being open. The collection τ defines a topology on X if (a)

τ contains the empty set and the whole X and (b) it is closed with respect to the

operations of arbitrary union and finite intersection of subsets.

Example 4. A simple example of a topological space is obtained by taking X

to be the set of real numbers R, and defining τ as a collection of all subsets

of R which can be expressed as unions of open intervals (a, b), and the empty

set. If infinite intersections were allowed in the definition of τ , these sets would

not define a topology on R. Indeed, each point in R can be represented as an

infinite intersection of open intervals: for instance, a = ∩∞
n=1(a − 1/n, a + 1/n).

However, a point is not a union of open intervals, therefore it is not open. This

example represents a historical prototype of a topological space, and explains the

terminology ‘open set’ in the context of abstract topological spaces.

The structure of topological spaces allows the natural introduction of

neighbourhoods and continuous mappings. Of special importance for topological

spaces are homeomorphic mappings f ( f is a bijection, f and f −1 are

continuous).

A topological space X has the structure of a manifold if every point in X

has a neighbourhood that ‘looks like’ an open subset of Rn , i.e. if there exists

a homeomorphism ϕi of a neighbourhood Oi of a point P in X into an open

subset !i ofRn . This mapping defines a local coordinate system on X , since the

image of P is a set of n real numbers (x
µ
i ) ≡ (x1

i , x2
i , . . . , xn

i ), representing the

coordinates of P . The collection of all local coordinate systems is called simply a

coordinate system. Since every piece of X ‘looks like’Rn , the number n is called

the dimension of X .

If a point P ∈ X lies in the overlap Oi ∩ O j , its image inRn is given in two

local coordinate systems. These two systems are compatible if the transition from

one to the other, defined by ϕi j = ϕ j ◦ ϕ−1
i : (xµ

i ) → (x
µ
j ), is a smooth function.

A manifold is differentiable if its local coordinate systems are compatible (figure

3.1).

Example 5. The sphere S2 = {(x, y, z)|x2 + y2 + z2 = 1} has the structure of

a differentiable manifold. To see that, let us introduce a neighbourhood O1 of an

arbitrary point P1 ∈ S2, and a neighbourhood O2 of the antipodal point P2, such

that O1 does not contain P2 , O2 does not contain P1, and O1 ∪ O2 = S2. Then,

we can introduce two local coordinate systems (ϕi ,!i , i = 1, 2), where ϕ1 is

the stereographic projection of O1 from the point P1 to the Euclidean plane !1,

tangent to the sphere at the point P2, and similarly for (ϕ2,!2).

Since each mapping of a differentiable manifold can be realized in terms

of coordinates, we can easily introduce differentiable and smooth mappings.
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fi

fj

Oi

Oj

Ωi

Ωj

fi fj
. -1

R

Figure 3.1. Change of coordinates on a differentiable manifold.

Of special importance for differentiable manifolds are diffeomorphisms ( f is a

bijection, f and f −1 are smooth).

Tangent space. A differentiable manifold looks like an empty space ‘waiting’

for something to happen. We believe that the laws of physics must be expressible

as relationships between geometric objects. Important objects of this type are

vectors and tensors which appear in physical theories as dynamical variables.

In flat space we can think of vectors as finite displacements or arrows

extending between two points. This is true, for instance, in Euclidean space

E3, but on a curved, two-dimensional surface the arrow definition breaks down.

However, by considering infinitesimal displacements, we can introduce a new

structure for the vector space, determined by all tangent vectors, lying in the

tangent plane. This structure can be generalized to any n-dimensional manifold

X , if we imagine X to be embedded in a higher-dimensional flat space. But such

a treatment suggests, falsely, that tangent vectors depend on the embedding. It is

most acceptable to define tangent vectors as directional derivatives without any

reference to embedding.

The set of all tangent vectors at P defines the tangent space TP. The set of

vectors tangent to the coordinate lines xµ defines the coordinate basis eµ = ∂µ in

TP. The components of a vector v in this basis, defined by v = vµeµ, transform

under the change of coordinates x %→ x ′ according to

v′µ = ∂x ′µ

∂xν
vν . (3.26a)

Vectors v = (vµ) are usually called contravariant vectors.

To each tangent space TP we can associate the space T ∗
P

of dual vectors

(covariant vectors, covectors or 1-forms). The components of a dual vector v∗ in
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the basis θµ, dual to eµ (θµ(eν) = δ
µ
ν ), transform as

v∗′µ = ∂xν

∂x ′µ
v∗ν . (3.26b)

It is usual to omit the sign ∗ for dual vectors when using the standard index

notation in which components of vectors have upper indices and components of

dual vectors—lower indices.

A tensor of type (p, q) is characterized by components which transform,

under a change of coordinates, in the same way as the product of p vectors and q

dual vectors. A tensor tµ of type (1, 0) is a vector, while a tensor tµ of type (0, 1)

is a dual vector.

Vector and tensor fields are important objects in physics. A vector field is a

mapping which associates each point in X with a tangent vector, x %→ v(x). We

can define a tensor field in a similar way.

Parallel transport. We assume that spacetime has the structure of a

differentiable manifold X4. On X4 we can define differentiable mappings,

tensors and various algebraic operations with tensors at a given point (addition,

multiplication, contraction). However, comparing tensors at different points

requires some additional structure on X4. Consider, for instance, a vector Ax

lying in the tangent space Tx , and a vector Ax+dx lying in Tx+dx . In order to

compare these two vectors, it is necessary, first, to ‘transport’ Ax from Tx to

Tx+dx and then to compare the resulting object APT with Ax+dx . This ‘transport’

procedure generalizes the concept of parallel transport in flat space and bears the

same name. The components of APT with respect to the coordinate basis in Tx+dx

are defined as

A
µ

PT(x + dx) = Aµ(x)+ δAµ δAµ = −Ŵ
µ
λρ Aλ dxρ

where the infinitesimal change δAµ is bilinear in Aµ and dxρ . The set of 64

coefficients Ŵ
µ
λρ defines a linear (or affine) connection on X4. An X4 equipped

with Ŵ is called a linearly connected space, L4 = (X4, Ŵ). If Ax+dx = APT, we

say that Ax+dx and Ax are parallel. Their difference can be expressed in terms of

the components as (figure 3.2):

D Aµ = Aµ(x + dx)− A
µ
PT(x + dx) = dAµ − δAµ

= (∂ρ Aµ + Ŵ
µ
λρ Aλ) dxρ ≡ Dρ(Ŵ)Aµ dxρ .

(3.27)

The expression D Aµ is called the covariant derivative of the vector field Aµ,

and it represents a generalization of the partial derivative. By convention, the last

index in Ŵ
µ
λρ is the same as the differentiation index.

Parallel transport of a dual vector field Aµ is determined by demanding

δ(AµBµ) = 0, which implies δAµ = Ŵν
µλAν dxλ, i.e.

Dρ(Ŵ)Aµ = ∂ρ Aµ − Ŵν
µρ Aν . (3.28)
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DA

A + δA A + dA

d

Figure 3.2. Comparison of vectors at different points of X4 with the help of parallel

transport.

The covariant derivative of an arbitrary tensor field is defined as the mapping

of a tensor field of type (p, q) into a tensor field of type (p, q + 1), with the

following properties:

– linearity: D(αt + βs) = αD t + βDs;

– Leibniz rule: D(t s) = (D t)s + t(Ds);

– D f = d f , if f is a scalar function;

– D commutes with contraction.

Torsion and curvature. Using the fact that Dρ(Ŵ)Aµ is a tensor, we can derive

the transformation law for Ŵ
µ
λρ , which is not a tensor. However, the antisymmetric

part of the linear connection,

Tµ
λρ = Ŵ

µ
ρλ − Ŵ

µ
λρ (3.29)

transforms as a tensor and is called the torsion tensor.

u(2) + δu(2)

T

p

u(1) u(1) + δu(1)

u(2)

Figure 3.3. Torsion closes the gap in infinitesimal parallelograms.

In order to see the geometric meaning of the torsion, consider two

infinitesimal vectors at P , u(1) and u(2), tangent to coordinate lines x1(λ) and

x2(λ), respectively (figure 3.3). A change in u(1) under infinitesimal parallel
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AA

Figure 3.4. Parallel transport depends on path.

transport along x2(λ) has the form δ2u
µ

(1) = −Ŵ
µ

λ2uλ
(1) dx2, while a similar change

of u(2) along x1(λ) is δ1u
µ

(2) = −Ŵ
µ

λ1uλ
(2) dx1. The figure built by the vectors

u(1), u(2), and their parallel transported images, is not a closed parallelogram:

δ1u
µ

(2)
− δ2u

µ

(1)
= −(Ŵ

µ

21 − Ŵ
µ

12) dx1 dx2 = Tµ
21 dx1 dx2.

Parallel transport is a path-dependent concept (figure 3.4). Indeed, if we

parallel transport Aν around an infinitesimal closed path, the result is

�Aν =
∮

Ŵµ
νρ Aµ dxρ = 1

2
Rµ

νλρ Aµ�σ λρ

where �σ λρ is a surface bounded by the path, and Rµ
νλρ is the Riemann

curvature tensor:

Rµ
νλρ = ∂λŴ

µ
νρ − ∂ρŴ

µ
νλ + Ŵ

µ
σλŴ

σ
νρ − Ŵµ

σρŴ
σ
νλ. (3.30)

The torsion and curvature tensors in L4 obey some algebraic and also some

differential (Bianchi) identities.

The metric. We assume that on X4 we can define a metric tensor field g as a

symmetric, non-degenerate tensor field of type (0, 2). After that, we can introduce

the scalar product of two tangent vectors

u · v ≡ g(u, v) = gµνuµvν

where gµν = g(eµ, eν), and calculate the lengths of curves, angles between

vectors, etc. Thus, e.g., the square of the infinitesimal distance between two points

x and x + dx on a curve C(λ) is determined by

ds2 = g(t dλ, t dλ) = gµν dxµ dxν

where t is the tangent on C(λ) at x . With the help of a metric we can introduce a

natural isomorphism between vectors and dual vectors which, in components, has

the form

uµ = gµνuν uµ = gµνuν
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Q = 0

(L4 , g)

U4

R = 0

R = 0

T4V4

T = 0

T = 0

M4

Figure 3.5. Classification of spaces satisfying the metricity condition.

where gµν is the inverse metric tensor. We also assume that the metric of

spacetime has the signature (+,−,−,−).

The linear connection and the metric are independent geometric

objects.

After introducing the linear connection and the metric, the differentiable manifold

X4 becomes an (L4, g) space.

In order to preserve lengths and angles under parallel transport in (L4, g),

we can introduce the metricity condition:

−Qµνλ ≡ Dµ(Ŵ)gνλ = ∂µgνλ − Ŵρ
νµgρλ − Ŵ

ρ
λµgνρ = 0 (3.31)

where Qµνλ is called the non-metricity tensor. This requirement establishes

a local Minkowskian structure on X4, and defines a metric-compatible linear

connection:
Ŵ
µ
λν =

{
µ
λν

}
+ Kµ

λν

{
µ
λν

}
≡ 1

2
gµρ(gνρ,λ + gλρ,ν − gλν,ρ)

(3.32a)

where
{
µ
λν

}
is the Christoffel connection and Kµ

λν the contortion tensor,

Kµ
λν = − 1

2
(Tµ

λν − Tν
µ
λ + Tλν

µ (3.32b)

with 24 independent components.

A space (L4, g) with the most general metric-compatible linear connection

is called the Riemann–Cartan space U4. If the torsion vanishes, U4 becomes the

Riemann space V4 of GR; if, alternatively, the curvature vanishes, U4 becomes

Weitzenböck’s teleparallel space T4. Finally, the condition Rµ
νλρ = 0 transforms

V4 into Minkowski space M4 and Tµ
λρ = 0 transforms T4 into M4 (figure 3.5).
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A curve x(λ) in U4 is an autoparallel curve (or affine geodesic) if its tangent

vector is parallel to itself. Its equation

d2xµ

dλ2
+ Ŵµ

ρν

dxρ

dλ

dxν

dλ
= 0 (3.33)

contains only the symmetric part of the connection, Ŵ
µ

(ρν)
=
{
µ
ρν

}
− T(ρν)

µ.

An extremal curve in U4 is a curve with an extremal length determined by

the condition δ
∫

ds = 0. Its equation has the same form as that in GR,

d2xµ

dλ2
+
{
µ
ρν

}dxρ

dλ

dxν

dλ
= 0. (3.34)

In a Riemann space autoparallel and extremal curves coincide and are known as

geodesic lines.

Example 6. On the unit sphere S2 the metric in spherical coordinates (x1, x2) =
(θ, ϕ) is given by

ds2 = dθ2 + sin2 θ dϕ2.

The vector A at (ϕ, θ) = (0, π/4) is equal to eθ . What is A after it has been

parallel transported along the circle ϕ = 0 to the point (0, π/2)? Calculating the

Christoffel symbols,

{
1
22

}
= − sin θ cos θ

{
2
12

}
=
{

2
21

}
= cot θ

we find that the equations of parallel transport D1 Aµ = 0 have the form

∂A1

∂θ
= 0

∂A2

∂θ
+ cot θ A2 = 0.

Solving these equations we obtain A1 = C1, A2 = C2/ sin θ . At θ = π/2,

(A1, A2) = (1, 0), so that C1 = 1, C2 = 0; therefore, after parallel transport the

vector is (A1, A2) = (1, 0), as we might have expected from the direct geometric

picture.

Spin connection. The choice of a basis in a tangent space TP is not unique. A

coordinate frame (C-frame) is determined by a set of four vectors eµ(x), tangent

to the coordinate lines. In U4 we can also introduce an orthonormal, Lorentz

frame (L-frame), determined by four vectors ei(x) (vierbein or tetrad), such that

g(ei , e j ) = ηi j . (3.35)

The existence of L-frames is closely related to the principle of equivalence, as we

shall see. Every tangent vector u can be expressed in both frames:

u = uµeµ = ui ei .
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In particular, C- and L-frames can be expressed in terms of each other,

eµ = ei
µei ei = ei

µeµ. (3.36)

The scalar product of two tangent vectors is defined in terms of the metric

(in C-frames we use gµν , and in L-frames ηi j ):

u · v = gµνuµvν = ηi j uiv j .

Consequently,

ηi j = ei · e j = gµνei
µe j

ν

gµν = eµ · eν = ηi j ei
µe j

ν .
(3.37)

The relation between the coordinate and tetrad components of an arbitrary tangent

vector u reads:

ui = ei
µuµ uµ = ei

µui . (3.38)

Using this, we can associate with each L-frame a local Lorentz coordinate system

determined by dx i = ei
µ dxµ, such that

ds2 = gµν dxµ dxν = ηi j dx i dx j .

The existence of L-frames leads to very important consequences. In

particular, they are used to introduce finite spinors into U4 theory.

If we want to compare vectors ui (x) and ui (x + dx) at points x and x + dx ,

determined with respect to the L-frames ei(x) and ei(x + dx), respectively, we

have to know the rule of parallel transport:

δui = −ωi
jµu j dxµ (3.39a)

where ωi j
µ is the so-called spin connection, with 64 components. Parallel

transport of vi is determined by requiring δ(uivi ) = 0,

δvi = ω j
iµv j dxµ. (3.39b)

The existence of L-frames at each point of X4 implies the existence of

the Lorentz metric at each point of X4. Demanding that the tensor field ηi j be

invariant under parallel transport,

δηi j = (ωs
iµηs j + ωs

jµηsi ) dxµ = 0 (3.40a)

implies that the connection is antisymmetric:

ωi j
µ + ω j i

µ = 0. (3.40b)

Having established rule (3.39) of parallel transport, we can define the related

ω-covariant derivatives of ui and vi :

Dui = (∂µui + ωi
sµus) dxµ ≡ Dµ(ω)u

i dxµ

Dvi = (∂µvi − ωs
iµvs) dxµ ≡ Dµ(ω)vi dxµ.

(3.41)

Since η is a constant tensor, the condition δη = 0 yields

Dµ(ω)ηi j = 0. (3.42)
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Relation between ω and Ŵ. Up to now, we have not assumed any relation

between the spin connection and Ŵ. It is natural to demand that the tetrad

components of a vector uµ(x), parallel transported from x to x + dx , be equal

to ui + δui ,

ui + δui = ei
µ(x + dx)(uµ + δuµ)

since parallel transport is a unique geometric operation, independent of the choice

of frame. In other words, ω and Ŵ represent one and the same geometric object in

two different frames. From this, we obtain the relation

Dµ(ω + Ŵ)ei
ν ≡ ∂µei

ν + ωi
sµes

ν − Ŵλ
νµei

λ = 0 (3.43)

which explicitly connects ω and Ŵ. The operation Dµ(ω + Ŵ) can be formally

understood as a total covariant derivative. Using equations (3.42) and (3.43) we

easily obtain the metricity condition:

Dµ(Ŵ)gνλ = Dµ(ω + Ŵ)gνλ = Dµ(ω + Ŵ)(ηi j ei
νe j

λ) = 0.

The ω-covariant derivative (3.41) can be generalized to a quantity φ

belonging to an arbitrary representation of the Lorentz group:

Dµ(ω)φ = (∂µ + ωµ)φ ωµ ≡ 1
2
ωi j

µ�i j . (3.44)

The antisymmetry of ωi j
µ is here clearly connected to the antisymmetry of the

spin generator �i j . If the spin connection were not antisymmetric, the metricity

condition would not be fulfilled and the geometry would be more general than U4.

Example 7. The relation between ω and Ŵ implies:

(a) Dµ(ω)v
i = bi

ν Dµ(Ŵ)v
ν ,

(b) Di (ω)v
i = Dµ(Ŵ)v

µ = b−1∂µ(bv
µ),

(c) �ϕ ≡ ηi j Di (ω)D j (ω)ϕ = gµν Dµ(Ŵ)Dν(Ŵ)ϕ = b−1∂µ(bgµν∂νϕ).

Equation (a) follows from Dµ(ω)v
i = Dµ(ω + Ŵ)(bi

νv
ν) = bi

ν Dµ(Ŵ)v
ν . To

prove (b) we use Ŵ
ρ
ρµ =

{
ρ
ρµ

}
+ K ρ

ρµ =
{
ρ
ρµ

}
= b−1∂µb. Finally, (c) follows

from the relation gµν Dµ(Ŵ)Dν(Ŵ)ϕ = Dµ(Ŵ)(g
µν∂νϕ), in conjunction with (b).

Let us observe some consequences of (3.43). If we find Ŵ = Ŵ(ω) from

(3.43) and replace it in expressions (3.29) and (3.30) for the torsion and curvature,

the result is
Tµ

νλ(Ŵ) = ei
µF i

νλ(ω)

Rµ
νλρ(Ŵ) = ei

µe jν F i j
λρ(ω)

(3.45)

where F i
νλ and F i j

νλ are the translation and Lorentz field strengths. On the other

hand, after antisymmetrizing equation (3.43) over µ and ν,

ci
µν + ωi

sµes
ν − ωi

sνes
µ = T λ

µνei
λ

ci
µν ≡ ∂µei

ν − ∂νei
µ
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we find the following solution for ω:

ωi jµ = �i jµ + Ki jµ

�i jµ ≡ 1
2
(ci jm − cmi j + c jmi )e

m
µ

(3.46)

where � are the Ricci rotation coefficients and K the contorsion.

Geometric and gauge structure of PGT

The final result from the analysis of PGT is the construction of the invariant

Lagrangian (3.15). This is achieved by introducing new fields bi
µ (or hk

ν) and

Ai j
µ, which are used to construct the covariant derivative ∇k = hk

ν∇ν and the

field strengths F i j
µν and F i

µν . This theory can be thought of as a field theory in

Minkowski space. However, geometric analogies are so strong that it would be

unnatural to ignore them.

Gauge field Ai j
µ can be identified with the spin connection ωi j

µ. Indeed,

from the definition of ∇µφ it follows that

– the quantity ∇µφ has one additional dual index, compared to φ; and

– ∇µ acts linearly, obeys the Leibniz rule, commutes with contraction and

∇µ f = ∂µ f if f is a scalar function.

Therefore, ∇µ can be identified with the geometric covariant derivative Dµ.

Then, by comparing ∇µ(A) and Dµ(ω) in equations (3.5) and (3.44), we can

conclude that Ai j
µ can be identified with ωi j

µ.

The field bi
µ can be identified with the tetrad components on the basis of

its transformation law. This ensures the possibility of transforming local

Lorentz and coordinate indices into each other.

The local Lorentz symmetry of PGT implies the metricity condition.

Consequently,

PGT has the geometric structure of the Riemann–Cartan space U4.

It is not difficult to conclude, by comparing equation (3.45) with (3.13) and

(3.14), that the translation field strength F i
µν is nothing but the torsion T λ

µν ,

while the Lorentz field strength F i j
µν represents the curvature Rλ

τµν . Thus,

PGT is a specific approach to the theory of gravity in which both mass and spin

are sources of the gravitational field.

It is an intriguing fact that PGT does not have the structure of an ‘ordinary’

gauge theory (McDowell and Mansouri 1977, Regge 1986, Bañados et al 1996).

To clarify this point, we start from the Poincaré generators Pa, Mab satisfying the

Lie algebra (2.6), and define the gauge potential as Aµ = ea
µPa + 1

2
ωab

µMab.

The infinitesimal gauge transformation

δ0 Aµ = −∇µλ = −∂µλ− [Aµ, λ]
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where λ = λa Pa + 1
2
λab Mab, has the following component content:

Translations: δ0ea
µ = −∇ ′

µλ
a δ0ω

ab
µ = 0

Rotations: δ0ea
µ = λa

beb
µ δ0ω

ab
µ = −∇ ′

µλ
ab

where ∇ ′ = ∇(ω) is the covariant derivative with respect to the spin connection

ω. The resulting gauge transformations are clearly different from those obtained

in PGT.

We should observe that although the tetrad field and the spin connection

carry a representation of the Poincaré group, the EC action in four dimensions,

IEC = 1
4

∫
d4x εµνλρεabcdec

λed
ρ Rab

µν , is not invariant under the translational

part of the Poincaré group:

δT IEC = 1
4

∫
d4x εµνλρεabcdλ

cT d
λρ Rab

µν �= 0.

Thus, IEC is invariant under Lorentz rotations and diffeomorphisms, but not under

translations. The situation is different in three dimensions where gravity can be

represented as a ‘true’ gauge theory (Witten 1988).

The principle of equivalence in PGT

Minimal coupling. The PE represents a physical basis for understanding the

phenomenon of gravity. According to this principle, the effect of a non-inertial

reference frame on matter in SR is locally equivalent to the gravitational field

(chapter 1).

The dynamical content of the PE is expressed by the minimal coupling of

matter to gravity. Consider, in Minkowski space M4, an inertial frame in which

the matter field φ is described by the LagrangianLM(φ, ∂kφ). When we go over to

a non-inertial frame, LM transforms into
√−gLM(φ,∇kφ). If φ is, for instance,

a vector field, φ → φl , then

∇kφ
l = hk

µbl
ν(∂µφ

ν + Ŵν
λµφ

λ) Ŵν
λµ =

{
ν
λµ

}
.

The pseudo-gravitational field, equivalent to the non-inertial reference frame, is

represented by the Christoffel symbol Ŵ and the factor
√−g. It is clear that

this field can be eliminated on the whole spacetime by simply going back to the

global inertial frame, while for real fields in spacetime this is not true—they can

only be eliminated locally. For this reason, in the last step of introducing a real

gravitational field, Einstein replaced M4 with a Riemann space V4. We shall

see that this is the correct choice but also that Einstein could have chosen the

Riemann–Cartan space U4.

Let us now recall another formulation of the PE: the effects of gravity on

matter in spacetime can be eliminated locally by a suitable choice of reference

frame, so that matter behaves as in SR. More precisely,
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At any point P in spacetime we can choose an orthonormal reference

frame em , such that (a) gmn = ηmn and (b) Ŵi
j k = 0, at P.

This statement is correct not only in GR (spacetime = V4), but also in PGT

(spacetime = U4), as we shall see (von der Heyde 1975).

The principle of equivalence in GR. To prove part (a) of the PE in V4, we

note that a transition to a new reference frame em at P , expressed by the local

coordinate transformation xµ → ym (dym = em
µ dxµ), implies

g′mn(y) =
∂xλ

∂ym

∂xρ

∂yn
gλρ(x). (3.47a)

Since the matrices Lm
λ = ∂xλ/∂ym , gλρ and g′mn are constant at P , this equation

can be given a simple matrix form:

G′ = LGLT . (3.47b)

It is known from the theory of matrices that for any symmetric matrix G, there

is a non-singular matrix L such that G′ = LGLT is a diagonal matrix, with

diagonal elements equal to 1, 0 or −1. Although the matrix L is not unique, the

set of diagonal elements for any given G is unique, and it is called the signature

of G. Since the metric tensor is non-singular, the diagonal elements are different

from 0. If the signature of the metric is (+1,−1,−1,−1), it is clear that G can

be transformed to ηmn at P . This can be done consistently at every point in the

spacetime as a consequence of the metricity condition: ∇ g = 0.

This choice of local coordinates does not eliminate the gravitational field at

P completely, since Ŵ �= 0. To prove part (b) of the PE we choose the point

P as the origin of the coordinate system, and define in its neighbourhood a new

coordinate transformation

zm = ym + 1
2

Gm
ln yl yn ∂zm

∂yn

∣∣∣∣
y=0

= δm
n

with Gm
ln = Gm

nl . The connection Ŵ transforms according to

Ŵ′m
nl = ∂zm

∂yr

∂ys

∂zn

∂y p

∂zl
Ŵr

sp +
∂2 y p

∂zn∂zl

∂zm

∂y p
= Ŵm

nl − Gm
nl (at P). (3.48)

Since Ŵ is symmetric in V4, the choice G = Ŵ yields Ŵ′ = 0 at P .

The transition y → z does not change the value of any tensor at P so that

the choice Ŵ′ = 0 can be realized simultaneously with g = η. This reveals the

local Minkowskian structure of V4, in accordance with the PE.
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The principle of equivalence in U4. Gravitational theory in V4 shows certain

characteristics that do not necessarily follow from the PE. Namely, the form of

the Riemannian connection shows that the relative orientation of the orthonormal

frame ei(x+dx)with respect to ei(x) (parallel transported to x+dx) is completely

fixed by the metric. Since a change in this orientation is described by Lorentz

transformations, it does not induce any gravitational effects; therefore, from

the point of view of the PE, there is no reason to prevent independent Lorentz

rotations of local frames. If we want to use this freedom, the spin connection

should contain a part which is independent of the metric, which will realize an

independent Lorentz rotation of frames under parallel transport:

ωi
jµ ≡ �i

jµ + K i
jµ. (3.49)

In this way, the PE leads to a description of gravity which is not in Riemann

space, but in Riemann–Cartan geometry U4. If all inertial frames at a given point

are treated on an equal footing, the spacetime has to have torsion.

We shall now show that locally the Riemann–Cartan space has the structure

of M4, in agreement with the PE. Since ∇ g = 0 also holds in U4, the arguments

showing that g can be transformed to η at any point P in U4 are the same as

in the case of V4, while the treatment of the connection must be different: the

antisymmetric part of ω can be eliminated only by a suitable choice for the relative

orientation of neighbouring tetrads.

Let us choose new local coordinates at P , dxµ → dx i = ei
µ dxµ, related to

an inertial frame. Then,

g′i j = ei
µe j

νgµν = ηi j

Ŵ′i
j k = ei

µe j
νek

λ(�µ
νλ + Kµ

νλ) ≡ ek
λωi

jλ.

The metricity condition ensures that this can be done consistently at every point

in spacetime.

Suppose that we have a tetrad ei (x) at the point P , and a tetrad ei(x + dx)

at another point in a neighbourhood of P; then, we can apply a suitable Lorentz

rotation to ei(x + dx), so that it becomes parallel to ei(x). Given a vector v

at P , it follows that the components vk = v · ek do not change under parallel

transport from x to x + dx , provided the metricity condition holds. Hence, the

connection coefficients ωi j
µ(x) at P , defined with respect to this particular tetrad

field, vanish: ωi j
µ(P) = 0. This property is compatible with g′i j = ηi j , since

Lorentz rotation does not influence the value of the metric at a given point.

Therefore, the existence of torsion does not violate the PE.

The space U4 locally has the structure of M4: g(P) = η, ω(P) = 0.

Complete realization of the PE demands, as we have seen, U4 geometry, with

both the metric and the antisymmetric part of the connection as independent

geometric objects. In particular, the PE holds in V4, and also in T4. In more
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general geometries, where the symmetry of the tangent space is higher than the

Poincaré group, the usual form of the PE is violated and local physics differs from

SR.

3.3 Gravitational dynamics

The dynamics of the gravitational field in PGT is determined by the form of the

gravitational Lagrangian LG. If we demand that the equations of motion are at

most of second order in the field derivatives, LG can be, at most, quadratic in

torsion and curvature (Hayashi and Shirafuji 1980a):

L̃G = b(−αR + LT + LR + λ)

LT ≡ a(ATi j k T i j k + BTi j k T j ik + CTi T i )

LR ≡ b1 Ri j kl Ri j kl + b2 Ri j kl Rkli j + b3 Ri j Ri j

+b4 Ri j R j i + b5 R2 + b6(εi j kl Ri j kl )2

(3.50)

where α, A, B,C and bi are free parameters, λ is a cosmological constant,

a = 1/2κ (κ is Einstein’s gravitational constant), Ti = T m
mi , and pseudoscalar

terms are eliminated by requiring parity invariance. The large number of constants

offers many possibilities for the choice of LG. In what follows, we shall discuss

the dynamical details in two particular cases.

Einstein–Cartan theory

In contrast to Yang–Mills theory, in PGT we can construct an invariant which is

linear in field derivatives, R = hi
µh j

ν Ri j
µν . The action

IEC =
∫

d4x b(−a R + LM) (3.51)

defines the so-called Einstein–Cartan (EC) theory, a direct generalization of GR

(Kibble 1961, Sciama 1962).

The matter field equations can be written in the covariant form (3.24a). The

tetrad field equations are

b(Rµ
k − 1

2
hk

µR) = τµk/2a (3.52)

where τ is the dynamical energy–momentum tensor. Formally, both equations

have the same form as Einstein’s, but here the connection is not Riemannian and

τi j is not necessarily symmetric. Finally, the equations of motion for Ai j
µ are:

∇ν H
µν

i j = bhm
µ(T m

i j + δm
i T s

j s − δm
j T s

j s) = −σµ
i j /2a

H
µν

i j ≡ b(hi
µh j

ν − h j
µhi

ν)
(3.53)
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where σ is the dynamical spin tensor. Thus, both mass and spin appear as sources

of the gravitational field.

Equation (3.53) can be formally solved first for the torsion, and then for the

spin connection:

−2abTi j k = σi j k + 1
2
ηi jσ

m
km − 1

2
ηikσ

m
jm

Ai j k = �i j k + Ki j k .
(3.54)

In the simple case of scalar matter we have σi j k = 0, therefore Ti j k = 0, so

that EC theory reduces to GR. If LM is linear in the field derivatives, then σi j k

is independent of Ai j k , and (3.54) yields an explicit solution for Ai j
µ. The spin

connection is not an independent dynamical variable. To simplify the exposition,

we shall assume here the condition of linearity (in particular, this is true for the

important case of the Dirac field).

Differential conservation laws. It is interesting to note that equation (3.53) can

be written in the form

∂ν H
µν
i j + γ µ

i j /2a = −σµ
i j /2a

γ µ
i j /2a ≡ Ai

s
ν H

µν

s j + A j
s
ν H

µν

is

which implies a strict (but not covariant) conservation law:

∂µ(γ
µ

i j + σµ
i j ) = 0. (3.55)

Since γ µ
i j can be expressed in the form γ µ

i j = −∂L̃G/∂Ai j
µ, which shows that

it can be interpreted as the spin current of the gravitational field, this equation

appears to be the differential conservation law of the total spin.

Similarly, equation (3.52) implies a strict conservation law

∂µ(γ
µ

k + τµk) = 0 (3.56)

where γ µ
k is related to the gravitational energy–momentum current. However,

the choice of γ µ
k is not unique. The most natural definition, by analogy with spin,

would be γ µ
k = −∂L̃G/∂bk

µ, but then equation (3.56) would be rather trivial,

since γ µ
k + τµk = 0. The question of the correct form for the conservation laws

in gravity will be discussed in chapter 6.

Second-order formalism. The action (3.51) is given in the first-order form,

since bk
µ and Ai j

µ are independent field variables. Using (3.54) we can eliminate

Ai j k from the remaining equations and obtain effective EC equations without

Ai j k . The same effective equations can be obtained from the action (3.51) in

which Ai j k is replaced by the expression (3.54). Indeed, using the identities

bR(A) = bR(�)+ b( 1
4

Ti j k T i j k + 1
2

Ti j k T j ik − Tk T k)− 2∂ν(bT ν) (3.57a)

L̃M(�+ K ) = L̃M(�)− 1
2
σµ

i j K i j
µ (3.57b)
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we obtain the second-order EC Lagrangian directly:

L̃
(2)
EC = −abR(�)+ L̃M(�)+ L̃′

L̃′ = b

8a
(Si j k Si j k + 2Si j k S j ki − 2Si

j i Sk
jk)

(3.58)

where σi j k = bSi j k . Thus we see that the only difference between EC theory

and GR is in the term L̃ ′, which represents a ‘contact’ spin–spin interaction. In

the case of the Dirac field this interaction is of the fourth power in matter fields,

and looks like the Fermi interaction. Since L̃ ′ contains the factor G = c3/16πa,

this term is much smaller then the other interaction terms so that, for all practical

purposes, EC theory is equivalent to GR.

Generalized Belinfante tensor. After the elimination of Ai j
µ from the action,

the dynamical energy–momentum tensor takes the form

θµk ≡ − δ

δbk
µ

L̃M(�). (3.59a)

This tensor is known as Einstein’s energy–momentum tensor, since it is exactly

this expression which appears in GR. How did the transition τµk → θµk happen?

By observing that � in L̃M(�) depends on bk
µ, we find that

θµk = − δ

δbk
µ

L̃M(A)

∣∣∣∣
A=�

− 1

2

(
δ�i j

ν

δbk
µ

)
δ

δAi j
ν

L̃M(A)

∣∣∣∣
A=�

= τµk(�)+ 1

2

(
δ�i j

ν

δbk
µ

)
σ ν

i j (�).

In order to evaluate this expression, we note that the variation of the relation

A = �+ K over bk
µ, under the condition T = 0, yields

δ�i j
µ − 1

2
(h jλδT i

λµ − bs
µhiλh jρδTsλρ + hiρδT j

µρ) = 0

δT k
µλ = ∇ ′

µ(δbk
λ)− ∇ ′

λ(δbk
µ).

Here, ∇ ′
µ = ∇µ(�), since A = � for T = 0. The covariant derivative

∇ ′
µ acts on Latin indices in δbk

µ, but it can be easily extended to an operator

∇̃ ′
µ ≡ ∇µ(�+ Ŵ) which acts on both Latin and Greek indices, since

Ŵ
ρ
λµδbk

ρ − Ŵ
ρ
µλδbk

ρ = 0 when T = 0.

After that, explicit calculation leads to the result

θµk = τµk(�)− 1
2
∇̃ ′

λ(σ
µ

k
λ + σk

µλ − σ λ
k
µ) (3.59b)
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which represents a covariant generalization of Belinfante’s relation (Grensing and

Grensing 1983). Since the ‘total’ covariant derivative ∇̃ ′
λ when acting on hk

µ or

bk
µ gives zero, it is not difficult to check that θmk = θkm . Therefore, during the

transition A → �, the role of the dynamical energy–momentum tensor is taken

over by Einstein’s tensor θµk .

This result is often used to calculate the symmetrized energy–momentum

tensor in M4, by means of the so-called Rosenfeld procedure:

(a) first, the Lagrangian LM in M4 is transformed into the related Lagrangian

L̃M in Riemann space (∂i → ∇i , LM → bLM);

(b) then, we define Einstein’s energy–momentum tensor θµk ; and

(c) finally, the transition to M4 reduces θµk to the symmetric energy–momentum

tensor in M4.

Teleparallel theory

The general geometric arena of PGT, the Riemann–Cartan space U4, may be a

priori restricted by imposing certain conditions on the curvature and the torsion.

Thus, Einstein’s GR is defined in Riemann space V4, which is obtained from

U4 by requiring the torsion to vanish. Another interesting limit of PGT is

Weitzenböck or teleparallel geometry T4, defined by the requirement of vanishing

curvature:

Ri j
µν(A) = 0. (3.60)

The vanishing of curvature means that parallel transport is path independent (if

some topological restrictions are adopted), hence we have an absolute parallelism.

Teleparallel geometry is, in a sense, complementary to Riemannian geometry: the

curvature vanishes and the torsion remains to characterize the parallel transport.

Of particular importance for the physical interpretation of the teleparallel

geometry is the fact that there is a one-parameter family of teleparallel

Lagrangians which is empirically equivalent to GR (Hayashi and Shirafuji 1979,

Hehl et al 1980, Nietsch 1980).

The Lagrangian. The gravitational field in the framework of teleparallel

geometry in PGT is described by the tetrad bk
µ and the Lorentz connection

Ai j
µ, subject to the condition of vanishing curvature. We shall consider here

the gravitational dynamics determined by a class of Lagrangians quadratic in the

torsion:

L̃ = bLT + λi j
µν Ri j

µν + L̃M

LT = a(ATi j kT i j k + BTi j k T j ik + CTk T k) ≡ βi j k(T )T i j k
(3.61)

where λi j
µν are Lagrange multipliers introduced to ensure the teleparallelism

condition (3.60) in the variational formalism, and the explicit form of βi j k is

βi j k = a(ATi j k + BT[ j ik] + Cηi[ j Tk]).
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The parameters A, B,C in the Lagrangian should be determined on physical

grounds, so as to obtain a consistent theory which could describe all known

gravitational experiments. If we require that the theory (3.61) gives the same

results as GR in the linear, weak-field approximation, we can restrict our

considerations to the one-parameter family of Lagrangians, defined by the

following conditions (Hayashi and Shirafuji 1979, Hehl et al 1980, Nietsch 1980):

(i) 2A + B + C = 0, C = −1.

This family represents a viable gravitational theory for macroscopic, spinless

matter, empirically indistinguishable from GR. Von der Heyde (1976) and Hehl

(1980) have given certain theoretical arguments in favour of the choice B = 0.

There is, however, another, particularly interesting choice determined by the

requirement

(ii) 2A − B = 0.

In the gravitational sector, this choice leads effectively to the Einstein–Hilbert

LagrangianLEH = −abR(�), defined in Riemann spacetime V4 with Levi-Civita

connection A = �, via the geometric identity (3.57a):

bR(A) = bR(�)+ b( 1
4

Ti j k T i j k + 1
2

Ti j k T j ik − TkT k)− 2∂ν(bT ν).

Indeed, in Weitzenböck spacetime, where R(A) = 0, this identity implies that the

torsion Lagrangian in (3.61) is equivalent to the Einstein–Hilbert Lagrangian, up

to a four-divergence, provided that

A = 1
4

B = 1
2

C = −1 (3.62)

which coincides with the conditions (i) and (ii) given earlier. The theory defined

by equations (3.61) and (3.62) is called the teleparallel formulation of GR (GR‖).

Field equations. By varying the Lagrangian (3.61) with respect to bi
µ, Ai j

µ

and λi j
µν , we obtain the gravitational field equations:

4∇ρ(bβi
µρ)− 4bβnmµTnmi + hi

µbLT = τµi (3.63a)

4∇ρλi j
µρ − 8bβ[i j ]µ = σµ

i j (3.63b)

Ri j
µν = 0. (3.63c)

The third field equation defines the teleparallel geometry in PGT. The first

field equation is a dynamical equation for bk
µ and plays an analogous role to that

of Einstein’s equation in GR. It can be written in an equivalent form as

4∇ρ(bβi
jρ)+ 2bβimn T jmn − 4bβmnj Tmni + δ

j
i bLT = τ j

i . (3.63a′)

By taking the covariant divergence of the second field equation and using (3.63c),

we obtain the following consistency condition:

−8∇µ(bβ[i j ]µ) ≈ ∇µσ
µ

i j .
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This condition is satisfied as a consequence of the first field equation. Indeed,

equation (3.63a′) implies the relation 4∇µ(bβ[i j ]µ) ≈ τ[ j i], which, in conjunction

with the second identity in (3.23), leads exactly to this condition. Thus, the

only role of equations (3.63b) is to determine the Lagrange multipliers λi j
µν .

Taking into account the consistency requirements, we conclude that the number

of independent equations (3.63b) is 24 − 6 = 18. Hence, it is clear that these

equations alone cannot determine the 36 multipliers λi j
µν in a unique way. As

we shall see soon, the non-uniqueness of λi j
µν is related to the existence of an

extra gauge freedom in the theory.

The λ symmetry. The gravitational Lagrangian (3.61) is, by construction,

invariant under the local Poincaré transformations:

δ0bk
µ = ωk

sbs
µ − ξρ ,µbk

ρ − ξρ∂ρbk
µ

δ0 Ai j
µ = −ωi j

,µ + ωi
s As j

µ + ω j
s Ais

µ − ξρ ,µAi j
ρ − ξρ∂ρ Ai j

µ

δ0λi j
µν = ωi

sλs j
µν + ω j

sλis
µν + ξµ,ρλi j

ρν + ξν ,ρλi j
µρ − ∂ρ(ξ

ρλi j
µν).

(3.64)

In addition, it is also invariant, up to a four-divergence, under the transformations

(Blagojević and Vasilić 2000)

δ0λi j
µν = ∇ρεi j

µνρ (3.65a)

where the gauge parameter εi j
µνρ = −ε j i

µνρ is completely antisymmetric in its

upper indices, and has 6 × 4 = 24 components. This invariance is easily verified

by using the second Bianchi identity ελρµν∇ρ Ri j
µν = 0. On the other hand, the

invariance of the field equation (3.63b) follows directly from Ri j
µν = 0. The

symmetry (3.65a) will be referred to as the λ symmetry.

It is useful to observe that the λ transformations can be written in the form

δ0λi j
αβ = ∇0εi j

αβ +∇γ εi j
αβγ εi j

αβ ≡ εi j
αβ0

δ0λi j
0β = ∇γ εi j

βγ .
(3.65b)

As we can show by canonical methods (see chapter 5), the only independent

parameters of the λ symmetry are εi j
αβ ; in other words, the six parameters

εi j
αβγ can be completely discarded. Consequently, the number of independent

gauge parameters is 24 − 6 = 18. They can be used to fix 18 multipliers λi j
µν ,

whereupon the independent field equations (3.63b) determine the remaining 18

multipliers (at least locally).

It is evident that Poincaré and λ gauge symmetries are always present

(sure symmetries), independently of the values of parameters A, B and C in

the teleparallel theory (3.61). Moreover, it will become clear from canonical

analysis that there are no other sure gauge symmetries. Specific models, such as

GR‖, may have extra gauge symmetries which are present only for some special

(critical) values of the parameters. The influence of extra gauge symmetries on
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the existence of a consistent coupling with matter is not completely clear at the

moment. We shell assume here that the matter coupling respects all extra gauge

symmetries, if they exist.

Orthonormal and teleparallel frames. Teleparallel theories in U4 are based

on the condition of vanishing curvature. Let us choose an arbitrary tetrad at

point P of spacetime. Then, by parallel transporting this tetrad to all other

points, we generate the tetrad field on the spacetime manifold. If the manifold is

parallelizable (which is a strong topological assumption), the vanishing curvature

implies that the parallel transport is path independent, so the resulting tetrad field

is globally well defined. In such an orthonormal and teleparallel (OT) frame, the

connection coefficients vanish:

Ai j
µ = 0. (3.66)

This construction is not unique—it defines a class of OT frames, related to

each other by global Lorentz transformations. In an OT frame, the covariant

derivative reduces to the partial derivative, and the torsion takes the simple form:

T i
µν = ∂µbi

ν − ∂νbi
µ (see e.g. Nester 1991).

Equation (3.66) defines a particular solution of the teleparallelism condition

Ri j
µν(A) = 0. Since a local Lorentz transformation of the tetrad field, e′iµ =

�i
kek

µ, induces a non-homogeneous change in the connection,

A′i j
µ = �i

m�
j
n Amn

µ +�i
m∂µ�

jm

we can conclude that the general solution of Ri j
µν(A) = 0 has the form

Ai j
µ = �i

m∂µ�
jm . Thus, the choice (3.66) breaks local Lorentz invariance,

and represents a gauge-fixing condition in teleparallel theory.

In action (3.61), the teleparallel condition is realized via a Lagrange

multiplier. The second field equation, obtained by variation with respect to

Ai j
µ, merely serves to determine the multiplier, while the non-trivial dynamics

is completely contained in the first field equation. Hence, teleparallel theory may

also be described by imposing gauge condition (3.66) directly on the action. The

resulting theory is defined in terms of the tetrad field and may be thought of as

the gauge theory of the translational group. This formalism keeps the observable

properties of the theory unchanged and is often used in the literature because of its

technical simplicity. However, we shall continue to work with the local Lorentz

invariant formulation, since it simplifies the canonical treatment of the angular

momentum conservation (see chapter 6).

Differential conservation laws. Field equations (3.63a, b) can be written in an

equivalent form as

∂ρψν
µρ = τµν + γ µ

ν

4∂ρλi j
µρ = σµ

i j + γ µ
i j

(3.67a)
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where

γ µ
ν = 4bβm

µρ∂νbm
ρ + 2λmn

µρ∂ν Amn
ρ − δ

µ
ν bLT

γ µ
i j = 8bβ[i j ]µ + 4(Ai

s
ρλs j

ρµ + A j
s
ρλis

ρµ)
(3.67b)

and ψν
µρ = 4bβm

µρbm
ν + 2λmn

µρ Amn
ν . Equations (3.67a) imply a strict

conservation laws for the quantities τµν + γ µ
ν and σµ

i j + γ µ
i j , which lead

us to interpret γ µ
ν and γ µ

i j as the energy–momentum and spin tensors of the

teleparallel gravitational field. The related conservation laws will be studied in

chapter 6.

The teleparallel form of GR. For the specific values of parameters (3.62), the

gravitational sector of the teleparallel theory is equivalent to GR. Hence, we

expect that the tetrad field equation (3.63a) in GR‖ coincides with Einstein’s

equation. To show this, we start from the general identity in U4,

Ri j
µν(A) = Ri j

µν(�)+ (∇µK i j
ν − K i

sµK s j
ν)

multiply it by a H
νµ

kj /2, use the relation a∇ρ H
µρ

i j = −4bβ[i j ]µ which holds only

in GR‖, and obtain (Blagojević and Nikolić 2000)

abRik(A) = abRik(�)− 2∇µ(bβ
ikµ)+ 2bβmn

k T mni

− bβ imn T k
mn − ηika∂µ(bTµ)− 4∇µ(bβ

[ik]µ).

The last term on the right-hand side vanishes for Ri j
µν(A) = 0. In this case we

find that

2ab[Rik(�)− 1
2
ηik R(�)] = 4∇µ(bβ

ikµ)−4bβmn
k T mni+2bβ imnT k

mn+ηikbLT.

As a consequence of this identity, the first field equation (3.63a′) takes the form

of Einstein’s equation:

b[Rik(�)− 1
2
ηik R(�)] = τ ki/2a. (3.68a)

Here, on the left-hand side we have Einstein’s tensor of GR which is a symmetric

tensor, so that the dynamical energy–momentum tensor must be also symmetric,

τ ik = τ ki .

The second field equation of GR‖ can be written in the form

∇ρ(4λi j
µρ + 2a H

µρ

i j ) = σµ
i j . (3.68b)

General remarks

To illustrate general dynamical properties of gravity in U4 spacetime, we give

here brief comments on some specific models.
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R + T2 theory. One of the simplest generalizations of the EC theory has the

form

I1 =
∫

d4x b(−a R + LT + LM).

This theory, too, does not contain a kinetic part for the spin connection, so that

the related equations of motion are also algebraic:

(2A − B)T[i j ]k − (B − 1/2)Tki j + (C + 1)ηk[i T m
j ]m = −σkj i/4a.

They can be solved for T by means of the irreducible decomposition of torsion

with respect to the Lorentz group (Hayashi and Shirafuji 1980b). We find the

result

µV T V
i = σ V

i µAT A
i = σ A

i µT T T
i jk = σ T

i jk ,

where indices V , A and T denote the vector, axial and tensor components,

respectively, and µa are mass parameters. If all the µa �= 0, this equation can

be solved for T a (and the connection), and the effective theory differs from GR

by contact terms of the type σ 2 . If some µa = 0, the related component T a is

absent from the field equation, and the σ a have to vanish for consistency. This

case corresponds to the existence of massless tordions (particles corresponding to

non-vanishing torsion).

R2 + T2 theory. In a dynamical sense, EC and R + T 2 theories are incomplete.

Indeed, the spin connection is introduced as an independent field in U4 theory, but

EC dynamics imposes an algebraic relation between A and the tetrad field. The

spin connection acquires a full dynamical content only through the R2 terms. The

following R2 + T 2 model is inspired by some analogies with electrodynamics

(von der Heyde 1976):

I2 =
∫

d4x b[αRi j kl Ri j kl + β(−Ti j k T i j k + 2T ik
i T j k

j )].

A basic problem for models without a linear curvature term in the action

is the question of the macroscopic limit. For the previous model, the following

explanation was suggested (Hehl et al 1980). In the context of classical field

theory, macroscopic matter can be modelled by a scalar field. Since scalar matter

does not interact directly with the spin connection, we expect that, effectively,

only translation gauge fields should be introduced; hence, Ri j kl (A) = 0 and I3 is

reduced to a T 2 action in T4, with B = 0. Analysis of this particular teleparallel

theory shows that it describes the standard tests of GR correctly. However, if we

recall that the macroscopic matter is composed mainly of Dirac particles, these

arguments are not sufficiently clear. We would like to have a better understanding

of the averaging procedure which completely eliminates the spin effects and

enables an effective description of matter in terms of a scalar field.

A more complete insight into the structure of this model is obtained by

analysing its classical solutions. An interesting property of the model is that in
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the linear approximation, in addition to the Newtonian potential, we find a term

linear in r . This term is interpreted as part of the ‘strong gravity’, related to hadron

interactions. The same idea is then extended to (L4, g) theory (Šijački 1982).

General properties. After these comments, we shall now mention some general

properties of PGT.

The basic dynamical variables of the theory are bk
µ and Ai j

µ. Since the

time derivatives of bk
0 and Ai j

0 do not appear in the torsion and curvature,

their time evolution remains undetermined. The number of remaining variables

bk
α and Ai j

α is 4 × 3 + 6 × 3 = 30. By fixing 10 parameters of the local

Poincaré symmetry we can impose 10 gauge conditions, reducing the number of

independent variables to 30 − 10 = 20. Two degrees of freedom correspond

to the graviton, and 18 degrees of freedom Ai j
α describe the tordions. The

decomposition of Ai j
α into irreducible components of the rotation group gives

tordion components of definite spin and parity, J P(A) = 2±, 1±, 0±, the number

of which is 2(5+3+1)=18.

Since the scalar curvature and T 2 components contain A2 terms, tordions

may have non-vanishing masses, which are proportional to the mass parameters

µa . Of course, it is the presence of the R2 terms which enables the propagation

of tordions. A detailed analysis of the mass spectrum of the linearized theory has

been performed in the case when all tordions are massive (Hayashi and Shirafuji

1980d, Sezgin and van Nieuwenhuizen 1980, Kuhfuss and Nitsch 1986). The

results for massless tordions are not so complete (Battiti and Toller 1985).

Many aspects of the general Hamiltonian structure of the theory are clarified

(Blagojević and Nikolić 1983, Nikolić 1984). In the case of massive tordions, a

correspondence between the particle spectrum and the nature of the constraints

has been found. Namely, whenever a tordion does not propagate (infinite mass),

there exists a constraint which can be used to eliminate the related tordion field. In

the case of massless tordions we find extra gauge symmetries. The Hamiltonian

approach is found to be extremely useful for the analysis of energy, momentum

and angular momentum of gravitational systems, as we shall see in chapter 6.

The general structure of the equations of motion has been analysed in order

to clarify the evolution of given initial data, i.e. the Cauchy problem (Dimakis

1989). It is found that 10 equations of motion, out of 40, represent the constraints

on the initial data, while the remaining 30 define a consistent time evolution of

the dynamical variables provided that the parameters of the theory obey certain

conditions. These conditions are found to be the same ones that determine the

existence of additional constraints in the Hamiltonian analysis (see also Hecht et

al 1996).

The problem of finding exact solutions of the nonlinear equations of motion

in PGT is treated with the help of some well-known methods from Yang–Mills

theory. The essence of the method is the so-called double duality anzatz, in which

we postulate a linear relation between the generalized momenta πi j
µν and the

double dual image of the curvature tensor. A class of exact solutions has been
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found for the I3 action, giving us a deep insight into the physical content of PGT

(see, e.g., Mielke 1987).

Although the previous analysis was related to a four-dimensional spacetime,

many of the results can be generalized to the case d > 4, corresponding to the

Kaluza–Klein programme of unification, as well as to the case d = 2, related to

string theory.

At the very end of this chapter, with a new understanding of gravity, it seems

natural to reconsider the following question: What are the basic properties of an

acceptable theory of gravity? Since GR is phenomenologically a correct theory,

the basic criteria for some alternative theory would be:

– consistency with quantization,

– absence of classical singularities and

– the possibility of unification with the other fundamental interactions.

In the general U4 theory, the R and T 2 terms contain dimensional constants,

which is not an attractive property from the point of view of quantization. On

the other hand, the R2 terms contain dimensionless constants, but the related

classical limit is questionable. It is also interesting to mention the possibility

of the existence of a repulsive tordion interaction at small distances, which may

prevent gravitational collapse and avoid the appearance of infinite matter densities

(Minkevich 1980, Blagojević et al 1982). Since U4 theory is based on the gauge

principle, it seems to be a promising framework for the unification of gravity with

other interactions.

It might be possible that some problems of PGT could be solved by

demanding some additional symmetry for the action. Having this in mind, it

would be very interesting to study local Weyl theory, which will be our objective

in the next chapter.

Exercises

1. Derive the transformation laws of the gauge fields: (a) Ai j
µ and (b) hk

µ and

bk
µ.

2. (a) Verify that the Lagrangian L′
M = LM(φ,∇kφ) obeys the condition

δL′
M = 0.

(b) Show, by using δ0� + ∂µ(�ξµ) = 0, that � = �(h, A, x) is

independent of both x and Ai j
µ. Then prove that � = det(bk

µ).

3. If vi is a Lorentz vector, find the transformation law of vµ = hi
µvi under

local Poincaré transformations.

4. (a) Prove the relation [∇µ,∇ν ]bs
λ = Fs

λµν .

(b) Derive the Bianchi identities given in the text, using Jacobi identities for

the commutators.

5. (a) Find the transformation law of Kµ = ∂L̃M/∂∇µφ, and define ∇ν Kµ.
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(b) Show that the equations of motion for matter fields have the Poincaré

covariant form (3.24a).

(c) Find the form of these equations for the free electromagnetic field.

6. Show that the equations of motion for the gauge fields bk
µ and Ai j

µ can be

written in the form (3.24b).

7. (a) Use the general form of the matter Lagrangian, L̃M = bLM(φ,∇kφ),

to prove the equality of the covariant and dynamical energy–momentum

and spin currents (without using the invariance condition �L̃M = 0).

(b) Verify this result for the free electromagnetic field.

8. Use the matter field equations to prove the generalized conservation laws

(3.23).

9. Verify the generalized conservation laws (3.23) for the free (a) scalar, (b)

Dirac and (c) electromagnetic fields.

10. Prove that δ∗0 transformations of gauge fields are given as follows:

δ∗0bk
µ = ωk

sbs
µ −∇µξ

k + ξλFk
µλ

δ∗0 Ai j
µ = −∇µω

i j + ξν F i j
µν .

11. (a) Using the fact that ∇ν(Ŵ)Aµ is a tensor, derive the transformation law of

the affine connection Ŵ
µ
λν . Then show that the torsion Tµ

λν is a tensor.

(b) Express the affine connection in terms of the Christoffel symbol and the

torsion, using the metricity condition.

12. Find the connection ω from the relation ∇µ(ω + Ŵ)ei
ν = 0.

13. The metric of a two-dimensional Riemann space is determined by the

interval ds2 = dv2 − v2 du2. Show that this space is flat.

14. The metric of the two-dimensional Euclidean space E2 in polar coordinates

has the form ds2 = dρ2 + ρ2 dθ2.

(a) Calculate the Christoffel symbols.

(b) Check that every straight line in E2 obeys the geodesic equation.

(c) Find the components of the vector A = eρ , given at the point (ρ, θ) =
(1, 0), after parallel transport to (1, π/2).

15. Find the transformation law of the spin connection under finite local Lorentz

rotations. Show that we can use this freedom to transform the spin

connection ωi j
µ to zero at an arbitrary point P .

16. Calculate the canonical and dynamical energy–momentum and spin tensors

of the gravitational field in EC theory.

17. Let H
µν
i j ≡ b(hi

µh j
ν − h j

µhi
ν), and ∇ ′

µ = ∇µ(�). Prove the identities:

∇ρ H
µρ

i j = bhk
µ(T k

i j − δk
i T j + δk

j Ti )

Ri j
µν(A) = Ri j

µν(�)+ [∇ ′
µK i j

ν + K i
sµK s j

ν − (µ ↔ ν)]
= Ri j

µν(�)+ [∇µK i j
ν − K i

sµK s j
ν − (µ ↔ ν)].

18. Prove the identities (3.57a) and (3.57b).
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19. Using Rosenfeld’s procedure find the energy–momentum tensor for the free

(a) scalar, (b) Dirac and (c) electromagnetic fields.

20. Show that equation (3.63a) can be written in the form (3.63a′).
21. Calculate the canonical and dynamical energy–momentum and spin tensors

of the gravitational field in teleparallel theory.

22. Derive the following identities in GR‖:

a∇ρ H
µρ
i j = − 4bβ[i j ]µ

abRik(A) = abRik(�)+ 2∇µ(bβ
iµk)+ 2bβmn

k T mni

− bβ imn T k
mn − ηika∂µ(bTµ)− 4∇µ(bβ

[ik]µ).

23. Consider the theory defined by the action I =
∫

d4x b(LT+LM), where LM

is linear in the field derivatives.

(a) Write the field equations for Ai j
µ.

(b) Assuming conditions (3.62) hold, find Ti j k as a function of σi j k .

24. (a) Show that

βi j k = 1
2

a(τ j ki − τi j k + τki j )− 1
4
a(2B − 1)T

A

i jk

where τki j = ηk[i T j ] − 1
2

Tki j .

(b) Derive the following identities:

2bτki j = −bkλ∇ρ H
λρ
i j

4bβ(i j )
µ = ahkµbiλ∇ρ H

λρ
j k + (i ↔ j)

4bβ[i j ]µ = −a∇ρH
µρ
i j − a(2B − 1)bhκµT

A

i jk .

(c) Use the field equations to show that

∇µ[σµ
i j − 2a(2B − 1)bhkµT

A

i jk ] ≈ 0.



Chapter 4

Weyl gauge theory

Many attempts to unify gravity with other fundamental interactions are based on

the idea of gauge symmetry. The principle of gauge invariance was invoked for

the first time in Weyl’s unified theory of gravitation and electromagnetism (Weyl

1918). The geometry of Weyl’s unified theory represents an extension of the

Riemannian structure of spacetime in GR. Weyl introduced spacetime in which

the principle of relativity applies not only to the choice of reference frames, but

also to the choice of local standards of length.

Weyl spacetime is based on the idea of invariance under local change

of the unit of length (gauge), which is realized by introducing an additional

compensating field. Weyl tried to interpret the new field as the electromagnetic

potential but, as further development showed, this was not possible. It turned out

that this field interacts in the same manner with both particles and antiparticles,

contrary to all experimental evidence about electromagnetic interactions. Passing

through a process of change, the idea evolved into a new symmetry principle

related to the local change of phase (Weyl 1931), the principle that underlies

modern understanding of the gauge theories of fundamental interactions (see, e.g.,

O’Raiffeartaigh 1986).

Although Weyl’s original idea was not acceptable for a description of

the electromagnetic interaction, it gained new strength after some interesting

discoveries in particle physics, in the 1960s. Experimental results on electron–

nucleon scattering in the deep inelastic region showed that the scattering

amplitudes behaved as if all masses were negligible, thus focusing our attention

on physical theories that are invariant under the change of mass (or length) scale.

Localization of this symmetry brings us back to the old Weyl theory, which

describes, as we shall see, not the electromagnetic but the gravitational interaction

(this one is the same for particles and antiparticles, on the basis of the PE).

Weyl’s idea can be realized in two complementary ways:

(a) as a gauge field theory, based on the Weyl group W (1, 3); and

(b) as a geometric theory, obtained by extending Riemannian structure with local

scale invariance.

78
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The first approach gives a new meaning to the old geometric construction.

4.1 Weyl gauge invariance

The theory of gravity based on the local W (1, 3) symmetry represents a kind

of minimal extension of PGT (Bregman 1973, Charap and Tait 1974, Kasuya

1975). Although the kinematical aspects of Weyl gauge theory (WGT) become

more complex due to the presence of new compensating fields, a higher symmetry

simplifies the structure of the action.

Localization of Weyl symmetry

Consider a dynamical system of matter fields in M4, referred to a local Lorentz

frame, and described by an action invariant under global W (1, 3) transformations

of coordinates,

δxµ = εµ + ωµ
νxν + ρxµ ≡ ξµ (4.1)

accompanied by the related transformations of fields:

δ0φ = ( 1
2
ω · M + ε · P + ρD)φ = ( 1

2
ω ·� + ρd + ξ · P)φ ≡ Wφ

δ0∂kφ = W∂kφ + ωk
ν∂νφ − ρ∂kφ ≡ Wk

ν∂νφ.
(4.2)

The invariance condition (2.11), with ∂µξ
µ = 4ρ, is equivalent to equations

(2.12) and (2.32a).

If we now generalize these transformations by assuming that the constant

parameters are replaced by some functions of spacetime points, the invariance

condition (2.11) is violated for two reasons. First, the transformation law of ∂kφ

is changed

δ0∂kφ = Wk
ν∂νφ + 1

2
ωµν

,k Mµνφ + εν ,k Pνφ + ρ,k Dφ

= W∂kφ − ξν ,k∂νφ + 1
2
ωi j

,k�i jφ + ρ,kdφ
(4.3)

and second, ∂µξ
µ �= 4ρ. The violation of local invariance takes the form

�LM = 1
2
ωi j

,µMµ
i j − εi

,µTµ
i − ρ,µDµ �= 0.

The invariance can be restored by introducing the covariant derivative∇
∗

kφ, which

transforms according to the ‘old rule’:

δ0∇
∗

kφ = W∇
∗

kφ + ωk
i∇
∗

iφ − ρ∇
∗

kφ = Wk
i∇
∗

iφ (4.4)

and by taking care of the fact that ∂µξ
µ �= 4ρ.
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Covariant derivative. In order to construct the covariant derivative ∇
∗

kφ, we

first introduce the (ω, ρ)-covariant derivative,

∇
∗
µφ = ∂µφ + δ0(ω, ρ, ξ = 0)φ|ω→Aµ,ρ→Bµ

= (∂µ + A
∗
µ)φ A

∗
µ ≡ 1

2
Ai j

µ�i j + Bµd∗
(4.5)

which transforms according to

δ0∇
∗
µφ = W∇

∗
µφ − ξν ,µ∇

∗
νφ (4.6)

and eliminates the terms ωi j
,k and ρ,k in (4.3). Note that the Weyl charge d∗ is,

by assumption, equal to the usual scale dimension,

d∗ = d.

Then, we obtain the following transformation rules for Ai j
µ and Bµ:

δ0 Ai j
µ = δP

0 Ai j
µ

δ0 Bµ = −ξν ,µBν − ξ · ∂Bµ − ρ,µ ≡ δP
0 Bµ − ρ,µ

(4.7)

where δP
0 denotes the Poincaré transformation with new ξµ. Rewriting

equation (4.6) in the form

δ0∇
∗
µφ = Wµ

ν∇
∗
νφ − (ξν ,µ − ων

µ − ρδνµ)∇
∗
νφ

it becomes clear that the last term, homogeneous in ∇
∗
νφ, can be eliminated by

adding a new compensating field,

∇
∗

kφ = δνk∇
∗
νφ − Aν

k∇
∗
νφ ≡ hk

ν∇
∗
νφ (4.8)

with a transformation law which follows from equations (4.4) and (4.6):

δ0hk
µ = δP

0 hk
µ − ρhk

µ. (4.9)

The Weylean extension of PGT is accompanied by two effects:

(a) a new compensating field (B) appears; and

(b) the transformation rules for ‘old’ fields A and h are changed.

Therefore, A and h have different properties from those in PGT.

Since the covariant derivative (4.5) depends only on the Lorentz and

dilatation transformation properties of matter fields, it can be naturally extended

to an arbitrary field. Thus, for instance,

∇
∗
µhi

ν = (∂µ + 1
2

Amn
µ�

1
mn − Bµ)i

shs
ν = ∂µhi

ν − As
iµhs

ν − Bµhi
ν .
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Matter field Lagrangian. After introducing the covariant derivative ∇
∗

kφ we

can define the Lagrangian

L′
M = LM(φ,∇

∗
kφ) (4.10)

obeying the invariance condition

δ0L
′
M + ξ · ∂L′

M + 4ρL′
M = 0

which is different from (2.11). In order to compensate for the property ∂µξ
µ �=

4ρ, we perform another modification of the Lagrangian:

L̃M = �L′
M (4.11)

where � is a function of the new fields. Condition (2.11) implies

δ0�+ ∂µ(�ξµ)− 4ρ� = 0.

This equation contains local parameters and their derivatives. Coefficients

of second derivatives of parameters vanish since � does not depend on field

derivatives. Coefficients of ωi j
,µ and ρ,µ vanish if � is independent of Ai j

µ

and Bµ, while coefficients of ξµ vanish since � does not depend explicitly on x .

Finally, if the coefficients of ξµ,ν and ωi j vanish, this gives the same conditions

as those in PGT, while if the coefficients of ρ vanish:

ρ : ∂�

∂hk
µ

hk
µ + 4ρ� = 0.

The solution to this equation reads as � = det(bk
µ), so that the final matter field

Lagrangian takes the form

L̃M ≡ bLM(φ,∇
∗

kφ). (4.12)

Example 1. The Weyl covariant derivative of the scalar field ϕ has the form

∇
∗

kϕ = hk
µ∇
∗
µϕ = hk

µ(∂µ − Bµ)ϕ, since d(ϕ) = −1. After localizing the

Weyl symmetry, the Lagrangian of the massless ϕ4 theory becomes

L̃S = b( 1
2
ηi j∇

∗
iϕ∇

∗
jϕ + f ϕ4) = b( 1

2
gµν∇

∗
µϕ∇

∗
νϕ + f ϕ4).

Analogously, the WGT of the massless Dirac field is determined by

L̃D = 1
2

ib[ψ̄γ k∇
∗

kψ − (∇
∗

kψ̄)γ kψ]

where ∇
∗

kψ = hk
µ(∂µ + 1

2
Ai j

µσi j − 3
2

Bµ)ψ , and similarly for ∇
∗

kψ̄ , and we use

d(ψ) = d(ψ̄) = − 3
2
. Since the field Bµ interacts in the same manner with both
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ψ and ψ̄ , it cannot be interpreted as the electromagnetic potential. In fact, Bµ

completely disappears from L̃D.

Example 2. The free electromagnetic field in M4 has a dilatation symmetry with

d(Ai ) = −1, so that

∇
∗
µAi = (∂µ + 1

2
Amn

µ�
1
mn − Bµ)i

s As .

It should be observed that we are using the potential Ai , not Aµ. This is so

because matter fields belong to representations of W (1, 3) which ‘live’ in the

tangent space of spacetime. The gauge-invariant Lagrangian has the form

L̃EM = − 1
4

bηikη j lGi j Gkl Gi j ≡ ∇
∗

i A j −∇
∗

j Ai .

If we go over to the coordinate basis we can define the potential Aµ = bi
µAi ,

such that d(Aµ) = 0. Sometimes, if Aµ is not distinguished from Ai , we

can reach the erroneous conclusion that d∗ is always equal to d , except for the

electromagnetic potential. The relation d∗ = d is correct for all fields defined

with respect to a local tangent frame, where W (1, 3) operates. The transition to

the coordinate frame will be discussed in the next subsection.

Field strengths. In order to find the form of the free Lagrangian for the new

fields (A, h, B), we shall first define the related field strengths. The commutator

of two (ω, ρ)-covariant derivatives has the form

[∇
∗
µ,∇

∗
ν]φ = 1

2
F i j

µν�i jφ + Fµνdφ (4.13)

where F i j
µν = F i j

µν(A) and Fµν = ∂µBν−∂ν Bµ are the Lorentz and dilatation

field strengths, respectively. The transition to ∇
∗

k yields

[∇
∗

k,∇
∗

l ]φ = 1
2

F i j
kl�i jφ + Fkl dφ − F

∗
s

kl∇
∗

sφ (4.14)

where F
∗

i
µν = ∇

∗
µbi

ν −∇
∗
νbi

µ is the translation field strength, and

F i j
kl = hk

µhl
ν F i j

µν

Fkl = hk
µhl

ν Fµν

F
∗

i
kl = hk

µhl
ν F

∗
i
µν .

The field strengths transform under Weyl transformations as follows:

δ0 F i j
kl = δP

0 F i j
kl − 2ρF i j

kl

δ0 Fkl = δP
0 Fkl − 2ρFkl

δ0 F
∗

i
kl = δP

0 F
∗

i
kl − ρF

∗
i
kl .
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If a quantity X transforms according to the rule

δ0 X = δP
0 X +wρX

we say that it has weight w. Thus, w(φ) = d , w(F i j
kl ) = w(Fkl ) = −2, and

w(F
∗

i
kl) = −1. The covariant derivative of a scalar field ϕ of weight d is

∇
∗
µϕ = (∂µ + d Bµ)ϕ ≡ ∂∗µϕ

while for a vector V i of weight d we have

∇
∗
µV i = ∂∗µV i + Ai

jµV j = ∂µV i + A
∗

i
jµV j

A
∗

i
jµ ≡ Ai

jµ + dδi
j Bµ.

If we define F
∗

i j
µν ≡ F i j

µν(A
∗
), it is easy to show that

F
∗

i j
µν = F i j

µν(A)+ dηi j Fµν

F
∗

i
µν = F i

µν(A)+ (Bµbi
ν − Bνbi

µ).

The quantity F
∗

i j
µν is not antisymmetric with respect to (i, j) as in PGT, which

has a definite geometric meaning.

The complete Lagrangian of the matter and gauge fields is given by

L = bLF(F i j
kl , F

∗
i
kl , Fkl )+ bLM(φ,∇

∗
kφ). (4.15)

The free Lagrangian LF is an invariant density of weight −4, which means that

it can be quadratic in Fi j kl and Fkl , while terms linear in F i j
i j and quadratic in

F
∗

i
kl are not allowed. Thus, Weyl invariance restricts some possibilities that exist

in PGT: those terms that contain dimensional constants are forbidden in LF.

Conservation laws and field equations

We shall now discuss differential conservation laws in WGT.

1. Gauge transformations of the fields Q A = (φ, bk
µ, Ai j

µ, Bµ) are determined

by equations (4.2a), (4.7) and

δ0bk
µ = δP

0 bk
µ + ρbk

µ. (4.16)

Using the method given in chapter 3, the gauge invariance of the Lagrangian can

be expressed as

�L = −ξν I ∗ν + 1
2
ωi j I ∗i j + ρ I ∗ + ∂µ�

∗ = 0. (4.17)
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This relation implies that

I ∗ν = 0 I ∗i j = 0 I ∗ = 0 (4.18a)

∂µ�
∗µ = 0. (4.18b)

Here, as in PGT, we restrict ourselves to the case L = L̃M.

2. Canonical and covariant energy–momentum and spin currents are

determined by equations (3.19) and (3.20), in which ∇φ → ∇
∗
φ, while the related

dynamical currents are defined as in (3.21). The dilatation currents are

D̃µ = ∂L̃M

∂φ,µ
dφ D̃′µ = ∂L̃M

∂∇
∗
µφ

dφ δµ = δL̃M

δBµ

. (4.19)

We assume the matter field equations to be fulfilled. Then, demanding that

the coefficients of ∂ξ, ∂ω and ∂ρ in (4.18b) vanish, we obtain equality of the

covariant and dynamical currents:

τµν = T̃ ′µ
ν σµ

i j = S̃′µi j δµ = D̃′µ. (4.20)

Of course, T̃ ′ and S̃′ are different from the related PGT expressions.

Conditions (4.18a) lead to the following differential conservation laws:

bk
µ∇
∗
ντ

ν
k = τ νk Fk

µν + 1
2
σ ν

i j F i j
µν + δν Fµν

∇
∗
µσ

µ
i j = τi j − τ j i

∇
∗
µδ

µ = τµµ.

(4.21)

The last equation should be compared with (2.41).

3. The equations of motion for the matter fields, obtained from the action (4.15),

can be written in the Weyl-covariant form:

δφ : ∂̄L̃M

∂φ
− ∇

∗
µ

∂L̃M

∂∇
∗
µφ

= 0 (4.22)

where ∂̄L̃M/∂φ = [∂L̃M(φ,∇
∗
µu)/∂φ]u=φ .

Example 3. The equations of motion for the massless ϕ4 theory have the Weyl-

covariant form:

− Kϕ + 4 f ϕ3 = 0

Kϕ ≡ b−1∇
∗
µ(bgµν∇

∗
νϕ) = b−1(∂µ + Bµ)(bgµν∇

∗
νϕ).
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Using these equations and the expressions for currents,

D̃µ = D̃′µ = δµ = −bgµνϕ∇
∗
νϕ

τµν = b∇
∗
µϕ∇

∗
νϕ − gµνL̃S τµµ = −bgµν∇

∗
µϕ∇

∗
νϕ − 4bf ϕ4

we come to the result

∇
∗
µδ

µ = −bgµν∇
∗
µϕ∇

∗
νϕ − ϕ∇

∗
(bgµν∇

∗
νϕ) = τµµ

in conformity with (4.21).

For the Dirac field we have D̃µ = D̃′µ = δµ = 0. This unusual result stems

from the fact that there is no interaction of Bµ with the Dirac field (example 1).

The equations of motion imply τµµ = 0, in agreement with δµ = 0.

The typical action of WGT is quadratic in field strengths; the gravitational

field equations are obtained in the usual way.

Conformal versus Weyl gauge symmetry

In order to localize the conformal symmetry, we can start from the global

conformal field transformations,

δ0φ = ( 1
2
ω ·� + ρ�+ c · K + ξ · P)φ ≡ Kφ

define the (ω, ρ, c)-covariant derivative,

∇
c

µφ = (∂µ + 1
2

Ai j
µ�i j + Bµ�+ C i

µκi )φ (4.23)

find the transformation laws of the compensating fields, etc. However, by

observing that the generator of SCT can be expressed in terms of D, Pµ and �µν

as Kµ = −2xµD + x2 Pµ + 2xν�µν , we can rewrite δ0φ in the form

δ0φ = ( 1
2
ω̄ ·� + ρ̄�+ ξ · P)φ

where ω̄i j = ωi j + 2(ci x j − c j x i ) and ρ̄ = ρ − 2c · x .

Surprisingly, δ0φ contains only 11 independent parameters: ω̄i j , ρ̄ and ξν .

Local SCTs are no longer independent, they are reduced to local Lorentz rotations,

dilatations and translations. If this is so, is it then necessary to introduce the

compensating field C i
µ, corresponding to local SCT? And if we introduce this

field, is it really independent from other fields? To answer these questions, let

us recall that, basically, compensating fields are introduced to compensate for the

‘extra’ terms appearing in δ0∂kφ after the symmetry is localized (usually each

local parameter demands one compensating field). Now, under global conformal

transformations, we have

δ0∂kφ = K ∂kφ + [2(ci�ik − ck�)+ (ω̄k
ν + ρ̄δνk )Pν]φ.
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After the symmetry has been localized, δ0∂kφ will be expressed in terms of the

derivatives of ω̄i j , ρ̄, ξν and ci . Since the number of these parameters is not 11

but 15, it follows that all 15 compensating fields are needed, so that conformal

gauge theory is essentially different from WGT.

4.2 Weyl–Cartan geometry

In his attempts to incorporate electromagnetism into geometry, Weyl extended the

Riemannian structure of spacetime by introducing a new geometric assumption—

the assumption that the length of a vector has no absolute geometric meaning.

As an introduction to this idea, we first give an overview of conformal

transformations in Riemann space; then, we introduce the basic elements of Weyl

geometry and clarify its relation to WGT.

Conformal transformations in Riemann space

Conformal transformations in M4 define the conformal group C(1, 3). Let us now

see how these transformations can be generalized when we go over to Riemann

space V4 (Fulton et al 1962).

Conformal transformations in V4. Different formulations of conformal

transformations may have different geometric interpretations.

Consider first the conformal mapping f : V4 → V4, which can be interpreted

as the conformal ‘movement’ of points in V4 (active interpretation). If (P, Q) are

two points in V4 with coordinates (x, x + dx) in a local coordinate system S, then

ds2(P, Q) = gµν(x) dxµ dxν .

Under the action of f the points (P, Q) transform into (P̄, Q̄), the coordinates

of which, in the same coordinate system S, are (x̄, x̄ + dx̄). The mapping f is

conformal if

ds2(P̄, Q̄) = s(P) ds2(P, Q) (4.24a)

or, equivalently,

gµν(x̄) dx̄µ dx̄ν = s(x)gµν(x) dxµ dxν (4.24b)

where s(x) > 0.

Now we shall consider the description of points (P, Q) in two local

coordinate systems, S and S′. Let x ′ = F(x) be a coordinate transformation,

such that the distance between (P, Q) in S′ ‘looks like’ the distance between

(P̄, Q̄) in S. In other words,

g′µν(x
′) dx ′µ dx ′ν = s(x ′)gµν(x ′) dx ′µ dx ′ν (4.25a)

or

g′µν(x
′) = s(x ′)gµν(x ′). (4.25b)
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This condition defines the group C̃(1, 3) of conformal coordinate transformation

in V4 (passive interpretation).

Weyl rescaling. The set of Weyl (conformal) rescalings of the metric,

gµν → gr
µν = s(x)gµν ≡ e2λ(x)gµν (4.26a)

together with the related transformations of all other dynamical variables,

φ → φr = [s(x)]w/2φ ≡ ewλφ (4.26b)

defines the group Wr in V4. As in M4, the real number w is called the weight, or

Weyl dimension, of the field. These transformations do not involve any change of

coordinates and are completely different from C̃ . In M4, the Weyl dimension is

just another name for the scale dimension.

Example 4. Consider the following interaction between the scalar and Dirac field

in V4:

L̃I = f
√
−gψ̄ψϕ.

Since w(gµν) = 2, w(gµν) = −2, and w(
√−g) = 4, it follows that Weyl

rescaling with w(ϕ) = −1, w(ψ) = w(ψ̄) = − 3
2
, is a symmetry of the

interaction Lagrangian. However, the kinetic term for the scalar field,

L̃S = 1
2

√
−ggµν∂µϕ∂νϕ

is not invariant, since Wr transformations are local. The symmetry can be restored

by introducing gauge fields, as usual.

Example 5. The electromagnetic field in V4 is described by the Lagrangian

L̃EM = − 1
4

√
−ggµρgνλGµνGρλ Gµν = ∂µAν − ∂ν Aµ.

The replacement ∂ → ∇ (with a symmetric connection) does not change the

antisymmetric tensor Gµν . A simple counting of weights shows that w(Aµ) = 0,

which implies the invariance under Wr. The consistency of such an assignment

of weights should be checked by considering the electromagnetic interaction with

other fields. Thus, for instance, the interaction with a complex scalar field,

L̃I = 1
2

√
−ggµν{e2 AµAνϕ

∗ϕ + ieAµ[ϕ∗∂νϕ − (∂νϕ
∗)ϕ]}

is Wr invariant for w(Aµ) = 0.

Weyl rescaling of the metric transforms a Riemann space into another

Riemann space: (V4, gµν) %→ (V4, gr
µν). This mapping defines a collection of

Riemann spaces, mutually connected by metric rescalings:

V r
4 = {(V4, gri

µν)}.
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The length of a vector is not well defined in V r
4 ; however, the ratio of the lengths

of two vectors at the same point, as well as the angle between them, are well-

defined concepts.

The Christoffel connection in (V4, gµν) transforms under Weyl rescaling

according to the law

{
µ
νρ

}r =
{
µ
νρ

}
+ 1

2
(δµν sρ + δµρ sν − gνρsµ) (4.27)

where sµ = ∂µ ln s, sµ = gµνsν . Consequently, the Riemann curvature tensor

also changes under Wr.

Weyl introduced the conformal tensor,

Ci j kl = Ri j kl − 1
2
(ηik R j l − ηil R j k − η j k Ril + η j l Rik)− 1

6
(ηilη j k − ηikη j l)R

which has the following important properties:

(a) Cµ
νλρ is invariant under Wr; and

(b) the trace of Weyl tensor is zero: Ck
jkl = 0.

A space with a vanishing Weyl tensor is called a conformally flat space. Since the

Minkowski space is conformally flat, it follows from (a) that any Riemann space

with metric gµν = sηµν is conformally flat.

Conformal transformations in M4. Let us now return to the group of

conformal transformations C̃ and denote by C̃0 the subgroup of C̃ transforming

the flat space (M4, η) into the flat space (M4, sη):

C̃0 : Rµ
νλρ(sη) = 0. (4.28a)

Since (M4, sη) is conformally flat, Cµ
νλρ(sη) = 0, the previous condition

reduces to

Rνρ(sη) = −sν,ρ + 1
2
sνsρ − 1

2
ηνρsλ,λ − 1

2
ηνρsλsλ = 0. (4.28b)

This is a restriction on s(x), and on related coordinate transformations. For

infinitesimal transformations we have s(x) = 1 − 1
2
∂ · ξ , and equation (4.28b)

is equivalent to the conformal Killing equation (2.20b) in M4. The group C̃0

reduces to the group of global conformal transformations C(1, 3), which we

already know from chapter 2.

Connection between C̃ and Wr. Although C̃ and Wr are completely different

groups, there is an interesting connection between them, as suggested by the

related considerations in M4 (section 2.2). The precise form of this connection

is given by the following theorem (Fulton et al 1962):

If an action is invariant under general coordinate transformations, then

Wr invariance implies C̃ invariance.
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The content of this theorem can be seen more clearly from the following, simpler

version (Zumino 1970):

If an action, given in Riemann space, is Wr invariant, then that action,

restricted to M4, is invariant under C(1, 3).

Let us illustrate this statement by considering scalar field theory. Since

the action is defined in Riemann space, it is invariant under general coordinate

transformations. In particular, the action is invariant under the global dilatations:

ξµ = ρxµ δ0gµν = −2ρgµν − ρx · ∂gµν δ0ϕ = −ρx · ∂ϕ.

On the other hand, Wr invariance implies invariance under Weyl rescaling with

s(x) = 1 + 2ρ,

δ0gµν = 2ρgµν δ0ϕ = −ρϕ.

Combining these transformations we conclude that the action must be invariant

under

ξµ = ρxµ δ0gµν = −ρx · ∂gµν δ0ϕ = −ρ(x · ∂ + 1)ϕ.

Going now to the limit g → η we find δ0g = 0, therefore the action restricted to

M4 is invariant under global dilatations.

In a similar way we can deduce the invariance under SCT, in the limit

V4 → M4, by choosing

ξµ = cµx2 − 2c · xxµ s(x) = 1 − 4c · x .

Thus, instead of investigating the conformal symmetry in M4, we can carry

the action over to V4 and study the restrictions imposed by Wr invariance.

Weyl space W4

Riemann space V4 is a manifold with a linear connection and metric such that

(a) the connection Ŵ is symmetric and

(b) the metricity condition holds true, Dµ(Ŵ)gνλ = 0.

It follows from here, as we have shown earlier, that the Riemannian connection is

equal to the Christoffel symbol. If a vector is parallel transported along a closed

curve in V4, its orientation changes, while the lengths of the vectors and the angles

between them remain fixed.

Weyl geometry. In his attempts to accommodate the electromagnetic field into

the geometric structure of spacetime, Weyl generalized Riemannian geometry by

allowing a greater freedom in the choice of metric. He assumed that the lengths

of vectors can also be changed under parallel transport (Fulton et al 1962, Adler
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et al 1965). The idea is realized by demanding that an infinitesimal change of

length is proportional to the length itself, i.e.

D(Ŵ)V 2 = (ϕρ dxρ)V 2 (4.29a)

where V 2 ≡ gµνV µV ν , and the covariant vector ϕρ defines the rule by which

the length is changed. Since D(Ŵ)V µ = 0 under parallel transport, the previous

condition is equivalent to the relation

Dρ(Ŵ)gµν = ϕρgµν (4.29b)

which violates the metricity postulate and is called the semi-metricity condition.

This equation can be easily solved for the connection

Ŵµ
νρ =

{
µ
νρ

}
− 1

2
(δµν ϕρ + δµρ ϕν − gνρϕ

µ) (4.30)

where we assumed that the connection is symmetric (no torsion). Such a

connection defines Weyl space W4. A Weyl space with torsion will be considered

in the next section.

Parallel transport of a vector along a closed curve in W4 defines the curvature

in terms of the connection (4.30). The curvature tensor is no longer antisymmetric

in the first two indices: R(µν)λρ = −gµν D[λϕρ]. Therefore, the parallel transport

has the form (Hehl et al 1988)

�Vµ = (�Vµ)rot + (�Vµ)dil

(�Vµ)rot = 1
2

R[νµ]λρ�σ λρV ν

(�Vµ)dil = 1
2

R(νµ)λρ�σ λρV ν = − 1
2
�σ λρ(Dλϕρ)Vµ.

Each vector rotates and changes the length but the angles between vectors remain

the same. In the case of affine manifolds, where gµν and Ŵ
µ
νλ are completely

independent, the angles also change (Hehl and Šijački 1980).

Weyl geometry allows us to consider metric rescalings without changing the

connection. Indeed, it follows from equations (4.27) and (4.30) that if a metric

rescaling is followed by the gradient transformation of ϕρ ,

gµν(x) → s(x)gµν(x) ϕρ(x) → ϕρ(x)+ ∂ρ ln s(x) (4.31)

the connection remains the same. A conformal change of metric can be interpreted

as a change in the length scale at every point of the manifold. In Weyl theory this

change is treated as a local symmetry transformation, which we call, as before,

the Weyl rescaling Wr.

If the Weyl vector is a pure gradient, ϕρ = −∂ρβ, the conformal

transformation

gµν → ḡµν = eβgµν ϕρ → ϕ̄ρ = ϕρ + ∂ρβ = 0
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transforms Weyl space W4(ϕρ, gµν) into a Riemannian one: V4(ḡµν) =
W4(0, ḡµν). More generally, a Weyl geometry may be reduced to a Riemannian

geometry if and only if the length of the vector does not change after parallel

transport along an arbitrary closed curve,

∮
DV 2

V 2
=
∮

ϕρ dxρ = − 1
2

∫
Fµν dσµν = 0

where Fµν ≡ ∂µϕν − ∂νϕµ. Therefore, the condition Fµν = 0 guarantees that W4

may be reduced to V4 by a suitable rescaling transformation (in simply connected

regions). The tensor Fµν is Wr invariant.

Weyl-covariant derivative. Since rescaling transformations are of particular

importance in Weyl geometry, it is useful to define quantities having well-defined

transformation properties under (4.31). This leads us to the concept of weight, as

in (4.26). Thus, the weight of gµν is 2, w(dxµ) = 0, w(ds) = 1, etc. Observe,

however, that we cannot ascribe a weight to the Weyl vector itself. Tensors of

weight w �= 0 are also called tensor densities or pseudotensors.

The covariant derivative in W4 is introduced so that the lengths of vectors are

changed under parallel transport according to the rule (4.29a). If V ν is a vector of

weight zero, than DµV ν is also of weight zero, i.e. invariant under Weyl rescaling

(4.31). However, if, for instance, V ν is of weight 2, then DV does not have a

well-defined weight:

DµV ν → Dµ(sV ν) = s DµV ν + (∂µ ln s)(sV ν).

It is therefore useful to extend the definition of a covariant derivative in such a

way that it does not change the weight of the object on which it acts. To illustrate

the idea, consider a scalar φ of weight w = 2, φr = sφ, and define a new, Weyl-

covariant derivative:

D
∗
µφ = (∂µ − 1

2
wϕµ)φ ≡ ∂∗µφ. (4.32)

Under transformations (4.31) D
∗
µφ changes according to

D
∗
µφ → (∂∗µ − ∂µ ln s)sφ = s D

∗
µφ

i.e. D
∗
µφ also has weight 2. Generalization to a vector of weight 2 is simple:

D
∗
µV ν = ∂∗µV ν + Ŵν

λµV λ = ∂µV ν + Ŵ
∗
ν
λµV λ

Ŵ
∗
ν
λµ ≡ Ŵν

λµ − 1
2
wδνλϕµ.

(4.33)

The connection Ŵ
∗

ensures the Wr-covariance of the new covariant derivative.



92 Weyl gauge theory

It is interesting to observe that the connection Ŵν
λµ in (4.30) is obtained from{

ν
λµ

}
by the replacement ∂ → ∂∗:

Ŵν
λµ =

{
ν
λµ

}∗ ≡
{
ν
λµ

}
|∂→∂∗ ∂∗µgλρ = (∂µ − ϕµ)gλρ.

The operation D
∗
µ is also covariant with respect to general coordinate

transformations, since D
∗
µ differs from Dµ by a four-vector. Note that Weyl’s

semi-metricity condition (4.29) can be rewritten as a Wr-covariant condition:

D
∗
ρgµν = 0. (4.34)

This structure of W4 is sufficient to describe gravitation and tensor matter

fields. Spinor matter can be introduced with the help of tetrads in a Weyl space

with torsion.

Weyl–Cartan space Y4

Starting with the space (L4, g), in which the connection and metric are completely

independent of each other, we can introduce the metricity condition and define

Riemann–Cartan space U4. If the metricity postulate is replaced by a weaker,

semi-metricity condition (4.29), we obtain the Weyl–Cartan space Y4 (a Weyl

space with torsion) (Hayashi and Kugo 1979, Hehl et al 1988).

If the torsion vanishes, Y4 becomes the Weyl space W4, while ϕµ = 0

transforms Y4 into Riemann–Cartan space U4; finally, W4 → V4 if ϕµ → 0

(figure 4.1).

(L4 , g)

U4

V4

T = 0

T = 0

Y4

W4

ϕ= 0

ϕ= 0

Figure 4.1. Weyl space does not satisfy the metricity condition.
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The basic relations in Y4 are obtained similarly to those in W4. Using the

semi-metricity condition, we find the following expression for the connection:

Ŵµ
νρ =

{
µ
νρ

}
− 1

2
(δµν ϕρ + δµρ ϕν − gνρϕ

µ)+ Kµ
νρ . (4.35)

The covariant derivative can also be extended to a Wr-covariant form.

The spin connection. As we have already mentioned, the spinor matter is

described with the help of the tetrads. From the relation gµν = ηi j ei
µe j

ν , we

see that the property w(gµν) = 2 can be obtained by demanding that

w(ei
µ) = 1 w(ηi j ) = 0.

Let us now consider what the geometric properties of Y4 look like in the

tetrad basis. If the vector uµ has weight 0, its tetrad components ui = ei
µuµ have

weight 1. Weyl’s semi-metricity condition takes the form

D(ω)(ηi j ui u j ) = (ϕρdxρ)(ηi j ui u j ) (4.36a)

where ω is the spin connection in Y4. This relation, together with D(ω)η = 0,

yields

Dµ(ω)u
i = 1

2
ϕµui (4.36b)

where Dµ(ω)u
i ≡ ∂µui + ωi

jµu j . From Dη = 0 and the constancy of η it

follows that the spin connection is antisymmetric:

ωi
sµη

s j + ω j
sµη

is = 0.

The Weyl-covariant derivative of the vector ui of weight w = 1 has the form

D
∗
µ(ω)u

i = ∂∗µui + ωi
sµus = ∂µui + ω

∗
i
sµus

ω
∗

i jµ ≡ ωi jµ − 1
2
wηi jϕµ

(4.37)

and is of the same weight as ui . This can be easily extended to an arbitrary

representation φ of the Lorentz group, with weight w:

D
∗
µφ = (∂µ + ωµ − 1

2
wϕµ)φ ωµ ≡ 1

2
ωi j

µ�i j .

The relation between ω and Ŵ. Since D(Ŵ)uµ = 0 under parallel transport,

Weyl’s semi-metricity condition implies

Dµ(ω + Ŵ)ei
ν = 1

2
ϕµei

ν . (4.38a)

Thus, the vector lengths change under parallel transport because the ‘standard of

length’ ei
µ changes. Expressed in terms of D

∗
this condition becomes

D
∗
µ(ω + Ŵ)ei

ν ≡ ∂∗µei
ν + ωi

sµes
ν − Ŵλ

νµei
λ = 0. (4.38b)
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It relates the connections ω and Ŵ and can be interpreted as the vanishing of the

‘total’ covariant derivative. Solving this equation for ω we obtain

ωi jµ = �
∗

i jµ + Ki jµ

�
∗

i jµ = �i jµ|∂→∂∗ = �i jµ + 1
2
(ϕi b jµ − ϕ j biµ).

(4.39a)

Denoting the Poincaré part of the connection by ωP
i jµ, we have

ωi jµ = ωP
i jµ + 1

2
(ϕi b jµ − ϕ j biµ) = −ω j iµ. (4.39b)

The spin connection ω is Wr invariant, w(ω) = 0, since it is expressed in terms of

�
∗

.

Geometric interpretation of WGT. Weyl gauge theory has the geometric

structure of a Y4 space. This is clearly seen from the previous discussion by

establishing the following correspondence:

bi
µ → ei

µ Ai j
µ → ωi j

µ Bµ → − 1
2
ϕµ d → w. (4.40)

Note that the curvature and torsion in Y4 are not the same as in U4, because

ω
∗
�= ω and D

∗
�= D.

Example 6. The local Weyl theory of the electromagnetic field is described by

the Lagrangian

L̃EM = − 1
4

bηikη j l Gi j Gkl Gi j ≡ D
∗

i A j − D
∗

j Ai .

Using D
∗

i (ω)A j = hi
µh j

ν D
∗
µ(Ŵ)Aν , which follows from D

∗
µ(ω + Ŵ)hi

µ = 0,

and going to the coordinate basis, we obtain

L̃EM = − 1
4
bgµρgνλGµνGρλ Gµν = (∂µAν − ∂ν Aµ)+ 2K ρ [νµ]Aρ .

While the symmetric part of the connection (4.35) is cancelled in Gµν , the

contribution of the torsion survives. If K = 0, then Gµν = ∂µAν − ∂ν Aµ.

4.3 Dynamics

The dynamical content of a theory is determined by the choice of the action. There

are several ways to realize Weyl invariance dynamically.

(a) WGT is, in general, defined in Weyl–Cartan space Y4.

(b) If the action is W (1, 3) gauge invariant but the torsion vanishes, the geometry

of the theory is described by Weyl space W4.
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(c) The action may possess W (1, 3) gauge invariance even in Riemann space

V4, in which case the gauge symmetry has an ‘accidental’ character.

All three cases can be defined, equivalently, by combining Poincaré gauge

symmetry and Weyl rescaling.

The general gravitational action in WGT has the form

I =
∫

d4x bLG(Ri j
kl , Fkl , T

∗ i
kl). (4.41a)

Since w(b) = 4, the Lagrangian LG has to be a scalar of weight w =
−4. Moreover, the form of Weyl transformations of the field strengths implies

w(Ri j kl ) = w(Fkl ) = −2, w(T
∗

ikl ) = −1, so that the general Weyl action is of an

R2 + F2 type:

LG = b1 Ri j kl Ri j kl + b2 Ri j kl Rkli j + b3 Ri j Ri j

+ b4 Ri j R j i + b5 R2 + b6(εi j kl Ri j kl )2 + cFi j F i j (4.41b)

where terms of the type R and T
∗

2 are absent. Let us now consider some interesting

cases of Weyl-invariant theories.

Weyl’s theory of gravity and electrodynamics

At the beginning of the 20th century, gravity and electrodynamics were the only

known basic interactions in nature. Weyl tried to unify these physical interactions

on purely geometric grounds.

The electrodynamics in Riemann space V4 is described by the action

IV =
∫

d4x b(−a R + αGµνGµν) Gµν = ∂µAν − ∂ν Aµ

where the electromagnetic field is not part of the geometry.

Weyl studied purely geometric action in W4,

IW =
∫

d4x b(−R2 + βFµν Fµν) Fµν = ∂µϕν − ∂νϕµ (4.42)

which seems to be the best possible analogy to IV . Varying IW we obtain

δ IW =
∫

d4x [−2bRδR − δbR2 + βδ(bF2)] = 0.

At this point, we can violate Wr invariance by introducing a local scale of length,

such that R = λ. Of course, this gauge condition will be destroyed by an arbitrary

field variation, so that δR �= 0 in general. Now, we can bring the previous

equation into the form

δ

∫
d4x b

(
−R + β

2λ
F2 + λ

2

)
= 0
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where λ is the cosmological constant. Using connection (4.30) we can express

the Weyl curvature as

R(W4) = R(V4)− 3
2
ϕµϕ

µ + 3∇µϕ
µ.

Since b∇µϕ
µ = ∂µ(bϕ

µ), this term can be discarded as a surface term in the

action, so that Weyl theory takes the following effective form:

I ′W =
∫

d4x b[−R(V4)+ 1
2
β F̄2 + λ( 1

2
+ 3

2
ϕ̄µϕ̄

µ)] (4.43)

where ϕ̄µ = ϕµ/
√
λ. The first two terms precisely correspond to the action IV (in

units a = 1), while the last term is a small correction because of the smallness of

the cosmological constant λ. Thus, the structure of Weyl’s theory is very similar

to the classical electrodynamics in V4 (Adler et al 1965).

What then is wrong with Weyl’s unified theory? Although the effective

action I ′W looks like a good candidate for the description of free electrodynamics,

the properties of electromagnetic interactions lead to serious problems. Thus, for

instance, the interaction of ϕµ with the Dirac fieldsψ and ψ̄ is the same since both

fields have the same weight, w = − 3
2
, while the development of quantum theory

showed that ψ and ψ̄ have opposite electric charges and, therefore, different

electromagnetic interactions. Similar arguments hold for the interaction with a

complex scalar field. The electromagnetic interaction is correctly described by

the minimal substitution,

∂µ → (∂µ + ieAµ)

which suggests identifying d with ie (and ϕµ with Aµ).

In electromagnetic interactions, local scale invariance is replaced by

invariance under a local change of phase in the matter fields.

Weyl’s transition to the ‘complex’ covariant derivative led to the beginning of the

modern development of gauge theories of internal symmetries.

Although Weyl’s original idea was abandoned in electrodynamics, it found

its natural place in gravitation. The experimental discovery that, in some

processes at high energies, particle masses may be practically neglected, brought

a revival of interest in scale-invariant theories (of course, at low energies scale

symmetry is broken). If we want to include gravity in this structure, it is quite

natural to consider gauge theories based on scale symmetry.

Scalar fields and the improved energy–momentum tensor

In Riemann spaces local rescaling symmetry Wr implies conformal symmetry C̃ .

Therefore, the conformal properties of scalar field theory can be established by

studying its behaviour under the transformations

δgµν(x) = 2λ(x)gµν(x) δϕ(x) = −λ(x)ϕ(x). (4.44)
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1. Massless scalar theory with ϕ4 interaction in V4,

Ia =
∫

d4x
√
−g( 1

2
gµν∂µϕ∂νϕ + f ϕ4) (4.45)

is not invariant under (4.44):

δ Ia = 1
2

∫
d4x

√
−gϕ2�λ �λ ≡ ∇µ(∂

µλ).

The invariance of the theory can be restored by adding a suitable term to the

action. Such a term has the form

Ib = 1
12

∫
d4x

√
−g Rϕ2.

Indeed, starting with the relations

gµν → sgµν R → s−1

(
R − 3

�s

s
+ 3

2
gµν ∂µs∂νs

s2

)

we find that

δR = −2λR − 6�λ δ(Rϕ2) = −4λRϕ2 − 6ϕ2�λ

which implies that

I1 ≡ Ia + Ib =
∫

d4x
√
−g( 1

2
gµν∂µϕ∂νϕ + f ϕ4 + 1

12
Rϕ2) (4.46)

is a rescaling-invariant extension of the scalar ϕ4 theory in V4.

In Minkowski space M4, conformal invariance is concisely described by the

improved energy–momentum tensor. We shall show that the energy–momentum

tensor of the action I1 yields, after transition to M4, nothing other than the

improved energy–momentum tensor of the scalar ϕ4 theory.

The dynamical energy–momentum tensor of scalar theory (4.45) is given by

τ (a)µν = 2√−g

δ Ia

δgµν
= ∂µϕ∂νϕ − gµν(

1
2

gλρ∂λϕ∂ρϕ + f ϕ4).

Here, the factor (
√−g)−1 is, for simplicity, included in the definition of τ . The

contribution of the additional term Rϕ2 under the variation of gµν has the form

δ

∫
d4x

√
−gRϕ2 =

∫
d4x

√
−gϕ2(Gµνδgµν + gµνδRµν)

where Gµν ≡ Rµν − 1
2

gµν R. Using the relation

√
−ggµνδRµν = ∂ρ(

√
−gwρ) wρ ≡ gµνδŴρ

µν − gµρδŴτ
µτ
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and performing partial integrations, we obtain

∫
d4x

√
−ggµνδRµνϕ

2 = −
∫

d4x
√
−g(∇µ∇ν − gµν�)ϕ

2δgµν .

Thus, the energy–momentum tensor of the action I1 takes the form

θ
(1)
µν = 1

6
Gµνϕ

2 + θ
(a)
µν

θ
(a)
µν ≡ τ

(a)
µν − 1

6
(∇µ∇ν − gµν�)ϕ

2.
(4.47)

After going over to M4, only the term θ
(a)
µν , which represents the improved energy–

momentum tensor of theory (4.45), remains.

2. The invariant action I1 can be considered as a simple theory describing the

dynamics of scalar and gravitational fields. Varying I1 with respect to ϕ and gµν
yields the following equations of motion:

−�ϕ + 1
6

Rϕ + 4 f ϕ3 = 0

1
6

Gµνϕ
2 + θ (a)µν = 0.

These equations possess an unusual property. Namely, the trace of the second

equation has the form

ϕ(−�ϕ + 1
6

Rϕ + 4 f ϕ3) = 0

which means that either ϕ = 0 or the first equation is a consequence of the second

one.

The solution ϕ = 0 is not interesting, since the gravitational equation in this

case becomes trivial. If we could impose the classical condition ϕ = v �= 0,

the gravitational equation would be reduced to Einstein’s form. This would solve

the problem of a long-range limit for the theory, an important problem in the

construction of realistic Weyl theory. However, the equation ϕ = v explicitly

violates Weyl invariance, which leads to certain problems at the quantum level.

There is another mechanism, known as spontaneous symmetry breaking, which

yields the equation ϕ = v dynamically (as a solution of the classical equations

of motion) and obeys quantum consistency requirements. Complex scalar fields

play an interesting role in this mechanism (Domokos 1976).

This dependence of the equations of motion is not a specific property of

this particular model, but is essentially a consequence of gauge invariance. The

change of the action I = I [ϕ, gµν] under (4.44) has the form

δ I

δλ
= δ I

δgµν
2gµν −

δ I

δϕ
ϕ. (4.48a)

If the action describes a complete theory, then Wr invariance of I implies that the

trace of the equation of motion for gµν is proportional to the equation of motion
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for ϕ. On the other hand, if I describes matter fields, I = IM, then the previous

equation becomes
δ IM

δλ
=

√
−gτµνgµν −

δ IM

δϕ
ϕ. (4.48b)

Using the invariance of the action and the equations of motion for ϕ, we find that

the trace of the energy–momentum tensor vanishes. These results shed a new light

on the related considerations in M4 (chapter 2).

3. In order to clarify the dynamical role of the improved energy–momentum

tensor in gravity, we shall now try to find an answer to the following question:

Can the improved energy–momentum tensor be the source of gravity?

Consider Einstein’s gravitation in interaction with massive scalar field theory,

described by the action (Coleman 1973a)

I2 =
∫

d4x
√−g[−a R + (LS + 1

12
Rϕ2)]

LS ≡ 1
2

gµν∂µϕ∂νϕ − 1
2

m2ϕ2 + f ϕ4.
(4.49)

This theory is not Weyl invariant due to the presence of a R and m2ϕ2 terms. The

equations of motion for ϕ and gµν are

− (�+ m2)ϕ + 1
6

Rϕ + 4 f ϕ3 = 0

(−2a + 1
6
ϕ2)Gµν = −θ (m)

µν

where θ
(m)
µν is the improved energy–momentum tensor of the massive, scalar field

theory,

θ (m)
µν = ∂µϕ∂νϕ − gµνLS − 1

6
(∇µ∇ν − gµν�)ϕ

2.

Without the Rϕ2 term in I2, the equation of motion for ϕ satisfies the

principle of equivalence: locally, in a convenient reference frame, it can be

reduced to a form valid in the absence of gravity,

−(�+ m2)ϕ + 4 f ϕ3 = 0.

But then, the source of gravity in the second equation is the Belinfante energy–

momentum tensor.

The presence of the Rϕ2 term in I2 implies that the source of gravity is the

improved energy–momentum tensor, but the equation of motion for ϕ seems to

violate the principle of equivalence: the Rϕ term looks like the gravitational effect

that cannot be transformed away by any choice of reference frame. However, this

effect can be ignored classically. Indeed, the trace of the second equation of

motion,

(−2a + 1
6
ϕ2)(−R) = −(2m2ϕ2 − 4 f ϕ4 + ϕ�ϕ)
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combined with the first one, leads to the relation −2a R = m2ϕ2. Substituting

this into the first equation, we obtain

−(�+ m2)ϕ + 4

(
f − m2

48a

)
ϕ3 = 0

which is equivalent to the original equation for ϕ. The only effect of the Rϕ term

is to change the ϕ3 interaction constant slightly, i.e. the short-range interaction of

the scalar field with itself (1/a is proportional to the gravitational constant). This

change is irrelevant in the classical region.

Thus, in gravitational theory (4.49) the principle of equivalence effectively

holds in the classical region. In this sense, the conventional theory of gravity

interacting with scalar fields can be consistently deformed, so that the source of

gravity is given by the improved energy–momentum tensor.

Goldstone bosons as compensators

We shall now show how an action that is not invariant under local rescalings can

be extended and become invariant by introducing an additional scalar field—the

compensator (Zumino 1970, Bergshoeff 1983, see also chapter 2). This field has a

very simple transformation law so that, using the gauge symmetry of the extended

theory, it can be easily eliminated by imposing an algebraic gauge condition.

There are several reasons for such a modification of the original theory:

(a) the existence of higher symmetries is often more convenient in the process

of quantization;

(b) the rules for treating higher symmetries are sometimes better known

(conformal symmetry in supegravity); and

(c) the scalar field is helpful in transforming a nonlinear realization of symmetry

into a linear one.

We begin by considering the mass term of the scalar field in V4,

− 1
2
m2√−gϕ2

which is not invariant under Wr since δ
√−g = 4λ, δϕ2 = −2λ. We may,

however, introduce a new scalar field φ(x) of weight w = −1, and parametrize it

in the form

φ(x) = veσ(x)/v (4.50a)

where we assume (φ)0 = v, i.e. σ(x) is the Goldstone boson. The transformation

law of σ under Wr may be inferred from that of the field φ:

δσ = −vλ. (4.50b)

It is now easy to see that the expression

− 1
2
m2√−gϕ2e2σ/v
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is Wr invariant, which justifies calling σ the compensator. Expanding the

exponential in σ we obtain the mass term for ϕ, as well as some interaction terms.

An invariant action for the Goldstone boson σ itself may be obtained from

equation (4.46) with f = 0, replacing ϕ by the expression (4.50a). Expanding

the exponential in σ we obtain

Iσ =
∫

d4x
√
−g[ 1

2
gµν∂µσ∂νσ + 1

12
v2 R(1 + 2σ/v + 2σ 2/v2 + · · ·)].

The field σ is massless unless Wr symmetry is explicitly broken. We could try to

produce the mass term for σ by adding the following Wr-invariant term to Iσ :

− 1
16
µ2v2√−ge4σ/v.

On expanding in σ we find that the quadratic term looks like the mass term for σ .

However, this expression is not acceptable since it does not vanish at the spatial

infinity where σ → 0. The mass term for σ can be generated by adding to the

action a term that explicitly breaks Wr symmetry, such as

− 1
16
µ2v2√−g(e2σ/v − 1)2.

Our next example is the Dirac action in V4. Although the kinetic term is Wr

invariant, the mass term is not, but it can be easily generalized to the Wr-invariant

form by adding a suitable compensator:

−m
√
−gψ̄ψeσ/v .

It is interesting to note that Einstein’s GR can also be extended in this way.

Indeed, after introducing ḡµν = gµνe2σ/v , the gauge-invariant extension of GR is

given by

ĪE = IE[ḡ] = −a

∫
d4x

√
−ḡR(ḡ).

Returning to the original variables we obtain

ĪE = −a

∫
d4x

√
−geσ/v[R(g)− 6�]eσ/v.

Gauge symmetry allows us to choose the gauge condition σ = 0, which leads us

back to the original theory.

The same construction can be applied to an arbitrary field theory. Let $a

be a set of fields, transforming under Wr according to $a → $aedaλ, and I [$a]
their classical action. Then, the gauge-invariant extension of this theory has the

form

Ī = I [$̄a] $̄a ≡ $aedaσ/v (4.51)

where the $̄a are new, Wr-invariant fields. Gauge symmetry enables us to return

to the original action by choosing σ = 0. Of course, other gauge conditions are

also possible.
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A further simple example is the theory of massive vector field in M4,

LV = − 1
4

G2(A)+ 1
2

m2 A2 Gµν = ∂µAν − ∂ν Aµ (4.52a)

which is not invariant under U(1) gauge transformations: δAµ = ∂µ�. After

introducing a scalar field B(x) transforming as δB = −m�, we can define a new,

gauge-invariant field as

Āµ = Aµ + 1

m
∂µB δ Āµ = 0.

Then, a gauge-invariant extension of the original theory is given by

L̄V = LV( Ā) = − 1
4

G2(A)+ 1
2
m2 A2 − m(∂ · A)B + 1

2
(∂µB)2.

Choosing B = 0 we return to the original formulation. Alternatively, gauge

symmetry can be violated by adding to L̄V the non-invariant term

LGF = − 1
2
(∂ · A − B)2.

The resulting theory takes the form

L̄V + LGF = 1
2

Aµ(�+ m2)Aµ − 1
2

B(�+ m2)B (4.52b)

which is very suitable for quantization.

General remarks

Here we give some brief comments on some typical Weyl gauge theories.

1. The massless scalar ϕ4 theory can be made Weyl invariant in Riemann space

V4 by adding the term Rϕ2, as in equation (4.46). A more general class of theories

is obtained by going to Weyl space W4:

I3 =
∫

d4x b 1
2
(gµν∂∗µϕ∂

∗
νϕ + ωϕ2 R − 1

2
F2 + f ϕ4)

where ω is a parameter. The Hamiltonian structure of this theory has been studied

and used to clarify its relation to GR (Omote and Kasuya 1977).

2. There have been attempts to obtain GR as a long distance effective theory of

the following fundamental (quantum) Weyl-invariant action in V4:

I4 =
∫

d4x
√
−gCi j kl C

i j kl .

The curvature term R is induced by radiative corrections, breaking thereby the

original Weyl gauge symmetry dynamically (Adler 1982, Zee 1983).



Dynamics 103

3. In Riemann space there are only three invariants quadratic in curvature:

Ri j kl Ri j kl , Ri j Ri j and R2. Using the Gauss–Bonnet theorem,

∫
d4x

√
−g(Ri j kl Ri j kl − 4Ri j Ri j + R2) = constant

we find that only two of them are independent; for instance, R2 and

Ci j kl C
i j kl = Ri j kl Ri j kl − 2Ri j Ri j + 1

3
R2 = 2(Ri j Ri j − 1

3
R2).

The quantity C2 gives a Weyl gauge-invariant contribution to the action, while R2

does not. However, introducing a new scalar field we can improve the R2 term

without going to W4:

I5 =
∫

d4x
√
−g

(
R − �ϕ

ϕ

)2

.

The most general action, which is at most quadratic in curvature and has Weyl

gauge symmetry in V4, has the form (Antoniadis and Tsamis 1984, Antoniadis et

al 1985)

I ′5 = α I4 + β I5 + γ I1.

4. Weyl-invariant theory can be constructed not only in V4, but also in U4. By

analysing the massless Dirac field and the gravitational action

I6 =
∫

d4x bϕ2 R

we can show that the U4 geometry, supplied with some additional (conformal)

structure, provides a natural framework for the description of Weyl symmetry of

matter and gravity, in which the trace of the torsion plays the role of the Weyl

gauge field (Obukhov 1982).

The general structure of the U4 theory is considerably restricted by

demanding the invariance under complex rescalings (Fukui et al 1985).

5. There is an interesting discussion, based on the action

I7 = I1 +
∫

d4x
√
−gWµνWµν Wµν ≡ Rλ

λµν

in Weyl space W4, regarding the connection between Weyl invariance and the

observed, effective Riemannian structure of the physical spacetime (Hochberg

and Plunien 1991).
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6. Now, we turn our attention to Weyl–Cartan space Y4. Weyl’s action (4.42)

can be directly generalized to the Y4 space (Charap and Tait 1974),

I8 =
∫

d4x b(αR2 + βF2)

which is also true for I3 (Kasuya 1975, Hayashi and Kugo 1979, Nieh 1982).

7. Conformal gauge theory is defined in terms of the gauge fields Ai j
µ, bi

µ, Bµ

and C i
µ, corresponding to the generators Mi j , Pi , D and Ki . Consider the action

I9 =
∫

d4x bEµνλρεi j kl Ri j
µν(M)Rkl

λρ(M)

where Eµνλρ = εµνλρ/b. If we impose the ‘standard’ condition Ri
µν(P) = 0

(no torsion), which relates Ai j
µ and bi

µ, and use the equation of motion for C i
µ,

then

Cµν = − 1
4
(R̂µν − 1

6
gµν R̂) R̂µν ≡ Rµν(A)|B=C=0.

After eliminating gauge potentials Ai j
µ and C i

µ, the action takes the form

I ′9 =
∫

d4x bĈµνλρĈµνλρ.

In this way, the original conformal gauge theory, with 15 gauge potentials, is

reduced to the Weyl invariant theory in V4, with four gauge potentials (De Wit

1981, Kaku 1982, see also Nepomechie 1984).

8. As far as the symmetry is concerned, the term ϕ2T 2 in the action is as

good as ϕ2 R, but it has not been studied in the context of Y4 theories. The

phenomenological value of such a term has been discussed in the framework of

more general (L4, g) geometry (Šijački 1982, Ne’eman and Šijački 1988).

9. In physical theories we find two very different scales, quantum (microscopic)

and gravitational (macroscopic), the ratio of which determines the so-called

big numbers. Trying to find a deeper explanation of these phenomena, Dirac

studied the possibility that the factor of proportionality between quantum and

gravitational units may be time dependent (Dirac 1973). This idea can be naturally

considered in the framework of WGT, where physical laws are the same for the

observers using instruments with different scales (Canuto et al 1976).

10. A fundamental problem concerning any Weyl theory is the question of its

long-range limit, in which scale invariance should be broken. This problem may

be solved by using the mechanism of spontaneous symmetry breaking, which

obeys certain quantum consistency requirements. Scalar matter fields are here
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of particular importance, since they ensure spontaneous breaking of Weyl gauge

symmetry. This is completely different from the role of the scalar field in the

scalar–tensor theory of gravity (Brans and Dicke 1961, Smalley 1986, Kim 1986).

The vanishing of the cosmological constant can be treated in WGT as a

dynamical question (Antoniadis and Tsamis 1984). The presence of R2 terms

in the action improves the quantum renormalizability properties of the theory,

but, at the same time, leads to problems with unitarity. These issues, as well as

the stability of the ground state, are very difficult problems, the solution of which

are necessary to give a complete phenomenological foundation to Weyl theory.

Exercises

1. Formulate a gauge theory based on dilatation symmetry only and derive the

transformation laws of the compensating fields.

2. Use the transformation rules for φ and ∇
∗

kφ in WGT to show that

δ0L
′
M + ξ · ∂L′

M + 4ρL′
M = 0.

Then derive the invariance condition for L̃M = bL′
M.

3. Write the Euler–Lagrange field equations for the free (a) massless Dirac and

(b) electromagnetic field, in WGT.

4. (a) Find the transformation law for Kµ = ∂L̃M/∂∇
∗
µφ, and define ∇

∗
ν Kµ.

(b) Show that the equations of motion for matter fields can be written in the

Weyl-covariant form.

(c) Apply this result to the free (i) massless Dirac and (ii) electromagnetic

field in WGT, and compare these calculations with those in exercise 3.

5. Find the transformation laws of the field strengths in WGT and determine

their weights.

6. Derive the Bianchi identities in WGT.

7. Use the equations of motion to check the identity ∇
∗
µδ

µ = τµµ for the free

(i) massless Dirac field and (ii) electromagnetic field (see example 3).

8. Use the general form of the matter Lagrangian, L̃M = bLM(φ,∇
∗

kφ), and

the related field equations to prove

(a) the equality of the covariant and dynamical dilatation currents; and

(b) the differential identity ∇
∗
µδ

µ = τµµ.

9. Derive the equations of motion for WGT, defined by the action

I =
∫

d4x b(αF2 + βFik F ik )

where F = F i j
i j , Fik = hi

µhk
ν(∂µBν − ∂ν Bµ).

10. Consider a Wr-invariant scalar field theory in V4. Show that after the

transition to M4, this theory becomes invariant under the global SCT.



106 Weyl gauge theory

11. Let gr
µν = sgµν .

(a) Express Rρ
µλν(g

r ) in terms of Rρ
µλν(g).

(b) Prove the equation

Rµν(g
r ) = Rµν −∇µsν − 1

2
gµν∇λsλ − 1

2
gµνsλsλ + 1

2
sµsν

where sµ = ∂µ ln s, sµ = gµνsν , and ∇µ is the covariant derivative in

(V4, gµν).

(c) Derive the corresponding relation for R.

12. Consider conformal coordinate transformations in M4, with some conformal

factor s: x ′ = x + ξ, η′ = sη. Show that the condition Rµν(sη) = 0 is

equivalent to the conformal Killing equation (2.20b) in M4.

13. The action that describes the interaction of the electromagnetic and complex

scalar fields in V4 is given by

I =
∫

d4x
√
−g[ 1

2
gµν(∂µ + ieAµ)ϕ

∗(∂µ − ieAµ)ϕ

+ 1
12

Rϕ∗ϕ − λ(ϕ∗ϕ)2 − 1
4

gµρgνλFµν Fρλ].

Show that it is invariant under Weyl rescalings.

14. Show that the Dirac action in V4 is Wr invariant, except for the mass term.

15. Let R̄ be the scalar curvature of Weyl space W4, with the connection (4.30),

and R be the corresponding Riemannian curvature. Prove the following

identities:

R̄(µν)λρ = −gµν∇[λϕρ]

R̄ = R + 3∇µϕ
µ − 3

2
ϕµϕ

µ

where ∇µ is Riemannian covariant derivative.

16. Find the transformation rules of the Weyl tensor Ci j kl under

(a) Weyl rescalings and

(b) W (1, 3) gauge transformations.



Chapter 5

Hamiltonian dynamics

Classical dynamics is usually considered to be the first level in the development

of our understanding of the physical laws in Nature, which today is based on

quantum theory. Despite the many successes of quantum theory in describing

basic physical phenomena, it is continually running into difficulties in some

specific physical situations. Thus, all attempts to quantize the theory of gravity

have encountered serious difficulties. In order to find a solution to these problems,

it seems to be useful to reconsider the fundamental principles of classical

dynamics. In this context, the principles of Hamiltonian dynamics are seen to

be of great importance not only for a basic understanding of classical theory, but

also for its quantization.

The theories of basic physical interactions, such as the electroweak theory

or GR, are theories with gauge symmetries. In gauge theories the number

of dynamical variables in the action is larger than the number of variables

required by the physics. The presence of unphysical variables is closely

related to the existence of gauge symmetries, which are defined by unphysical

transformations of dynamical variables. Dynamical systems of this type are

also called singular, and their analysis demands a generalization of the usual

methods. In the Hamiltonian formalism they are characterized by the presence

of constraints.

A systematic investigation of constrained Hamiltonian systems began more

than 50 years ago, with the work of Bergmann, Dirac and others. The Hamiltonian

formulation results in a clear picture of the physical degrees of freedom and gauge

symmetries and enables a thorough understanding of constrained dynamics. The

resulting classical structure had an important influence not only on the foundation

of the canonical methods of quantization but also on the development of covariant

path-integral quantization. In the first part of this chapter we shall present the

basic ideas of Dirac’s method (Dirac 1964, Hanson et al 1976, Sundermeyer

1982, Henneaux and Teitelboim 1992), and develop a systematic approach to

the construction of the gauge generators on the basis of the known Hamiltonian

structure (Castellani 1982).

107
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PGT represents a natural extension of the gauge principle to spacetime

symmetries. In the second section we present a Hamiltonian analysis of the

general U4 theory of gravity. This leads to a simple form of the gravitational

Hamiltonian, representing a generalization of the canonical Arnowitt–Deser–

Misner (ADM) Hamiltonian from GR (Arnowitt et al 1962, Nikolić 1984) and

enables a clear understanding of the interrelation between the dynamical and

geometric aspects of the theory. Then, in the third section, we analyse two specific

but important examples: Einstein–Cartan theory without matter fields, which is

equivalent to GR (Nikolić 1995), and teleparallel theory (Blagojević and Nikolić

2000, Blagojević and Vasilić 2000a). The first model represents the basis for a

simple transition to Ashtekar’s formulation of GR, in which encouraging results

concerning the quantization of gravity are obtained (appendix E).

The results obtained here will be used in the next chapter to construct gauge

generators and solve the important problem of the conservation laws in the U4

theory of gravity.

5.1 Constrained Hamiltonian dynamics

Introduction to Dirac’s theory

Primary constraints. In order to simplify the exposition of the Hamiltonian

dynamics, we shall start by considering a classical system involving only a finite

number of degrees of freedom, described by coordinates qi (i = 1, 2, . . . , N) and

the action

I =
∫

dt L(q, q̇). (5.1)

To go over to the Hamiltonian formalism we introduce, in the usual way, the

momentum variables:

pi =
∂L

∂ q̇i

≡ fi (q, q̇) (i = 1, 2, . . . , N). (5.2)

In simple dynamical theories these relations can be inverted, so that all the

velocities can be expressed in terms of the coordinates and momenta, whereupon

we can simply define the Hamiltonian function. In this case relations (5.2) define

the momenta as independent functions of the velocities. However, for many

interesting theories, such as non-Abelian gauge theories or gravitational theories,

such an assumption would be too restrictive. Therefore, we shall allow for the

possibility that momentum variables are not independent functions of velocities,

i.e. that there exist constraints:

φm(q, p) = 0 (m = 1, 2, . . . , P). (5.3a)

The variables (q, p) are local coordinates of the phase space Ŵ on which

the Hamiltonian dynamics is formulated. Relations (5.3a) are called primary
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constraints; they determine a subspace Ŵ1 of Ŵ, in which a dynamical system

develops over time.

The geometric structure of the subspace Ŵ1 can be very complicated. We

shall assume for simplicity that the rank of the matrix ∂φm/∂(q, p) is constant

on Ŵ1. Moreover, we shall assume that the functions φm satisfy the following

regularity condition:

All the constraint functions φm are independent†, i.e. the Jacobian

J = ∂φm/∂(q, p) is of rank P on Ŵ1.

Accordingly, the dimension of Ŵ1 is well defined and equal to 2N − P .

The choice of functions φm , defining a given subspace Ŵ1, is not unique.

The regularity condition on the Jacobian imposes certain restrictions on the form

of φm . Thus, e.g., the surface determined by p1 = 0 can be equivalently written as

p2
1 = 0. However, since rank(J ) in these two cases is one and zero, respectively,

the second form is not admissible.

Weak and strong equalities. It is now useful to introduce the notions of weak

and strong equality. Let F(q, p) be a function which is defined and differentiable

in a neighbourhood O1 ⊆ Ŵ containing the subspace Ŵ1. If the restriction of

F(q, p) on Ŵ1 vanishes, we say that F is weakly equal to zero. Weak equality

will be denoted by the symbol ≈:

F(q, p) ≈ 0 ⇐⇒ F(q, p)|Ŵ1
= 0.

If the function F and all its first derivatives vanish on Ŵ1, then F is strongly equal

to zero:

F(q, p) = 0 ⇐⇒ F, ∂F/∂q, ∂F/∂p|Ŵ1
= 0.

For strong equality we shall use the usual equality sign. This definition will

be especially useful in the analysis of the equations of motion which contain

derivatives of functions on Ŵ1.

By using these conventions, relations (5.3a), which define Ŵ1, can be written

as weak equalities:

φm(q, p) ≈ 0 (m = 1, 2, . . . , P). (5.3b)

This equality is not the strong one, since there exist non-vanishing derivatives

of φm on Ŵ1. Indeed, if we solve the constraints for P momentum variables

and writes them as φm ≡ pm − gm(qi , pa), where a = P + 1, . . . , N , then

∂φm/∂pn = δn
m , and this does not vanish for n = m.

It is now interesting to clarify the relation between strong and weak

equalities: if a phase-space function F vanishes weakly, F ≈ 0, what can we

† Independent constraints are called irreducible, otherwise, if rank(J ) < P , they are reducible. Our

discussion will be restricted to the irreducible case.
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say about the derivatives of F on Ŵ1? By varying F on Ŵ1 we find that

δF |Ŵ1
=
(
∂F

∂qi

δqi +
∂F

∂pi

δpi

) ∣∣∣∣
Ŵ1

= 0.

Here we should take into account that 2N variations δq and δp are not

independent but satisfy P constraints:

∂φm

∂qi

δqi +
∂φm

∂pi

δpi ≈ 0.

By use of the general method of the calculus of variations with constraints (ter

Haar 1971), the previous variational problem leads to the equations

∂F

∂qi

− λm ∂φm

∂qi

≈ 0
∂F

∂pi

− λm ∂φm

∂pi

≈ 0

where λm are some multipliers. These 2N equations, together with (5.3),

determine the conditions satisfied by ∂F/∂q , ∂F/∂p and λm on Ŵ1. They imply

the relations

∂

∂qi

(F − λmφm) ≈ 0
∂

∂pi

(F − λmφm) ≈ 0

from which we deduce

F − λmφm ≈ O
whereO is a quantity with weakly vanishing derivatives: it can be zero, a constant

or a second or higher power of a constraint. It is interesting to note that for theories

in which the constraint functionsφm satisfy this regularity condition, we can prove

that O = 0 (Henneaux and Teitelboim 1992); in other words,

If F ≈ 0 then F = λmφm .

Total Hamiltonian and the equations of motion. Having introduced these

definitions, we now return to a further development of the Hamiltonian formalism.

Let us consider the quantity

Hc = pi q̇i − L(q, q̇). (5.4)

By making variations in q and q̇ we find that

δHc = δpi q̇i + piδq̇i −
∂L

∂qi
δqi −

∂L

∂ q̇i
δq̇i ≈ δpi q̇i −

∂L

∂qi
δqi (5.5)

after using the definition of the momentum variables (5.2). Thus, we see that

the velocities enter Hc only through the combination p = f (q, q̇), so that Hc

can be expressed in terms of qs and ps only and is independent of the velocities.

Expressed in this way it becomes the canonical Hamiltonian.
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Relation (5.5) is a weak equation and it holds only for those variations of qs

and ps that are consistent with constraints. The variations with constraints, as we

have seen, can be treated with the help of multipliers. Let us, therefore, introduce

the total Hamiltonian

HT = Hc + umφm (5.6)

where um are arbitrary multipliers. By varying this expression with respect to

(u, q, p) we obtain the constraints (5.3) and the equations

∂Hc

∂pi

+ um ∂φm

∂pi

= q̇i

∂Hc

∂qi

+ um ∂φm

∂qi

= − ∂L

∂qi

≈ − ṗi

(5.7)

where the last equality follows from the Euler–Lagrange equations and the

definition of momenta. In this way we obtain the Hamiltonian equations of

motion involving arbitrary multipliers um , as a consequence of the existence of

constraints.

Let us now introduce the Poisson bracket (PB):

{A, B} ≡ ∂A

∂qi

∂B

∂pi

− ∂A

∂pi

∂B

∂qi

. (5.8)

The equation of motion of an arbitrary dynamical quantity g(q, p),

ġ = ∂g

∂qi

q̇i +
∂g

∂pi

ṗi

after substituting for the values q and q̇ from the Hamiltonian equations (5.7), can

be written in a concise form:

ġ = {g, Hc} + um{g, φm} ≈ {g, HT}. (5.9)

The last step in this relation demands an explanation. Since HT contains arbitrary

multipliers that are not functions of qs and ps, the Poisson bracket {g, HT} is not

determined in the sense of equation (5.8). However, by using the formal properties

of the PB operation applied to the sum and product of functions, we can write

{g, HT} = {g, Hc} + {g, uµφm}
= {g, Hc} + um{g, φm} + {g, um}φm .

The quantity {g, um} is not defined, but the last term can be neglected as it

vanishes weakly, whereupon we obtain (5.9). Bearing in mind that this term will

always be neglected, the weak equality in (5.9) will be replaced by the usual

equality, for simplicity.

Equations (5.9) describe the motion of a system in the subspace Ŵ1 of

dimension 2N − P . The motion is described by 2N coordinates (q, p) satisfying

P constraints; as a consequence, P multipliers in the evolution equations appear.

Explicit elimination of some coordinates is possible but it often leads to a violation

of locality and/or covariance of the formalism.
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Consistency conditions. The basic consistency of the theory requires that the

primary constraints be conserved during the dynamical evolution of the system.

The equations of motion (5.9) lead to the consistency conditions

φ̇m = {φm, Hc} + un{φm, φn} ≈ 0. (5.10)

If the equations of motion are consistent, these conditions reduce to one of the

following three cases:

(a) the first type of condition reduces to an identity, 0=0, i.e. it is automatically

satisfied after using the primary constraints;

(b) the next reduces to an equation which is independent of the multipliers un ,

yielding a new, secondary constraint: χ(q, p) ≈ 0; and

(c) finally, an equation in (5.10) may impose a restriction on the uns.

If we find some secondary constraints in the theory, they also have to

satisfy consistency conditions of the type (5.10). The process continues until

all consistency conditions are exhausted. As a final result we are left with a

number of secondary constraints and a number of conditions on the multipliers.

The secondary constraints are for many purposes treated on the same footing as

the primary constraints. Let us denote all constraints in the theory as

ϕs ≡ (φm, χn) ≈ 0 (s = 1, . . . , P, P + 1, . . . , P + S) (5.11)

where P is the number of primary and S the number of all secondary constraints.

These constraints define a subspace Ŵ2 of the phase space Ŵ, such that Ŵ2 ⊆ Ŵ1.

The notions of weak and strong equalities are now defined with respect to Ŵ2.

The consistency conditions on the constraints ϕs yield relations

ϕ̇s = {ϕs, Hc} + um{ϕs, φm} ≈ 0 (s = 1, . . . , P + S) (5.12)

some of which are identically satisfied, while the others represent non-trivial

conditions on um . We shall consider (5.12) as a set of linear inhomogeneous

equations in the unknown um . If V m
a (q, p) (a = 1, 2, . . . , N1) are all the

independent solutions of the homogeneous equations, V m
a {ϕs, φm} ≈ 0, and

Um(q, p) are particular solutions of the inhomogeneous equations, then the

general solution for um takes the form

um = Um + va V m
a

where va = va(t) are arbitrary coefficients. After that, the total Hamiltonian

becomes

HT = H ′ + vaφa (a = 1, 2, . . . , N ′
1) (5.13)

where

H ′ = Hc + Umφm φa = V m
a φm .

Thus, we see that even after all consistency requirements are satisfied, we

still have arbitrary functions of time in the theory. As a consequence, dynamical

variables at some future instant of time are not uniquely determined by their initial

values.
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First and second class quantities. A dynamical variable R(q, p) is said to be

first class (FC) if it has weakly vanishing PBs with all constraints in the theory:

{R, ϕs} ≈ 0. (5.14)

If R is not first class, it is called second class. While the distinction between

primary and secondary constraints is of little importance in the final form of the

Hamiltonian theory, we shall see that the property of being FC or second class is

essential for the dynamical interpretation of constraints.

We have seen that (in a regular theory) any weakly vanishing quantity is

strongly equal to a linear combination of constraints. Therefore, if the quantity

R(q, p) is FC, it satisfies the strong equality

{R, ϕs} = Rs
rϕr .

From this we can infer, by virtue of the Jacobi identity, that the PB of two FC

constraints is also FC:

{{R, S}, ϕs} = {{R, ϕs}, S} − {{S, ϕs}, R}
= {Rs

rϕr , S} − {Ss
rϕr , R}

= Rs
r {ϕr , S} + {Rs

r , S}ϕr − Ss
r {ϕr , R} − {Ss

r , R}ϕr ≈ 0.

It should be noted that the quantities H ′ and φa , which determine HT, are

FC. The number of arbitrary functions of time va(t) in HT is equal to the number

of primary FC (PFC) constraints φa .

The presence of arbitrary multipliers in the equations of motion (and their

solutions) means that the variables (q(t), p(t)) cannot be uniquely determined

from given initial values (q(0), p(0)); therefore, they do not have a direct physical

meaning. Physical information about a system can be obtained from functions

A(q, p), defined on a constraint surface, that are independent of arbitrary

multipliers; such functions are called (classical) observables. The physical state

of a system at time t is determined by the complete set of observables at that time.

In order to illustrate these ideas, let us consider a general dynamical variable

g(t) at t = 0, and its change after a short time interval δt . The initial value g(0) is

determined by (q(0), p(0)). The value of g(t) at time δt can be calculated from

the equations of motion:

g(δt) = g(0)+ δt ġ = g(0)+ δt{g, HT}
= g(0)+ δt[{g, H ′} + va{g, φa}].

Since the coefficients va(t) are completely arbitrary, we can take different values

for these coefficients and obtain different values for g(δt), the difference being of

the form

�g(δt) = εa{g, φa} (5.15)
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where εa = δt (va
2 − va

1 ). This change of g(δt) is unphysical, as g1(δt) and

g2(δt) = g1(δt) + �g(δt) correspond to the same physical state. We come

to the conclusion that PFC constraints generate unphysical transformations of

dynamical variables, known as gauge transformations, that do not change the

physical state of our system.

The application of two successive transformations of the type (5.15),

with parameters εa
1 and εa

2 , yields a result that depends on the order of the

transformations. The difference in the two possible results is

(�1�2 −�2�1)g(δt) = εa
1ε

b
2[{{g, φb}, φa} − {{g, φa}, φb}]

= εa
1ε

b
2{g, {φa, φb}}

where the last equality is obtained by virtue of the Jacobi identity. This leads

us to conclude that the quantity {φa, φb} is also the generator of unphysical

transformations. Since φa are FC constraints, their PB is strongly equal to a

linear combinations of FC constraints. We expect that this linear combination

will also contain secondary FC constraints, and this is really seen to be the case in

practice. Therefore, secondary FC constraints are also generators of unphysical

transformations.

These considerations do not allow us to conclude that all secondary FC

constraints are generators of unphysical transformations. Dirac believed this to

be true, but was unable to prove it (‘Dirac’s conjecture’). The answer to this

problem will be given in the next subsection.

Can secondary FC constraints appear in HT? Sometimes certain dynamical

variables qa = Aa play the role of arbitrary multipliers. They appear linearly

in the canonical Hamiltonian in the form Aaχa , while, at the same time, there

exist PFC constraints of the form pa ≈ 0. The consistency conditions of pa yield

χa ≈ 0, i.e. the χa are secondary constraints. They are FC, since the variables Aa

are arbitrary functions of time. Indeed, the PFC constraints pa ≈ 0 are present

in HT in the form va pa, so that the equations of motion for Aa are given as

Ȧa ≈ va ; therefore, Aa (as well as va) are arbitrary functions of time, and HT

contains secondary FC constraints. This is the case in electrodynamics, as well as

in gravitation.

The Hamiltonian dynamics based on HT is known to be equivalent to the

related Lagrangian dynamics. Hence, the maximal number of arbitrary multipliers

in HT is determined by the nature of the gauge symmetries in the action.

Example 1. Consider the system described by the Lagrangian

L = 1
2
(q̇1)

2 + q2q̇1 + (1 − α)q1q̇2 + 1
2
β(q1 − q2)

2.

From the definition of momenta, p1 = q̇1 + q2, p2 = (1 − α)q1, we find one

primary constraint,

φ = p2 + (α − 1)q1 ≈ 0.
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The canonical and total Hamiltonian are

Hc = 1
2
(p1 − q2)

2 − 1
2
β(q1 − q2)

2

HT = Hc + uφ.

The consistency condition of φ leads to the relation

χ ≡ φ̇ = {φ, HT} = α(p1 − q2)− β(q1 − q2) ≈ 0

the meaning of which depends on the values of constants α and β.

(a) α = 0, β = 0. The consistency of the primary constraint φ = p2 − q1 is

automatically satisfied, φ is FC, and the multiplier u remains arbitrary.

For further analysis it is useful to have a general expression for χ̇ :

χ̇ = {χ, HT} = −β[(p1 − q2)− α(q1 − q2)] + (β − α2)u ≈ 0.

(b) α = 0, β �= 0. The consistency of the primary constraint φ = p2 − q1

yields secondary constraint χ = −β(q1 − q2) ≈ 0. The consistency of χ

restricts the multiplier u: u = p1 − q2. Both φ and χ are second class.

(c) α �= 0. From the general consistency condition of χ we can see that

further analysis depends essentially on the value of β − α2.

(c1) If β = α2, we find that χ̇ = −(β/α)χ , so that there are no new

constraints. Since {φ, χ} = 0, the constraints φ and χ are FC, and u remains

undetermined.

(c2) If, on the other hand, β �= α2, the consistency for χ determines u:

u ≈ (β/α)(q1 − q2), after using χ . The constraints φ and χ are second

class.

The extended Hamiltonian. We have seen that gauge transformations,

generated by FC constraints, do not change the physical state of a system. This

suggests the possibility of generalizing the equations of motion by allowing any

evolution of dynamical variables that does not change the physical states. To

realize this idea we introduce the extended Hamiltonian,

HE = H ′ + v1aφ1a + v2bφ2b (5.16)

containing both primary (φ1a) and secondary (φ2b) FC constraints, multiplied by

arbitrary functions of time. In the formalism based on the extended Hamiltonian

all gauge freedoms are manifestly present in the dynamics, and any differences

between primary and secondary FC constraints are completely absent.

The equations of motion following from HE are not equivalent with the

Euler–Lagrange equations, but the difference is unphysical.
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Dirac brackets. Having clarified the meaning and importance of FC

constraints, we now turn our attention to second-class constraints. To keep

the discussion simple, let us start with a simple example of two second-class

constraints:

q1 ≈ 0 p1 ≈ 0.

Using second-class constraints as generators of gauge transformations may lead

to contradictions, as they do not preserve all the constraints. Thus, e.g., starting

with F ≡ p1ψ(q) ≈ 0, where ψ �= 0, we can calculate δF = ε{q1, F} = ψ ,

and find that δF �= 0. Since the constraints are weak equalities, they should not

be used before the calculations of PBs. These equations suggest that the variables

(q1, p1) are not of any importance, and can be completely eliminated from the

theory. We shall do that by introducing a modified PB in which the variables

(q1, p1) are discarded:

{ f, g}∗ =
∑

i �=1

(
∂ f

∂qi

∂g

∂pi

− ∂ f

∂pi

∂g

∂qi

)
.

After that, the constraints q1 ≈ 0, p1 ≈ 0 can be treated as strong equations. The

resulting theory is defined only in terms of the variables (qi , pi ), i �= 1.

The idea can be generalized to arbitrary second-class constraints. The

presence of second-class constraints means that there are dynamical degrees of

freedom in the theory that are of no importance. In order to be able to eliminate

these variables, it is necessary to set up a new PB referring only to dynamically

important degrees of freedom.

After finding all FC constraints φa (a = 1, 2, . . . , N1), the remaining

constraints θs (s = 1, 2, . . . , N2) are second class. The matrix �rs = {θr , θs}
is non-singular. Indeed, if �rs were singular, i.e. det(�rs) = 0, then the equation

λs{θr , θs} = 0 would have a non-trivial solution for λs , and, consequently, the

linear combination λsθs would be FC. However, this is impossible by assumption.

The number of second-class constraints N2 must be even, as the matrix � is

antisymmetric. This follows from the property that each antisymmetric matrix of

odd order has a vanishing determinant, which is not the case with �.

Because � is non-singular, we can define its inverse �−1. The new PB is

now defined by

{ f, g}∗ = { f, g} − { f, θr }�−1
rs {θs, g} (5.17)

and is called the Dirac bracket. It is easy to check that the Dirac bracket satisfies

all the standard properties of a PB: it is antisymmetric, linear, obeys the product

law and Jacobi’s identity.

The Dirac bracket of any second-class constraint with an arbitrary variable

vanishes by construction:

{θm, g}∗ = {θm, g} − {θm, θr }�−1
rs {θs, g} = 0
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because {θm, θr }�−1
rs = δms . This means that after the Dirac brackets are

constructed, second-class constraints θm ≈ 0 can be treated as strong equations.

The equations of motion (5.9) can be written in terms of the Dirac brackets:

ġ ≈ {g, HT}∗. (5.18)

This follows from {θm, HT} ≈ 0, since HT is FC.

Now, we can clearly see the meaning of and the difference between FC and

second-class constraints.

FC constraints generate unphysical transformations, while second-

class constraints, after the introduction of Dirac brackets, are treated

as strong equations.

The construction of Dirac brackets in theories with a lot of second-class

constraints can be simplified by using their iterative property:

(i) we first construct preliminary Dirac brackets by using a subset of second-

class constraints; then,

(ii) we use a new subset of the remaining constraints, and construct new Dirac

brackets, using the preliminary brackets instead of the Poisson ones in (5.17),

and so on.

The process continues until all second-class constraints are exhausted.

Example 2. Let us calculate the Dirac brackets in the cases (b) and (c2) of

example 1. In the first case there are two second-class constraints,

θ1 = p2 − q1 θ2 = −β(q1 − q2)

with the PB is {θ1, θ2} = −β. From this we easily find the matrices � and �−1,

and then the Dirac brackets:

{A, B}∗ = {A, B} − (1/β)[{A, θ1}{θ2, B} − {A, θ2}{θ1, B}].

The second case is characterized by the constraints

θ1 = p2 + (α − 1)q1 θ2 = α(p1 − q2)− β(q1 − q2)

so that {θ1, θ2} = α2 − β. The Dirac brackets follow easily.

Gauge conditions. We have seen that the presence of FC constraints is related

to the existence of gauge symmetries, which describe unphysical transformations

of dynamical variables. This fact can be used to impose suitable restrictions on the

set of dynamical variables, so as to bring them into a one-to-one correspondence

with the set of all observables. By means of this procedure we can remove any

unobservable gauge freedoms in the description of dynamical variables, without
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changing any observable property of the theory. The restrictions are realized as a

suitable set of gauge conditions:

!a(q, p) ≈ 0 (a = 1, 2, . . . , Ngc). (5.19a)

In order for !a to be a set of good gauge conditions, the following two

requirements must be satisfied:

(i) Gauge conditions must be accessible, i.e. for any value of (q, p) in the phase

space there must exist a gauge transformation (q, p) → (q ′, p′), such that

!a(q
′, p′) ≈ 0.

(ii) Gauge conditions must fix the gauge freedom completely, i.e. there should

be no gauge transformation that preserves (5.19a).

If an arbitrary gauge transformation is determined by Npar parameters, then the

first condition is possible only if Npar ≥ Ngc, while the second one implies that

Ngc ≥ Npar (the smaller number of gauge conditions could not fix the gauge

completely). Therefore, the number of gauge conditions must be equal to the

number of independent gauge transformations.

The meaning of these requirements can be made more precise if we specify

the form of the gauge transformations. Let us assume, for instance, that the

dynamical evolution is described by the extended Hamiltonian (5.16), so that all

FC constraints generate gauge transformations, Npar = N1. Then the number of

gauge conditions becomes equal to the number of independent FC constraints.

The second requirement means that there is no gauge transformation such that

vb{!a, φb} ≈ 0 unless vb = 0, which implies

det{!a, φb} �= 0 φb = FC. (5.19b)

This means that FC constraints together with the related gauge conditions form a

set of second-class constraints. As a consequence, all arbitrary multipliers vb in

HE can be fixed by the consistency conditions:

!̇a = {!a, HE} ≈ {!a, H ′} + vb{!a, φb} ≈ 0.

After fixing the gauge we can define Dirac brackets and treat both the constraints

and gauge conditions as identities.

These requirements are necessary but not sufficient for the correct gauge

fixing. They guarantee only that the gauge is correctly fixed locally, while the

question of its global validity remains, in general, open. In some cases the

geometry of the problem may be such that global gauge conditions do not even

exist.

First and second-class constraints, together with gauge conditions, define a

subspace Ŵ∗ of the phase space Ŵ, having dimension

N∗ = 2N − (2N1 + N2)
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in which the dynamics of independent degrees of freedom is realized. Since the

number of second-class constraints N2 is even, the dimension N∗ is also even.

This counting of independent degrees of freedom is gauge independent, hence it

also holds in the total Hamiltonian formalism.

A similar analysis may be given for the approach based on the total

Hamiltonian. The general construction and some specific features of these gauge

transformations are given in the following subsection.

Generators of gauge symmetries

The unphysical transformations of dynamical variables are often referred to as

local, or gauge, transformations. The term ‘local’ means that the parameters of

the transformations are arbitrary functions of time. Gauge transformations are of

special interest only if they represent a symmetry of the theory. We shall now

describe an algorithm for constructing the generators of all gauge symmetries of

the equations of motion governed by the total Hamiltonian (Castellani 1982). This

analysis will also give an answer to Dirac’s old conjecture that all FC constraints

generate gauge symmetries.

We begin by considering a theory determined by the total Hamiltonian

(5.13) and a complete set of constraints, ϕs ≈ 0. Suppose that we have a

trajectory T1(t) = (q(t), p(t)), which starts from a point T0 = (q(0), p(0)) on

the constraint surface Ŵ2, and satisfies the equations of motion with some fixed

functions va(t):

q̇i =
∂H ′

∂pi
+ va ∂φa

∂pi

− ṗi =
∂H ′

∂qi

+ va ∂φa

∂qi

ϕs(q, p) = 0.

(5.20)

Such trajectories will be called dynamical trajectories. Consider now a new,

varied trajectory T2(t) = (q(t) + δ0q(t), p(t) + δ0 p(t)), which starts from

the same point T0, and satisfies the equations of motion with new functions

va(t) + δ0v
a(t). Expanding these equations to first order in the small variations

δ0q, δ0 p, δ0v
a and using (5.20) we obtain

δ0q̇i =
(
δ0q j

∂

∂q j

+ δ0 p j
∂

∂p j

)
∂HT

∂pi

+ δ0v
a ∂φa

∂pi

− δ0 ṗi =
(
δ0q j

∂

∂q j

+ δ0 p j
∂

∂p j

)
∂HT

∂qi

+ δ0v
a ∂φa

∂qi

∂ϕs

∂qi

δ0qi +
∂ϕs

∂p j

δ0 p j = 0.

These are necessary and sufficient conditions for the varied trajectories to be

dynamical. Transition from one trajectory to another at the same moment of time
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Figure 5.1. The Hamiltonian description of gauge transformations.

represents an unphysical or gauge transformation (figure 5.1).

Now let us assume that the variations of dynamical variables are determined

by an arbitrary infinitesimal parameter ε(t) and have the canonical form

δ0qi(t) = ε(t){qi ,G} = ε(t)
∂G

∂pi

δ0 pi(t) = ε(t){pi ,G} = −ε(t)
∂G

∂qi

(5.21)

where G(q, p) is the generator of this transformation. Then,

δ0q̇i = ε̇
∂G

∂pi

+ ε

{
∂G

∂pi

, HT

}

δ0 ṗi = −ε̇
∂G

∂qi

− ε

{
∂G

∂qi

, HT

}

and the conditions that the varied trajectory be dynamical take the form

ε̇
∂G

∂pi

+ ε

{
∂G

∂pi

, HT

}
= −ε

{
G,

∂HT

∂pi

}
+ ∂φa

∂pi

δ0v
a

ε̇
∂G

∂qi

+ ε

{
∂G

∂qi

, HT

}
= −ε

{
G,

∂HT

∂qi

}
+ ∂φa

∂qi

δ0v
a

ε{ϕs,G} = 0.

These conditions must be fulfilled for every dynamical trajectory (q(t), p(t)) at

arbitrary time t , i.e. for each point (q, p) on Ŵ2, and for every va(t). They can be

rewritten as

∂

∂pi
[ε̇G + ε{G, HT} − φaδ0v

a] ≈ 0

∂

∂qi

[ε̇G + ε{G, HT} − φaδ0v
a] ≈ 0

ε{ϕs,G} ≈ 0.
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From the first two equations we obtain the relation

{F, ε̇G + ε{G, HT} − φaδ0v
a} ≈ 0

which is valid for every dynamical variable F(q, p). Hence, the expression in

braces is equivalent to a trivial generator:

ε̇G + ε{G, HT} − φaδ0v
a = O

where O is zero, a constant or the second (or higher) power of a constraint. The

conditions of solvability with respect to δva , for arbitrary ε, ε̇ and va , reduce to

G = λaφa {G, HT} = ηaφa

where λa, ηa are functions of qs and ps, and the equality of generators is an

equality modulo O.

Summarizing, the necessary and sufficient condition for G to be a gauge

generator has the form

G = CPFC {G, HT} = CPFC (5.22)

where CPFC is a PFC constraint. Therefore, if the gauge symmetry has the form

(5.21), the generator has to be a PFC constraint, and its PB with HT must also be

a PFC constraint.

The assumption that the symmetry transformation has the form (5.21), where

a dependence on the derivatives of parameters is absent, is too restrictive for many

physical applications. The most interesting case is when the gauge generator has

the form

G = ε(t)G0 + ε̇(t)G1. (5.23a)

This discussion can now be repeated with

δ0qi(t) = {qi ,G} δ0 pi(t) = {pi ,G}

and it leads to the following relations:

[ε̈G1 + ε̇(G0 + {G1, HT})+ ε{G0, HT}] − φaδ0v
a = O

ε{ϕs,G0} + ε̇{ϕs,G1} ≈ 0

The conditions for solvability with respect to δva , for arbitrary ε, ε̇ and va , have

the form:
G1 = CPFC

G0 + {G1, HT} = CPFC

{G0, HT} = CPFC.

(5.23b)

Example 2 (continued). Let us find the gauge symmetries for cases (a) and (c1)

of example 1. In the first case there exists one PFC constraint, φ = p2−q1, while



122 Hamiltonian dynamics

secondary constraints are absent. From condition (5.22) it follows that the gauge

generator has the form G = εφ and the symmetry transformations are

δ0 p1 = ε δ0q2 = ε δ0(rest) = 0.

In the second case φ is a primary and χ a secondary FC constraint. Starting from

G1 = φ in (5.23b), the second equation leads to G0 + χ = aφ, while the third

condition yields a = −β/α = −α, so that the gauge generator becomes

G = −ε(χ + αφ)+ ε̇φ.

From this result we can easily obtain the related transformations of the dynamical

variables. That these transformations do not change the form of the equations of

motion can be directly checked.

In the general case the gauge generator takes the form

G = ε(k)(t)Gk + ε(k−1)(t)Gk−1 + · · · + εG0 (5.24a)

where ε(n) = dnε/dtn , and the conditions for solvability with respect to δ0v
a

become
Gk = CPFC

Gk−1 + {Gk, HT} = CPFC

. . . . . .

{G0, HT} = CPFC.

(5.24b)

Thus, Gk has to be a PFC constraint and all other Gn (n < k) must be FC

constraints.

These conditions clearly define the procedure for constructing the generator.

We start with an arbitrary PFC constraint Gk , evaluate its PB with HT and define

Gk−1, etc. The procedure stops when we obtain the constraint G0, for which

the PB with HT is a PFC constraint. We have assumed that the number of

steps is finite, which is equivalent to assuming that the number of generations

of secondary constraints is finite.

Conditions (5.24b) determine Gn only up to PFC constraints. Therefore, at

each stage of the construction of the chain {Gn} we should try to add suitable FC

constraints, in order to stop the whole process as soon as possible. In this way

we can find the minimal chain {Gn} (the chain that could not have been stopped

earlier by any choice of Gn). It should be observed that the chain also stops if, at

some stage, we obtain {Gi , HT} = χn (n ≥ 2), as the power of constraint χn is

equivalent to the zero generator. In this case the constraint χ is not present in the

gauge generator G.

Dirac’s conjecture that all FC constraints generate gauge symmetries is

replaced by the following statement:
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All FC constraints, except those appearing in the consistency conditions

in the form χn (n ≥ 2), and following from {χ, HT} ≈ 0, are parts of

the gauge generator.

We should note that in all relevant physical applications Dirac’s conjecture

remains true. This is of particular importance for the standard quantization

methods, which are based on the assumption that all FC constraints are gauge

generators.

When the gauge generator (5.24a) contains all FC constraints, we can simply

realize the transition to the extended formalism by replacing time derivatives

ε(k) = dkε/dtk with independent gauge parameters.

Electrodynamics

Field theory can be thought of as a mechanical system in which dynamical

variables are defined at each point x of a three-dimensional space, (qi , pi ) →
(qix , pix )≡ (qi(x), pi(x)), i.e. where each index also takes on continuous values,

i ≡ (i, x). Then, a formal generalization of the previous analysis to the case of

field theory becomes rather direct: the sum goes over into an integral (and sum),

partial derivatives into functional derivatives, δi
k becomes δi

kδ(x − y), etc.

We shall now study the important example of electrodynamics, the analysis

of which not only represents a fine illustration of the general theory, but also

shows in many aspects a great similarity with the theory of gravity. The dynamics

of the free electromagnetic field Aµ(x) is described by the Lagrangian

L = − 1
4

∫
d3x Fµν Fµν Fµν = ∂µAν − ∂ν Aµ. (5.25)

Varying this Lagrangian with respect to Ȧµ we obtain the momenta

πµ(x) =
δL

δ Ȧµ(x)
= −F0µ(x)

where x ≡ (t, x). Since Fµν is defined as the antisymmetric derivative of Aµ,

it does not depend on the velocities Ȧ0, so that the related momentum vanishes.

Thus, we obtain the primary constraint

ϕ1 ≡ π0 ≈ 0.

(The number of these constraints is, in fact, 1 × ∞3, i.e. one constraint at

each point x of the three-dimensional space, but we shall continue to talk about

one constraint, for simplicity.) The remaining three momenta are equal to the

components of the electric field, −F0α . The canonical Hamiltonian has the form

Hc =
∫

d3x (πµ Ȧµ − L) =
∫

d3x ( 1
4

Fαβ Fαβ − 1
2
παπ

α − A0∂απα)
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where the last term is obtained in that form after performing a partial integration‡.

This expression does not depend on velocities, as it contains only the spatial

derivatives of coordinates and momenta. With one primary constraint present,

the total Hamiltonian takes the form

HT = Hc +
∫

d3x u(x)π0(x). (5.26)

By use of the basic PBs,

{Aµ(x), πν(x
′)} = δµν δ(x − x ′) t = t ′

the consistency condition for ϕ1, π̇0(x) = {π0(x), HT} ≈ 0, leads to a secondary

constraint:

ϕ2 ≡ ∂απα ≈ 0.

Further consistency requirements reduce to ϕ̇2 = 0, i.e. no new condition is

produced. The constraints ϕ1 and ϕ2 are FC, as {π0, ∂
απα} = 0.

The variable A0 appears linearly in Hc. Its equation of motion

Ȧ0 = {A0, HT} = u

gives a definite meaning to the arbitrary multiplier u. It follows from this that A0

is also an arbitrary function of time. We observe that secondary FC constraints

are already present in Hc in the form A0ϕ2, showing that A0 has the role of

another arbitrary multiplier. In this way here, as well as in gravitation, we find an

interesting situation that all FC constraints are present in the total Hamiltonian.

The transition to the extended Hamiltonian,

HE = HT + λ∂απ
α

is equivalent to the replacement A0 → A0 − λ in HT.

Let us now look for the generator of gauge symmetries in the form (5.24).

Starting with G1 = π0 we obtain

G =
∫

d3x (ε̇π0 − ε∂απα) (5.27)

and the related gauge transformations are

δ0 Aµ = ∂µε δ0πµ = 0.

The result has the form we know from the Lagrangian analysis.

‡ We assume that the asymptotic behaviour of dynamical variables is such that the surface terms,

obtained by partial integration, vanish. The possibility of the appearance of surface terms is an

essential property of field theory.
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The previous treatment fully respects the gauge symmetry of the theory. One

of the standard ways for fixing this symmetry is to choose, e.g., the radiation

gauge condition:

!1 ≡ A0 ≈ 0 !2 ≡ ∂α Aα ≈ 0.

The number of gauge conditions is equal to the number of FC constraints, and

the matrix {!a, ϕb} is non-singular. In addition, the gauge conditions remain

preserved during the time evolution, as can be explicitly checked.

Gauge conditions can be used as strong equations after constructing the

related Dirac brackets. Let us first construct preliminary Dirac brackets

corresponding to the pair (!1, ϕ1) = (A0, π0). By using the relation

{A0(t, x), π0(t, u)} = δ(x − u), we find that

�(u, v) =
(

0 δ

−δ 0

)
�−1(u, v) =

(
0 −δ

δ 0

)

where δ ≡ δ(u − v). From this we have

{M(x), N(y)}∗ = {M(x), N(y)} +
∫

d3u {M(x), A0(u)}{π0(u), N(y)}

−
∫

d3u {M(x), π0(u)}{A0(u), N(y)}.

For all other variables, except π0 and A0, the Dirac brackets reduce to the usual

PBs. On the other hand, we know that the Dirac bracket of π0 or A0 with any

other variable vanishes. Therefore, π0 and A0 can be simply eliminated from the

theory by using the conditions π0 ≈ 0 and A0 ≈ 0 as strong equalities, while

for the remaining variables we should use the usual PBs. Taking into account the

other pair (ϕ2,!2) yields the final Dirac brackets on the subspace of transverse

variables (Aα
T , π

T
α ):

{Aα
T (x), π

T
β (x

′)} = δαβδ(x − x ′)− ∂α∂βD(x − x ′)

where D(x) = (4π |x|)−1 is a solution of the equation ∂α∂
αD(x) = δ(x).

The dimension of the phase space Ŵ(Aµ, πν) is eight (twice larger than the

number of Lagrangian variables); after fixing two gauge conditions we come to

the phase space Ŵ∗ of dimension N∗ = 8 − 2 × 2 = 4, defined by the transverse

variables (Aα
T , π

T
β ).

5.2 The gravitational Hamiltonian

Covariance and Hamiltonian dynamics

The existence of spacetime symmetries implies some general characteristics of

the Hamiltonian dynamics, knowledge of which facilitates analysis of the theory.



126 Hamiltonian dynamics

If we study the dynamics of PGT, we see that the Lagrangian equations of

motion are covariant, i.e. they do not change the form under the local Poincaré

transformations. On the other hand, the Hamiltonian equations of motion,

ġ ≈ {g, HT}, contain time t of a specific reference frame, so that they are

not manifestly covariant. It is interesting to clarify how the covariance of the

theory can be seen in the Hamiltonian analysis. The covariance demands a

formulation in which the spacetime variables are referred to an arbitrary non-

inertial reference frame. Such a formulation is sometimes automatically realized

by a suitable choice of the action. If this is not the case, the original action has to

be conveniently reformulated.

As an illustration of the problem of covariance, consider a simple case of

a theory defined by the Lagrangian L(q, dq/dt), in which the time parameter

refers to a specific reference frame. If we introduce a new time τ as a monotonic

function of t , the action can be rewritten as

I =
∫

dt L(q, dq/dt) =
∫

dτ Lτ Lτ ≡ dq0

dτ
L

(
q,

dq/dτ

dq0/dτ

)

where q0 ≡ t , and dq0/dτ �= 0. Let us now take the time t = q0 as an

extra coordinate and consider the new Lagrangian Lτ as a function of the two

coordinates (q0, q) and the time τ . It should be noted that Lτ is a homogeneous

function of the first degree in the velocities (dq0/dτ, dq/dτ ). By introducing the

corresponding momenta

p0 =
∂Lτ

∂(dq0/dτ )
p = ∂Lτ

∂(dq/dτ )

we find, with the help of Euler’s theorem for homogeneous functions or by a direct

calculation, that the canonical Hamiltonian vanishes:

Hc ≡ p0
dq0

dτ
+ p

dq

dτ
− Lτ = 0.

In this case there exists at least one primary constraint. Indeed, p0 and p are

homogeneous functions of the zero degree so that they can depend only on the

ratio (dq/dτ )/(dq0/dτ ), from which we deduce the existence of one primary

constraint φ. If φ is the only constraint, it must be FC, the total Hamiltonian

is of the form

HT = vφ

where v is an arbitrary multiplier and the equations of motions are

dg

dτ
= v{g, φ}.

These equations contain an arbitrary time scale τ . A transition to a new time

parameter τ ′ does not change the form of the equations:

dg

dτ ′
= v′{g, φ}
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where v′ = v dτ/dτ ′ is a new arbitrary function of time τ ′.

Example 3. The dynamics of the free non-relativistic particle is determined by

the Lagrangian L = 1
2
(dq/dt)2. Going over to an arbitrary time τ , we find that

Lτ = 1
2
(q̇2/q̇0)

where the dot means the derivative over τ . From the definitions of momenta,

p = q̇/q̇0, p0 = − 1
2
(q̇/q̇0)

2, we obtain the primary constraint

φ = p0 + 1
2

p2 ≈ 0

while HT = v(τ )φ. The consistency condition of the constraint φ is automatically

satisfied, and it is FC. The equations of motion are

q̇0 = v{q0, φ} = v q̇ = v{q, φ} = vp ṗ0 = ṗ = 0.

They are covariant with respect to the choice of time, i.e. they do not change the

form under the transformations δ0q0 = ε, δ0q = εp, δ0 p0 = δ0 p = 0.

We can return to time t by choosing the gauge condition ! ≡ q0 − τ ≈ 0.

In that case the equations of motion take the standard form: v = 1, q̇ = p.

Thus, the introduction of an arbitrary time scale into Hamiltonian theory

implies the existence of one FC constraint, and HT = vφ ≈ 0. The method

described here represents a general procedure by which we can transform any

theory, taking the time parameter as an extra dynamical variable q0, into the form

in which the time scale is arbitrary. If the action is ‘already covariant’, it contains

the variable q0 from the very beginning, so that HT ≈ 0 automatically.

In field theory, we should have the freedom not only to choose time, but also

to choose three spatial coordinates. The corresponding Hamiltonian theory should

have at least four FC constraints. The number of FC constraints may be larger if

other gauge symmetries are also present. In a similar manner we can study the

general features of the covariant Hamiltonian formulation of gravitation. The

following property characterizes standard gravitational theories§:

To each parameter of the gauge symmetry there corresponds one FC

constraint φa; the dynamical evolution of the system is described by

weakly vanishing Hamiltonian, HT = vaφa ≈ 0.

The existence of gauge symmetries, as well as the vanishing of HT, may

cause a certain confusion in our understanding of the gravitational dynamics. This

may arise in connection with two basic questions: the definition of gravitational

energy and the dynamical nature of time. Leaving the question of energy for the

next chapter, we mention here the problem of time. Going back to example 3 we

§ It should be noted that, in general, covariance does not imply a zero Hamiltonian (Henneaux and

Teitelboim 1992).
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observe that in order to have a physical interpretation of the evolution parameter

τ it is necessary to fix the gauge. A natural gauge choice is of the form

!1 ≡ q0 − τ ≈ 0. It satisfies {φ,!1} �= 0 and means that out of all possible

times τ we have chosen the one that is equal to q0 (= t). An interesting situation

arises if we ‘forget’ about the origin of Lτ , and try to impose the gauge condition

!2 ≡ q0 ≈ 0. Formally, this choice also satisfies the necessary condition

{!2, φ} �= 0. However, physically this means that t = 0, i.e. the time t ‘does

not flow’. If the final gauge-invariant theory is obtained from a theory in which

the role of time was played by t , then !2 is not the correct gauge choice, since

it violates the monotony of the mapping t → τ . On the other hand, if the theory

defined by Lτ is given a priori, without any reference to an ‘original’ theory,

additional criteria for a correct choice of gauge become less transparent. The

choice of time may be related to the asymptotic structure of spacetime. At this

point we shall leave this problem, limiting our further discussion to situations in

which the usual interpretation of time exist.

Now we are ready to begin a more detailed exposition of the form of the

gravitational Hamiltonian (Nikolić 1984).

Primary constraints

The geometric framework for PGT is defined by the Riemann–Cartan spacetime

U4, while the general Lagrangian has the form (3.15),

L̃ = bLG(Ri j
kl , T i

kl )+ bLM(&,∇k&)

where & denotes the matter fields and LG is given by (3.50). The basic

Lagrangian dynamical variables are (bk
µ, Ai j

µ,&), and the corresponding

momenta (πk
µ, πi j

µ, π) are

πk
µ = ∂L̃

∂bk
µ,0

πi j
µ = ∂L̃

∂Ai j
µ,0

π = ∂L̃

∂&,0
. (5.28)

Due to the fact that the curvature and the torsion are defined through the

antisymmetric derivatives of bk
µ and Ai j

µ, respectively, they do not involve

the velocities of bk
0 and Ai j

0. As a consequence, we immediately obtain the

following set of the so-called sure primary constraints:

φk
0 ≡ πk

0 ≈ 0 φi j
0 ≡ πi j

0 ≈ 0. (5.29)

These constraints are always present, independently of the values of parameters

in the Lagrangian. They are particularly important for the structure of the theory.

Depending on the specific form of the Lagrangian, we may also have additional

primary constraints in the theory.

The canonical Hamiltonian has the standard form:

Hc ≡
∫

d3x Hc Hc = HM +HG (5.30)
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where

HM = π∂0& − L̃M

HG = πk
α∂0bk

α + 1
2
πi j

α∂0 Ai j
α − L̃G.

The total Hamiltonian is defined by the expression

HT = Hc + uk
0φk

0 + 1
2
ui j

0φi j
0 + (u · φ) (5.31)

where φ symbolically denotes all additional primary constraints, if they exist (if

constraints), and HT =
∫

d3x HT.

The evaluation of the consistency conditions of the sure primary constraints,

φ̇k
0 = {πk

0, HT} ≈ 0 and φ̇i j
0 = {πi j

0, HT} ≈ 0, is essentially simplified if we

previously find the dependence of the Hamiltonian on the unphysical variables

bk
0 and Ai j

0. We shall show thatHc is linear in bk
0 and Ai j

0,

Hc = bk
0Hk − 1

2
Ai j

0Hi j + ∂αDα (5.32)

where ∂αDα is a three-divergence term, while the possible extra primary

constraints φ are independent of bk
0 and Ai j

0. Consequently, the consistency

conditions (5.31) will result in the following secondary constraints:

Hk ≈ 0 Hi j ≈ 0. (5.33)

Relations (5.32) will be the basic result of this section.

The (3 + 1) decomposition of spacetime

The investigation of the dependence of the Hamiltonian on bk
0 will lead us to the

so-called (3+1) decomposition of spacetime.

In order to find the dependence of the inverse tetrad hk
µ on bk

0, we observe

that the orthogonality conditions bk
µhk

ν = δνµ and bk
µhl

µ = δk
l lead to the

relations
3ha

αba
β ≡ (ha

α − ha
0h0

α/h0
0)ba

β = δαβ

ha ≡ ha
0/h0

0 = −3ha
αb0

α .
(5.34)

Since 3ha
α is the inverse of ba

β , both 3ha
α and ha are independent of bk

0.

Let us now construct the normal n to the hypersurface �0 : x0 = constant.

By noting that the vector l = (hk
0) is orthogonal to the three basis vectors eα

lying in �0, l · eα = hk
0bk

α = 0, we find that

n = l√
l · l

nk = hk
0

√
g00

. (5.35)

The independence of n on bk
0 follows from l ∼ (1, ha).
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Figure 5.2. The ADM decomposition of the time displacement vector.

The four vectors (n, eα) define the so-called ADM basis. Introducing the

projectors on n and �0,

(P⊥)lk = nknl (P‖)lk = δl
k − nknl

we can express any vector in terms of its parallel and orthogonal components:

Vk = nk V⊥ + Vk̄

V⊥ = nk V k Vk̄ ≡ (V‖)k = (P‖)lk Vl .
(5.36)

Here, by convention, a bar over an index ‘k’ in Vk̄ denotes the fact that the

contraction of Vk̄ with nk vanishes. An analogous decomposition can be defined

for any tensor.

The parallel component of Vk can be written in the form

Vk̄ = (P‖)lkhl
µVµ ≡ h k̄

µVµ

where h k̄
µ does not depend on bk

0. Indeed, the quantity

h k̄
µ = (P‖)

l
khl

µ = (P‖)
l
k

3hl
µ

where 3hl
µ ≡ hl

µ − hl
0h0

µ/h0
0, is a formal generalization of 3ha

α, having the

zero value whenever at least one of its indices is zero. Therefore, both nk and h k̄
µ

are independent of bk
0.

The decomposition of the vector e0 in the ADM basis yields

e0 = Nn + Nαeα (5.37a)

where N and Nα are called the lapse and shift functions, respectively. Multiplying

this equation with dx0 we see that, geometrically, N determines the projection

of the time displacement vector dx0e0 on the normal, while Nα measures the
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deviation of this vector from n (figure 5.2). The lapse and shift functions are

linear in bk
0:

N = e0 · n = nkbk
0 = 1/

√
g00

Nα = e0 · eβ
3gβα = h k̄

αbk
0 = −g0α/g00

(5.37b)

where 3gβα is the inverse of gαβ .

Thus, we have found 16 variables (nk, h k̄
µ, N, Nα ) with a clear geometric

meaning and simple dependence on bk
0, which can always be used instead of hk

µ.

Using the fact that N and Nα are linear in bk
0, the canonical Hamiltonian

(5.32) can easily be brought into an equivalent form:

Hc = NH⊥ + NαHα − 1
2

Ai j
0Hi j + ∂αDα (5.38a)

where
Hk = nkH⊥ + h k̄

αHα

H⊥ = nkHk Hα = bk
αHk .

(5.38b)

Construction of the Hamiltonian

The matter Hamiltonian. Let us now turn to the proof of (5.38) for the matter

Hamiltonian. The Lagrangian of the matter fields depends on the time derivative

∂0& only through the covariant derivative ∇k& . It is convenient to decompose

∇k& into the orthogonal and parallel components,

∇k& = nk∇⊥& +∇k̄& ≡ nkh⊥µ∇µ& + h k̄
α∇α& (5.39)

because ∇k̄& does not depend either on velocities or on unphysical variables

(bk
0, Ai j

0), as follows from h k̄
0 = 0. Replacing this decomposition into the

matter Lagrangian leads to the relation

LM =LM(&,∇k̄&; ∇⊥&, nk)

where the complete dependence on velocities and unphysical variables is

contained in ∇⊥& . Then, using the factorization of the determinant

b = det(bk
µ) = N J (5.40)

where J does not depend on bk
0, the expression for momentum can be written as

π ≡ ∂(bLM)

∂&,0
= J

∂LM

∂∇⊥&
.

Finally, using the relation

∇0& ≡ N∇⊥& + Nα∇α& = ∂0& + 1
2

Ai j
0�i j&
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to express the velocities ∂0& , the canonical Hamiltonian for the matter field takes

the form (5.38), where

HM
α = π∇α& HM

i j = π�i j&

HM
⊥ = π∇⊥& − JLM = J

(
∂LM

∂∇⊥&
∇⊥& −LM

)
(5.41)

and Dα
M = 0.

The expressions forHM
α andHM

i j are independent of the unphysical variables,

as ∇α& is independent of them. They do not depend on the specific form of the

original LagrangianLM, but only on the transformation properties of fields. They

are called the kinematical terms of the Hamiltonian.

The termHM
⊥ is dynamical, as it depends on the choice of LM. It represents

the Legendre transformation of the function LM with respect to the ‘velocity’

∇⊥& . After eliminating ∇⊥& with the help of the relation defining π , the

dynamical Hamiltonian takes the form

HM
⊥ = HM

⊥ (&,∇k̄&;π/J, nk)

from which it follows thatHM
⊥ does not depend on unphysical variables.

If the matter Lagrangian is singular, the equations for momenta give rise

to additional primary constraints, which are again independent of unphysical

variables.

Example 4. Let us consider the case of the spin- 1
2

matter field. This is an

important case as we believe that most of the matter in the Universe (quarks

and leptons) is described by the Dirac field, the Lagrangian of which is given

by L̃D = 1
2
b[iψ̄γ k∇

↔
kψ − 2mψ̄ψ]. If we take ψ and ψ̄ as basic Lagrangian

variables, and denote their momenta by π̄ and iπ , it follows that additional

primary constraints exist:

φ ≡ π + 1
2
iJγ⊥ψ ≈ 0 φ̄ ≡ π̄ − 1

2
iJ ψ̄γ⊥ ≈ 0.

These constraints are second class, since

{φ(x), φ̄(x ′)} = iJγ⊥δ(x − x ′) det γ⊥ = 1.

Following the general procedure we find that the canonical Hamiltonian is of the

form (5.38a), where

HM
i j = π̄�i jψ − ψ̄�i jπ HM

α = π̄∇αψ + (∇αψ̄)π

HM
⊥ = −J 1

2
[iψ̄γ k∇

↔
k̄ψ − 2mψ̄ψ].

SinceLD is linear in velocities, we haveHM
⊥ = −JLD(∇⊥ψ,∇⊥ψ̄ = 0), leading

to the last equation.
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The term (u · φ) in the total Hamiltonian, stemming from additional primary

constraints, has the form (u · φ)M = ūφ + φ̄u. Since (φ, φ̄) are second-class

constraints, their consistency conditions fix the multipliers (ū, u), and no new

constraints appear. After the construction of the Dirac brackets, the constraints

(φ, φ̄) can be used as strong equalities.

Gravitational Hamiltonian. The construction of the gravitational Hamiltonian

can be performed in a very similar way, the role of ∇k& being taken over by T i
km

and Ri j
km . In the first step we decompose the torsion and curvature, in the last

two indices, into orthogonal and parallel components:

T i
km = T i

k̄m̄ + nk T i⊥m̄ + nm T i
k̄⊥

Ri j
km = Ri j

k̄m̄ + nk Ri j ⊥m̄ + nm Ri j
k̄⊥.

(5.42)

The parallel components T i
k̄m̄ and Ri j

k̄m̄ are independent of the velocities and

unphysical variables. The replacement in the gravitational Lagrangian yields the

relation

LG =LG(T
i
k̄m̄, Ri j

k̄m̄; T i
⊥k̄, Ri j

⊥k̄, nk).

Using the factorization of the determinant (5.40), the relations defining the

momenta take the form

π̂i
k̄ = J

∂LG

∂T i
⊥k̄

π̂i j
k̄ = J

∂LG

∂Ri j
⊥k̄

where π̂i
k̄ ≡ πi

αbk
α and π̂i j

k̄ ≡ πi j
αbk

α are ‘parallel’ gravitational momenta.

The velocities ∂0bi
α and ∂0 Ai j

α can be calculated from the relations

N(T i⊥α + Ai⊥α)+ Nβ (T i
βα + Ai

βα) = ∂0bi
α − ∂αbi

0 + 1
2

Amn
0(�

1
mn)

i
j b

j
α

N Ri j ⊥α + Nβ Ri j
βα = ∂0 Ai j

α − ∂α Ai j
0 + 1

2
Amn

0(�
2
mn)

i j
kl Akl

α

obtained from the definitions of T i
0α and Ri j

0α. After a simple algebra, the

canonical Hamiltonian takes the form (5.38), where

HG
i j = 2π[iαb j ]α + 2πk[iα Ak

j ]α + ∂απi j
α

HG
α = πi

βT i
αβ + 1

2
πi j

β Ri j
αβ − bk

α∇βπk
β

HG
⊥ = J

(
1

J
π̂i

m̄ T i⊥m̄ + 1

2J
π̂i j

m̄ Ri j ⊥m̄ −LG

)
− nk∇βπk

β

Dα
G = bi

0πi
α + 1

2
Ai j

0πi j
α .

(5.43)

The expressions T i⊥m̄ and Ri j ⊥m̄ in HG
⊥ should be eliminated with the help of

the equations defining momenta π̂i
m̄ and π̂i j

m̄ .
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Example 5. As an illustration of this procedure for constructing the canonical

Hamiltonian, we shall consider the case of Einstein–Cartan theory. From the

form of the Lagrangian L̃ = −abR, we find additional primary constraints:

πi
α ≈ 0 φi j

α ≡ πi j
α + 4a Jn[ih j ]α ≈ 0.

Since the Lagrangian does not depend on ∂0bi
α , the only way to eliminate these

velocities from the Hamiltonian (5.29b) is to use the constraints πi
α ≈ 0. In

this way, at the same time, we eliminate the terms proportional to πi
α (or π̂i

m̄) in

(5.43). After that we easily obtain

Hi j = ∇απi j
α Hα = 1

2
πi j

β Ri j
αβ

H⊥ = a J Rm̄n̄
m̄n̄ Dα = 1

2
Ai j

0πi j
α

where, in calculatingH⊥, we have used the relationLG = −a(Rm̄n̄
m̄n̄+2R⊥n̄⊥n̄)

and the constraint φi j
α .

It should be stressed that these results describe the canonical Hamiltonian,

while the presence of the determined multipliers in the total Hamiltonian will

bring certain modifications to these expressions, as we shall soon see.

Consistency of the theory and gauge conditions

1. The result of the preceding exposition is the conclusion that the total

Hamiltonian of the theory can be written in the form

HT = ĤT + ∂αDα

ĤT ≡ Ĥc + ui
0πi

0 + 1
2

ui j
0πi j

0 + (u · φ)
(5.44a)

where πi
0, πi j

α and φ are primary constraints, the us are the related multipliers,

the three-divergence ∂αDα is written as a separate term and the canonical

Hamiltonian has the form

Ĥc = bk
0Hk − 1

2
Ai j

0Hi j

= NH⊥ + NαHα − 1
2

Ai j
0Hi j .

(5.44b)

The fact that Ĥc is linear in unphysical variables enables us to easily find the

consistency conditions of the sure primary constraints (5.28):

H⊥ ≈ 0 Hα ≈ 0 Hi j ≈ 0. (5.45)

PGT is invariant under the ten-parameter group of local Poincaré

transformations. From the general considerations given at the beginning of this

section it follows that ten FC constraints should exist in the theory. It is not

difficult to guess that these ten constraints are, in fact, four constraints (H⊥,Hα),

describing local translations, and six constraints Hi j , related to local Lorentz

rotations. An explicit proof of this statement is left for the next chapter. As

a consequence, the consistency conditions of the secondary constraints (5.45)

are automatically satisfied, as their PBs with the Hamiltonian are given as linear

combinations of ten FC constraints.
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2. Although gauge-invariant formulation of the theory is very important for

analysis of its general structure, practical calculations are often simplified if we

fix the gauge.

If the number of gauge conditions is smaller than the number of FC

constraints, the gauge symmetry is fixed only partially. This is the case when

we choose the orientation of the local Lorentz frame hk = ek so that the time

direction coincides with the normal to �0:

h0 = n. (5.46a)

This choice defines the time gauge, which violates the local Lorentz symmetry:

mutual rotations of the vectors ha are still allowed (spatial rotations), but any

change of h0 (boost transformations) is now forbidden.

In the basis (5.46a) the normal n has the components

nk = n · hk = (1, 0, 0, 0)

so that the projection of V = (Vk) on n becomes V · n = V0. Using the relation

n · ha = ha
0n · e0, the time gauge condition can be expressed as

ha
0 = 0 (5.46b)

while from (5.34) we find an equivalent form:

b0
α = 0. (5.46c)

Since the time gauge fixes the boost symmetry, it affects the form of the

Hamiltonian by fixing the multiplier A0c
0, related to the constraint H0c. This is

easily seen to be a consequence of the consistency of (5.46c),

ḃ0
α = {b0

α, HT} =
∫

d3x ′ {b0
α, N ′H′

⊥ + N ′αH′
α} + A0c

0bcα ≈ 0

where we used {b0
α,H0c} = bcαδ.

After choosing the time gauge, the constraints H0c ≈ 0 and b0
α ≈ 0 can

be treated as second-class constraints. The construction of the preliminary Dirac

brackets is very simple. From the definition

{A, B}∗ = {A, B} +
∫
[{A, b0

α}hcα{H0c, B} − {A,H0c}hcα{b0
α, B}]

it follows that for all variables except (b0
α, π0

β) the Dirac brackets reduce to

the Poisson ones, while (b0
α, π0

β) can be eliminated from the theory by using

b0
α ≈ 0 andH0c ≈ 0.

This procedure illustrates the standard method for imposing gauge condition

at the end of the construction of the Hamiltonian formulation of the theory.

Sometimes, gauge conditions are used directly in the action integral, thus reducing

the number of dynamical degrees of freedom from the very beginning. This is not

allowed in principle, as by doing so we are losing some of the equations of motion

of the original theory.
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5.3 Specific models

In this section, we shall use the general Hamiltonian method developed so far to

study two specific but important dynamical models: EC theory and teleparallel

theory.

Einstein–Cartan theory

The Einstein–Cartan theory (3.51) represents a direct extension of GR to the U4

spacetime. We shall investigate here the Hamiltonian structure of this theory when

matter fields are absent (Nikolić 1995). In this case the EC theory reduces to GR,

and the action takes the form IHP = −a
∫

d4x bR, known from GR as the Hilbert–

Palatini form.

Using the relation

bR = − 1
4
ε
µνλρ
mnkl bk

λbl
ρ Rmn

µν ε
µνλρ
mnkl ≡ εµνλρεmnkl

the action can be written as

IHP = 1
2
a

∫
d4x ε

µνλρ

mnkl bk
λbl

ρ(∂µAmn
ν + Am

sµAsn
ν). (5.47)

The Hamiltonian and constraints. In addition to the sure primary constraints,

πi
0 ≈ 0 i πi j

0 ≈ 0, in this case extra primary constraints also exist,

πi
α ≈ 0 φi j

α ≡ πi j
α − aε

0αβγ
i jmn bm

βbn
γ ≈ 0 (5.48)

in agreement with the result of example 5.

Since the Lagrangian is linear in velocities Ȧ, the canonical Hamiltonian is

given by Hc = −L( Ȧ = 0). It can be written as a linear function of unphysical

variables, up to a three-divergence,

Hc = bi
0Hi − 1

2
Ai j

0Hi j + ∂αDα (5.49)

where

Hi = − 1
2
aε

0αβγ
i jmn b j

α Rmn
βγ Hi j = −aε

0αβγ
i jmn bm

αT n
βγ

Dα = 1
2

aε
0αβγ
i jmn bm

βbn
γ Ai j

0.

It is not difficult to see, using φi j
α , that the quantities Hi , Hi j and Dα are

equivalent to the corresponding expressions in example 5. The form we use here

is more suitable for a direct comparison with the Lagrangian formalism, since

after eliminating the momenta the constraints are given as functions of the fields.

The total Hamiltonian has the form

HT = Hc + ui
0πi

0 + 1
2
ui j

0πi j
0 + ui

απi
α + 1

2
ui j

αφi j
α .
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The consistency conditions of the sure primary constraints result in ten

secondary constraints:

Hi ≈ 0 Hi j ≈ 0. (5.50a)

The consistency conditions for πi
α have the form

χi
α ≡ 1

2
aε

α0βγ
i jmn (b j

0 Rmn
βγ − 2b j

β Rmn
0γ ) ≈ 0 (5.50b)

where an underbar in Rmn
0γ denotes that the term Ȧmn

γ is replaced with

umn
γ (the equation of motion for Amn

γ has the form Ȧmn
γ = umn

γ ). These

relations are used to determine the multipliers umn
γ . However, the 12 conditions

χi
α ≈ 0 are insufficient for a complete determination of umn

α , but six additional

conditions will be found later.

Finally, the consistency of φi j
α leads to

χi j
α ≡ −aε

α0βγ
i jmn (bm

0T n
βγ − 2bm

β T n
0γ ) ≈ 0 (5.50c)

where the underbar in T n
0γ means that the term ḃn

γ is replaced with un
γ

(ḃn
γ = un

γ on the basis of the equations of motion). Among the 18 relations

χi j
α ≈ 0 there are 12 conditions determining the multipliers um

γ , and six

constraints. The complete number of secondary constraints is 10 + 6 = 16. In

the following exposition we shall omit writing underbars in Rmn
0γ and T n

0γ for

simplicity.

The previous consistency conditions can be rewritten in the ‘covariant’ form:

(−Hi , χi
α) : χi

µ ≡ 1
2

aε
µνρσ

i jmn b j
ν Rmn

ρσ ≈ 0

(Hi j , χi j
α) : χi j

µ ≡ −aε
µνρσ
i jmn bm

νT n
ρσ ≈ 0.

The first set is equivalent to

hk
µRk

i − 1
2
hi

µR ≈ 0 (5.51a)

which we recognize as Einstein’s equations in vacuum (they can be transformed

into Ri j = 0). Here, among 16 conditions we have four constraints (Hi ≈ 0), and

12 relations which serve to determine the multipliers ui j
α (χi

α ≈ 0). The second

set of conditions implies that the torsion vanishes,

T k
µν ≈ 0 (5.51b)

which is a consequence of the absence of matter. These 24 equations contain 12

constraints (T k
αβ ≈ 0) and 12 conditions on multipliers uk

α (T k
0α ≈ 0).

The consistency conditions for secondary constraints do not produce new

constraints. Indeed, the consistency ofHi is automatically satisfied,

Ḣi = ∇αχi
α + Am

i0Hm ≈ 0 (5.52a)
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while the consistency of ε0αβγ T k
αβ ≈ 0,

ε0αβγ (bm
0 Ri

mαβ − 2bm
αRi

m0β) ≈ 0 (5.52b)

yields additional requirements on the multipliers ui j
α (see exercises 15 and 16).

The explicit form of all determined multipliers will be given later.

In the set of primary constraints, 10 of them are FC (πi
0, πi j

0) and the

remaining 30 are second class (πi
α, φi j

α); from 16 secondary constraints, 10 are

FC (Hi ,Hi j ) and six are second class. Therefore, the total number of FC and

second-class constraints is N1 = 20, N2 = 36, respectively. Taking into account

that there is one gauge condition corresponding to each FC constraint and that the

number of independent field components is N = 40, we find that the total number

of physical degrees of freedom is

N∗ = 2N − (2N1 + N2) = 80 − 76 = 4.

Thus, the number of independent gravitational degrees of freedom is four in phase

space or, equivalently, two in configuration space.

Determined multipliers. The existence of 20 FC constraints is related to the

fact that the variables (bi
0, Ai j

0) and the multipliers (ui
0, ui j

0) are arbitrary

functions of time; the existence of 30 second-class constraints is reflected in the

fact that the multipliers (ui
α, ui j

α) are determined functions of the remaining

phase-space variables. From the relation T i
0α ≈ 0 and the definition of Ri j

0α

it follows that

uk
α = ∇αbk

0 − Ak
m0bm

α

ui j
α ≡ Ri j

0α +∇α Ai j
0

so that the determination of ui j
α reduces to the determination of Ri j

0α . The

‘multipliers’ Rmn⊥r̄ = (Rm̄n̄⊥r̄ , R⊥n̄⊥r̄ ) can be determined from

Rm̄n̄⊥r̄ = R⊥r̄
m̄n̄ Rn̄

r̄ ≡ R⊥n̄⊥r̄ + Rm̄n̄
m̄r̄ = 0.

The contribution of the determined multipliers to the total Hamiltonian can

be found starting from the relations

ui
απi

α = ∂α(b
i
0πi

0)− bi
0∇απi

α − Ai j
0π[i

αb j ]α
1
2
ui j

αφi j
α = ∂α(

1
2

Ai j
0φi j

α)− 1
2

Ai j
0∇αφi j

α + 1
2

Ri j
0αφi j

α .

Using the decomposition

Ri j
0αφi j

α = Ri j
0απi j

α + 4a J R⊥n̄
0n̄ = bi

0(Rmn
iαπmn

α + 4a J R⊥n̄
in̄)

the total Hamiltonian takes the form

HT ≡ bi
0Hi − 1

2
Ai j

0Hi j + ∂α D̄α + ui
0πi

0 + 1
2

ui j
0πi j

0 (5.53)
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where the componentsHi ,Hi j and D̄α contain the contributions of the determined

multipliers:

Hi j = Hi j + 2π[iαb j ]α +∇αφi j
α = 2π[iαb j ]α +∇απi j

α

Hi = Hi + 2a J R⊥n̄
in̄ + 1

2
Rmn

iβπmn
β −∇απi

α

= 1
2

Rmn
iβπmn

β − ni JL−∇απi
α

D̄α = Dα + bi
0πi

α + 1
2

Ai j
0φi j

α = bi
0πi

α + 1
2

Ai j
0πi j

α .

In calculatingHi we used the relation Hi = a J (ni Rm̄n̄
m̄n̄ − 2h ī

α R⊥n̄
αn̄), from

which we find

Hi + 2a J R⊥n̄
in̄ = a Jni(Rm̄n̄

m̄n̄ + 2R⊥n̄⊥n̄) ≡ −ni JL.

It is interesting to note that the expressions for Hi j and D̄α completely

coincide with the form (5.43), as a consequence of the contribution of the

determined multipliers. On the other hand, the form ofHi implies

Hα = 1
2
πi j

β Ri j
αβ − bk

α∇βπk
β

H⊥ = 1
2
π̂i j

m̄ Ri j ⊥m̄ − JL− nk∇βπk
β

where we can observe the absence of the πT terms, compared to (5.43). Let us

recall that in all expressions the multipliers ui
α and ui j

α are determined from

the corresponding conditions. Therefore, we conclude that the term πi
βT i

0β

is absent from the Hamiltonian, since it is exactly the equation T i
0β = 0

which is used to determine the multipliers. Using the values of the ‘multipliers’

Rmn⊥r̄ = (Rm̄n̄⊥r̄ , R⊥n̄⊥r̄ ) found previously, and replacing R⊥n̄⊥n̄ → −Rm̄n̄
m̄r̄

inL, we finally obtain

H⊥ = 1
2
π̂m̄n̄

r̄ R⊥r̄
m̄n̄ − π̂⊥n̄

r̄ Rm̄n̄
m̄r̄ − a J Rm̄n̄

m̄n̄ − nk∇βπk
β .

Comments. (1) Hamiltonian (5.49) differs from the result in example 5 as a

consequence of the fact that Hc is defined only up to primary constraints. What

are the consequences of a different choice of Hc on the structure of HT? If

we denote the canonical Hamiltonian from example 5 by H′
c, its relation to the

expression (5.49) is given by

H
′
c = Hc + t i j

αφi j
α

where t are known coefficients. Hence, H′
T is obtained from HT by the

replacement ui j
α → u′i j

α = ui j
α − t i j

α . Consistency requirements lead to the

same form of secondary constraints, and the same conditions on ui
α and u′i j

α.

Therefore, the final total Hamiltonian H′
T, containing the fixed multipliers, has

the same form asHT.

(2) Since EC theory without matter fields is equivalent to GR, we shall try

to see whether we can use the 36 second-class constraints to eliminate the 36
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variables (Ai j
α, πi j

α) and obtain the canonical formulation in terms of the tetrads

and their momenta (bi
µ, πi

µ). The analysis is simplified if we choose the time

gauge, b0
α ≈ 0, which effectively means:

– the transition ⊥ → 0 and k̄ → a,

– the elimination of the pair (b0
α, π0

β) with the help of constraints and

– the use of PBs for the remaining variables.

By imposing this condition, the constraint Ha0 becomes effectively second

class, giving rise (together with b0
α ≈ 0) to a total number of 36 + 6

second-class constraints, which can be used for the elimination of 42 variables

(Ai j
α, πi j

α; b0
α, π0

β). Using the 6 + 18 equations b0
α = 0, π0

α = 0, T a
αβ = 0

and πab
α = 0, we can easily eliminate b0

α, Aab
α and their momenta:

b0
α = 0 π0

α = 0

Aab
α = �ab

α πab
α = 0.

The structure of the remaining 18 equations, πa
α = 0 and φa0

α = 0, is such that

the variables (Aa0
α, πa0

α) cannot be eliminated, as we wanted.

Our aim can be realized by introducing a suitable canonical transformation

of variables. A simple way to define this transformation is by going over to the

action

I ′HP = a

∫
d4x 1

2
ε
µνλρ

mnkl [−∂µ(b
k
λbl

ρ)Amn
ν + bk

λbl
ρ Am

sµAsn
ν]

which differs from the original one by a four-divergence. The elimination of ∂A

from the action gives rise to a set of second-class constraints which can be solved

to express (Ai j
α, πi j

α) in terms of the other variables. The new action is used

in appendix E not only to analyse the tetrad formulation of the theory but also to

introduce Ashtekar’s complex variables.

(3) The appearance of the term ∂αDα in the total Hamiltonian seems to be

an accident. It ensures that the Hamiltonian does not depend on the derivatives

of momenta. The form of this term changes if the Lagrangian is changed by

a four-divergence. Its presence ‘violates’ the statement that HT is equal to a

linear combination of FC constraints. Does this term has any physical meaning?

Let us assume that the tetrad fields have an asymptotic behaviour at spatial

infinity corresponding to the Schwarzschild solution. Then, starting from the

action I ′HP we find the result
∫

d3x HT ≈
∫

d3x ∂αDα = M , suggesting a very

interesting interpretation. If we look at the Hamiltonian HT as the generator

of time evolution which acts on dynamical variables via PBs, then the term∫
d3x ∂αDα , transformed to a surface integral, can be ignored, being equivalent

to a zero generator; the Hamiltonian effectively becomes a linear combination of

FC constraints, in agreement with the general considerations. On the other hand,

the presence of ∂αDα inHT enables us to interpret the Hamiltonian as the energy

of the system.
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In a certain way, this result is accidental, since, until now, we have not

considered the surface terms in a systematic manner. We shall see in chapter 6

that there exist general principles that determine the form of the surface terms and

relate them to the energy and other conserved quantities in gravitation.

The teleparallel theory

The teleparallel approach to gravity is an interesting alternative to the Riemannian

GR. Canonical analysis of teleparallel theory (3.61) slightly differs from the

general description given in the previous section, due to the presence of Lagrange

multipliers (Blagojević and Nikolić 2000, Blagojević and Vasilić 2000a).

Primary constraints. The basic Lagrangian dynamical variables of the

teleparallel theory (3.61) are (bi
µ, Ai j

µ, λi j
µν) and the corresponding momenta

are denoted by (πi
µ, πi j

µ, π i j
µν). Since the Lagrangian does not involve

velocities ḃk
0 and Ȧi j

0, we obtain the following primary constraints:

φk
0 ≡ πk

0 ≈ 0 φi j
0 ≡ πi j

0 ≈ 0. (5.54)

Similarly, the absence of the time derivative of λi j
µν implies

φi j
µν ≡ π i j

µν ≈ 0. (5.55)

The next set of constraints follows from the linearity of the curvature in Ȧi j
α:

φi j
α ≡ πi j

α − 4λi j
0α ≈ 0. (5.56)

Now we turn our attention to the remaining momenta πi
α . The relations

defining πi
α can be written in the form

π̂i
k̄ = J

∂L̄T

∂T i
⊥k̄

= 4Jβi
⊥k̄(T ).

Using the fact that β is a linear function of T , we can make the expansion

β(T ) = β(0)+ β(1), where β(0) does not depend on ‘velocities’ T i
⊥k̄ and β(1)

is linear in them, and rewrite this equation in the form

Pik̄ ≡ π̂ik̄/J − 4βi⊥k̄(0) = 4βi⊥k̄(1).

Here, the so-called ‘generalized momenta’ Pik̄ do not depend on the velocities,

which appear only on the right-hand side of the equation. Explicit calculation

leads to the result

Pik̄ ≡ π̂ik̄/J − 4a[ 1
2

BT⊥ı̄ k̄ + 1
2

Cni T
m̄

m̄k̄]
= 4a[ATi⊥k̄ + 1

2
BTk̄⊥ı̄ + 1

2
Cηı̄ k̄ T m̄⊥m̄ + 1

2
(B + C)ni T⊥⊥k̄].
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This system of equations can be decomposed into irreducible parts with respect

to the group of three-dimensional rotations in �0:

P⊥k̄ ≡ π̂⊥k̄/J − 2aCT m̄
m̄k̄ = 2a(2A + B + C)T⊥⊥k̄

P A

ı̄ k̄
≡ π̂ A

ı̄ k̄
/J − 2a BT⊥ı̄k̄ = 2a(2A − B)T A

ı̄⊥k̄

PT
ı̄ k̄
≡ π̂T

ı̄ k̄
/J = 2a(2A + B)T T

ı̄⊥k̄

Pm̄
m̄ ≡ π̂ m̄

m̄/J = 2a(2A + B + 3C)T m̄⊥m̄

(5.57)

where X A
ı̄ k̄
= X[ı̄ k̄], X T

ı̄ k̄
= X(ı̄ k̄) − ηı̄ k̄ X n̄

n̄/3.

In general, if some of the coefficients on the right-hand sides of equations

(5.57) vanish, these relations lead to additional primary constraints φA (if

constraints). Instead of going into a general discussion of various possibilities,

we shall analyse, later in this subsection, the important specific example of GR‖.

The Hamiltonian. After the primary constraints have been found, we proceed

to construct the canonical Hamiltonian density. Following the general procedure

developed in section 5.2, we find

Hc = NH⊥ + Nα
Hα − 1

2
Ai j

0Hi j − λi j
αβ Ri j

αβ + ∂αDα (5.58a)

where
Hi j = 2π[iβb j ]β +∇απi j

α

Hα = πk
βT k

αβ − bk
α∇βπk

β

H⊥ = π̂i
k̄ T i

⊥k̄ − JLT − nk∇βπk
β

Dα = bk
0πk

α + 1
2

Ai j
0πi j

α .

(5.58b)

The explicit form of H⊥ can be obtained by eliminating ‘velocities’ Ti⊥k̄ with

the help of relations (5.57) defining momenta πik̄ . Note the minor changes in

these expressions compared to equations (5.43) and (5.44), which are caused by

the presence of Lagrange multipliers. The canonical Hamiltonian is now linear in

unphysical variables Ai j
µ, bi

µ and λi j
αβ .

The general Hamiltonian dynamics of the system is described by the total

Hamiltonian,

HT = Hc + ui
0πi

0 + 1
2
ui j

0πi j
0 + 1

4
ui j

µνπ i j
µν + ui j

αφi j
α + (u · φ) (5.59)

where (u · φ) = u AφA denotes the contribution of extra primary constraints, if

they exist.

Secondary constraints. Having found the form of the sure primary constraints

(5.54), (5.55) and (5.56), we now consider the requirements for their consistency.
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The consistency conditions of the primary constraints (5.54) yield the

standard secondary constraints:

H⊥ ≈ 0 Hα ≈ 0 Hi j ≈ 0. (5.60)

Similarly,

π̇ i j
αβ ≈ 0 ⇒ Ri j

αβ ≈ 0 (5.61a)

π̇ i j
0β ≈ 0 ⇒ ui j

β ≈ 0. (5.61b)

Since the equation of motion for Ai j
β implies Ri j

0β ≈ ui j
β , all components of

the curvature tensor weakly vanish, as we could have expected.

The consistency condition for φi j
α can be used to determine ui j

0α:

4ūi j
0α ≈ N ′{πi j

α,H′
⊥} − Nα(π̂i ̄ − π̂ j ı̄ )− Akl

0(ηikπl j
α − η j kπli

α)

− 4∇βλi j
βα + u′A{πi j

α, φ′
A} (5.62)

where a bar over u is used to denote the determined multiplier. Thus, the

total Hamiltonian can be written in the form (5.59) with ui j
0α → ūi j

0α and

ui j
α = 0. Since ūi j

0α is linear in the multipliers (N, Nα , Ai j
0, λi j

0α, u A), the

total Hamiltonian takes the form

HT = ĤT + ∂α D̄α

ĤT ≡Hc + ui
0πi

0 + 1
2
ui j

0πi j
0 + 1

4
ui j

αβπ i j
αβ + u Aφ̄A

D̄α = bk
0πk

α + 1
2

Ai j
0πi j

α − 1
2
λi j

αβπ i j
0β

(5.63a)

whereHc is the modified canonical Hamiltonian,

Hc = NH⊥ + NαHα − 1
2

Ai j
0Hi j − λi j

αβHi j
αβ (5.63b)

the components of which are given by

H⊥ = H⊥ − 1
8
(∂H⊥/∂Ai j

α)π
i j

0α

Hα = Hα − 1
8
(π̂i ̄ − π̂ j ı̄ )π

i j
0α

Hi j = Hi j + 1
2
π[i s

0απ j ]sα

Hi j
αβ = Ri j

αβ − 1
2
∇[απ i j

0β]

(5.63c)

and

φ̄A = φA + 1
8
π i j

0α{πi j
α, φA}. (5.63d)

The total Hamiltonian HT, in contrast to ĤT, does not contain the derivatives of

momentum variables. The only components of HT that depend on the specific

form of the Lagrangian areH⊥ and φ̄A.

Thus, the only sure secondary constraints are (5.60) and Ri j
αβ ≈ 0. Before

continuing our general analysis, we shall now illustrate the nature of extra

constraints by considering the specific case of GR‖.
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Canonical structure of GR‖. With a special choice of parameters (3.62),

equations (5.57) contain two sets of relations: the first set represents extra primary

constraints:
P⊥k̄ = π̂⊥k̄/J + 2aT m̄

m̄k̄ ≈ 0

P A

ı̄ k̄
= π̂ A

ı̄ k̄
/J − aT⊥ı̄ k̄ ≈ 0

(5.64a)

while the second set gives non-singular equations,

PT
ı̄ k̄
≡ π̂T

ı̄ k̄
/J = 2aT T

ı̄⊥k̄

P m̄
m̄ ≡ π̂ m̄

m̄/J = −4aT m̄⊥m̄

(5.64b)

which can be solved for the velocities.

Further calculations are greatly simplified by observing that extra constraints

(5.64a) can be represented in a unified manner as

φik = πik̄ − πk ı̄ + a∇αB0α
ik B0α

ik ≡ ε
0αβγ
ikmn bm

β bn
γ . (5.65)

This can be seen from the fact that relations (5.64a) can be equivalently written

as

πik̄ − πk ı̄ ≈ 2a J (T⊥ı̄ k̄ − ni T
m̄

m̄k̄ + nk T m̄
m̄ ı̄ ) = 2a∇αH 0α

ik

and the identity 2H
µν

ik = −B
µν

ik .

In order to find the explicit form of H⊥, we first rewrite the first two terms

ofH⊥ in the form

π̂ ik̄ Ti⊥k̄ − JLT = 1
2

J P ik̄ Ti⊥k̄ − JLT(T̄ )

where T̄ikl = Tik̄ l̄ . Then, taking constraints (5.64a) into account we find that

T⊥⊥k̄ and T A

ı̄⊥k̄
are absent fromH⊥, whereupon the relations (5.64b) can be used

to eliminate the remaining ‘velocities’ T T
ı̄⊥k̄

and T m̄⊥m̄ , leading directly to

H⊥ = 1
2

P2
T − JLT(T̄ )− nk∇βπk

β (5.66a)

where

P2
T = 1

2a J

(
π(ı̄ k̄)π

(ı̄ k̄) − 1

2
π m̄

m̄π
n̄

n̄

)

LT(T̄ ) = a( 1
4

Tmn̄k̄ T mn̄k̄ + 1
2

Tm̄n̄k̄ T n̄m̄k̄ − T m̄
m̄k̄ Tn̄

n̄k̄).

(5.66b)

Calculating the modified constraint φ̄i j , equation (5.63d), we obtain

φ̄i j = φi j − 1
4
a(πi

s
0αB0α

s j + π j
s

0αB0α
is ). (5.67)

The consistency conditions for the extra primary constraints φi j are found to

be automatically fulfilled: φ̇i j = {φi j ,HT} ≈ 0; moreover, we can show that φ̄i j

are FC.



Specific models 145

The existence of extra FC constraints φ̄i j may be interpreted as a

consequence of the fact that the velocities contained in T⊥⊥k̄ and T ı̄⊥k̄
A appear

at most linear in the Lagrangian and, consequently, remain arbitrary functions

of time. Although the torsion components T⊥⊥k̄ and T ı̄⊥k̄
A are absent from

the canonical Hamiltonian, they re-appear in the total Hamiltonian as the non-

dynamical Hamiltonian multipliers (u⊥k̄/N and u ı̄ k̄/N). The presence of non-

dynamical torsion components has a very clear interpretation via the gauge

structure of the theory: it is related to the existence of additional FC constraints

φ̄i j .

On the consistency algorithm. In the previous analysis, we have found that the

general teleparallel theory is characterized by the following set of sure constraints:

Primary: πi
0, πi j

0, π i j
αβ , φi j

α, π i j
0β ;

Secondary: H⊥,Hα,Hi j , Ri j
αβ .

Now it would be natural to continue the analysis by verifying the consistency of

the secondary constraints.

Consider, first, the consistency condition of Ri j
αβ . Since Ri j

αβ depends

only on Ai j
α , we can express dRi j

αβ/dt in terms of dAi j
α/dt , use the equation

of motion for Ai j
α , and rewrite the result in the form

∇0 Ri j
αβ ≈ ∇αui j

β −∇βui j
α. (5.68)

Hence, the consistency condition for Ri j
αβ is identically satisfied. This relation

has a very interesting geometric interpretation. Indeed, using the equation

Ri j
0β ≈ ui j

β , we see that it represents a weak consequence of the second Bianchi

identity.

General arguments in PGT show that the secondary constraints Hi j ,Hα

and H⊥ are related to Poincaré gauge symmetry and, consequently, have to

be FC. Hence, their consistency conditions must be automatically satisfied.

However, an explicit proof of this property demands knowledge of the algebra

of constraints, which is a non-trivial (although straightforward) calculational task

by itself. Instead of using this argument, we shall postpone the completion of

the consistency algorithm until we find the form of the Poincaré gauge generator

(section 6.3), which will provide us with the necessary information concerning

the nature ofHi j ,Hα andH⊥. Here, we only state the result:

The consistency conditions of all the secondary constraints are

automatically satisfied.

The relevant dynamical classification of the sure constraints is presented in

table 5.1.

The constraints φi j
α and π i j

0β are second class since {φi j
α, πkl

0β} �≈ 0.

They can be used as strong equalities to eliminate λi j
0α and π i j

0β from the theory
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Table 5.1.

First class Second class

Primary πi
0, πi j

0, π i j
αβ φi j

α, π i j
0β

Secondary H⊥,Hα,Hi j ,H
i j
αβ

and simplify the calculations. Note that all FC constraints appear multiplied by

arbitrary multipliers in the total Hamiltonian (5.63).

The algebra of FC constraints plays an important role not only in the classical

canonical structure of the theory, but also in studying its quantum properties.

These important subjects deserve further investigation. We display here, for

later convenience, the part of the Poisson bracket algebra of constraints involving

Hi j
αβ :

{Hi j
αβ ,H

′
kl } = (δi

kHl
j
αβ + δ

j

kH
i
lαβ)δ − (k ↔ l)

{Hi j
αβ ,H

′
γ } = {Hi j

αβ ,H
′
⊥} = {Hi j

αβ ,H
′ kl

γ δ} = 0.
(5.69)

The equations {Hi j
αβ ,H

′
γ } = 0 hold up to squares of constraints, which are

always ignored in on-shell analysis.

The λ symmetry. We are now going to construct the canonical generator of

the λ symmetry (3.65). If gauge transformations are given in terms of arbitrary

parameters ε(t) and their first time derivatives ε̇(t), as is the case with the

symmetries of our Lagrangian (3.61), the gauge generators have the form (5.23a),

G = ε(t)G(0) + ε̇(t)G(1)

where the phase-space functions G(0) and G(1) satisfy the conditions (5.23b).

These conditions clearly define the procedure for constructing the generator: we

start with an arbitrary PFC constraint G(1), evaluate its Poisson bracket with HT,

and define G(0) so that {G(0), HT} = CPFC.

The only PFC constraint that acts on the Lagrange multipliers λi j
µν is πi j

αβ .

Starting with π i j
αβ as our G(1), we look for the generator in the form

G A(ε) = 1
4
ε̇i j

αβπ i j
αβ + 1

4
εi j

αβSi j
αβ (5.70a)

where the integration symbol
∫

d3x is omitted for simplicity. The phase-space

function Si j
αβ can be found from (5.23b). In the first step, we obtain the G(0)

part of the generator up to PFC constraints:

Si j
αβ = −4Hi j

αβ + CPFC.
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Then, using the algebra of constraints involvingHi j
αβ , given in (5.69), and the

third condition in (5.23b), we find

Si j
αβ = −4Hi j

αβ + 2A[i
k0π

j ]k
αβ . (5.70b)

This completely defines the generator G A(ε) for which we were looking.

Using the rule δ0 X =
∫

d3x ′ {X,G′}, we apply the generator (5.70) to the

fields, and find

δA
0 λi j

0α = ∇βεi j
αβ δA

0 λi j
αβ = ∇0εi j

αβ (5.71)

as the only non-trivial field transformations. Surprisingly, this result does not

agree with the form of the λ symmetry (3.65b), which contains an additional

component,∇γ εi j
αβγ , in the expression for δ0λi j

αβ . Since there are no other PFC

constraints that could produce the transformation of λi j
αβ , the canonical origin of

the additional term seems somewhat puzzling.

The solution of the problem is, however, quite simple: if we consider

independent gauge transformations only, this term is not needed, since it is not

independent of what we already have in (5.71). To prove this statement, consider

the following PFC constraint:

(i j
αβγ = ∇απ

i j
βγ +∇γπ

i j
αβ + ∇βπ

i j
γ α .

This constraint is essentially a linear combination of the π i j
αβ ; hence, the related

gauge generator will not be truly independent of the general expression (5.70).

Furthermore, using the second Bianchi identity for Ri j
αβ , we find the relation

∇αH
i j
βγ +∇βH

i j
γ α +∇γH

i j
αβ = 0

which holds up to squares of constraints. As a consequence, (i j
αβγ has a

vanishing PB with the total Hamiltonian, up to PFC constraints, and is, therefore,

a correct gauge generator by itself. Hence, we can introduce a new gauge

generator,

G B(ε) = − 1
4
εi j

αβγ∇απ
i j
βγ (5.72)

where the parameter εi j
αβγ is totally antisymmetric with respect to its upper

indices. The only non-trivial field transformation produced by this generator is

δB
0 λi j

αβ = ∇γ εi j
αβγ

and it coincides with the missing term in equation (5.71). This concludes the proof

that the six parameters εi j
αβγ in the λ transformations (3.65b) can be completely

discarded if we are interested only in the independent λ transformations.

Although the generator G B is not truly independent of G A, it is convenient

to define

G(ε) ≡ G A(ε)+ G B(ε) (5.73)
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as an overcomplete gauge generator, since it automatically generates the covariant

Lagrangian form of the λ symmetry.

We can prove that the action of the generator (5.73) on momenta is also

correct, in the sense that it yields the result in agreement with the defining

relations πA = ∂L/∂ϕ̇A. In particular, the only non-trivial transformation law for

the momenta, δ0πi j
α = 4∇β εi j

αβ , agrees with (3.65b) through the conservation

of the primary constraint φi j
α ≈ 0.

This construction is based on using the first class constraints π i j
αβ ,Hi j

αβ ,

the part of the Poisson bracket algebra involving these constraints, and the second-

class constraints φi j
α. All these constraints and their properties are independent

of the values of parameters in the theory; hence, we can conclude that

G(ε) is the correct generator of λ symmetry in the general teleparallel

theory.

Exercises

1. For each of the point-particle theories (a)–(f) given here, (i) derive the

constraints and the Hamiltonian; and (ii) construct the gauge generators and

check the gauge invariance of the equations of motion.

(a) L = 1
2
eq1(q̇2)

2

(b) L = 1
2
(q1 − q̇2)

2 + 1
2
(q2 − q̇3)

2

(c) L = 1
4
eq1(q̇2)

2 + 1
4
(q̇3 − q2)

2 − αeq4(q2)
2 (α = 1 or 0)

(d) L = 1
2
(q̇3 − q5 − eq1 q̇2)

2 + 1
2
(q̇5 − q4)

2

(e) L = q̇1q̇3 + 1
2
q2(q3)

2

(f) L = 1

2

(
q̇2

q1

)2

+ (q1)
2q2 q1 > 0.

2. Calculate the Dirac brackets for free electrodynamics in the gauge !1 =
A3 ≈ 0 (choose an appropriate additional gauge condition).

3. (a) Find the constraints and the Hamiltonian for the non-Abelian gauge

theory for which the action is given in appendix A.

(b) Construct the gauge generators.

4. The theory of the Abelian antisymmetric field is defined by the action

I = 1
8

∫
d4x (−εµνλρ Bµν Fλρ + AµAµ)

where Fµν = ∂µAν − ∂ν Aµ.

(a) Show that the following constraints are present in the theory:

first class: φα0 ≡ πα0 χ̃0β ≡ − 1
2
∗F0β + ∂απ

αβ
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second class: φµ ≡ πµ + 1
2
∗B0µ φαβ ≡ παβ

χ̃0 ≡ ∂απ
α + 1

4
A0.

(b) Derive the form of gauge symmetries.

(c) Construct the Dirac brackets.

5. The theory of the non-Abelian antisymmetric field is defined by the action

I = 1
8

∫
d4x (−εµνλρBa

µν Fa
λρ + Aa

µAaµ)

where Fa
µν = ∂µAa

ν − ∂ν Aa
µ + fbc

a Ab
µAc

ν , and fbc
a are structure

constants of a non-Abelian Lie group G. Find the constraints and gauge

symmetries of this theory.

6. The Born–Infeld electrodynamics is defined by the action

I =
∫

d4x
[√

− det(ηµν + Fµν)− 1
]
.

Derive the Hamiltonian and the constraints of this theory.

7. The relativistic free particle is described by the action

I = −m

∫
dτ

√
ηµν ẋµ ẋν .

(a) Show that the action is invariant under the time reparametrization.

(b) Find the Hamiltonian of the theory.

(c) Derive the Hamiltonian equations of motion in the gauge ! ≡ x0 − τ ≈
0, and construct the related Dirac brackets.

8. Suppose that the total Hamiltonian of a dynamical system has the form

HT =
∫

dt (H0 + um Gm), where Gm(q, p) are FC constraints satisfying

the conditions

{Gm,Gn} = Umn
r Gr {Gm,H0} = Vm

n Gn

and Umn
r and Vm

n are functions on the phase space. Show that the action

I [q, p] =
∫

dt (pa q̇a −H0 − um Gm)

is invariant under the following gauge transformations:

δqa = εm{qa,Gm} δpa = εm{pa,Gm}
δum = ε̇m + εr usUsr

m + εr Vr
m .

9. Construct the action I [A, π] for free electrodynamics. Then find the action

I [A] obtained from I [A, π] by eliminating π with the help of the equations

of motion.
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10. (a) Prove that the lapse and shift functions are linear in bk
0.

(b) Show that det(bk
µ) has the form b = N J , where J is independent of

bk
0.

(c) Check the orthogonality relations: bk̄
αh k̄

β = δ
β
α , bk̄

αhm̄
α = δk̄

m̄ .

11. Prove the following identities:

εµνρσbiµb jνbkρblσ = bεi j kl b ≡ det(bi
µ)

ε
µνρσ
i j kl bl

σ = −2b(hi
µh[ j

νhk]ρ + hk
µh[i νh j ]ρ + h j

µh[kνhi]ρ)

ε
µνρσ

i j kl bk
ρbl

σ = −4bh[iµh j ]ν .

12. Prove the following relations:

εni j k X l
n + εlni j Xk

n + εklni X j
n + ε j kln X i

n = 0 (X in = −Xni )

ε
0αβγ
mnil b jγbl

β − (i ↔ j) = ε
0αβγ
mj il bnγ bl

β − (m ↔ n)

∇µεi j kl = 0.

13. (a) Verify that the constraint φi j
α from equation (5.48) has the same form

as in example 5.

(b) Show that Hi from (5.49) has the form Hi = a J (ni Rm̄n̄
m̄n̄ −

2h ī
αR⊥n̄

αn̄), which is equivalent to the result of example 5, up to φi j
α .

(c) CompareHi j and Dα from (5.49) to the result of example 5.

(d) Use the constraint φi j
α to show that πim

απm
j
β Ri j

αβ is proportional to

H⊥.

14. Using [∇α,∇β ]bi
γ = Ri

jαβb j
γ and the condition T i

αβ = ∇γ T i
αβ = 0,

prove the relations

(i) Ri
αβγ + Ri

γ αβ + Ri
βγα = 0 (ii) Rαβγ δ = Rγ δαβ .

15. (a) In EC theory without matter fields derive the relation

Ṫ i
αβ = 2∇[αui

β] + 2uim [αbmβ].

(b) By eliminating the multipliers ui
α and ui j

α with the help of the

equations T i
0α = 0 and Ri j

0α = ui j
α −∇α Ai j

0, prove the relation

Ṫ i
αβ + Ai

m0T m
αβ = bm

0 Ri
mαβ + bm

β Ri
m0α + bm

α Ri
mβ0

which implies (5.52b).

(c) Using the conditions T i
αβ = Ṫ i

αβ = 0 prove that

(i) Ri
0βγ + Ri

γ 0β + Ri
βγ 0 = 0 (ii) Rαβγ 0 = Rγ 0αβ .

16. Use the Bianchi identity ε0αβγ∇α Ri j
βγ = 0 and the equations which

determine ui
α and ui j

α , given in the previous exercise, to prove the relation

(5.52a).
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17. In EC theory without matter fields, derive the Bianchi identities

∇0 Ri j
βγ + ∇γ Ri j

0β +∇β Ri j
γ 0 = 0

using the Hamiltonian equations of motion.

18. Use the consistency condition of the constraint φi j
α in teleparallel theory to

determine the multiplier ui j
0α .

19. Show that the Hamiltonian equations of motion for Ai j
µ, determined by

the total Hamiltonian (5.59), imply Ri j
0β ≈ ui j

β . Then verify the relation

(5.68).

20. Derive the form ofH⊥ and φ̄i j in GR‖.

21. Consider the simple Lagrangian L̃0 = λi j
µν Ri j

µν .

(a) Find the form of the total Hamiltonian.

(b) Derive the algebra of the related Hamiltonian constraints H̃i j and H̃i j
αβ .

22. Find the form of the PB algebra of constraints involvingHi j
αβ , in general

teleparallel theory.



Chapter 6

Symmetries and conservation laws

Gauge symmetries in the theory of gravity can be naturally analysed within

the Hamiltonian formalism for constrained dynamical systems. The existence

of gauge symmetries is observed by the presence of arbitrary multipliers (or,

equivalently, FC constraints) in the total Hamiltonian. The old question about the

relation between the nature of constraints and the form of gauge generators has

been resolved by Castellani, who developed an algorithm for constructing all the

canonical gauge generators (Castellani 1982). The method demands knowledge

of the Poisson bracket algebra of FC constraints, and gives the gauge generators

acting on both physical and unphysical phase-space variables.

We shall begin this chapter by studying the structure of the Poincaré gauge

generators in the general U4 theory of gravity. For their construction it is essential

to have complete knowledge of the algebra of FC constraints. An interesting

supplement to these considerations is given in appendix F, where a reversed

argument is presented: using the known structure of the gauge generators, we

can obtain very precise information about the algebra of FC constraints.

A continuous symmetry of an action leads, via Noether’s theorem, to a

differentially conserved current. The conservation of the corresponding charge,

which is an integral quantity, can be proved only under certain assumptions about

the asymptotic behaviour of the basic dynamical variables, which are usually

fulfilled in standard flat-space field theories. The situation in gravitational theories

is more complex. A clear and consistent picture of the gravitational energy and

other conserved charges emerged only after the role and importance of boundary

conditions and their symmetries had been fully recognized (Arnowitt et al 1962,

DeWitt 1967, Regge and Teitelboim 1974).

A field theory is defined by both the field equations and the boundary

conditions. The concept of asymptotic or boundary symmetry is of fundamental

importance for understanding the conservation laws in gravity. It is defined by the

gauge transformations that leave a chosen set of boundary conditions invariant.

Assuming that the symmetry in the asymptotic region is given by the global

Poincaré symmetry, we shall use the Regge–Teitelboim approach to find the form

152
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of the improved canonical generators for two specific dynamical models: EC

theory and teleparallel theory (sections 6.2 and 6.3). Since the generators act on

dynamical variables via PBs, they should have well-defined functional derivatives.

The fact that the global Poincaré generators do not satisfy this requirement will

lead us to improve their form by adding certain surface terms, which turn out to

define the energy, momentum and angular momentum of the gravitating system

(Regge and Teitelboim 1974, Blagojević and Vasilić 1988, 2000b).

The global group of asymptotically flat four-dimensional gravity is given

by the Poincaré group, the isometry group of M4. In section 6.4, we shall

show that asymptotic symmetries may have a more complex structure. Studying

three-dimensional Chern–Simons gauge theory, we shall find that its boundary

symmetry is given by the two-dimensional conformal group (Bañados 1994,

1999a, b), which is not the isometry group of any background geometry. Since

three-dimensional gravity with negative cosmological constant can be represented

as a Chern–Simons gauge theory (Witten 1988, appendix L), we have here

an interesting example of the so called anti de Sitter/conformal field theory

correspondence.

6.1 Gauge symmetries

A canonical description of gauge symmetries in PGT is given in terms of

the gauge generators, which act on the basic dynamical variables via PBs.

The construction of these generators clarifies the relationship between gauge

symmetries and the algebra of FC constraints, and enables us to understand the

role of asymptotic conditions in formulating the conservation laws better.

Constraint algebra

Explicit knowledge of the algebra of FC constraints in the U4 theory is necessary

for both the construction of the gauge generators and to investigate the consistency

of the theory.

We have seen earlier that the consistency conditions of the sure primary

constraints lead to the secondary constraints H⊥ ≈ 0, Hα ≈ 0,Hi j ≈ 0, where

the quantities H⊥, Hα and Hi j are given as sums of contributions of the matter

and gravitational fields, defined in equations (5.41) and (5.43).

When no extra constraints are present in the theory, we can show that the

constraint algebra takes the form (Nikolić 1986, 1992):

{Hi j ,H
′
kl } = 1

2
fi j

mn
klHmnδ

{Hi j ,H
′
α} = 0

{Hα,H
′
β } = (H′

α∂β +Hβ∂α − 1
2

Ri j
αβHi j )δ

(6.1a)
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{Hi j ,H
′
⊥} = 0

{Hα,H
′
⊥} = (H⊥∂α − 1

2
Ri j

α⊥Hi j )δ

{H⊥,H′
⊥} = −(3gαβHα + 3g′αβH′

α)∂βδ.

(6.1b)

The first three relations represent PBs between kinematical constraints Hi j

and Hα , the form of which does not depend of the choice of the action. Their

derivation can be considerably simplified if Hi j andHα are written as

Hi j = πA�i jϕ
A + ∂X i j

Hα = πA∂αϕ
A + 1

2
Ai j

αHi j + ∂Xα

where ϕA = (&, bi
α, Ai j

α), πA = (π, πi
α, πi j

α), �i j are the Lorentz generators

in the related representation, and ∂X is a three-divergence.

The relations (6.1b) contain the dynamical part of the HamiltonianH⊥; their

calculation is rather involved, and will not be discussed here.

Using the decomposition (5.38b) forHk , equations (6.1) in the local Lorentz

basis take the form

{Hi j ,H
′
kl } = 1

2
fi j

mn
klHmnδ

{Hi j ,H
′
k} = −2ηk[iH j ]δ

{Hk,H
′
m} = −(n[m Ri j

k̄]⊥ + 1
2

Ri j
k̄m̄)Hi j δ + 2(n[m T i

k̄]⊥ + 1
2

T i
k̄m̄)Hiδ

(6.2)

featuring a visible analogy with the standard Poincaré algebra.

These considerations refer to the case when no extra constraints are present

in the theory. When extra constraints exist, the whole analysis becomes

much more involved, but the results essentially coincide with those in (6.1)

(appendix F):

(a) the dynamical Hamiltonian H⊥ becomes a redefined expressionH⊥, which

includes the contributions of all primary second-class constraints; and

(b) the algebra may contain terms of the type CPFC.

Hence, the consistency conditions of the secondary constraints are automatically

satisfied.

The specific properties of the constraint algebra in EC theory have been

discussed by Henneaux (1983) and Nikolić (1995).

Gauge generators

The generators of the Poincaré gauge symmetry take the form

G = ε̇(t)G(1) + ε(t)G(0)

where G(0),G(1) are phase-space functions satisfying conditions (5.23b). It is

clear from these conditions that the construction of the gauge generators is based
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on the algebra of FC constraints. Since the Poincaré gauge symmetry is always

present, independently of the specific form of the action, we naturally expect that

all the essential features of the Poincaré gauge generators could be obtained by

considering a simple case of the theory, in which no extra constraints are present.

After that, the obtained result will be easily generalized (Blagojević et al 1988).

Construction of the generator. When no extra constraints exist, the primary

constraints πk
0 and πi j

0 are FC. Starting with G
(1)
k = −πk

0 and G
(1)
i j =

−πi j
0, conditions (5.23b) yield the following expression for the Poincaré gauge

generator:

G = −
∫

d3x [ξ̇ kπk
0 + ξ k(Hk + φk)+ 1

2
ε̇i jπi j

0 + 1
2
εi j (−Hi j + φi j )] (6.3a)

where φk and φi j are PFC constraints, which are to be determined from the

relations

{Hk + φk, HT} = CPFC

{−Hi j + φi j , HT} = CPFC.

Using the constraint algebra in the form (6.2), we obtain the following expressions

for φk and φi j :

φk = [Ai
k0 − bm

0(T
i
m̄k̄ + 2n[k T i

m̄]⊥)]πi
0

+ 1
2
bm

0(Ri j
k̄m̄ + 2n[m Ri j

k̄]⊥)πi j
0

φi j = 2b[i0π j ]0 + 2As [i0πs j ]0.

(6.3b)

This completely defines the Poincaré gauge generator.

In order to check whether it generates the correct gauge transformations, we

shall introduce a more convenient set of parameters:

ξ k = ξµbk
µ εi j = ωi j + ξν Ai j

ν

whereupon the generator G becomes (we omit
∫

d3x for simplicity):

G = G(ω)+ G(ξ)

G(ω) = − 1
2
ω̇i jπi j

0 − 1
2
ωi j Si j

G(ξ) = −ξ̇µ(bk
µπk

0 + 1
2

Ai j
µπi j

0)− ξµPµ

(6.4a)

where
Pµ = bk

µHk − 1
2

Ai j
µHi j + bk

0,µπk
0 + 1

2
Ai j

0,µπi j
0

Si j = −Hi j + 2b[i0π j ]0 + 2As [i0πs j ]0.
(6.4b)
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Note that P0 is equal to the total Hamiltonian (up to a three-divergence),

P0 = ĤT ≡ HT − ∂αDα

since ḃk
0 and Ȧi j

0 are nothing but the arbitrary multipliers uk
0 and ui j

0,

respectively: ḃk
0 = {bk

0, HT} = uk
0, Ȧi j

0 = {Ai j
0, HT} = ui j

0.

Action on the fields. We are now going to show that the action of the generators

(6.4) on the fields &, bk
µ and Ai j

µ produces the standard Poincaré gauge

transformations:

δ0& = 1
2
ωi j�i j& − ξν∂ν&

δ0bk
µ = ωk

sbs
µ − ξλ,µbk

λ − ξλ∂λbk
µ

δ0 Ai j
µ = ωi

s As j
µ + ω j

s Ais
µ − ωi j

,µ − ξλ,µAi j
λ − ξλ∂λAi j

µ

(6.5)

where δ0 X ≡ {X,G}. To do that, we first rewrite Pµ and Si j in the form

P0 = ĤT

Pα = πi
µ∂αbi

µ + 1
2
πi j

µ∂α Ai j
µ + π∂α& − ∂β(πi

βbi
α + 1

2
πi j

β Ai j
α)

Si j = −2π[iµb j ]µ − 2πs[iµAs
j ]µ − π�i j& − ∂απi j

α .

(6.6)

Then, it becomes straightforward to verify the ωi j and ξα transformations. To

derive ξ0 transformations, we shall use the fact that HT does not depend on the

derivatives of the momentum variables on the constraint surface, i.e. ∂HT/∂π,α ≈
0 (this is correct for Lagrangians that are, at most, quadratic in velocities). Let us

first consider the transformations of bk
µ:

δ0(ξ
0)bk

µ = −
∫

d3x ′ [ξ̇ ′0{bk
µ, b′s0π

′
s

0} + ξ ′0{bk
µ,H

′
T − D′α

,α}]

= − ξ̇0bk
0δ

0
µ − ξ0�k

µ − ξ0
,αbk

0δ
α
µ

where �k
µ is defined by the relation {bk

µ,H
′
T} ≈ �k

µδ (HT does not depend on

∂π A, hence there is no ∂δ term on the right-hand side). Consequently,

δ0(ξ
0)bk

µ = −ξ0
,µbk

0 − ξ0{bk
µ,HT} ≈ −ξ0

,µbk
0 − ξ0ḃk

µ

in accordance with (6.5).

The result is valid only on-shell. Note that the only properties of the total

Hamiltonian used in the derivation are the following ones:

(a) HT does not depend on ∂πA; and

(b) it governs the time evolution of dynamical variables: ϕ̇A = {ϕA, HT}.
In a similar way we can check the transformation rules for the fields Ai j

µ

and & . Finally, we should also check whether the generator (6.4) produces the

correct transformations of momenta; that will be done soon.
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We note that the field transformations (6.5) are symmetry transformations

not only in the simple case characterized by the absence of any extra constraint,

but also in the general case when extra constraints exist, i.e. for an arbitrary choice

of parameters in the action. This fact motivates us to assume that the gauge

generator (6.4), in which the term P0 is replaced by the new ĤT, is the correct

gauge generator also in the general case.

The general case. Consider, now, the general theory in which extra constraints

are allowed to exist. The Poincaré gauge generator is assumed to have the form

G = − 1
2
ω̇i j G

(1)
i j − 1

2
ωi j G

(0)
i j − ξ̇µG(1)

µ − ξµG(0)
µ (6.7a)

where

G
(1)
i j = πi j

0 G
(0)
i j = Si j

G
(1)
µ = bk

µπk
0 + 1

2
Ai j

µπi j
0 G

(0)
0 = ĤT G

(0)
α = Pα .

(6.7b)

The component G
(0)
0 = ĤT now differs from the previous case by the presence of

(u · φ) terms; the part of (u · φ) describing second-class constraints is included in

the redefined HamiltonianH⊥.

It is clear that the ωi j and ξα transformations on fields are again of the same

form as in (6.5). To discuss the ξ0 transformations, it is essential to observe that

even in the general case HT does not depend on the derivatives of momenta on

shell. The rest of the derivation leads to the same result as before.

To complete the proof, we have to show that the generator G produces

the correct symmetry transformations of momenta. These transformations are

determined by the defining relation πA = ∂L/∂ϕ̇A, and the known transformation

laws for ϕA and L. We can show that G also acts correctly on momenta.

Therefore:

the expression (6.7) is the correct Poincaré gauge generator for any

choice of parameters in the action.

This result enables us to study one of the most important problems of the

classical theory of gravity—the definition of the gravitational energy and other

conserved quantities.

6.2 Conservation laws—EC theory

Assuming that the asymptotic symmetry of U4 theory is the global Poincaré

symmetry, we shall now discuss the form of the related generators. The general

idea is illustrated on the specific case of EC theory. A careful analysis of boundary

conditions leads to the appearance of certain surface terms in the expressions

for the generators. The improved generators enable a correct treatment of the

conservation laws of the energy, momentum and angular momentum (Blagojević

and Vasilić 1988, 2000b).
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Asymptotic structure of spacetime

The asymptotic Poincaré symmetry. The global Poincaré transformations of

fields can be obtained from the corresponding gauge transformations by the

following replacements of parameters:

ωi j (x) → ωi j

ξµ(x) → ωµ
νxν + εν ≡ ξµ

(6.8)

where ωi j and εν are constants, and ωµ
ν = δ

µ
i ω

i jη jν . The indices of quantities

related to the asymptotic spacetime are treated as in M4: they are raised and

lowered by the Minkowski metric ηi j , while the transition between the local

Lorentz and coordinate basis is realized with the help of the Kronecker symbols

δ
µ

i and δ
j
ν . These replacements have been chosen so as to obtain the standard

global Poincaré transformations of fields:

δ0& = 1
2
ωi j�i j& − ξν∂ν&

δ0bi
µ = ωi

sbs
µ − ων

µbi
ν − ξν∂νbi

µ

δ0 Ai j
µ = ωi

s As j
µ + ω j

s Ais
µ − ων

µAi j
ν − ξν∂ν Ai j

µ.

(6.9)

The generator of these transformations can be obtained from the gauge

generator (6.7) in the same manner, leading to

G = 1
2
ωi j Mi j − εν Pν (6.10a)

where

Pµ =
∫

d3x Pµ Mµν =
∫

d3xMµν

Mαβ = xαPβ − xβPα − Sαβ

M0β = x0Pβ − xβP0 − S0β + bk
βπk

0 + 1
2

Ai j
βπi j

0.

(6.10b)

As the symmetry generators act on basic dynamical variables via PBs, they

are required to have well-defined functional derivatives. When the parameters

decrease sufficiently fast at spatial infinity, all partial integrations in G are

characterized by vanishing surface terms, and the differentiability of G does

not present any problem. The parameters of the global Poincaré symmetry

are not of that type, so that the surface terms must be treated more carefully.

We shall therefore try to improve the form of the generators (6.10) so as to

obtain expressions with well-defined functional derivatives. The first step in that

direction is to define the phase space in which the generators (6.10) act precisely,

by an appropriate choice of boundary conditions.
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The boundary conditions. The choice of boundary conditions becomes clearer

if we express the asymptotic structure of spacetime in certain geometric terms.

Here, we shall be concerned with finite gravitational sources, characterized by

matter fields that decrease sufficiently rapidly at large distances, so that their

contribution to surface integrals vanishes. In that case, we can assume that the

spacetime is asymptotically flat, i.e. that the following two conditions are satisfied:

(a) There exists a coordinate system in which the metric tensor becomes

Minkowskian at large distances: gµν = ηµν + O1, where On = O(r−n)

denotes a term which decreases like r−n or faster for large r , i.e. rnOn

remains finite when r → ∞, and r2 = (x1)2 + (x2)2 + (x3)2.

(b) The Lorentz field strength satisfies the condition of the absolute parallelism

for large r : Ri j
µν = O2+α (α > 0).

The first condition is consistent with the asymptotic global Poincaré

symmetry. The second condition can be easily satisfied by demanding

(b′) Ai j
µ = O1+α .

In EC theory, the connection behaves as the derivative of the metric, so that

A = O2. The same law holds in general U4 theory when the field A is massive,

while massless A can have a slower decrease. Here, we shall limit ourselves, for

simplicity, to the EC theory, i.e. we shall assume that the boundary conditions of

the gravitational field have the form

bk
µ = δk

µ +O1 Ai j
µ = O2. (6.11a)

The vacuum values of the fields, bi
µ = δi

µ and Ai j
µ = 0, are invariant

under the action of the global Poincaré group. Demanding that the conditions

(6.11a) remain unchanged under the global Poincaré transformations, we obtain

the following conditions on the field derivatives:

bk
µ,ν = O2 bk

µ,νλ = O3

Ai j
µ,ν = O3 Ai j

µ,νλ = O4.
(6.11b)

These relations impose serious restrictions on the gravitational field in the

asymptotic region, and define an isolated gravitational system (characterized, in

particular, by the absence of gravitational waves).

The requirements (6.11) are minimal in the sense that some additional

arguments may lead to better asymptotics, i.e. to a faster or more precisely defined

decrease in the fields and their derivatives. In addition to the boundary conditions

(6.11), we shall adopt the principle that all the expressions that vanish on-shell

have an arbitrarily fast asymptotic decrease, as no solutions of the equations of

motion are thereby lost. In particular, all the constraints of the theory are assumed

to decrease arbitrarily fast.



160 Symmetries and conservation laws

In accordance with this principle, the asymptotic behaviour of the momenta

is determined by requiring

πA − ∂L̃

∂ϕ̇A
= Ô

where Ô denotes a term with an arbitrarily fast asymptotic decrease. By using the

definitions of the gravitational momentum variables, equations (5.28) and (5.48),

we find that
πk

0, πi j
0 = Ô

πi
α = Ô

πi j
α = −4a Jn[ih j ]α + Ô.

(6.12)

Similar arguments lead to the consistent determination of the asymptotic

behaviour of the Hamiltonian multipliers. From ḃk
0 = uk

0, Ȧi j
0 = ui j

0 we

find that

uk
0 = O2 ui j

0 = O3. (6.13a)

The other multipliers are also seen to be related to the velocities, which results in

the following asymptotic behaviour:

u⊥m̄ , u k̄m̄ = O2 uik̄m̄ = O3. (6.13b)

Improving the Poincaré generators

The canonical generators act on dynamical variables via the PB operation, which

is defined in terms of functional derivatives. A functional

F[ϕ, π] =
∫

d3x f (ϕ(x), ∂µϕ(x), π(x), ∂νπ(x))

has well-defined functional derivatives if its variation can be written in the form

δF =
∫

d3x [A(x)δϕ(x)+ B(x)δπ(x)] (6.14)

where the terms δϕ,µ and δπ,µ are absent.

The global Poincaré generators do not satisfy this requirement, as we shall

see. This will lead us to redefine them by adding certain surface terms, which turn

out to be the energy, momentum and angular momentum of the physical system.

Spatial translation. Let us demonstrate how this procedure works in the case

of global spatial translation. The variation of Pα yields

δPα =
∫

d3x δPα

δPα = πi
µδbi

µ,α + 1
2
πi j

µδAi j
µ,α − δ(πi

βbi
α + 1

2
πi j

β Ai j
α),β + R.
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Here, we have explicitly displayed those terms that contain the unwanted

variations δϕ,µ and δπ,µ, while the remaining terms of the correct, regular form

(6.14) are denoted by R. A simple formula

πi
µδbi

µ,α = (πi
µδbi

µ),α + R

allows us to conclude that

πi
µδbi

µ,α = ∂Ô + R

according to the boundary conditions (6.12). Continuing with the same reasoning,

we obtain

δPα = ( 1
2
πi j

βδAi j
β),α − δ( 1

2
πi j

β Ai j
α),β + R + ∂Ô.

After taking into account the relation δπi j
β Ai j

β = O3, it follows that

δPα = −δ(πi j
β Ai j [αδβ]γ ),γ + R + ∂O3.

As a consequence, the variation of Pα can be written in the simple form:

δPα = −δEα + R

Eα ≡
∮

dSγ (πi j
β Ai j

[αδβ]
γ )

(6.15a)

where Eα is defined as a surface integral over the boundary of the three-

dimensional space. This allows us to redefine the generator Pα ,

Pα → P̃α ≡ Pα + Eα (6.15b)

so that the new, improved expression P̃α has well-defined functional derivatives.

We can verify that the assumed boundary conditions ensure finiteness of Eα .

While the old generator Pα vanishes on-shell (as an integral of a linear

combination of constraints), P̃α does not—its on-shell value is Eα. Since P̃α

is the generator of the asymptotic spatial translations, we expect Eα to be the

value of the related conserved charge—linear momentum; this will be proved in

the next subsection.

Time translation. In a similar, way we can improve the form of the time

translation generator. Let us start with

δP0 =
∫

d3x δĤT

δĤT = δĤc + R = NδH⊥ + NαδHα − 1
2

Ai j
0δHi j + R.
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Using the formulae

δHi j = (δπi j
α),α + R

δHα = (πi j
βδAi j [βδ

γ

α]),γ + R + ∂Ô

δH⊥ = −2a Jh k̄
αh l̄

βδAkl
α,β + R + ∂Ô

we obtain the result

δĤT = 2aN Jha
βhb

αδAab
β,α + R

= [2a Jha
βhb

αδAab
β ],α + R + ∂O3

with the help of δh A = O3. Hence,

δP0 = −δE0 + R

E0 ≡
∮

dSγ (−2a Jha
αhb

γ Aab
α)

(6.16a)

and the correctly defined generator P0 has the form

P̃0 ≡ P0 + E0. (6.16b)

The surface term E0 is finite on account of the adopted boundary conditions. As

we shall see, the on-shell value E0 of P̃0 represents the value of the energy of the

gravitating system.

Rotation. To find the correct definition of the rotation generator, let us look at

the expression

δMαβ =
∫

d3x δMαβ

δMαβ = xαδPβ − xβδPα + δπαβ
γ
,γ + R.

Using the known form of δPα , we find that

δMαβ = −δEαβ + R

Eαβ ≡
∮

dSγ [−παβ
γ + x[α(πi j

γ Ai j
β])].

(6.17a)

In the course of the calculation, the term
∫

ds[αxβ] X , with X ≡ πi j
β Ai j

β ,

has been discarded as dsα ∼ xα on the integration sphere. The corresponding

improved rotation generator is given by

M̃αβ ≡ Mαβ + Eαβ . (6.17b)
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A detailed analysis shows that the adopted boundary conditions do not

guarantee the finiteness of the surface term Eαβ , as the integrand contains O1

terms. These troublesome terms are seen to vanish if we impose additional

requirements on the phase space, consisting of conveniently chosen parity

conditions (Regge and Teitelboim 1974, Beig and Murchadha 1978, Blagojević

and Vasilić 1988). After that, the surface term Eαβ is found to be finite and,

consequently, M̃αβ is well defined.

Boost. By varying the boost generator, we find that

δM0β =
∫

d3x δM0β

δM0β = x0δPβ − xβδHT + δπ0β
γ
,γ + R.

Then, using the known expressions for δPβ and δHT, we obtain

δM0β = −δE0β + R

E0β ≡
∮

dSγ [−π0β
γ + x0(πi j

α Ai j [βδα]γ )− xβ(2a Jha
αhb

γ Aab
α)]

(6.18a)

so that the correct boost generator has the form

M̃0β ≡ M0β + E0β . (6.18b)

Additional asymptotic parity conditions guarantee the finiteness of the surface

term E0β .

All these results refer to EC theory. The general R + T 2 + R2 theory can be

treated in an analogous manner.

Asymptotic symmetries and conservation laws

In the previous considerations, we obtained the improved Poincaré generators,

acting on the phase space with given asymptotic properties. To clarify the

physical meaning of these quantities, we now study their conservation laws. After

transforming the canonical generators into the Lagrangian form, we shall make a

comparison with the related GR results.

The algebra of the generators. The improved Poincaré generators are defined

as the volume integrals of constraints plus certain surface integrals. Their action

on the fields and momenta is the same as before, since surface terms act trivially

on local quantities. Once we know that the generators P̃µ and M̃µν have the

standard action on the whole phase space, we can easily deduce their algebra to
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be that of the Poincaré group:

{P̃µ, P̃ν} = 0

{P̃µ, M̃νλ} = ηµν P̃λ − ηµλ P̃ν

{M̃µν, M̃λρ} = ηµρ M̃νλ − ηµλM̃νρ − (µ ↔ ν).

(6.19)

This result is in agreement with the general theorem, which states that the

PB of two well-defined (differentiable) generators is necessarily a well-defined

generator (Brown and Henneaux 1986a). Note, however, that the line of reasoning

that leads to this result does not guarantee the strong equalities in (6.19); they are

rather equalities up to trivial generators (such as squares of constraints and surface

terms). In what follows, we shall explicitly verify the absence of such terms in the

part of the algebra involving P̃0, which will be sufficient to prove the conservation

of all the symmetry generators.

Conservation laws. After a slight modification, Castellani’s method can also be

applied to study global symmetries. We can show that the necessary and sufficient

conditions for a phase-space functional G(q, π, t) to be a generator of global

symmetries take the form

{G, H̃ T} +
∂G

∂ t
= CPFC (6.20)

{G, ϕs} ≈ 0 (6.21)

where H̃T is the improved Hamiltonian, ϕs ≈ 0 are all the constraints in

the theory and, as before, the equality sign means an equality up to the zero

generators. The improved Poincaré generators are easily seen to satisfy the second

condition, as they are given, up to surface terms, by volume integrals of FC

constraints. On the other hand, having in mind that H̃T = P̃0, we can verify

that the first condition is also satisfied, as a consequence of the part of the algebra

(6.19) involving P̃0.

The first condition is the canonical form of the conservation law. Indeed, it

implies a weak equality

dG

dt
≡ {G, P̃0} +

∂G

∂ t
≈ Z (6.22)

wherefrom we see that the generator G is conserved only if the zero generator

term Z is absent. We shall now explicitly evaluate dG/dt for each of the

generators G = P̃µ, M̃µν , and check their conservation.

As is clear from equation (6.22), in order to verify the conservation of the

improved Poincaré generators, we need their PBs with P̃0. Writing E0 in the form

E0 = −2a
∮

dSγ Aγ , where Aγ ≡ δαa Aac
αδ

γ
c , we see that the essential part of

these brackets is the expression {Aγ ,G}, representing the action of the Poincaré

generator on the local quantity Aγ . Combining the relation δ0 Aγ = {Aγ ,G}
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with the known transformation laws for the fields, equation (6.9), we can read the

relevant PBs:

{Aγ , P̃ν} ≈ −∂ν Aγ

{Aγ , M̃αβ} ≈ −(δ
γ
α Aβ + xα∂β Aγ )− (α ↔ β)

{Aγ , M̃0β} ≈ −(A0
γ
β − δ

γ

β A0
e

e)

−Aβ
γ

0 − xβ∂0 Aγ + x0∂β Aγ +O3.

(6.23)

The last of these equations can be further simplified by using the equations of

motion. Thus, Rc0 ≈ 0 implies ∂0 Aγ ≈ ∂α Aαγ
0, so that

Aβ
γ

0 + xβ∂0 Aγ ≈ ∂α(xβ Aαγ
0).

(1) Let us begin with the conservation of energy. First, we note that P̃0, being a

well-defined functional, must commute with itself: {P̃0, P̃0} = 0. Furthermore,

∂ P̃0/∂ t = ∂ H̃T/∂ t = CPFC, since the only explicit time dependence of the

total Hamiltonian is due to the presence of arbitrary multipliers, which are always

multiplied by the PFC constraints. Therefore,

dP̃0

dt
≈ dE0

dt
≈ 0 (6.24a)

and we conclude that the surface term E0, representing the value of the energy, is

a conserved quantity.

(2) The linear momentum and the spatial angular momentum have no explicit

time dependence. To evaluate their PBs with P̃0, we shall use the following

procedure. Our improved generators are (non-local) functionals having the form

of integrals of some local densities. The PB of two such generators can be

calculated by acting with one of them on the integrand of the other. In the case of

linear momentum, we have

{P̃0, P̃α} =
∫

d3x {ĤT − 2a∂γ Aγ , P̃α} ≈ −2a

∫
d3x ∂γ {Aγ , P̃α}

because ĤT ≈ 0 is a constraint in the theory, and therefore, weakly commutes

with all the symmetry generators. The last term in this formula is easily evaluated

with the help of equation (6.23), with the final result

{P̃0, P̃α} ≈ 2a

∮
dSγ ∂α Aγ = 0

as a consequence of ∂α Aγ = O3. Therefore, no constant term appears in

equation (6.22) for G = P̃α , and we have the conservation law

dP̃α

dt
≈ dEα

dt
≈ 0. (6.24b)
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(3) In a similar way, we can check the conservation of the rotation generator.

Using equation (6.23), we find

{P̃0, M̃αβ} ≈ −2a

∫
d3x ∂γ {Aγ , M̃αβ} ≈

∮
(dSα xβ − dSβ xα)∂γ Aγ = 0.

The last equality is obtained with the help of the constraint

H⊥ = a J Rm̄n̄
m̄n̄ = −2a∂γ Aγ +O4

which implies ∂γ Aγ = O4. Therefore, the Z term in (6.22) is absent for

G = M̃αβ , and the value of the rotation generator is conserved:

dM̃αβ

dt
≈ dEαβ

dt
≈ 0. (6.24c)

(4) Finally, the boost generator has an explicit, linear dependence on time, and

satisfies the relation ∂ M̃0β/δt = P̃β ≈ Eβ . On the other hand,

{P̃0, M̃0β} ≈ − 2a

∫
d3x ∂γ [−(A0

γ
β − δ

γ
β A0

e
e)− ∂α(xβ Aαγ

0)]

= 2a

∫
d3x ∂γ (A0

γ
β − δ

γ

β A0
e

e) = Eβ

where we have used the PBs in (6.23). In contrast to all other generators, the PB

of the boost generator with P̃0 does not vanish: its on-shell value is precisely the

value of the linear momentum Eβ . Substitution of these results back into (6.22)

yields the boost conservation law:

dM̃0β

dt
≈ dE0β

dt
≈ 0. (6.24d)

In conclusion,

All ten Poincaré generators in EC theory are conserved charges in the

phase space with appropriate asymptotic conditions.

Comparison with GR. We now wish to transform our Hamiltonian expressions

for the conserved charges into the Lagrangian form, and compare the obtained

results with the related GR expressions. This will be achieved by expressing all

momentum variables in terms of the fields and their derivatives, using primary

constraints and the equations of motion.

To transform the expression for linear momentum, we start with the relation

πi j
β Ai j [αδ

γ

β] ≈ 2a(A0γ
α − δγα A0c

c)+O3
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following from (6.12). Using equation (3.46) in the form

Ai j k = −(b[i j ],k − b(ik), j + b( j k),i)+O3

the right-hand side of this equation becomes

R ≈ −2a[ηβγ (b(0α),β − b(αβ),0 − b(0β),α)+ δγα bββ0] + 4a(b[β0δ
γ ]
α ),β +O3.

A direct calculation shows that this expression can be rewritten in terms of the

metric, i.e.

R = ηαµhµ0γ +�α
γβ

,β +O3

where the term �α
γβ , which is antisymmetric in (γ, β), does not contribute to the

integral Eα , and

hµνλ ≡ a[(−g)(gµνgλρ − gµλgνρ)],ρ ≡ Hµνλρ
,ρ .

The final result is

Eα = ηαµ

∮
dSγ hµ0γ .

In a similar way the energy expression can be brought to the form

E0 =
∮

dSγ h00γ .

Energy and momentum can be written in a Lorentz covariant form as

Eµ =
∫

d3x θµ0 θµν ≡ hµνλ
,λ (6.25)

where θµν is equal to the symmetric energy–momentum complex in GR.

Energy and momentum in the EC theory are given by the same

expressions as in GR.

For the rotation and boost, the calculation is similar but slightly more

complicated, and it gives the following result:

Eµν =
∮

dSγ Kµν0γ

Kµνλρ ≡ xµhνλρ − xνhµλρ + H λµνρ

(6.26)

where K satisfies the relation ∂ρ Kµνλρ = xµθνλ − xνθµλ.

The angular momentum also coincides with the GR expression.

It should be noted that in the general R+T 2+ R2 theory we obtain the same

results only when all tordions are massive. The results obtained in this chapter

can be used to study the important problem of stability of the Minkowski vacuum

in PGT.
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6.3 Conservation laws—the teleparallel theory

Our previous treatment of the relation between gauge symmetries and

conservation laws refers to EC theory, which is defined in a U4 space. Teleparallel

theory is defined in a T4 space, so that the corresponding analysis must be changed

in some technical details, due to the presence of Lagrange multipliers in the action

(Blagojević and Vasilić 2000a, b).

As we are interested in the conservation laws of the energy–momentum

and angular momentum, we shall begin our analysis with the construction of the

Poincaré gauge generator.

A simple model

The T 2 part of the teleparallel Lagrangian (3.61) is a special case of the general

R + T 2 + R2 theory, the Poincaré gauge generator of which has already been

constructed in section 6.1. In teleparallel theory, this result is to be corrected with

the terms stemming from the λi j
µν Ri j

µν part of the Lagrangian. Since the general

construction procedure is rather complicated, we give here a detailed analysis of

the simple special case defined by the full absence of the torsion part from (3.61).

The results obtained will provide a clear suggestion for the construction of the

Poincaré gauge generator in the complete teleparallel theory.

The simple Lagrangian we are going to study reads:

L̃0 = λi j
µν Ri j

µν . (6.27)

Clearly, the tetrad variables are absent, but L̃0 possesses all the gauge symmetries

of the general teleparallel theory. The field equations are:

∇µλi j
µν = 0 Ri j

µν = 0.

A straightforward Hamiltonian analysis gives the total Hamiltonian which

coincides with ĤT, equation (5.63), up to the tetrad related terms:

H̃T = − 1
2

Ai j
0H̃i j − λi j

αβH̃i j
αβ + 1

2
ui j

0πi j
0 + 1

4
ui j

αβπ i j
αβ (6.28a)

where
H̃i j ≡ ∇απi j

α + 2π s [i0αλs j ]0α

H̃i j
αβ ≡ Ri j

αβ − 1
2
∇[απ i j

0β] =Hi j
αβ .

(6.28b)

Among the primary constraints, πi j
0 and π i j

αβ are FC and, consequently,

responsible for the existence of gauge symmetries, while φi j
α ≡ πi j

α − 4λi j
0α

and π i j
0β are second class. The PB algebra of the Hamiltonian constraints has

the form
{H̃i j , H̃

′
kl } = (ηikH̃l j + η j kH̃il )δ − (k ↔ l)

{H̃i j
αβ , H̃

′
kl } = (δi

kH̃l
j
αβ + δ

j
k H̃

i
lαβ )δ − (k ↔ l)

{H̃i j
αβ , H̃

′ kl
γ δ} = 0.

(6.29)
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The Lorentz generator. We begin with the PFC constraint πi j
0, and define

G̃(ω) = − 1
2
ω̇i jπi j

0 − 1
2
ωi j S̃i j . (6.30a)

From the second condition in (5.23b), we obtain S̃i j = −H̃i j + CPFC. Then,

using the constraint algebra (6.29) and the third condition in (5.23b), we find the

complete function S̃i j to read:

S̃i j = −H̃i j + 2As [i0πs j ]0 + λs[iαβπ s
j ]αβ . (6.30b)

It is easy to verify that the action of the Lorentz gauge generator G̃(ω) on the

fields Ai j
µ and λi j

µν has the expected form, coinciding with the ω part of the

Poincaré transformations (3.64).

The λ generator. The λ gauge generator is obtained by starting Castellani’s

algorithm with the PFC constraint π i j
αβ . All the steps of the construction, the

analysis and the final result are the same as in section 5.3. Thus,

G̃(ε) = 1
4
ε̇i j

0αβπ i j
αβ + 1

4
εi j

0αβSi j
αβ − 1

4
εi j

αβγ∇απ
i j
βγ (6.31)

with Si j
αβ given by equation (5.73b).

The action of G̃(ε) on the fields is the same as in (3.65), while the action of

the complete generator G̃(ω)+ G̃(ε) yields:

δ0 Ai j
µ = ωi

k Akj
µ + ω j

k Aik
µ − ωi j

, µ

δ0λi j
µν = ωi

k λkj
µν + ω j

k λik
µν + ∇λ εi j

µνλ.
(6.32)

These transformation laws exhaust the gauge symmetries of our simple model.

Note, however, that the Lagrangian L̃0 also possesses the local translational

symmetry, which has not been obtained so far. If Castellani’s algorithm is an

exhaustive one, then the translational symmetry must be somehow hidden in this

result. In what follows, we shall demonstrate that this is really true, namely

that the translational symmetry emerges from a simple redefinition of the gauge

parameters in (6.32).

The Poincaré generator. Let us consider the following replacement of the

parameters ωi j and εi j
µνλ in equation (6.32):

ωi j → ωi j + ξµAi j
µ

εi j
µνλ → −(ξµλi j

νλ + ξνλi j
λµ + ξλλi j

µν).
(6.33)

The resulting on-shell transformations of the fields Ai j
µ and λi j

µν are easily

found to be exactly the Poincaré gauge transformations (3.64). As we can see,

the local translations are not obtained as independent gauge transformations,
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but rather emerge as part of the λ and Lorentz symmetries. The corresponding

Poincaré generator is obtained by using the same replacement in the gauge

generator G̃(ω)+ G̃(ε). Thus, we find:

G̃ = G̃(ω)+ G̃(ξ) (6.34a)

where the first term, describing local Lorentz rotations, has the form (6.30), while

the second term, describing local translations, is given by

G̃(ξ) = − ξ̇0( 1
2

Ai j
0πi j

0 + 1
4
λi j

αβπ i j
αβ)− ξ0

H̃T

− ξ̇α( 1
2

Ai j
απi j

0 − 1
2
λi j

0βπ i j
αβ)

− ξα[P̃α − 1
4
λi j

βγ ∂απ
i j
βγ − 1

2
∂γ (λi j

βγπ i j
αβ )]. (6.34b)

In these expressions, we used the following notation:

P̃α ≡ H̃α − 1
2

Ai j
αH̃i j + 2λi j

0βH̃i j
αβ + 1

2
πi j

0∂α Ai j
0

H̃α ≡ 1
2
π i j

0α∇βλi j
0β .

(6.34c)

Note that the term H̃α in G̃(ξ) has the structure of squares of constraints,

and therefore, does not contribute to the non-trivial field transformations.

Nevertheless, we shall retain it in the generator because it makes the field

transformations practically off-shell (up to Ri j
αβ ≈ 0). This will help us to find

the form of the extension of G̃ to general teleparallel theory straightforwardly.

The Poincaré gauge generators

Starting from the Poincaré gauge generator (6.34) of the simple model (6.27), and

comparing it with the earlier result (6.4), it is almost clear how its modification

to include the tetrad sector should be defined. The complete Poincaré gauge

generator of general teleparallel theory (3.61) is expected to have the form

G = G(ω)+ G(ξ) (6.35a)

where the first term describes local Lorentz rotations,

G(ω) = − 1
2
ω̇i jπi j

0 − 1
2
ωi j Si j (6.35b)

while the second term describes local translations,

G(ξ) = − ξ̇0(bk
0πk

0 + 1
2

Ai j
0πi j

0 + 1
4
λi j

αβπ i j
αβ)− ξ0

P0

− ξ̇α(bk
απk

0 + 1
2

Ai j
απi j

0 − 1
2
λi j

0βπ i j
αβ)

− ξα[Pα − 1
4
λi j

βγ ∂απ
i j
βγ − 1

2
∂γ (λi j

βγπ i j
αβ )]. (6.35c)
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Here, we used the following notation:

Si j = −Hi j + 2b[i0π j ]0 + 2As [i0πs j ]0 + 2λs[iαβπ s
j ]αβ

P0 ≡ ĤT = HT − ∂α D̄α

Pα =Hα − 1
2

Ai j
αHi j + 2λi j

0βHi j
αβ + πk

0∂αbk
0 + 1

2
πi j

0∂α Ai j
0

(6.35d)

whereHα,Hi j ,Hi j
αβ , D̄α and HT are defined in equations (5.63). The Poincaré

generator G is obtained from the simplified expression (6.34) by a natural process

of extension, which consists of

– the replacements (H̃α, H̃i j , H̃
i j
αβ , H̃T) → (Hα,Hi j ,H

i j
αβ , ĤT); and

– the addition of various πk
0 terms.

This amounts to completing the Poincaré gauge generator so that it also acts

correctly in the tetrad sector.

The proof that the Poincaré gauge generator has the form (6.35) is realized

by showing that G produces the correct Poincaré gauge transformations on the

complete phase space, i.e. on all the fields and momenta. Explicit demonstration

of this statement can be carried out in analogy with the EC case, and by using

only those relations that characterize an arbitrary teleparallel theory. Hence,

The Poincaré gauge generator has the form (6.35) for any choice of

parameters in the teleparallel theory (3.61).

Asymptotic conditions

Now we turn our attention to the asymptotic behaviour of the dynamical variables

and the related form of the symmetry generators.

Asymptotic Poincaré invariance. We restrict our discussion to gravitating

systems that are characterized by the global Poincaré symmetry at large distances.

The global Poincaré transformations of fields are obtained from the corresponding

local transformations (3.64) by the replacements (6.8). In the same manner, the

global Poincaré generators are obtained from the corresponding local expressions

(6.35):

G = 1
2
ωi j Mi j − εµPµ (6.36a)

where

Pµ =
∫

d3x Pµ Mµν =
∫

d3xMµν

Mαβ = xαPβ − xβPα − Sαβ

M0β = x0Pβ − xβP0 − S0β + bk
βπk

0 + 1
2

Ai j
βπi j

0 − 1
2
λi j

0γπ i j
βγ .

(6.36b)

The quantities Pµ and Sµν = δi
µδ

j
ν Si j are defined in (6.35).



172 Symmetries and conservation laws

Boundary conditions. We assume that dynamical variables satisfy the

boundary conditions

(a) gµν = ηµν +O1 and

(b) Ri j
µν = O2+α (α > 0)

which correspond to asymptotically flat spacetime.

The first condition is self-evident, and the second is trivially satisfied in

teleparallel theory, where Ri j
µν(A) = 0. The vanishing of the curvature means

that the Lorentz gauge potential Ai j
µ is a pure gauge, hence it can be transformed

to zero (at least locally) by a suitable local Lorentz transformation. Therefore, we

can adopt the following boundary conditions:

bi
µ = δi

µ +O1 Ai j
µ = Ô. (6.37a)

There is one more Lagrangian variable in teleparallel theory, the Lagrange

multiplier λi j
µν , which is not directly related to the geometric conditions (a) and

(b). Its asymptotic behaviour can be determined with the help of the second field

equation, leading to

λi j
µν = constant +O1. (6.37b)

The vacuum values of the fields, bi
µ = δi

µ, Ai j
µ = 0 and λi j

µν = constant,

are invariant under the global Poincaré transformations. Demanding also that the

boundary conditions (6.37) be invariant under these transformations, we obtain

the additional requirements:

bk
µ,ν = O2 bk

µ,νρ = O3

λi j
µν

,ρ = O2 λi j
µν

,ρλ = O3.
(6.38)

Boundary conditions (6.37) and (6.38) are compatible not only with global

Poincaré transformations, but also with a restricted set of local Poincaré

transformations, the gauge parameters of which decrease sufficiently fast for large

r .

The asymptotic behaviour of momentum variables is determined using the

relations πA = ∂L̃/∂ϕA. Thus,

πi
0, πi j

0, π i j
µν = Ô

πi
α = O2

πi j
α = 4λi j

0α + Ô.

(6.39)

In a similar manner, we can determine the asymptotic behaviour of the

Hamiltonian multipliers.

Now we wish to check whether the global Poincaré generators (6.35) are

well defined in the phase space characterized by these boundary conditions.
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The improved Poincaré generators

The Poincaré generators (6.35), which define the asymptotic symmetry of

spacetime, are not differentiable. In the process of improving their form by adding

certain surface terms, we shall obtain the conserved charges of the gravitating

system, energy-momentum and angular momentum.

Spatial translation. The variation of the spatial translation generator Pα has

the form

δPα =
∫

d3x δPα

δPα = δHα − 1
2

Ai j
αδHi j + 2λi j

0βδHi j
αβ + πk

0δbk
0,α

+ 1
2
πi j

0δAi j
0,α − 1

4
λi j

βγ δπ i j
βγ,α − 1

2
δ(λi j

βγπ i j
αβ ),γ + R.

The relation πk
0δbk

0,α = (πk
0δbk

0),α + R, in conjunction with the boundary

condition πk
0 = Ô, leads to πk

0δbk
0,α = ∂Ô + R. Applying the same reasoning

to the terms proportional to πi j
0, π i j

αβ , π i j
0β (present inHi j

0β ) and Ai j
µ, we

find that

δPα = δHα + ∂Ô + R.

Finally, using the explicit form (5.63c) ofHα, we obtain

δPα = − δ(bi
απi

γ ),γ + (πi
γ δbi

γ ),α + ∂Ô + R

= − δ(bi
απi

γ ),γ + ∂O3 + R

where the last equality follows from πi
γ δbi

γ = O3. Therefore,

δPα = −δEα + R

Eα ≡
∮

dSγ (b
k
απk

γ ).

(6.40a)

Now, if we redefine the translation generator Pα by

Pα → P̃α = Pα + Eα (6.40b)

the new, improved expression P̃α has well-defined functional derivatives.

The surface integral for Eα is finite since bk
απk

γ = O2, in view of boundary

conditions (6.39). The on-shell value Eα of P̃α represents the value of the linear

momentum of the system.

Time translation. A similar procedure can be applied to the time translation

generator P0:

δP0 =
∫

d3x δP0

δP0 = δHT − δ(bk
0πk

γ ),γ + ∂Ô
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where we have used the adopted boundary conditions for Ai j
0 and π i j

0β . Since

HT does not depend on the derivatives of momenta (on shell), we can write

δHT = ∂HT

∂bk
µ,α

δbk
µ,α +

1

2

∂HT

∂Ai j
µ,α

δAi j
µ,α + R

≈ − ∂L

∂bk
µ,α

δbk
µ,α −

1

2

∂L

∂Ai j
µ,α

δAi j
µ,α + R.

The second term has the form ∂Ô + R, so that

δHT ≈ −∂α

(
∂L

∂bk
µ,α

δbk
µ

)
+ ∂Ô + R = ∂O3 + R

and we find

δP0 = −δ(bk
0πk

γ ),γ + ∂O3 + R.

Hence,

δP0 = −δE0 + R

E0 =
∮

dSγ (b
k

0πk
γ ).

(6.41a)

The improved time translation generator

P̃0 = P0 + E0 (6.41b)

has well-defined functional derivatives, and the surface term E0 is finite. The

on-shell value E0 of P̃0 is the energy of the gravitating system.

These expressions for the energy and momentum can be written in a Lorentz

covariant form:

Eµ =
∮

dSγ (b
k
µπk

γ ). (6.42)

Rotation. Next, we want to check whether the rotation generator Mαβ has well-

defined functional derivatives:

δMαβ =
∫

d3x δMαβ

δMαβ = xαδPβ − xβδPα + δπαβ
γ
,γ + R

where πµν
ρ = δi

µδ
j
νπi j

ρ . Using the known form of δPα, we find that

δMαβ = −δEαβ + R

Eαβ =
∮

dSγ [xα(bk
βπk

γ )− xβ(b
k
απk

γ )− παβ
γ ]

(6.43)
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where we have used the fact that
∮

dS[α xβ] φ = 0 (φ ≡ πk
γ δbk

γ ). The improved

rotation generator has the form

M̃αβ ≡ Mαβ + Eαβ . (6.44)

Although M̃αβ has well-defined functional derivatives, the assumed

boundary conditions (6.37)–(6.39) do not ensure the finiteness of Eαβ owing to

the presence of O1 terms. Note, however, that the actual asymptotics is refined

by the principle of arbitrarily fast decrease of all on-shell vanishing expressions.

Thus, we can use the constraintsHα and Hi j , in the lowest order in r−1, to

conclude that

πα
β
,β = O4 2π[αβ] + παβ

γ
,γ = O3 (6.45)

where πµν = δi
µηνρπi

ρ . As a consequence, the angular momentum density

decreases like O3:

(2x[απβ]γ − παβ
γ ),γ = O3.

As all variables in the theory are assumed to have asymptotically polynomial

behaviour in r−1, the integrand of Eαβ must essentially be of an O2 type to

agree with this constraint. The possible O1 terms are divergenceless, and do not

contribute to the corresponding surface integral (exercise 20). This ensures the

finiteness of the rotation generator.

Boost. The variation of the boost generator is given by

δM0β =
∫

d3x δM0β

δM0β = x0δPβ − xβδP0 + δπ0β
γ
,γ + R.

Here, we need to calculate δP0 up to terms ∂O4. A simple calculation yields

δM0β = δ(π0β
γ − x0bk

βπk
γ + xβbk

0πk
γ ),γ + (xβ Xγ ),γ + ∂O3 + R

where the term Xγ ≡ (∂L/∂bk
µ,γ )δbk

µ is not a total variation, nor does it vanish

on account of the adopted boundary conditions. If we further restrict the phase

space by adopting suitable parity conditions, this term vanishes (Blagojević and

Vasilić 2000b). After that, the improved boost generator reduces to the form

M̃0β ≡ M0β + E0β

E0β =
∮

dSγ [x0(b
k
βπk

γ )− xβ(b
k

0πk
γ )− π0β

γ ].
(6.46)

It remains to be shown that the adopted boundary conditions ensure the

finiteness of E0β . That this is indeed true can be seen by analysing the constraints

ĤT andHi j at spatial infinity, which leads to

π0
β
,β = O4 π0β + π0β

γ
,γ = O3. (6.47)
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The first equation follows from ĤT ≡ HT − ∂α D̄α ≈ 0, which implies

π0
β
,β ≈ HT +O4 ≈ πAϕ̇

A − L+O4 = O4.

Now, it follows that the boost density decreases likeO3 for large r . Then, the same

line of reasoning as the one used in discussing rotations leads us to conclude that

E0β is finite. The improved boost generator M̃0β is a well-defined functional on

the phase space defined by the boundary conditions (6.37)–(6.39) together with

the adopted parity conditions.

Using the Lorentz four-notation, we can write:

M̃µν ≡ Mµν + Eµν

Eµν =
∮

dSγ [xµ(bk
νπk

γ )− xν(b
k
µπk

γ )− πµν
γ ].

(6.48)

Conserved charges

The improved Poincaré generators satisfy the PB algebra (6.19), and their

conservation laws are determined by the general conditions, the essential content

of which is expressed by equation (6.22).

To verify the conservation of the improved generators, we need their PBs

with P̃0 ≈
∮

dSγ π0
γ . Using the Poincaré transformation law for πk

γ ,

δ0πk
γ ≈ εk

sπs
γ + εγ βπk

β + ε0
β

∂L

∂bk
γ,β

− (εµνxν + εµ)∂µπk
γ

and writing it in the form δ0πk
γ = {πk

γ ,G}, we find that

{π0
γ , P̃µ} ≈ ∂µπ0

γ

{π0
γ , M̃αβ} ≈ (δ

γ
απ0β + xα∂βπ0

γ )− (α ↔ β)

{π0
γ , M̃0β} ≈ πβ

γ + ηαβ
∂L

∂b0
γ,α

− xβ∂0π0
γ + x0∂βπ0

γ .

(6.49)

Furthermore, the field equations

∂0π0
γ ≈ ∂0

∂L

∂b0
γ,0

≈ ∂α
∂L

∂b0
α,γ

+O4

imply the relation

xβ∂0π0
γ − ηαβ

∂L

∂b0
γ,α

= ∂α

(
xβ

∂L

∂b0
α,γ

)
+O3

which can be used to simplify the last equation in (6.49).
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(1) The conservation of energy follows from the same type of arguments as

those used in discussing EC theory. Therefore,

dP̃0

dt
≈ dE0

dt
≈ 0 (6.50a)

and the surface term E0, representing the value of the energy, is conserved.

(2) The linear momentum has no explicit time dependence, and its PB with P̃0

is given by

{P̃0, P̃α} ≈
∫

d3x {∂γπ0
γ , P̃α}.

This expression is easily evaluated using equations (6.49), with the final result

{P̃0, P̃α} ≈
∮

dSγ ∂απ0
γ = 0

as a consequence of ∂απ0
γ = O3. Therefore, there is no Z term in (6.22) for

G = P̃α, and we have the conservation law

dP̃α

dt
≈ dEα

dt
≈ 0. (6.50b)

(3) In a similar way, we can check the conservation of the rotation generator.

Using the formulae (6.49), we find:

{P̃0, M̃αβ } ≈
∫

d3x {∂γπ0
γ , M̃αβ} ≈

∮
(xα dSβ − xβ dSα)∂γπ0

γ = 0

because ∂γπ0
γ = O4, according to (6.47). Therefore, equation (6.22) for

G = M̃αβ implies

dM̃αβ

dt
≈ dEαβ

dt
≈ 0. (6.50c)

(4) Finally, the boost generator has an explicit, linear dependence on time and

satisfies
∂ M̃0β

∂ t
= P̃β ≈ Eβ .

The evaluation of {P̃0, M̃0β} is done with the help of equations (6.49):

{P̃0, M̃0β } ≈
∫

d3x ∂γ

[
πβ

γ − ∂α

(
xβ

∂L

∂b0
α,γ

)]
=
∫

d3x ∂γπβ
γ = Eβ

where we used the antisymmetry of ∂L/∂b0
α,γ in (α, γ ). These results imply the

boost conservation law:
dM̃0β

dt
≈ dE0β

dt
≈ 0. (6.50d)

Thus, all ten Poincaré generators of the general teleparallel theory are

conserved.
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Comparison with GR. Now we shall transform our results into Lagrangian

form, and compare them with GR. All calculations refer to the one-parameter

teleparallel theory (2A + B = 1, C = −1).

We begin by noting that the momentum πi
γ is defined by the formula

πi
γ = −4bh jγβi j

0 (6.51a)

where βi j
0 can be conveniently written as a sum of two terms:

βi j
0 = (βi j

0)(1) + (βi j
0)(2)

4b(βi j
0)(1) = ahk0(biλ∇ρ H

λρ

j k + b jλ∇ρ H
λρ

ik )− a∇ρ H
0ρ
i j

4b(βi j
0)(2) = −a(2B − 1)bhk0T

A

i jk .

(6.51b)

The energy–momentum expression (6.42) can be transformed into the

Lagrangian form with the help of relation (6.51a) that defines πi
γ :

Eµ =
∮

dSγ Hµ
0γ Hµ

0γ ≡ −4bbi
µh jγβi j

0. (6.52)

In order to compare this result with GR, we use the decomposition of

f i
µ ≡ bi

µ − δi
µ into symmetric and antisymmetric parts, fiµ = siµ + aiµ,

apply the asymptotic conditions (6.37)–(6.39) and obtain

H0
0γ = 2a(sc

c,γ − sc
γ,c)− 2aacγ

,c +O3.

Note that the second term in βi j
0, proportional to (2B − 1) and given by equation

(6.51b), does not contribute to this result. Now, using the quantity hµνλ, defined

in the previous section, we easily verify that

h00γ = 2a(sc
c,γ − sc

γ,c)+O3.

Then, after discarding the inessential divergence of the antisymmetric tensor in

H0
0γ , we find the following Lagrangian expression for E0:

E0 =
∮

dSγ h00γ . (6.53)

Thus, the energy of one-parameter teleparallel theory is given by the same

expression as in GR.

In a similar manner, we can transform the expression for Eα. Starting with

equation (6.51b), we note that the first term in βi j
0, which corresponds to GR‖

(B = 1/2), gives the contribution

(Hα
0γ )(1) = 2a[ηγβ(sαβ,0 − s0α,β)+ δγα (s

c
0,c − sc

c,0)]
+ 4a(δ[γα aβ]

0),β +O3
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which, after dropping the irrelevant divergence of the antisymmetric tensor, can

be identified with hα
0γ . The contribution of the second term has the form

(Hα
0γ )(2) = a(2B − 1)bbi

αh jγ hk0T
A

i jk

= a(2B − 1)T
A

α
γ 0 +O3

where T
A

i jk = Ti j k + Tki j + T j ki . Thus, the complete linear momentum takes the

form

Eα = ηαµ

∮
dSγ [hµ0γ − a(2B − 1)T

A
µ0γ ] (6.54)

which is different from what we have in GR.

Energy and momentum expressions (6.53) and (6.54) can be written in a

Lorentz covariant form as

Eµ =
∮

dSγ h̄µ0γ =
∫

d3x θ̄µ0

θ̄µν ≡ h̄µνρ
,ρ h̄µνρ ≡ hµνρ − a(2B − 1)T

A
µνρ .

(6.55)

In the case 2B − 1 = 0, corresponding to GR‖, we see that θ̄µν coincides with

θµν , the energy–momentum complex of GR. When 2B − 1 �= 0, the momentum

acquires a correction proportional to the totally antisymmetric part of the torsion.

The elimination of momenta from equation (6.48) leads to the following

Lagrangian form of the angular momentum:

Eµν =
∮

dSγ (xµHν
0γ − xν Hµ

0γ − 4λµν
0γ ) (6.56a)

where we have used expression (6.51a) for πk
α , and πµν

γ ≈ 4δi
µδ

j
νλi j

0γ .

In order to compare this result with GR, we should first eliminate λ. Omitting

technical details, we display here an equivalent form of the complete angular

momentum, suitable for comparisson with GR:

Eµν =
∫

d3x {(xµθ̄ν0 − xν θ̄µ0)+ 2a(2B − 1)T
A
νµ0

+ ηiµη jν[2a(2B − 1)bhk0T
A

i jk − σ 0
i j ]}. (6.56b)

For 2B − 1 = 0, we obtain the angular momentum of GR‖, which reduces

to the GR form if σ 0
i j = 0. The terms proportional to 2B − 1 and σ 0

i j give a

correction to the GR result.

6.4 Chern–Simons gauge theory in D = 3

The standard dynamics of gauge theories is determined by the Lagrangian (A.11),

which is quadratic in the field strength. Another possibility is defined by the
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Chern–Simons action; it became particularly interesting in the 1980s, after it

was realized that Einstein’s GR in three dimensions can be interpreted as a

Chern–Simons gauge theory (Witten 1988; see also appendix L). Although pure

Chern–Simons theory in D = 3 has no genuine propagating modes, it gives

rise to unusual dynamical phenomena at the boundary, characterized by a two-

dimensional conformal symmetry (Bañados 1994, 1999a, b).

Chern–Simons action

To construct the Chern–Simons action in D = 3, we start from a gauge theory

on a four-dimensional manifoldM4, with an action of the form (wedge product

between forms is understood):

IP =
∫

p Tr(F F) =
∫

M4

Fa Fbγab

= 1
4

∫

M4

d4x εµνλρ Fa
µν Fb

λργab.

Here, F = dA+ AA = Ta Fa is the field strength 2-form, A = Ta Aa is the gauge

potential 1-form (Aa = Aa
µ dxµ, Fa = 1

2
Fa

µν dxµ dxν), Ta is a basis of the Lie

algebra of the gauge group G, γab = p Tr(Ta Tb) represents an invariant bilinear

form (metric) on the Lie algebra, and p is a normalization factor depending on

the representation. We assume that γab is non-degenerate, so that the action

contains a kinetic term for all the gauge fields. This is always true for semisimple

Lie algebras, but may be also fulfilled in some other cases. The action IP is a

topological invariant. Denoting the integrand of IP by P (the Pontryagin form),

we have

P = (dAa + 1
2

fcd
a Ac Ad)(dAb + 1

2
fe f

b Ae A f )γab

= (dAa dAb + fe f
a Ae A f dAb)γab.

The last equality is obtained by noting that the product of the four As vanishes on

account of the Jacobi identity for the structure constants fab
c. It is now easy to

see that P is a total divergence,

P = dLCS LCS = (Aa dAb + 1
3

fce
a Ac Ae Ab)γab

where LCS is the Chern–Simons Lagrangian. Applying Stokes’s theorem to the

action IP we can transform it to an integral of LCS over the boundary ofM4.

The Chern–Simons action is defined by replacing ∂M4 with an arbitrary three-

dimensional manifoldM:

ICS =
∫

M

LCS =
∫

M

d3x εµνρ(Aa
µ∂ν Ab

ρ + 1
3

fce
a Ac

µAe
ν Ab

ρ)γab. (6.57)
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Example 1. For G = SO(1, 2), we choose the generators in the fundamental

representation to be T0 = 1
2

iσ2, T1 = 1
2
σ3, T2 = 1

2
σ1 (σa are the Pauli matrices),

i.e.

T0 = 1

2

(
0 1

−1 0

)
T1 = 1

2

(
1 0

0 −1

)
T2 =

1

2

(
0 1

1 0

)
.

With the normalization p = −2, the metric is given by

γab = −2 Tr(TaTb) = ηab ηab ≡ (+1,−1,−1)

and the form of Lie algebra, [Ta, Tb] = εab
cTc, implies fab

c = εab
c (ε012 = 1).

In these conventions, the gauge potential can be represented as

A = 1

2

(
A(1) A(+)

−A(−) −A(1)

)
A(±) = A(0) ± A(2).

Gauge invariance. Writing the finite gauge transformations in the form

A′
µ = g−1(Aµ + ∂µ)g F ′

µν = g−1 Fµνg (6.58a)

where g = g(u) ∈ G, we can easily show that the Pontryagin form P is gauge

invariant (using the cyclic property of the trace). Since P = dLCS, dLCS is

also gauge invariant, δ0 dLCS = 0; this implies dδ0 LCS = 0, and consequently,

δ0LCS = dv. Thus, the Chern–Simons action changes by a term δ0

∫
LCS =

∫
dv,

which does not alter the field equations (in particular, this term vanishes for

∂M = 0). Explicit calculation leads to the result

ICS[A′] = ICS[A] +
∫

∂M

p Tr(g−1 dg A)− 1
3

∫

M

p Tr(g−1 dg)3.

Since in any variational problem the fields have to satisfy appropriate

boundary conditions, which necessarily restrict the form of the allowed gauge

transformations, the second term can be made to vanish by demanding that g → 1

sufficiently fast when we approach the boundary ofM. The value of the last term

depends on the topological properties of the mapping g :M→ G. If we restrict

ourselves to topologically trivial gauge transformations (such as the infinitesimal

gauge transformations, for instance), the last term also vanishes. Thus, the Chern–

Simons action is gauge invariant if (Zanelli 2000)

– g → 1 sufficiently fast when we approach the boundary ofM; and

– gauge transformations are topologically trivial.

These conditions are often fulfilled in practical applications. In particular, ICS is

invariant under the infinitesimal gauge transformations:

δ0(u)Aa
µ = −∇µua = −(∂µua + fbc

a Ab
µuc). (6.58b)

The Chern–Simons action is also invariant under the diffeomorphisms ofM, but

this is not an independent symmetry, as we shall see.
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Field equations. The variation of the action (6.57) yields

δ ICS =
∫

M

δAa Fbγab +
∫

∂M

AaδAbγab.

If δAa is an arbitrary variation onM, and its value on the boundary is chosen so

that the second term vanishes, we obtain the field equations

Fa
µν = 0 (6.59a)

provided γab is non-degenerate. The field equations imply, at least locally

(on some open sets in M), that Aµ is a gauge transform of the trivial field

configuration Aµ = 0:

Aµ = g−1∂µg (locally). (6.59b)

Thus, there are no truly propagating degrees of freedom in this theory. The whole

dynamics is contained in the non-trivial topology, which prevents the relation

(6.59b) to be true on the entire manifoldM.

The action and boundary conditions. Although the Chern–Simons theory has

no local excitations, its dynamical content is by no means trivial. We shall begin

the analysis of the Chern–Simons dynamics by choosing appropriate boundary

conditions. Then, using the canonical approach, we shall find an infinite number

of degrees of freedom living at the boundary.

Boundary conditions are necessary in order to have a well-defined variation

of the action, but they are not unique. Dynamical properties of the theory are

very sensitive to the choice of boundary conditions. Here, we are interested in

Chern–Simons theory on a manifoldM having the topology R × �, where R

is interpreted as time, and � is a spatial manifold with a boundary ∂� that is

topologically a circle (which may be located at infinity). The simple examples

for � are manifolds with the topology of a disc or R2. The theory may have

interesting topological properties related to the existence of holes in �, but

these effects will not be discussed here. We assume that there exist coordinates

xµ = (t, r, ϕ) (µ = 0, 1, 2) onM such that the boundary ∂� is described by the

standard angular coordinate ϕ. Then, the boundary term in δ ICS takes the form

δBCS =
∫

∂M

AaδAa =
∫

dt dϕ (Aa
tδAaϕ − Aa

ϕδAat).

A simple way to cancel δBCS is by imposing At = 0 at ∂�. In this case the

symmetry of the theory (the subgroup of gauge transformations which leave the

boundary conditions invariant) is given by the gauge transformations that are

independent of time at the boundary. Another interesting possibility is to choose

one of the following two conditions:

At = −Aϕ or At = Aϕ (at the boundary). (6.60a)
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In this case, the gauge parameters at the boundary can depend on time, but this

dependence is not arbitrary.

Boundary conditions can be thought of as a mechanism for selecting a

general class of field configurations which have a specific dynamical importance.

Conditions (6.60a) include some very interesting solutions known from D = 3

gravity; they will be adopted as a typical choice in our subsequent discussion.

Thus, our intention is to study the Chern–Simons theory defined by the action

(6.57) supplemented with the boundary conditions (6.60a), which produces the

field equations (6.59a). We should note that there exist boundary conditions for

which δBCS �= 0; the related variational problem can be improved by adding an

extra boundary term to the action.

Residual gauge symmetries. Our next step is to determine the most general

set of gauge transformations that preserve the boundary conditions (6.60a).

Introducing the light-cone basis notation, x± = t ± ϕ, the boundary conditions

can be written in the form

A+ = 0 or A− = 0 (at the boundary). (6.60b)

The invariance of the first condition, δ0 A+ = −∇+u = 0, implies ∂+u = 0 at

∂�. Thus, the residual gauge symmetry corresponding to the boundary condition

A+ = 0 is defined by the gauge transformations the parameters of which are

chiral, i.e. u = u(x−), at the boundary. The resulting symmetry is infinite

dimensional. Similarly, the second condition A− = 0 is preserved if the gauge

parameters are antichiral, u = u(x+), at ∂�. In both cases, the gauge parameters

are functions of one coordinate (x− or x+) at the boundary. This fact will have a

significant influence on the structure of the canonical gauge generators.

Since Chern–Simons theory has no propagating modes, the non-trivial

dynamics occurs only at the boundary (holes in � are ignored). In this context,

the residual symmetry at the boundary is usually called global (or asymptotic)

symmetry. Its content can be analysed most clearly by fixing the gauge, as will be

done in the canonical approach.

Canonical analysis

In order to precisely count the dynamical degrees of freedom in the Chern–Simons

theory, we turn to Hamiltonian analysis.

We write the Chern–Simons action in the form

I [A] = k

∫

M

d3x εµνρ(Aa
µ∂ν Ab

ρ + 1
3

fe f
a Ae

µA f
ν Ab

ρ)γab (6.61)

where k is a normalization constant, and ε012 = 1. The action is invariant

under the usual gauge transformations (6.58b) and the diffeomorphisms will be

discussed later.
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The Hamiltonian and constraints. The relations defining πa
ρ lead to the

primary constraints

φa
0 ≡ πa

0 ≈ 0 φa
α ≡ πa

α − kε0αβ Aaβ ≈ 0.

Since the Lagrangian is linear in velocities, we easily find first the canonical, and

then the total Hamiltonian:

HT = Aa
0Ha + ua0φ

a0 + uaαφ
aα + ∂αDα

Ha = −kε0αβ Faαβ

Dα = kε0αβ Aa
0 Aaβ .

The consistency conditions of the primary constraints have the form

φ̇a
0 ≈ 0 ⇒ Ha ≈ 0

φ̇a
α ≈ 0 ⇒ ∇β Aa

0 − ua
β ≈ 0.

The first relation yields a secondary constraint and the second determines ua
β .

Taking into account that Ȧa
β ≈ ua

β , the second relation can be written in the

form Fa
0β ≈ 0.

Replacing this expression for uaβ intoHT, we obtain

HT = Aa
0Ha + ua0φ

a0 + ∂α D̄α

Ha = Ha −∇βφa
β = −kε0αβ∂α Aaβ −∇απa

α

D̄α = Aa
0πa

α.

(6.62)

Before going on with the consistency analysis, we display here the algebra of

constraints:

{φa
α, φ′

b
β} = −2kγabε

0αβδ

{φa
α,H′

b} = − fabcφ
cαδ

{Ha,H
′
b} = − fabcH

cδ

while all PBs involving φa0 vanish. It is now clear that further consistency

requirements produce nothing new.

Thus, the theory is defined by the total Hamiltonian HT and the following

set of constraints:

– first class: πa
0,Hb; and

– second class: φa
α .

While the FC constraints generate gauge transformations, the second-class

constraints φa
α can be used to restrict the phase space by eliminating the momenta

πa
α from the theory. The construction of the preliminary Dirac brackets is

straightforward, and this leads to

{Aa
α, Ab

β}• =
1

2k
ε0αβγ

ab (6.63)

as the only non-trivial result in the restricted phase space (Aa
α, Ab

0, πc
0).
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Gauge generator. We now apply Castellani’s algorithm to construct the gauge

generator:

G[ε] =
∫

�

d2x [(∇0ε
a)πa

0 + εaHa]. (6.64)

It produces the following gauge transformations on the phase space:

δ0 Aa
0 = ∇0ε

a δ0 Aa
α = ∇αε

a

δoπa
0 = − fabcε

bπc0 δoπa
α = kε0αβ∂βεa − fabcε

bπcα .

We can explicitly verify that the equations of motion are invariant under these

transformations. In particular, δ0φa
α = − fabcε

bφcα ≈ 0.

In this construction, the standard gauge transformations are correctly

reproduced, but the diffeomorphisms are not found. However, by introducing

the new gauge parameters according to

εa = ξρ Aa
ρ (6.65a)

we easily obtain

δ0(ξ)Aa
µ = ξρ ,µAa

ρ − ξ · ∂Aa
µ + ξρ Fa

µρ . (6.65b)

Thus, the diffeomorphisms are not an independent symmetry; they are contained

in the ordinary gauge group as an on-shell symmetry (Witten 1988).

Fixing the gauge. Since there are no local degrees of freedom in the Chern–

Simons theory, the only relevant symmetries are those associated with the

boundary dynamics. Their content becomes clearer if we fix the gauge,

whereupon only the degrees of freedom at the boundary are left.

We have found two sets of FC constraints, πa
0 andHa , hence we are free

to impose two sets of gauge conditions. A simple and natural choice for the first

gauge condition is:

Aa
0 = −Aa

2 or Aa
0 = Aa

2 (6.66)

whereby our choice of the boundary conditions (6.60) is extended to the whole

spacetime, without affecting the physical content of the theory. After this step has

been taken, we can construct the related preliminary Dirac brackets and eliminate

the variables (Aa
0, πa

0) from the theory; the PBs of the remaining variables

remain unchanged.

An appropriate choice for the second gauge condition is obtained by

restricting Ar to be a function of the radial coordinate only:

Ar = b−1(r)∂r b(r) (6.67)

where b(r) is an element of G. By a suitable choice of the radial coordinate, we

can write

b(r) = erα ⇒ Ar = α (6.68a)
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where α = αa Ta is a constant element of the Lie algebra. The condition

(6.67), together with the constraint Frϕ ≈ 0, implies that the group element in

Aα = g−1∂αg can be factorized as g = h(t, ϕ)b(r), which leads to

Aϕ = b−1 Âϕ(t, ϕ)b (6.68b)

where Âϕ = h−1∂ϕh. Demanding that the gauge condition be preserved in time,

we obtain the consistency condition ∇r (∂ϕ A0) ≈ 0. The general solution of this

equation, compatible with F = 0, is given by A0 = b−1 Â0(t, ϕ)b. In these

expressions, Âϕ and Â0 are arbitrary functions of (t, ϕ).

Now, we can combine (6.67) with one of the gauge conditions (6.66), say

A+ = 0, to eliminate the arbitrary function appearing in A0: Â0(t, ϕ) =
− Âϕ(t, ϕ). Moreover, the field equations F = 0 imply that Âϕ = Âϕ(x

−).
Thus, the canonical gauge conditions do not fix the gauge completely. We are,

instead, left with one arbitrary function at the boundary,

Â−(x
−) = 1

2
[ Â0(x

−)− Âϕ(x
−)] = − Âϕ(x

−)

which is related to the chiral residual gauge symmetry, defined by gu = gu(x
−).

The action of gu does not change Ar , while Â−(x−) transforms in the usual way:

Â−(x−) → Â′(x−) = g−1
u [ Â−(x−)+ ∂−]gu.

Analogous considerations are valid for the second, antichiral gauge choice in

(6.66).

The residual gauge symmetry at the boundary is defined by a chiral/antichiral

gauge parameter u(x∓); it is an infinite dimensional symmetry, the structure of

which will be determined by studying the PB algebra of the related generators.

The improved generators. We now turn our attention to the question of the

functional differentiability of the gauge generators. After adopting one of the

gauge conditions (6.66), the effective form of the gauge generator (6.64) is given

by

Ḡ[ε] =
∫

�

d2x εaHa . (6.69)

The generator acts on the restricted phase space (Aa
α, πa

α) with the usual PB

operation. For the gauge parameters that are independent of field derivatives, the

variation of Ḡ takes the form

δḠ[ε] =
∫

d2x εaδHa + R = −δE[ε] + R (6.70a)

δE[ε] =
∮

dSα ε
a(kε0αβδAaβ + δπa

α) (6.70b)

where dSαε
0αβ = dxβ . Therefore, if we can integrate δE to find E[ε], the

improved gauge generator

G̃[ε] = Ḡ[ε] + E[ε] (6.71a)
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will have well-defined functional derivatives:

δG̃[τ ]
δAaβ

= kε0αβ∇ατ
a − τe f ea f φ f

β + ∂τ c

∂Aaβ

Hc

δG̃[τ ]
δπaβ

= ∇βτa.

(6.71b)

Consequently, the PB of two G̃s can be written in the form

{G̃[τ ], G̃[λ]} = W1 + W2 + W3 (6.72a)

where

W1 = 2k

∫
d2x ε0αβ∇ατ

a∇βλa

W2 = −
∫

d2x φc
β∇β( f ce f τeλ f )

W3 =
∫

d2x

(
∂τ c

∂Aaβ

∇βλa

)
Hc − (τ ↔ λ).

(6.72b)

We expect that the complete improved generator G̃ = Ḡ + E will appear

on the right-hand side of the PB algebra (6.72a), but to show that we need to

know the explicit form of the surface term E , defined by (6.70b). This will be

possible only after we impose some additional conditions on the behaviour of

gauge parameters at the boundary.

In what follows, we shall simplify the calculation of the right-hand side in

(6.72a) by using the second-class constraint φa
α ≈ 0, which leads to W2 ≈ 0.

The structure of the PB algebra can be further simplified by imposing the second

gauge condition (6.67).

Symmetries at the boundary

The affine symmetry. We begin this section by studying the simplest boundary

condition which allows us to find an explicit form of the surface term E[τ ]. We

assume that

gauge parameters are independent of the fields at the boundary.

This choice describes a residual gauge symmetry on the boundary stemming

from the standard gauge symmetry, in which the parameters εa = τ a are field

independent on the whole spacetime. In that case, the expression δE[τ ] in (6.70b)

is easily integrated to give

E[τ ] =
∮

dSα τ
a(2kε0αβ Aaβ + φa

α) (6.73a)
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and the improved gauge generator takes the form

G̃[τ ] =
∫

d2x [∂ατ a(kε0αβ Aaβ + πa
α)− τ c fce f Ae

απ
f α]. (6.73b)

The functional derivatives are easily checked to have the form (6.71b) with

W3 = 0, since τ c does not depend on the fields.

Let us now return to the PB algebra (6.72) with W2 ≈ 0 and W3 = 0.

Integrating by parts in W1 we obtain

W1 = −
∫

d2x ( f aef τeλ f )Ha + 2k

∮
dxβ τ a∇βλa .

After introducing σ a ≡ f aef τeλ f , the first term is easily recognized to have the

expected form −Ḡ[σ ] (weakly). In order to find the surface term E[σ ], we use

the relation

τ a∇βλa = −σ a Aaβ + τ a∂βλa

to transform the second term in W1. This leads directly to

{G̃[τ ], G̃[λ]} ≈ −G̃[σ ] + K [τ, λ] (6.74a)

where K is a field independent term, called the central charge:

K [τ, λ] ≡ 2k

∮
dxβ τ a∂βλa . (6.74b)

The occurrence of central charges is an unusual feature of the classical PB

algebra; it is a consequence of the fact that G̃ is an improved generator, which

differs from a linear combination of FC constraints by a boundary term.

We shall now fix the gauge in order to have a simpler description of the

degrees of freedom at the boundary. The chiral gauge condition is already used to

eliminate (Aa
0, πa

0), and the second gauge condition (6.67) ensures Fa
rϕ ≈ 0.

Hence, we have Ha ≈ 0, and the whole generator G̃[τ ] reduces just to the

boundary term:

G̃[τ ] ≈ E[τ ] ≈ 2k

∮
dxβ τ a Aaβ .

The field equations F = 0 together with the gauge conditions (6.66) and (6.67)

ensure that τ a and Aa are functions of x− or x+ only. Thus, if we use the Dirac

brackets defined by

– the second-class constraints φa
α and

– the gauge condition (6.66) and (6.67)

the PB algebra of the gauge fixed generators can be written in the form

{E[τ ], E[λ]}∗ = −E[σ ] + K [τ, λ]. (6.75a)
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It is interesting to observe that the Dirac bracket {E[τ ], E[λ]}∗ can be interpreted

as δλE[τ ]. Indeed, we find that δλE[τ ] = 2k
∮

dxβ τ a∇βλa , in complete

agreement with the right-hand side of equation (6.75a).

The Lie algebra (6.75a) can be given a more familiar form by representing

it in terms of the Fourier modes. Since the boundary of � is a circle, we have

E[τ ] = 2k

∫
dϕ τ a(t, ϕ) Âa(t, ϕ)

where Â ≡ Âϕ . If we now Fourier decompose Âa and τ a at the boundary,

Âa(t, ϕ) = − 1

4πk

∑
Aa

neinϕ τ a(t, ϕ) =
∑

τ a
meimϕ

we find E[τ ] = −
∑

τ a
−n Aan , and the Fourier modes Aa

n satisfy the affine algebra:

{Aa
n, Ab

m}∗ = f ab
c Ac

n+m + 4πkiγ abnδn+m,0. (6.75b)

Thus, if we adopt the boundary condition that the gauge parameters do not depend

on the fields, the residual gauge symmetry is described by an infinite set of

charges, which satisfy the affine extension of the original PB algebra.

The Virasoro symmetry. In Chern–Simons theory, the diffeomorphisms are

contained in ordinary gauge transformations as an on-shell symmetry. We now

wish to study boundary conditions that correspond to the freedom of making

diffeomorphisms at the boundary. This is achieved by assuming that

gauge parameters have the form εa = ξµAa
µ at the boundary.

After imposing the chiral gauge (6.66), the expression (6.70b) for δE[ε] can

be written as

δE[ξ ] ≈ 2k

∮
dxβ εaδAaβ = 2k

∫
dϕ [ξ r Aa

r − ξ−Aa
ϕ]δAaϕ.

The integration of δE can be easily performed if we have δAa
r = 0 at the

boundary. This property is ensured by the second gauge condition (6.67), which

asserts that Ar can be adjusted so as to become a constant element of the Lie

algebra: Aa
r = αa . Thus, the integration of δE leads to

E[ξ ] = 2k

∫
dϕ [ξ rα · Â(t, ϕ)− 1

2
ξ− Â2(t, ϕ)] (6.76)

where the integration constant is set to zero.

Returning now to the calculation of the PB algebra (6.72a), we introduce the

notation τ a = ξµAa
µ, λa = ηµAa

µ, and note that the term fae f τ
eλ f Aa

α in W1

vanishes. In order to simplify the calculation,
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– we use φa
α ≈ 0 and

– impose the gauge conditions (6.66) and (6.67).

This implies W2 ≈ 0 ≈ W3, so that the only non-vanishing contribution comes

from W1:

{G̃[τ ], G̃[λ]} ≈ 2k

∫
dϕ τ a∂ϕλa . (6.77a)

The boundary term (6.76) is discovered with the help of the identity

∫
dϕ τ a∂ϕλa =

∫
dϕ (σ r Â · α − 1

2
σ− Â2)+ α2

∫
dϕ ξ r∂ϕη

r

where σµ = ξ · ∂ηµ − η · ∂ξµ, so that the final result can be written as

{E[ξ ], E[η]}∗ = E[σ ] + 2kα2

∫
dϕ ξ r∂ϕη

r . (6.77b)

Geometric interpretation of the Chern–Simons theory motivates us to

consider some specific solutions for Â. In the case A+ = 0, these solutions

are defined by the requirements Â(−) = 1, Â(1) = 0 [while for A− = 0, we

have Â(+) = −1, Â(1) = 0] (Coussaert et al 1995). Gauge invariance of these

conditions restricts the values of the gauge parameters in the following way:

(ξ r , ξ+) = (−β∂ϕξ, ξ) (ηr , η+) = (−β∂ϕη, η)

where β can be normalized so that β2 = 1, and ξ and η are arbitrary functions of

x− (or x+). In that case,

E[ξ ] = 2k

∫
dϕ ξ(βαa∂ϕ Âa − 1

2
Â2) (6.78)

{E[ξ ], E[η]}∗ = E[σ ] + 2kα2

∫
dϕ (∂ϕξ∂

2
ϕη). (6.79)

Then, introducing the notation

− 1

4πk
L(t, ϕ) = βαa∂ϕ Âa − 1

2
Â2

we can write

E[ξ ] = − 1

2π

∫
dϕ ξ(t, ϕ)L(t, ϕ) = −

∑
ξ−n Ln

where L(t, ϕ) =
∑

Lneinϕ , ξ(t, ϕ) =
∑

ξneinϕ . Written in terms of the Fourier

modes, this algebra takes the form

{Ln, Lm}∗ = −i(n − m)Ln+m + 4πkα2in3δn+m,0. (6.80a)
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After shifting the zero mode of Ln , Ln → Ln + 2πkα2δn,0, we find the standard

form of the Virasoro algebra with a classical central charge. In the standard string

theory normalization for the central charge, we have

c0 = −12 · 4πkα2. (6.80b)

Using the known Fourier expansion for Â(t, ϕ), we obtain

Ln = 1

8πk

∑

m

γab Aa
m Ab

n−m + inγabβα
a Ab

n (6.81)

which is known as the modified Sugawara construction. The Virasoro generators

Ln generate diffeomorphisms, while the affine generators Aa
n generate the

standard gauge transformations at the boundary. This relation reflects the fact

that the diffeomorphisms in Chern–Simons theory can be expressed in terms of

the usual gauge symmetry. The Virasoro generators are the generators of the

two-dimensional conformal symmetry, which acts in the space of the residual

dynamical variables.

The boundary dynamics of Chern–Simons theory is described by a

conformally invariant field theory with the central charge c0.

The derivation of the Virasoro algebra given here is valid for the general

gauge group. The appearance of the classical central charge in the canonical

realization of the residual symmetry is a consequence of the specific choice of

boundary conditions. In the Chern–Simons description of the three-dimensional

gravity we have 4πk = l/8G, α2 = −1, hence c0 = 3l/2G.

Exercises

1. Find PBs between the kinematical constraintsHi j andHα in the U4 space.

2. Derive the following relations in U4:

{nk,H
′
i j } = 2ηk[i n j ]δ

{h k̄
α,H′

i j } = 2ηk[i h ̄ ]
αδ

{nk,H
′
β} = −(∇βbs

α)nsh k̄
αδ

{h k̄
α,H′

β } = (∇βbs
γ )(nsnk

3gαγ − h k̄
γ h s̄

α)δ − δαβh k̄
γ ∂γ δ

{Ai j
α,H

′
β } = −Ri j

αβδ.

3. Prove the following relations in EC theory:

{Ai j
α,H

′
⊥} = −Ri j

α⊥δ

{nk,H
′
⊥} = (T⊥k̄⊥ − h k̄

α∂α)δ

{h k̄
α,H′

⊥} = hm̄α(−h k̄
β∇βnm + Tm̄k̄⊥ − nk T⊥m̄⊥)δ + 3gαβnk∂βδ.
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4. Use the result (6.1) to show that the algebra of FC constraints in the local

Lorentz frame has the form (6.2).

5. Consider EC theory with the Dirac matter field. Show that the multipliers u

and ū, corresponding to the primary constraints φ̄ and φ, are determined by

the relations

N{φ,H⊥} + iJγ⊥u ≈ 0 N{φ̄,H⊥} − iJ ūγ⊥ ≈ 0.

i.e. that they have the form N�⊥(bk
α, Ai j

α, πk
α, πi j

α).

6. Consider the Lagrangians that are at most quadratic in velocities. Show that

the total Hamiltonian can depend on the derivatives of momenta only through

the determined multipliers, and that ∂HT/∂π
A
,α ≈ 0.

7. Show that the generator of the Poincaré gauge symmetry (6.7) produces the

correct transformations of the fields bk
µ, Ai j

µ and & .

8. Assuming that L̃ is an invariant density under Poincaré gauge

transformations, derive the transformation rules for momentum variables:

δπA = −πB
∂δϕB

∂ϕA
+ πα

Aξ
0
,α − πAξ

α
,α π

µ

A ≡ ∂L̃

∂ϕA
,µ

.

9. Let the asymptotic conditions (6.11a) be invariant with respect to the global

Poincaré transformations. Show, then, that the field derivatives satisfy

(6.11b).

10. Let G be the generator of global symmetries of the Hamiltonian equations

of motion. Show that G satisfies conditions (6.20)–(6.21).

11. Find PBs between Ai j
µ and the improved Poincaré generators P̃ν and Mkl

in EC theory. Then, derive the relations (6.23).

12. Give a detailed proof of the boost conservation law (6.24d).

13. Construct the gauge generators for the system of interacting electromagnetic

and Dirac fields:

I =
∫

d4x {ψ̄[γ µ(i∂µ − eAµ)− m]ψ − 1
4

Fµν Fµν}.

Find the form of the surface term, and discuss the meaning of the

conservation law in the case when the gauge parameter behaves as a constant

at spatial infinity.

14. Consider the SU(2) gauge theory given by

I =
∫

d4x {&̄[γ µi∇µ − m]& − 1
4

Fa
µν Faµν}

where & is the SU(2) doublet of Dirac fields (see appendix A). Find the

conserved charges and calculate their PB algebra in the case when the gauge

parameters are constant at spatial infinity.
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15. On the basis of the adopted boundary conditions (6.11a) for the tetrads,

derive the relations:

n0 = 1 +O1 na = O1

N = 1 +O1 Nα = O1 J = 1 +O1

ηāb̄ = ηab +O2 η0̄b̄ = O1 η0̄0̄ = O1.

16. Find the form of the field transformations (6.32) after introducing the new

parameters according to (6.33).

17. Find the ξ0 transformations of λi j
0β under the action of the Poincaré gauge

generator (6.35).

18. Derive the asymptotic relations (6.45) and (6.47).

19. Consider the vector field A with the following asymptotic behaviour:

A = a

r
+O2 div A = O3

where a = a(n).

(a) Show that div(a/r) = 0 for all r .

(b) Integrate div(a/r) over the region VR outside the sphere SR of radius R

and use Stokes’s theorem to prove that the integral
∮

a · n d! over S∞
vanishes.

(c) Finally, show that the integral
∮

A · dS over S∞ is finite.

20. Use the general transformation rule for momentum variables (exercise 8) to

find the form of δ0πk
γ . Then, derive the relations (6.49).

21. (a) Show that the Chern–Simons action can be written in the form:

ICS = k

∫
dt

∫

�

d2x ε0αβ( Ȧa
α Ab

β + Aa
0 Fb

αβ)γab + B

where B is a boundary term.

(b) Find the transformation law of the Chern–Simons action under the finite

gauge transformations.

22. (a) Construct the preliminary Dirac brackets in the Chern–Simons theory,

using the second-class constraints φiα .

(b) Transform the gauge generator (6.73b) into a functional of A, using

φi
α ≈ 0. Then, use the related Dirac brackets to calculate

{G̃[τ ], G̃[λ]}•.

23. Combine the field equations of the Chern–Simons theory with the gauge

conditions A+ = 0 and Ar = b−1∂r b, b = b(r), to show that A− =
b−1 Â−(x−)b.

24. Consider the Chern–Simons gauge field satisfying A+ = 0, Â(−) = 1,

Â(1) = 0. Find the restricted form of the gauge parameters (ξ r , ξ−).
25. Consider the affine PB algebra corresponding to the SO(1, 2) group:

{Aa
n, Ab

m} = εab
c Ac

n+m + iZηabnδ0
n+m .
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(a) Write this algebra in the light-cone basis, and prove its invariance under

the exchange A(+) ↔ A(−), A(1) ↔ −A(1).

(b) Calculate the Dirac brackets corresponding to the following extra

conditions: A
(−)
n = 2Zγ δ0

n , A
(1)
n = 0 (which can be treated as second-

class constraints).

(c) Use these brackets to show that, for γ = 1, the remaining components

A
(+)
n satisfy the Virasoro algebra.



Chapter 7

Gravity in flat spacetime

There are many attempts to understand the structure of gravity, but all of them can

be roughly classified into two categories according to whether they are focused

on the geometric or the particle aspects of gravity.

The standard geometric approach is based on Einstein’s GR, a theory in

which gravitational phenomena are connected with the geometry of spacetime.

Notable analogies between electromagnetic and gravitational interactions have

inspired many attempts to unify these two theories into a single structure.

Nowadays we know that any programme of geometric unification must

necessarily be more general, since the world of fundamental interactions contains

much more than just electromagnetism and gravity.

There is, however, another approach to unification, which is based on the

idea that gravity can be described as a relativistic quantum field theory in flat

spacetime, like all the other fundamental interactions. The construction must be

such that it can reproduce the following results of experimental observations:

gravity has a long range (force proportional to r−2); then,

it is attractive,

acts in the same way on all kinds of matter (PE) and

satisfies the standard classical tests (the gravitational redshift, the precession

of Mercury’s orbit, the deflection of starlight passing near the sun and the

time delay of radar signals emitted from Earth).

If we adopt the standard quantum field theory approach to gravity, the

gravitational force is explained by the exchange of a particle called a graviton

(figure 7.1). Which properties should the graviton have in order to reproduce the

basic experimental requirements?

In a field theory, long range forces are produced by the exchange of massless

particles, as in electrodynamics. Can we exclude the possibility of a very small

but finite graviton mass? The answer is affirmative, as we shall see.

Relativistic particles are characterized by definite values of mass and spin. In

order to determine the spin of the graviton, we shall analyse different possibilities

195
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k

Figure 7.1. The gravitational force is produced by the exchange of a graviton.

and try to identify those which are in agreement with the previous experimental

facts.

If the graviton were a fermion, i.e. a particle with half-integer spin, the

gravitational force could not be produced by the exchange of a single graviton. A

particle emitting or absorbing such a graviton would not remain in the same state

as it was initially. Hence, such an exchange would not result in a static force, but

rather in a scattering process. The exchange of two spin- 1
2

gravitons at a time is

found to give a force with the incorrect radial dependence. We can continue this

way and consider an exchange of a pair of gravitons between three masses (so

that any two objects also interact with a third one, which is far away and plays the

role of some effective average mass in the universe), but no satisfactory results

are obtained (Feynman et al 1995).

Thus, we limit our attention to bosons, particles with integer spin. The

most appropriate candidate for the graviton will be chosen on the basis of the

experimental properties of gravity.

7.1 Theories of long range forces

We begin with a review of some classical properties of massless fields of spin 0,

1 and 2, which will be useful in our attempts to construct a realistic theory of

gravity in flat spacetime (Feynman et al 1995, Kibble 1965, Van Dam 1974, Duff

1973).

Scalar field

The dynamical properties of free real scalar field of zero mass are defined by the

Lagrangian

LS = 1
2
∂µϕ∂

µϕ. (7.1)

The general sign of this expression is determined so as to have a positive

Hamiltonian. The choice of the overall numerical factor influences the

normalization of ϕ, and the reality of the field implies its neutrality.
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When the coupling to other fields (‘matter’) is introduced, the field ϕ obeys

the inhomogeneous Klein–Gordon equation:

Kϕ = J ≡ −δLI

δϕ
(7.2)

where K ≡ −�, and LI is the interaction Lagrangian. If we define the general

propagator (Green function) D by the equation

Kx D(x − y) = δ(x − y)

we can easily verify that the construct

ϕ(x) =
∫

d4 y D(x − y)J (y) (7.3)

is a particular solution of equation (7.2). If we take a solution D(x − y) which

obeys a specific boundary condition, then ϕ(x) satisfies the same boundary

condition. In the momentum space the propagator is given by

D(x) =
∫

d4k

(2π)4
D(k)eikx D(k) ≡ 1

k2
. (7.4)

We note that D(k) has poles at k0 = ±ωk , ωk ≡
√

k2, so that the Fourier

integral for D(x) is not well defined. Choosing different contours to avoid poles at

the real k0-axis, we get well-defined expressions, which obey specific boundary

conditions (the retarded propagator DR, the Feynman propagator DF, etc). For

classical radiation problems, the appropriate physical boundary conditions are

those of retardation.

If the source J is static, we can integrate over y0 in (7.3) and obtain

ϕ(x) =
∫

d3y D(x − y)J (y), where

D(x) =
∫

d3k

(2π)3

1

−k2
e−ikx = − 1

4π |x| ∇2 D(x) = δ(x).

For a field independent source we have LI = −Jϕ, and the interaction

Hamiltonian is HI = −
∫

d3x LI. Hence, the interaction energy of a source J1

with the field ϕ2 produced by J2, is given as

E(x0) =
∫

d3x J1(x)ϕ2(x) =
∫

d3x d4y J1(x)D(x − y)J2(y).

For static sources this energy is Coulombic.

Vector field

The free real vector field of mass µ = 0 is described by the Lagrangian

LV = − 1
4
(∂µϕν − ∂νϕµ)(∂

µϕν − ∂νϕµ) (7.5)
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which is invariant under gauge transformations

ϕµ → ϕ′µ = ϕµ + ∂µλ.

This invariance is directly related to the masslessness of the field. To clarify the

meaning of this statement we shall first discuss some relevant properties of the

massive vector field, and analyse the relation between massless theory and the

limiting case µ2 → 0 of massive theory.

Massive vector field. The Lagrangian for a free massive vector field,

L̃V = − 1
4
(∂µϕν − ∂νϕµ)(∂

µϕν − ∂νϕµ)+ 1
2
µ2ϕµϕ

µ (7.6)

yields the following field equation:

∂µ(∂
µϕν − ∂νϕµ)+ µ2ϕν = 0.

By differentiating this equation we obtain the extra condition ∂νϕ
ν = 0 as a

consistency condition of the field equation. Note that this is true as long as

µ2 �= 0. This extra condition simplifies the field equation,

(�+ µ2)ϕν = 0

and removes the spin-0 part of ϕν .

The spin structure of the vector field is conveniently described by introducing

polarization vectors eµ. Consider the plane wave,

ϕµ(x) = eµeik·x + e∗µe−ik·x

which obeys the field equation and the additional condition provided

k2 − µ2 = 0 k · e = 0.

The second requirement reduces the number of independent polarization vectors

to three: e
µ

(λ)
, λ = 1, 2, 3. Since k is timelike, the polarization vectors are

spacelike, and may be chosen to be orthonormal:

e∗(λ) · e(λ′) = −δλλ′.

The completeness relation for the basis (kν/µ, eν
(λ)

) reads:

3∑

λ=1

e
µ

(λ)
eν∗(λ) +

kµkν

µ2
= ηµν . (7.7)

Now, we take the momentum k along the z-axis, k = (k0, 0, 0, k3), and

choose e(1) and e(2) to be orthogonal to k:

e(1) = (0, 1, 0, 0) e(2) = (0, 0, 1, 0)

e(3) = (k3/µ, 0, 0, k0/µ).
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The distinction between different polarization vectors is clearly seen from their

behaviour with respect to rotations around the z-axis:

e′µ = Rµ
νeν (Rµ

ν) =




1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1


 .

Such a transformation leaves kµ invariant, and transforms e(λ) as follows:

e′(±1) = e±iθe(±1) e′(0) = e(0) (7.8)

where

e(±1) =
1√
2
(e(1) ± ie(2)) e(0) = e(3).

Thus, the vectors e(+1), e(0), e(−1) describe polarization states of unit spin, s = 1,

with spin projections s3 = +1, 0,−1.

When ϕµ is coupled to the matter fields, the field equation takes the form

∂µ(∂
µϕν − ∂νϕµ)+ µ2ϕν = J ν ≡ − δLI

δϕν
. (7.9a)

Using here the consistency requirement µ2∂ · ϕ = ∂ · J , we find

(�+ µ2)ϕµ =
(
ηµν + ∂µ∂ν

µ2

)
Jν . (7.9b)

A particular solution of this equation may be written as

ϕµ(x) =
∫

d4y Dµν(x − y)Jν(y) (7.10)

where Dµν is the propagator, the Fourier transform of which is

Dµν(k, µ2) = − Pµν

k2 − µ2
Pµν ≡ ηµν − kµkν/µ2 =

3∑

λ=1

e
µ

(λ)
eν∗(λ). (7.11)

The last equality follows from the completeness relation (7.7). In the rest frame

and for k2 = µ2, the tensor Pµν is the projector on the three-dimensional space,

ηµν − kµkν/µ2 =
{

0 for µ = 0 or ν = 0

−δαβ for µ = α, ν = β

hence, ϕµ in (7.10) has only three independent components.
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The massless vector field. The field equation for a massless vector field

coupled to matter has the form

Kµνϕ
ν = Jµ Kµν ≡ �ηµν − ∂µ∂ν . (7.12)

The consistency of this equation requires the conservation law ∂ · J = 0.

Owing to the gauge invariance, the field equation has no unique solution.

Indeed, gauge freedom reflects itself in the singularity of the kinetic operator Kµν :

Kµν∂
νλ = 0. Hence, we cannot define its inverse—the propagator—and every

solution of equation (7.12) is defined only up to a gauge transformation.

A unique solution of gauge invariant field equations may be found by

imposing convenient gauge conditions. The number of these conditions is equal to

the number of gauge parameters. For the vector field we can choose, for instance,

the covariant Lorentz gauge condition,

∂ · ϕ = 0 (7.13)

but now it cannot be deduced from the field equation. This condition does not fix

the gauge freedom completely: gauge transformations with parameters λ(x), such

that �λ(x) = 0, are still allowed. The field equation is significantly simplified,

�ϕµ = Jµ (7.14)

and can be solved for ϕµ. In the space of functions which obey the Lorentz

condition, the operator Kµν is not singular (Kµν = �ηµν), and we can define the

propagator as the inverse of Kµν :

Dµν = −ηµν D. (7.15)

The propagator with a given boundary condition defines a particular solution of

the field equation (7.14): ϕµ(x) =
∫

d4y Dµν(x − y)Jν(y).

Any gauge-fixing condition must be accessible, i.e. it must be possible

to choose the gauge parameter λ(x) which will transform an arbitrary field

configuration into a given, gauge fixed configuration. The Lorentz condition is

locally correct. Indeed, for any ϕµ we can choose the gauge parameter such that

∂ · ϕ +�λ = 0, whereupon ϕ′µ obeys the Lorentz gauge (7.13).

Instead of imposing a gauge condition, we can break the gauge symmetry

by adding a suitable term to the original Lagrangian. Although the form of the

propagator depends on this term, we can show that physical predictions of the

theory remain the same. With the gauge breaking term −α
2
(∂ ·ϕ)2, the Lagrangian

(7.5) and the related propagator are given as

L′
V = LV − α

2
(∂ · ϕ)2 D′

µν = − 1

k2

[
ηµν +

(
1

α
− 1

)
kµkν

k2

]
.

For α = 1 we get the propagator (7.15). Another (transverse) propagator is

defined in the limit α → ∞. The limit α → 0 is singular, since the additional

term in L′
V vanishes, and the Lagrangian is again gauge invariant.
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The plane wave

ϕµ = ǫµeik·x + ǫ∗µe−ik·x

is a vacuum solution of the field equation (7.14) in the Lorentz gauge if

k2 = 0 k · ǫ = 0. (7.16)

The second condition reduces the number of independent components of ǫµ from

four to three. Furthermore, without leaving the Lorentz gauge we have the

freedom of gauge transformations with the parameter λ which obeys �λ = 0.

Choosing

λ(x) = iηeik·x − iη∗e−ik·x

the residual gauge transformation may be written as

ǫ′µ = ǫµ − ηkµ.

Since η is an arbitrary parameter, only two of three components of ǫµ are

physically significant. This is a direct consequence of the gauge invariance.

If the plane wave is travelling in the z-direction, the condition k · ǫ = 0 gives

ǫ0 = ǫ3, and the choice η = ǫ3/k3 yields ǫ3 = 0. Thus, there are only two

polarization vectors that carry physical significance:

ǫ(1) = (0, 1, 0, 0) ǫ(2) = (0, 0, 1, 0).

Considering now the action of rotations around the z-axis, we deduce that ǫ(±1)

are the polarization states with helicities λ = ±1, while the vector ǫ(3) =
(1, 0, 0, 1) has no physical relevance (in contrast to the case µ2 �= 0), since it

may be transformed to zero by a gauge transformation.

The completeness relation takes a new form, different from (7.7), since now

µ2 = 0. Let us introduce the vector k̄ = (k0,−k), which obeys, for k2 = 0, the

conditions

k̄2 = 0 k̄ · ǫ(1) = k̄ · ǫ(2) = 0.

The vectors k + k̄ and k − k̄ are timelike and spacelike, respectively, and the

completeness relation is given as

2∑

λ=1

ǫ
µ

(λ)
ǫν∗(λ) +

kµk̄ν + k̄µkν

k · k̄
= ηµν . (7.17)

Can the massless theory be understood as a limiting case of the massive

theory? The answer to this question is not so direct. In the limit µ2 → 0 the

Lagrangian (7.6) becomes gauge invariant, and the propagator becomes singular.

What is then the meaning of this limit? If we consider the massive vector field

coupled to a conserved current (kµ Jµ = 0), the limiting case µ2 → 0 represents

a sensible theory. The interaction between two currents J1 and J2 is described by

the amplitude,

M21 = J
µ

2 DE
µν(k, µ

2)J ν
1 .
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Here, DE is the effective propagator which is obtained from the expression

(7.11) by discarding all the terms proportional to kν . When µ2 → 0 the

effective propagator is the same as the propagator (7.15) of massless theory. This

result is related to the fact that the third polarization state of the massive theory

e(3) = (k3/µ, 0, 0, k0/µ) is decoupled from the conserved current Jµ in the limit

µ2 → 0.

The symmetric tensor field

We now wish to find a Lagrangian for the massless symmetric tensor field ϕµν ,

requiring from the very beginning invariance under the gauge transformations

ϕµν → ϕ′µν = ϕµν + ∂µλν + ∂νλµ. (7.18)

We begin by writing down all the possible quadratic terms that can be present in

a free Lagrangian:

L1 = ϕµν,σϕ
µν,σ

L2 = ϕµν,σϕ
µσ,ν

L3 = ϕµν
,λϕµσ

,σ L4 = ϕµλ
,λϕ,µ

L5 = ϕ,µϕ
,µ

where ϕ ≡ ϕν
ν . Not all of these invariants are necessary: L3 can be converted to

L2 by integration by parts, leaving only four independent terms. Thus, we assume

a Lagrangian of the form

LT = aL1 + bL2 + cL4 + dL5.

Varying LT with respect to ϕµν we obtain the field equations:

−2a�ϕµν − b(ϕµσ,ν
σ + ϕνσ,µ

σ )− c(ϕ,µν + ηµνϕλσ
,λσ )− 2dηµν�ϕ = 0.

We now perform a gauge transformation, and the requirement of gauge invariance

gives

(2a + b)�(λµ,ν + λν,µ)+ (b + c)2λσ,µν
σ + (c + 2d)2ηµν�λσ

,σ = 0.

Choosing a general scale in LT such that a = 1/2, we obtain b = −1, c = 1,

d = −1/2, and the Lagrangian takes the final form (Fierz and Pauli 1939,

Feynman et al 1995).

LT = 1
2
ϕµν,σϕ

µν,σ − ϕµν,σϕ
µσ,ν + ϕµσ

,σϕ,µ − 1
2
ϕ,νϕ

,ν . (7.19a)

It is useful to introduce another set of variables,

ϕ̄µν = ϕµν − 1
2
ηµνϕ
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which simplifies the form of LT:

LT = 1
2
ϕµν,σϕ

µν,σ − ϕ̄µν,σ ϕ̄
µσ,ν − 1

4
ϕ̄,ν ϕ̄

,ν . (7.19b)

If ϕµν is coupled to matter, the field equations are of the form

Kµν,σρϕ
σρ = Jµν ≡ − δLI

δϕµν

Kµν,σρ ≡ −ηµ(σ ηνρ)�+ ηµ(σ ∂ν∂ρ) + ην(σ ∂µ∂ρ)

−ησρ∂µ∂ν − ηµν(∂σ ∂ρ − ησρ�).

(7.20)

They are consistent only if the current is conserved: ∂µ Jµν = 0. Owing to gauge

invariance the operator K is singular (Kµν,σρ∂
σλρ = 0) and cannot be inverted,

so that there is no unique solution of the field equations.

We may choose the covariant gauge condition for ϕµν ,

∂µϕ̄
µν ≡ ∂µϕ

µν − 1
2
∂νϕ = 0 (7.21)

called the Hilbert gauge. This condition, like Lorentz’s, is locally accessible. On

the other hand, the condition ∂µϕ
µν = 0, which seems at first sight to be as natural

as (7.21), is actually not a correct gauge choice (Kibble 1965).

The Hilbert gauge considerably simplifies the field equations,

− 1
2
(ηµληνρ + ηµρηνλ − ηµνηλρ)�ϕ

λρ = Jµν (7.22)

and leads to the propagator

Dµν,λρ = 1
2
(ηµληνρ + ηνληµρ − ηµνηλρ)D. (7.23)

In order to overcome the difficulty with the singularity of K , it is also

possible to modify the Lagrangian LT by adding a gauge-breaking term. If we

choose, for instance, L′
T = LT − α

2
(∂µϕ̄

µν)2, the corresponding propagator for

α = 1 goes over into expression (7.23).

A particular solution of equation (7.22) is obtained using a well-defined

propagator:

ϕµν(x) =
∫

d4 y Dµν,λρ(x − y)Jλρ(y).

If the current Jλρ does not depend on ϕµν , the interaction energy between currents

1 and 2 is

E(x0) =
∫

d3x d4y J
µν

1 (x)Dµν,λρ(x − y)J
λρ

2 (y).
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Polarization states. The plane wave

ϕµν = ǫµνeik·x + ǫ∗µνe−ik·x

satisfies the field equations in vacuum and the Hilbert gauge if

k2 = 0 (7.24a)

kµ(ǫµν − 1
2
ηµνǫλ

λ) = 0. (7.24b)

Four relations (7.24b) lower the number of ten independent components of ǫµν
to six, but of these six only two are physically significant. Indeed, the condition

(7.24b) allows the residual gauge transformations

ǫ′µν = ǫµν − kµην − kνηµ

with four arbitrary parameters ην , so the number of physically significant

polarization components is reduced to 6 − 4 = 2.

When the plane wave is travelling along the z-axis, the conditions (7.24b)

can be used to express ǫ01, ǫ02, ǫ03 and ǫ22 in terms of the other six components,

ǫ01 = −ǫ31 ǫ03 = − 1
2
(ǫ33 + ǫ00)

ǫ02 = −ǫ32 ǫ22 = −ǫ11

while a suitable choice of ην leads to

ǫ′13 = ǫ′23 = ǫ′33 = ǫ′00 = 0.

Thus, only ǫ11 = −ǫ22 and ǫ12 have a definite physical significance, which

implies that there are only two physical polarization states (Van Dam 1974),

ǫ(1) =
1√
2




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 ǫ(2) =

1√
2




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


 . (7.25)

Here, ǫ(λ) denotes the matrix (ǫ
µν

(λ)
).

Under rotations around the z-axis, ǫ′µν = Rµ
σ Rν

ρǫ
σρ , we find:

ǫ′(±2) = e±2iθǫ(±2) ǫ(±2) ≡
1√
2
(ǫ(1) ± iǫ(2)). (7.26)

Thus, ǫ(±2) are polarization states with helicities λ = ±2.

Currents. The currents carrying helicities λ = ±2 are given as

J(±2) = ǫ
µν

(±2) Jµν = 1
2
(J11 − J22 ± 2iJ12).
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Their interaction has the form

∑

λ=±2

J ′
(λ) J ∗

(λ) = 1
2
(J ′

11 − J ′
22)(J ∗

11 − J ∗
22)+ 2J ′

12 J ∗
12

= (J ′
11 J ∗

11 + J ′
22 J ∗

22 + 2J ′
12 J ∗

12)−
1
2
(J ′

11 + J ′
22)(J ∗

11 + J ∗
22).

(7.27)

Since, on the other hand,

∑

λ=±2

J ′
(λ)J ∗

(λ) = J ′
µν

( ∑

λ=±2

ǫ
µν

(λ)
ǫ
σρ∗
(λ)

)
J ∗
σρ ≡ J ′

µν(
µν,σρ J ∗

σρ

we easily find the expression for the polarization sum (Schwinger 1970):

(µν,σρ =
{

1
2
(ηµσηνρ + ηµρηνσ )− 1

2
ηµνησρ for µ, ν, σ, ρ �= 0

0 at least one index = 0 or 3.

For general momentum k the result is obtained from the first line by the

replacement ηµν → (µν ≡ ηµν − (kµk̄ν + k̄µkν)/k · k̄:

(µν,σρ = 1
2
(ηµσηνρ + ηµρηνσ )− 1

2
ηµνησρ

+ k-dependent terms. (7.28)

The k-dependent terms may be discarded when we consider the interaction

between conserved currents.

The field equation (7.22) can be easily brought to the form

−�ϕµν = Jµν − 1
2
ηµν Jλ

λ ≡ J̄µν . (7.29)

In order to clarify the role of the second term on the right-hand side, let us consider

the equation

−�ϕµν = Jµν .

If we choose a particular solution ϕµν = Jµν/k2, the interaction between ϕµν

and J ′
µν may be written as

J ′
µνϕ

µν = J ′
µν

1

k2
Jµν .

In the frame where k = (k0, 0, 0, k3) the current conservation reads k0 J0ν =
−k3 J3ν . When we use this relation to eliminate all the terms with index 3

on the right-hand side, the interaction amplitude separates into two parts: an

instantaneous part, proportional to 1/(k3)2, and a retarded part, proportional to

1/k2. For the retarded part we get the form

1

k2
(J ′

11 J11 + J ′
22 J22 + 2J ′

12 J12)
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which represents the sum of three independent terms or three polarizations. To

eliminate the spin-0 part we must add a term

−1

2
J ′
µ
µ 1

k2
Jν

ν

whereupon the retarded term reduces to the form (7.27), containing only a sum of

two polarizations. Adding this term is equivalent to a modification of the starting

equation,

−�ϕµν = Jµν − 1
2
ηµν Jλ

λ

which becomes the same as (7.29). Thus, we see that the field equation (7.29)

really describe massless tensor field of helicity λ = ±2.

The sign of the static interaction

It is interesting to observe the alternating change of signs in expressions (7.4),

(7.15) and (7.23), defining the propagators of massless fields with spins 0, 1

and 2, respectively. These signs come from the signs of the Lagrangians (7.1),

(7.5) and (7.19), and are determined by the requirement of the positivity of the

respective Hamiltonians. They have an important influence on the structure of

static interactions between particles. In the static case it is only the quantity J

and the components J 0 and J 00 that do not vanish (an analogous property holds

for fields of arbitrary spin). This follows from the fact that the only vector we can

use to construct the currents is pµ. The energy of the static interaction between

particles 1 and 2 takes the form

J1 D J2 J
µ

1 Dµν J ν
2 J

µν

1 Dµν,λρ J
λρ

2

with all indices equal to zero. It is positive or negative depending on whether the

spin of the field is even or odd.

The static force between like particles is, therefore, attractive only for

gravitons of even spin.

This is the main reason for rejecting the spin-1 field as a candidate for the

description of gravity.

At this point we wish to make a comment on the possibility of the existence

of negative masses. The interaction between a large positive mass M and a small

negative mass m would have the opposite sign of the static interaction (force).

However, in Newton’s theory we have

−mg
GM

x2
x̂ = mi ẍ

so that if the PE holds (mi = mg), the acceleration remains the same,

irrespectively of the change of sign of the force. In other words, Newton’s apple
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would fall on Earth even if it had negative mass. Gravitational repulsion could

occur in the case mi/mg < 0. There existed an idea that mg < 0 for antiparticles,

which would violate the PE (since mi > 0). However, all the experimental

evidence shows that matter and antimatter behave identically with respect to the

gravitational interaction. For an idea of antigravity in the context of supergravity,

see Scherk (1979).

7.2 Attempts to build a realistic theory

Previous arguments on the possible nature of the graviton indicate that

the mass of the graviton is zero, as follows from the long range of the

gravitational interaction; and

the spin of the graviton is even, otherwise the static gravitational force would

have the wrong sign.

After having discussed relevant classical properties of massless fields of spin 0

and 2, we might now continue to study field theories with higher spins s >

2. However, there are general arguments from covariant quantum field theory

(appendix G) that lead to the following conclusion:

massless fields of spin s > 2 are not suitable candidates for describing

gravity.

Thus, for instance, the interaction energy of a test particle of spin-3 with a static

point like source has the form that violates the PE (Van Dam 1974). Hence,

massless fields of spin 0 or 2 are the only candidates for describing the

graviton.

In order to find out the most realistic possibility we shall now calculate some

observational consequences of these theories. The possibility of a small but finite

graviton mass will also be discussed (Van Dam and Veltman 1970, Boulware and

Deser 1972).

Scalar gravitational field

We begin our discussion with a scalar theory of gravity,

L = LS + LM + LI (7.30)

where LS is defined by equation (7.1), LM describes free matter and LI is the

interaction term,

LI = −λϕT (7.31a)

with T being the trace of the matter energy–momentum tensor.
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Since T = 0 for the electromagnetic field, the scalar gravity does not interact

with electromagnetism. As a consequence, this theory predicts that gravity does

not affect the motion of an electromagnetic signal: there is no bending of light

by the sun, nor the time delay of radar echo, in contradiction to the experimental

data.

1. We assume that matter is described as a single particle with world line

zµ = zµ(s):

IM =
∫

d4x LM(x) = −M

∫
ds (7.31b)

Tµν(x) = M

∫
dzµ

ds

dzν

ds
δ(x − z(s)) ds (7.31c)

where ds2 = ηµν dzµ dzν , and M is the mass of the particle.

Let us find a field generated by a static particle. From the form of Tµν it

follows T (x) = M
∫
δ(x − z(s)) ds, and the integration over z0(s) = s yields

T (x) = Mδ(x). The field equation for ϕ, −�ϕ = λT , has a solution

ϕ(x) = λM D(x) = − λ

4π

M

r
. (7.32)

The interaction energy of a test particle of mass m with the static field is given by

E(x0) = λ

∫
d3x T ′(x)ϕ(x) = − λ2

4π

M

r

m

u0
(7.33)

where u0 = dx0/ds. For a slowly moving test particle we have u0 ≈ 1, so that

the previous expression represents Newton’s law if λ2/4π = G.

The quantity λ is a universal constant, in agreement with the PE.

The gravitational redshift may be derived from the law of conservation of

energy, applied to a photon in the context of Newton’s law of gravity. Consider

an atom in the static gravitational field (7.32), at a distance r from the pointlike

source. When r → ∞, the energy of the ground state is E0, the energy of the first

excited state is E1, and the energy of the photon emitted in the transition between

these two states is given by 2πν0 = E1−E0. For finite r the energy of the ground

state is E0(1− 2MG/r), and similarly for the excited state. Hence, the energy of

the emitted photon, as measured by an observer at infinity, is given by

2πν = (E1 − E0)(1 − GM/r) = 2πν0(1 − GM/r). (7.34)

The redshift predicted by this formula has been verified experimentally with an

accuracy of 1% (Misner et al 1970).

In order to find the equation of motion of a test particle in the static field

(7.32), we write the part of the action depending on zµ(s) as

IMI = −M

∫
[1 + λϕ(z)] ds. (7.35)
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Introducing

gµν = (1 + λϕ)2ηµν (7.36)

this expression can be geometrically interpreted as the action for a point particle

in a spacetime with metric gµν . Varying with respect to z(s),

d

ds

(
gµν

dzν

ds

)
= 1

2

∂gλσ

∂zµ

dzλ

ds

dzσ

ds

we obtain the geodesic equation in Riemann space with metric gµν .

2. Now we treat the gravitational field (7.32) as the field of our sun, and calculate

the precession of perihelia of planetary orbits using the Hamilton–Jacobi equation

(Landau and Lifshitz 1975)

gµν ∂ I

∂xµ

∂ I

∂xν
− m2 = 0 (7.37)

where I is the action, and m the mass of the planet we are studying. The

metric (7.36) is static and spherically symmetric, and in spherical coordinates

xµ = (t, r, θ, φ) it does not depend on t and φ. As a consequence, we can derive,

from the geodesic equations, two constants of the motion: the energy E and the

angular momentum L:

E = (1 + λϕ)2 dt

ds
L = (1 + λϕ)2r2 dφ

ds
. (7.38)

The motion is restricted to a plane, which we choose to be the equatorial plane

θ = π/2, whereupon the Hamilton–Jacobi equation takes the form

(1 + λϕ)−2

[(
∂ I

∂ t

)2

−
(
∂ I

∂r

)2

− 1

r2

(
∂ I

∂φ

)2
]
− m2 = 0.

Looking for a solution of this equation in the form

I = −Et + Lφ + Ir (7.39)

we find that

Ir =
∫
[E2 − L2/r2 − m2(1 + λϕ)2]1/2 dr

=
∫ [

E2 − m2 + 2GMm2

r
− 1

r2
(L2 + G2 M2m2)

]1/2

dr.

The change of the coefficient multiplying the factor r−2 (with respect to Newton’s

value L2) leads to a systematic precession of planetary orbits. Since the equation

of an orbit is φ + ∂ Ir/∂L = constant, the total change in φ per revolution is

�φ = − ∂

∂L
�Ir
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where �Ir is the related change in Ir . Expanding Ir in powers of the small

parameter η = G2 M2m2 we find that

�Ir = �I (0)r + η

2L

∂

∂L
�I (0)r

where I
(0)
r corresponds to the elliptical motion. Differentiation of this equation

with respect to L, with −∂�I
(0)
r /∂L = �φ(0) = 2π , leads to

�φ = 2π − η

L2
π.

The second term gives the value of the planetary precession per revolution,

δφ = −G2 M2m2

L2
π (7.40)

and it is equal to −1/6 times the prediction of GR.

Thus, the scalar theory is not satisfying, as it leads to no bending of light and

no radar echo delay, and the perihelion precession of Mercury’s orbit does not

agree with observations.

Symmetric tensor gravitational field

The tensor theory of gravity is based on

L = LT + LM + LI (7.41)

where LT is the Lagrangian (7.19), and the interaction term is given as

LI = −λϕµνTµν . (7.42)

1. The field equations for ϕµν in the Hilbert gauge have the form (7.22), with

the replacement Jµν → λTµν . A particular solution for ϕµν is given by

ϕµν(x) = λ

∫
d4x ′ Dµν,λρ(x − x ′)Tλρ(x ′)

= λ

∫
d4x ′ D(x − x ′)Tµν(x ′)

where Tµν = Tµν − 1
2
ηµνT . For a static source, Tµν does not depend on x ′0 and

Tµα = T αβ = 0, so that

ϕ00(x) = λ

∫
d3x ′ D(x − x ′) 1

2
T (x ′)

ϕαβ(x) = −ηαβϕ00(x)

ϕµ0(x) = 0.

(7.43a)
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If the source is a single particle of mass M , T (x) = Mδ(x), then

ϕ00(x) = − λ

8π

M

r
. (7.43b)

The interaction energy of a test particle of mass m with the static field is

E(x0) = λ

∫
d3x T ′

µν(x)ϕ
µν(x) = − λ2

4π

M

r

(
p0 −

m2

2 p0

)
. (7.44)

For a non-relativistic motion p0 ≈ m, and we obtain Newton’s law provided that

λ2/8π = G.

The universality of λ is in accordance with the PE, and the correct redshift

formula is obtained from Newton’s law, as before.

The part of the action containing matter variables can be written as

IMI = −m

∫
[ηµν + λϕµν(z)]

dzµ

ds

dzν

ds
ds

= −m

∫
[(ηµν + 2λϕµν) dzµ dzν]1/2 +O(λ2).

(7.45)

If we introduce the quantity

gµν = ηµν + 2λϕµν (7.46)

the matter equations of motion become geodesic equations in Riemann space with

metric gµν .

2. To calculate the precession of planetary orbits we again use the Hamilton–

Jacobi equation (7.37), with the metric produced by a static pointlike source. It

has the form, for θ = π/2,

(1 − rg/r)−1

(
∂ I

∂ t

)2

− (1 + rg/r)−1

[(
∂ I

∂r

)2

+ 1

r2

(
∂ I

∂φ

)2
]
− m2 = 0

where rg = 2GM . Searching for I in the form (7.39) we find that

Ir =
∫

dr

[
1 + rg/r

1 − rg/r
E2 − L2

r2
− m2(1 + rg/r)

]1/2

.

Expanding Ir in powers of rg/r we can identify the term of the type r−2 as

− 1

r2
(L2 − 2m2r2

g ) = − 1

r2
(L2 − 8G2m2 M2).
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This leads directly to the value of the planetary perihelion precession per

revolution,

δφ = 8G2M2m2

L2
π (7.47)

which is 4/3 of the result from GR, and does not agree with the observational data

(for Mercury, δφ = 43.03′′/century).

3. The motion of light signals in the gravitational field (7.43) can be described

by the Hamilton–Jacobi equation for an action ψ ,

gµν ∂ψ

∂xµ

∂ψ

∂xν
= 0 (7.48)

which is deduced from equation (7.37) in the limit m2 → 0. The radial part of

the action ψr follows directly from Ir in the same limit:

ψr =
∫

dr

(
1 + rg/r

1 − rg/r
ω2 − L2

r2

)1/2

where the energy of the light signal is denoted by ω.

The time dependence r = r(t) for the trajectory of a light ray is defined by

the relation −t + ∂ψr/∂ω = constant, and has the form

t =
∫

dr
1 + rg/r

1 − rg/r

(
1 + rg/r

1 − rg/r
− ρ2

r2

)−1/2

where ρ = L/ω. Furthermore, the radial velocity dr/dt must vanish at the

distance r = b of closest approach to the sun, so that

ρ2 = b2 1 + rg/b

1 − rg/b
.

Thus, ρ is equal to b only in the lowest order approximation in rg/b.

(i) We first study the deflection of light in the field of the sun. At great

distances we can ignore the gravitational interaction in ψr (rg → 0), and the

equation of motion, φ + ∂ψr/∂L = constant, predicts motion on a straight line

r = ρ/ cosφ, passing at distance r = ρ from the sun (figure 7.2).

In the first approximation in rg/b the radial action is given by

ψr = ω

∫
dr

(
1 + 2rg

r
− ρ2

r2

)1/2

.

Expanding the integrand in powers of rg/r gives

ψr ≃ ψ(0)
r + ωrg Arcosh(r/ρ)
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R

b

�

Figure 7.2. The motion of the electromagnetic signal in the central gravitational field.

where ψ
(0)
r corresponds to a rectilinear motion of the light ray:

ψ(0)
r = ω

∫
dr

√
1 − ρ2/r2 = ω

√
r2 − ρ2 − ωρ Arccos(ρ/r).

The total change in ψr as the light ray goes from a distance r = R (φ < 0) to the

point r = b, and then to r = R (φ > 0), is given by

�ψr = �ψ(0)
r + 2ωrg Arcosh(R/ρ).

The related change in φ is obtained by differentiating �ψr with respect to

L = ρω:

�φ = − ∂

∂L
�ψr = �φ(0) + 2rg R

ρ
√

R2 − ρ2

where �φ(0) = −∂�ψ
(0)
r /∂L. In the limit R → ∞ we recover the same result

as in GR:

�φ = π + 2rg

ρ
.

Since �φ > π , the trajectory is bent toward the sun by an angle

δφ = 2rg

b
= 4MG

b
(7.49)

where we used ρ ≈ b. For a light ray just touching the sun’s disc (b = RS), the

deflection is δφ = 1.75′′, in agreement with observations.

(ii) We now want to calculate the time interval needed for a radar signal to

travel from r = b to r = R (φ > 0) (figure 7.2). From the change

�ψr = �ψ(0)
r + ωrg Arcosh(R/ρ)
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the related time interval is given as

�t = ∂

∂ω
�ψr =

∂

∂ω
�ψ(0)

r + rg Arcosh(R/ρ)+ rg
R − ρ√
R2 − ρ2

= �t(0) + δt .

Here, the term �t(0) =
√

R2 − ρ2 corresponds to a rectilinear motion of the

radar signal, and the remaining terms represent the gravitational delay δt . A direct

comparison with Einstein’s theory gives

δt = δt E + 1

2
rg

(
R − ρ

R + ρ

)1/2

. (7.50)

When we consider a radar signal travelling from Earth to the sun (the distance

R1), and then to Mercury (or some other planet, at the distance R2 from the sun),

the complete delay is given as (ρ ≈ b)

δt1 + δt2 = δtE
1 + δtE

2 + 1

2
rg

[(
R1 − b

R1 + b

)1/2

+
(

R2 − b

R2 + b

)1/2
]
.

Einstein’s part is at a maximum when Mercury is ‘behind’ the sun, and the radar

signal just grazes the sun (b = RS). The total round-trip excess in this case is

72 km ≃ 240 µs, and it agrees with the radar data (although the realization and

interpretation of these experiments is extraordinarily difficult). The remaining

two terms are just a small correction (b ≪ R1, R2), which is of no significance

for the basic conclusion.

Can the graviton have a mass?

The previous results show that a massless field of spin 2 describes standard

gravitational effects with significant success. Can a graviton have a very small but

still finite mass µ? We shall see that this is not possible without a notable violation

of the agreement with experiments. The reason for this somewhat unexpected

result lies in the fact that the propagator of the massive graviton differs from the

propagator of massless graviton even in the limit µ2 → 0 (Van Dam and Veltman

1970, Boulware and Deser 1972, Schwinger 1970).

The theory of massive field of spin 2 is defined by the Lagrangian

L = LT − 1
2
µ2(ϕµνϕ

µν − ϕ2). (7.51)

Note the form of the massive term, which contains not only ϕµνϕ
µν , but also ϕ2.

The field equation has the form

(−�−µ2)ϕµν +ϕµρ,ν
ρ +ϕνρ,µ

ρ −ϕ,µν − ηµν[ϕσρ,σρ + (−�−µ2)ϕ] = λTµν .

(7.52a)
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Taking the trace and differentiating with respect to xµ we find that

ϕ = λ

3µ2

(
T − 2

µ2
Tσρ

,σρ

)

∂µϕµν = − λ

µ2 ∂
µTµν + λ

3µ2 ∂ν

(
T − 2

µ2 Tσρ
,σρ

)
.

(7.52b)

The field ϕµν in vacuum satisfies the field equations characterizing the massive

field of spin 2,

(−�− µ2)ϕµν = 0 ∂µϕµν = 0 ϕ = 0

which justifies the form of the Lagrangian (7.51).

Using the expressions (7.52b) the field equation becomes

(−�− µ2)ϕµν = λTµν +
λ

µ2
(∂µTλν

,λ + ∂νTλµ
,λ)

− λ

µ2
ηµνTσρ

,σρ − λ

3

(
ηµν +

∂µ∂ν

µ2

)(
T − 2

µ2
Tσρ

,σρ

)
.

Going now to momentum space, we find a solution

ϕµν(k) = Dµν,λρ(k, µ
2)λT λρ (7.53a)

where D(k, µ2) is the propagator of the massive field of spin 2:

Dµν,λρ(k, µ
2) = 1

k2 − µ2
[ 1

2
(PµλPνρ + Pµρ Pνλ)− 1

3
Pµν Pλρ]. (7.53b)

Since Pµν is the projector on the three-dimensional space of spin-1 states, the

field ϕµν has six independent components, and the condition ϕ = 0 for k2 = µ2

reduces that number to five, which corresponds to the massive field of spin 2.

Polarization states. A plane wave of momentum k,

ϕµν(x) = eµνeik·x + e∗µνe−ik·x

obeys the field equations in vacuum if

k2 − µ2 = 0 kµeµν = 0 ηµνeµν = 0. (7.54)

The last two relations in the rest frame take the form

e0ν = 0 e11 + e22 + e33 = 0.
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Due to these five conditions there is only 10 − 5 = 5 independent tensors e
(λ)
µν ,

and they can be chosen so as to be orthonormal (e
(λ)
µν e(λ

′)µν = δλλ
′
):

e(1) =
1√
2




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 e(2) =

1√
2




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




e(3) =
1√
2




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0


 e(4) =

1√
2




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0


 (7.55)

e(0) =
√

2

3




0 0 0 0

0 1/2 0 0

0 0 1/2 0

0 0 0 −1




where e(λ) denotes the matrix (e
µν

(λ)
).

Under rotations around the z-axis we obtain the transformation rules

e′(±2) = e±2iθe(±2) e′(±1) = e±iθe(±1) e′(0) = e(0) (7.56)

where e(±2), e(±1) and e(0) are the polarization states of massive field of spin 2,

with spin projections s3 = ±2,±1 and 0,

e(±2) =
1√
2
(e(1) ± ie(2)) e(±1) =

1√
2
(e(3) ± ie(4)).

Currents. Now we introduce currents with spin projections s3 = ±1,

T(±1) ≡ e
µν

(±1)Tµν =
√

2(T13 ± iT23)

with an interaction between them

∑

λ=±1

T ′
(λ)T

∗
(λ) = 2

√
2(T ′

13T13 + T ′
23T23).

In the case of conserved currents the components T13 and T23 can be expressed in

terms of T10 and T20 (k
0T0ν = −k3T3ν), so that the previous expression does not

contribute to the retarded interaction.

Similarly, the current with s3 = 0 is

T(0) ≡ e
µν

(0)Tµν =
√

2
3
[ 1

2
(T11 + T22)− T13]

T ′
(0)T

∗
(0) = 2

3
[ 1

4
(T ′

11 + T ′
22)(T11 + T22)+ T ′

13T13

− 1
2
(T ′

11 + T ′
22)T13 − 1

2
T ′

13(T11 + T22)]
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where the first term corresponds to the retarded interaction,

1
6
(T ′

11 + T ′
22)(T11 + T22). (7.57)

The polarization sum follows from the equality

∑

λ

T ′
(λ)T

∗
(λ) = T ′

µν

( 4∑

λ=0

e
µν

(λ)
e
σρ∗
(λ)

)
Tσρ ≡ T ′

µν Pµν,σρTσρ

where the left-hand side is calculated using equations (7.28) and (7.57), that

describe the contributions of states with s3 = ±2 and 0. The result is

Pµν,σρ =
{

1
2
(ηµσηνρ + ηµρηνσ )− 1

3
ηµνησρ for µ, ν, σ, ρ �= 0, 3;

0 at least one index = 0 or 3.

This is the result in the rest frame. In the case of a general momentum, the result

follows from the first line by the replacement ηµν → Pµν :

Pµν,σρ = 1
2
(ηµσ ηνρ + ηµρηνσ )− 1

3
ηµνησρ

+ k-dependent terms. (7.58)

Mass discontinuity. How can we relate this theory to the case µ2 = 0? It is

clear that the propagator of the massive field is not defined in the limit µ2 → 0,

since then the Lagrangian becomes gauge invariant. But, if the massive field is

coupled to a conserved current, kµTµν = 0 (which is necessary if the limiting case

is to be consistent), then the amplitude of the interaction between two currents has

the form

M21 = T
µν

2 DE
µν,σρ(k, µ

2)T
σρ

1

where DE is the effective propagator obtained from (7.53b) by ignoring all terms

proportional to kµ:

DE
µν,σρ(k, µ

2) = 1

k2 − µ2
[ 1

2
(ηµσ ηνρ + ηµρηνσ )− 1

3
ηµνησρ ]. (7.59)

This propagator differs from the effective propagator of the massless theory

DE
µν,σρ(k) =

1

k2
[ 1

2
(ηµσηνρ + ηµρηνσ )− 1

2
ηµνησρ]

even for µ2 = 0.

What is the origin of this discontinuity in the graviton mass? In order to

explain this phenomenon, let us consider what happens with the massive graviton

for µ2 → 0. The massive graviton has five degrees of freedom. When µ2 → 0 it

gives massless particles of helicities λ = ±2,±1 and 0. While particles with

λ = ±1 are decoupled from the conserved current, this is not the case with
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the scalar particle. Indeed, it is the contribution of the scalar particle which

changes the propagator of the massless graviton just so as to produce the effective

propagator of the massive graviton in the limit µ2 = 0:

− 1
2
ηµνησρ + 1

6
ηµνησρ = − 1

3
ηµνησρ .

It is evident that experimental consequences of the massless theory and the theory

with an arbitrarily small graviton mass differ in a discrete way.

Experimental predictions. Let us now calculate the interaction constant of the

massive theory by demanding that the static low-energy limit gives Newton’s law.

The interaction energy of the massless theory is

E = λ2T ′
00

1

k2
(1 − 1

2
)T00.

Using equation (7.53) we find an analogous expression for the massive theory:

E = λ2(µ)T ′
00

1

k2
(1 − 1

3
)T00.

If λ2 is determined correctly (λ2 = 8πG), then we must have

λ2(µ) = 3
4
λ2 (7.60)

if the massive theory is to have a good Newton limit. But with this result for

λ2(µ) other experimental consequences become incorrect.

When we calculated these consequences in the massless theory, the sun was

treated as a static pointlike source of the gravitational field λ(µ)ϕµν , given by

equation (7.43). In the massive theory the field λ(µ)ϕµν can be easily calculated

from the expression (7.53):

λ(µ)ϕ00 = −2

3

λ2(µ)

4π

M

r

λ(µ)ϕαβ = ηαβ
1

3

λ2(µ)

4π

M

r
.

(7.61)

While λ(µ)ϕ00 has the same value as in the massless theory as a consequence

of (7.60), λ(µ)ϕαβ differs by a factor 1
2
. The calculation of the precession of

planetary orbits in the massive theory gives two-thirds of the result of the massless

theory.

The results for light deflection and radar echo delay can be obtained in

a simpler way. Consider the interaction of an electromagnetic signal with the

sun. Since the trace of the electromagnetic energy–momentum tensor vanishes,

the last term in the effective propagator DE(k, µ2) does not contribute to the

interaction amplitude. Since the same is true for the last term in the propagator



Attempts to build a realistic theory 219

of the massless field, the difference in interaction amplitudes stems only from the

different coupling constants. Hence, the ratio of the amplitudes is

M21(µ
2)/M21 = λ2(µ)/λ2 = 3

4
.

The massive graviton produces light deflection by the sun and radar echo delay

which are by factor 3
4

different from the corresponding predictions of the massless

theory.

These results strongly indicate that the existence of an arbitrarily small but

finite mass of the graviton of spin 2 is excluded by the observations.

The consistency problem

Previous considerations show that the graviton is most successfully described as a

massless particle of spin-2. In studying various alternatives we neglected to check

the internal consistency of the theory.

Our theory of gravity (7.41) contains the interactionLI = −λϕµνTµν , where

Tµν is the energy–momentum tensor of matter. We may immediately ask the

following question: Why does the energy–momentum not include a contribution

from the gravitational field itself? We shall see that the suggestion contained

in this question is not only possible, but also necessary for a self-consistent

formulation of the theory.

Consider the field equation Kµν,σρϕ
σρ = λTµν . Since the operator Kµν,σρ

is singular, taking the derivative of this equation gives the consistency condition

∂µTµν = 0 (7.62)

which implies a free, rectilinear motion for the particle (on the basis of the

momentum conservation). It is clear that this condition is not fulfilled for the

interacting system of matter and gravity. Indeed, from the expression (7.31c) for

Tµν we find

∂µTµν(x) = M

∫
d2zν

ds2
δ(x − z(s)) ds.

Then, using the equation of motion for matter,

d2zν

ds2
= − 1

2
gνσ (gσλ,ρ + gσρ,λ − gλρ,σ )

dzλ

ds

dzρ

ds

where gµν = ηmν + 2λϕµν , we obtain

(ηνσ + 2λϕνσ )∂µTµν = −[λρ, σ ]T λρ

[λρ, σ ] ≡ λ(ϕσλ,ρ + ϕσρ,λ − ϕλρ,σ ).
(7.63)

Thus, condition (7.62) is violated to order λ.

In further exposition we shall attempt to correct this inconsistency by

replacing the matter energy–momentum with the complete energy–momentum for

the whole system matter + gravity. The consistency condition will be satisfied as

a consequence of the conservation of the total energy–momentum.
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Exercises

1. Show that the three-dimensional propagator of scalar field theory has the

form

D(x) = − 1

4π |x| .

2. Show that Pµν = ηµν − kµkν/µ
2 and P⊥

µν = kµkν/µ
2 are projectors on

the massive states of spin 1 and 0, respectively, i.e. that for k2 = µ2 the

following relations hold:

Pµσ Pσν = Pµ
ν P⊥

µσ P⊥σν = P⊥ν
µ

Pµν + P⊥
µν = ηµν P⊥

µσ Pσν = 0

ηµν Pµν = 3 ηµν P⊥
µν = 1.

3. The quantities(µν = ηµν−(kµk̄ν+kν k̄µ)/k · k̄, (⊥
µν = (kµk̄ν+kν k̄µ)/k · k̄,

where k̄ = (k0,−k), are projectors on massless states of helicities ±1 and

0, respectively. Prove the following relations, for k2 = 0:

(µσ(
σν = (ν

µ (⊥
µσ(

⊥σν = (⊥ν
µ

(µν +(⊥
µν = ηµν (⊥

µσ(
σν = 0

ηµν(µν = 2 ηµν(⊥
µν = 2.

4. Find the propagator D′
µν(k) of the massless vector field, defined by the

gauge-breaking term −α(∂ · ϕ)2/2.

5. The Lagrangian

L
′′
V = LV + 1

2
µ2ϕνϕ

ν − α

2
(∂ · ϕ)2 − ϕµ Jµ

where ∂ · J = 0, is convenient for studying the limit µ2 → 0.

(a) Show that ∂ ·ϕ obeys the Klein–Gordon equation with mass m2 = µ2/α.

(b) Find the related propagator D′′
µν(k) and examine its behaviour in the

cases (i) α �= 0, µ2 → 0; (ii) µ2 �= 0, α → 0.

6. Prove that the polarization state of a massive vector field with s3 = 0 is

decoupled from the conserved current Jµ in the limit µ2 → 0.

7. Consider a massless field ϕµν of helicity ±2. Prove the following properties:

(a) The Hilbert gauge condition is locally accessible.

(b) Free gravitational waves must satisfy the Hilbert condition for k2 = 0.

8. Find the propagator for the massless tensor field, determined by the gauge-

breaking term −α(∂µϕ̄
µν)2/2. Examine the cases α = 1 and α → ∞.

9. Show that the projector on massless states of helicity ±2,

(µν,λρ = 1
2
((µλ(νρ +(µρ(νλ)− 1

2
(µν(λρ
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satisfies the following relations, for k2 = 0:

(µν,λρ(
λρ,στ = (µν

,στ ηµληνρ(µν,λρ = 2

ηµν(µν,λρ = 0.

10. Find the trajectory u = u(φ), u ≡ 1/r , that describes the motion of a test

particle in the spherically symmetric scalar gravitational field. Discuss the

limit G → 0.

11. Use the result of exercise 10 to calculate the precession of planetary orbits in

the scalar theory of gravity.

12. Find constants of the motion of a test particle in the spherically symmetric

gravitational field, in both the (a) scalar and (b) tensor theory of gravity.

13. Find the trajectory u = u(φ), u ≡ 1/r , describing the motion of a test

particle in the spherically symmetric tensor gravitational field.

14. Use the result of exercise 13 to calculate:

(a) the change of angle �φ during the motion of a light ray from r = R

(φ < 0) to r = R (φ > 0) (figure 7.2);

(b) the coordinate time �t required for a light ray to travel from r = b to

r = R.

15. (a) Calculate the interaction energy of a test particle of mass m with the

static tensor gravitational field produced by a pointlike source.

(b) Show that the interaction energy of a photon in this field is given by

E(x0) = −2G
M

r
p0.

Find the corresponding expression in Newton’s theory (using the

replacement: the mass of a test particle → the total photon energy).

16. A light ray is passing the sun at distance b (figure 7.2). Assume that the

sun’s gravitational field is the same as that described in exercise 15, and

calculate the deflection angle of a light ray as the ratio of the transversal and

longitudinal components of the momentum.

17. Prove that the projector on the polarization states of a massive spin-2 field,

Pµν,λρ = 1
2
(PµλPνρ + Pµρ Pνλ)− 1

3
Pµν Pλρ

obeys the following conditions, for k2 = µ2:

Pµν,λρ Pλρ,λτ = Pµν
,λτ ηµληνρ Pµν,λρ = 5

ηµν Pµν,λρ = 0.

18. Calculate the contribution of the scalar component of the massive tensor

graviton to the effective propagator, in the limit µ2 → 0.

19. Show that the precession of planetary orbits in the massive tensor theory

of gravity, in the limit µ2 → 0, gives two-thirds the result of the massless

tensor theory.
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Nonlinear effects in gravity

As we have seen, in ordinary flat spacetime the graviton is best described as a

massless field of spin-2, but its interaction with matter is not consistent. A closer

inspection shows that this inconsistency stems from the fact that the graviton itself

has an energy–momentum, which has to be included in a complete theory. The

related correction leads to nonlinear effects: the energy–momentum of matter is

a source of the gravitational field, the energy–momentum of which becomes a

source of the new field, etc. Can this nonlinear correction account for the small

discrepancy in the precession of the perihelion of Mercury? Surprisingly enough,

the answer is yes. Moreover, the ‘simplest’ solution to the nonlinear self-coupling

problem leads to a theory which is identical to Einstein’s GR. This result gives an

unexpected geometric interpretation to the field-theoretic approach.

In order to express the essential features of this problem and its resolution in

the most simple manner, we first consider an analogous problem in Yang–Mills

theory. Then we go over to the gravitational field by studying, first, scalar and

then tensor theory (Feynman et al 1995, Van Dam 1974, Okubo 1978). Particular

attention is devoted to the first order formalism, which significantly simplifies the

whole method (Deser 1970).

8.1 Nonlinear effects in Yang–Mills theory

The nonlinear effects that occur in constructing a consistent Yang–Mills theory

are very similar to what happens with gravity. We shall therefore study this case

in detail, analysing separately the role of nonlinear effects in the pure Yang–Mills

sector and in matter and interaction sectors (Okubo 1978).

Non-Abelian Yang–Mills theory

Consider an SU(2) triplet of massless vector fields Aa
µ (a = 1, 2, 3), and a set of

matter fields & belonging to some representation of SU(2). The free Lagrangian

222
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of vector fields,

L
(0)
F = − 1

4
F
◦

a
µν F

◦
aµν F

◦
a
µν ≡ ∂µAa

ν − ∂ν Aa
µ (8.1)

is invariant under global SU(2) rotations δAa
µ = −ǫabcθb Ac

µ, and local

Abelian transformations δAa
µ = ∂µλ

a . The SU(2) invariance of the matter

Lagrangian LM implies the existence of the canonical (Noether) current J a
µ .

Now, we assume that the total Lagrangian of the system has the form

L(0) = L
(0)
F + LM + LI LI = −g Aa · J a (8.2)

where Aa is coupled to the canonical current J a of matter fields.

If the matter is described by an SU(2) doublet of Dirac fields,

& =
(
ψ1

ψ2

)
δ& = iθa 1

2
τ a& δ&̄ = −iθa&̄ 1

2
τ a (8.3)

(τ a are the Pauli spin matrices, ψ1,2 are the Dirac spinors), then

LM = &̄(iγ · ∂ − m)& J a
µ = &̄γ µ 1

2
τ a&. (8.4)

The field equations for Aa have the form

∂µF
◦

a
µν = g J a

ν (8.5)

and their consistency requires ∂ · J a = 0. However, this condition is in conflict

with the matter field equations. Indeed, the Dirac equations for & imply

∂ · J a = gǫabc Abν J c
ν �= 0

showing an inconsistency of order g. The reason for this inconsistency lies in the

fact that J a is not the Noether current for the whole theory but only for the part

stemming from the matter fields, which cannot be conserved.

In order to resolve this problem we shall try to construct a new theory, on the

basis of the following two requirements:

The new Lagrangian L = L(0) +� should give the field equation

∂µF
◦

a
µν = g(J a

ν + ja
ν ) ≡ gJ a

ν (a)

The dynamical current J a is equal to the Noether current generated by the

global SU(2) symmetry of L and is automatically conserved:

∂µJ a
µ = 0. (b)

Before starting the construction ofL, we must note that there is an ambiguity

in the definition ofJ a: we can replaceJ a
ν byJ a

ν +∂µW a
µν , where W a

µν = −W a
νµ,
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without changing the conservation law. Consequently, the requirement (a) may be

expressed as

∂µF
◦

a
µν = g(J a

ν + ∂µW a
µν). (a′)

In order to obtain a self-consistent interaction, we write the new Lagrangian as a

series in g, starting from L(0):

L = L(0) + g�(1) + g2�(2) + · · · .

Step 1. We start the construction by calculating the Noether current

corresponding to the global SU(2) symmetry of L(0). Using the field equations,

the change in L(0) under the SU(2) transformations takes the form

δL(0) = ∂µ

(
δ&̄

∂L(0)

∂∂µ&̄
+ ∂L(0)

∂∂µ&
δ& + δAa

ν

∂L(0)

∂∂µAa
ν

)
= −θb∂ · J b

(0)

where the Noether current

J
b
(0) = J b + jb

(0) (8.6)

contains two terms: J b is the contribution of matter fields and jb
(0) the contribution

of gauge fields:

j
bµ
(0) = ǫabc Ac

ν

∂L
(0)
F

∂∂µAa
ν

= ǫbca Ac
ν F
◦

aνµ.

It is the term jb
(0) that is missing from the right-hand side of equation (8.5).

Now, in accordance with (a′), we try to change L(0) so as to obtain the field

equation

∂µF
◦

aµν = g(J aν
(0) + ∂µW aµν). (8.7a)

The presence of the current ja
(0) in this equation can be realized by adding to L(0)

a suitable term of order g:

L(1) = L(0) + g�(1)

�(1) = −c1 Ab · jb
(0) = c1 Ab

ν(ǫ
bca Ac

λF
◦

aνλ).
(8.7b)

Varying L(1) with respect to Aa and comparing the result with (8.7a) gives

c1 = 1/2, W a
λν = ǫabc Ab

λAc
ν . Although this change of L(0) yields the correct

field equations, the problem is still not solved: the current J a
(0) is no longer

conserved, since it is not the Noether current of the new LagrangianL(1)!
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Step 2. The new conserved current is calculated from L(1):

J
bµ
(1) = ǫabc Acν ∂L(1)

∂∂µAa
ν

= J
bµ
(0) + gǫabc Ac

ν(ǫ
e f a A f ν Aeµ). (8.8)

In order for the currentJ b
(1) to be present on the right-hand side of equation (8.7a),

we change the Lagrangian again by adding terms of order g2:

L(2) = L(0) + g�(1) + g2�(2)

�(2) = −c2[ǫabc Ac
ν(ǫ

e f a A f ν Aeµ)]Ab
µ

(8.9a)

whereupon the field equations for Aa take the form

∂µF
◦

aµν = g(J aν
(1) + ∂µW aµν) (8.9b)

if c2 = 1/4, and W aµν remains the same.

Armed with the previous experience we are ready to face the problem that

J a
(1) is not conserved, since it is not the Noether current of the Lagrangian L(2).

However, the term �(2) in L(2) does not contribute to the Noether current, because

it does not depend on field derivatives; hence J a
(2) = J a

(1).

Thus, the iteration procedure stops after the second step, leading to the

fulfilment of the requirements (a) and (b). The self-consistent theory is defined by

the LagrangianL(2), and yields the field equations (8.9b) for Aa . The construction

of the theory is characterized by the occurrence of nonlinear effects, since the

source of the fields Aa contains the fields Aa themselves.

Gauge symmetry. The initial LagrangianL(0) has the global SU(2) symmetry,

while L
(0)
F possesses the additional local Abelian symmetry. What is the

symmetry of the final, self-consistent Lagrangian L(2)? After introducing the

quantity

Fa
µν = F

◦
a
µν − gǫabc Ab

µAc
ν

we can easily check that

L
(0)
F + g�(1) + g2�(2) = − 1

4
Fa

µν Faµν ≡ LF. (8.10a)

Thus, unexpectedly, we discover that the final theory is invariant under the local

SU(2) symmetry. In the process of building the self-consistent theory,

the original global SU(2) and incomplete local Abelian symmetry

merge into the local SU(2) symmetry.

In the light of this result it is useful to reconsider the form of the conserved

current and the field equations. Equations (8.8) and (8.6) imply

J
bµ

(1) = J bµ + ǫbca Ac
ν Faνµ
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where the second term represents the dynamical current corresponding to Aa:

− ∂LF

∂Ab
µ

= ǫbca Ac
ν Faνµ = jbµ.

On the other hand, using the relation F
◦

a
µν − gW a

µν = Fa
µν the field

equations (8.9b) can be written in the form ∂µFaµν = gJ aν
(1)

or

∇µFaµν = g J aν (8.10b)

where ∇µFaµν = ∂µFaµν − gǫabc Ab
µFcµν is the covariant derivative. The

conservation law of the current J b
(1) takes the form

∇µ J aµ = 0 (8.10c)

which is also, at the same time, the consistency condition of the field equations

for Aa . The Lagrangian LF + LM + LI describes the SU(2) gauge theory in the

covariant form (appendix A). These considerations can be directly generalized to

an arbitrary semisimple Lie group.

The assumption that matter is described by the Dirac field is of no essential

importance for the previous analysis. It has the specific consequence that the

interaction Lagrangian LI, which is independent of the field derivatives, does not

contribute to the Noether current J b, so that the form of the interaction remains

unchanged in the process of building the self-consistent theory. It is clear that

the same result holds for any matter field for which its interaction with Aa does

not contain any field derivatives. In that case, the complete change of theory

is restricted to the sector of the gauge fields, in which the symmetry makes a

transition from local Abelian to local SU(2) symmetry. The Lagrangian LMI

remains unchanged in this process; its symmetry is, from the very beginning,

local SU(2), as can be clearly seen from the covariant form:

LMI = &(iγ · ∇ − m)& ≡ LM(∂ → ∇).

What happens when the interaction depends on the field derivatives is the

subject of the subsequent analysis.

Scalar electrodynamics

Consider now a theory of the electromagnetic field in interaction with a complex

scalar field,

L(0) = LEM + LM + L
(0)
I

= − 1
4

Fµν Fµν + ∂µφ
∗∂µφ − m2φ∗φ − eAµJ

(0)
µ

(8.11)

where

Fµν = ∂µAν − ∂ν Aµ J (0)
µ = i[φ∗(∂µφ)− (∂µφ

∗)φ].
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The total Lagrangian L(0) possesses the global U(1) symmetry, and LEM is

invariant under δAµ = ∂µλ. The field equations are

∂µFµν = eJ ν
(0)

(−�− m2)φ = ie[∂µ(Aµφ)+ Aµ∂µφ].

The consistency of the first equation requires the conservation of the current.

However, since J ν
(0)

is not the complete Noether current, this condition cannot be

satisfied. Indeed, ∂µ J
µ

(0) = 2e∂µ(Aµφ∗φ) �= 0. The complete Noether current,

defined by the global U(1) symmetry of L(0), has the form

J
µ

(0) = J
µ

(0) − 2eAµφ∗φ

where the second term comes from the interaction L
(0)
I .

By changing the Lagrangian,

L(0) → L = L(0) + e2 AµAµφ∗φ (8.12a)

the field equations become

∂µFµν = e(J ν
(0) − 2eAνφ∗φ) ≡ eJ ν

(0)

(−�− m2)φ = ie[∂µ(Aµφ)+ Aµ∂µφ] − e2 AµAµφ.

Since the additional term e2 A2φ∗φ does not depend on the field derivatives, the

new Noether current is the same asJ ν
(0), and the construction of the self-consistent

theory is completed.

The symmetry of the resulting theory is most easily recognized by writing

the Lagrangian (8.12a) in the form

L = − 1
4

Fµν Fµν + (∂µ + ieAµ)φ
∗(∂µ − ieAµ)φ. (8.12b)

The global U(1) symmetry of the original theory and the local Abelian symmetry

of the electromagnetic sector merge into the local U(1) symmetry of the final

theory.

This example illustrates the situation which occurs when the original

interaction depends on field derivatives: then, L
(0)
I gives a contribution to the

Noether current, so that the self-consistent iteration procedure changes the form

of the interaction. Since the original global symmetry is Abelian, the Noether

current does not contain the contribution of the gauge fields.

In the general case the Noether current has contributions from both the

interaction term and the free gauge sector. The situation is significantly simpler if

the interaction does not depend on gauge field derivatives.
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8.2 Scalar theory of gravity

In the previous analysis of Yang–Mills theories the iteration procedure ended after

two steps. This will not be the case with gravity, where the iteration procedure is

infinite. In order to show how such problems may be treated, we consider here a

simpler, scalar theory of gravity, without assuming that the graviton is massless

(Okubo 1978).

We start with the Lagrangian

L(0) = L
(0)
S + LM + LI = 1

2
(∂µϕ∂

µϕ − µ2ϕ2)+ LM − λϕT (8.13a)

where T stands for the trace of the matter energy–momentum tensor. The field

equation for ϕ is

−(�+ µ2)ϕ = λT . (8.13b)

Since there are no requirements on the properties of the interaction, even when

the scalar graviton is massless (there is no gauge symmetry), this theory is

consistent as it stands, without any further modification. Bearing in mind the

physical requirement that the scalar graviton should interact with its own energy–

momentum tensor, we shall try to build a scalar theory of gravity which is based

on the following two requirements:

The new Lagrangian L = L(0) +� should produce the field equation

−(�+ µ2)ϕ = λ(T + t) ≡ λθ. (α)

The quantity θ is the trace of the total energy–momentum tensor, which is

conserved owing to the global translational invariance, ∂µθ
µ
ν = 0.

The canonical energy–momentum cθµν = (∂L/∂∂µϕ)∂νϕ − δ
µ
ν L is

conserved but not uniquely defined. It can be changed, without affecting the

conserved charge, by adding a term with vanishing divergence:

θµν = cθµν + ∂ρWµρ
ν

Wµρ
ν = −Wρµ

ν = (δ
µ
ν ∂

ρ − δ
ρ
ν ∂

µ)W (ϕ)
(8.14)

where W (ϕ) is an arbitrary function of ϕ. The trace of (8.14),

θ = cθ + 3�W (ϕ) (β)

is the expression that should stand on the right-hand side of equation (α).

We are now going to find a new theory using the iteration procedure in

powers of λ, starting from the Lagrangian L(0).
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Step 1. The trace of the canonical energy–momentum corresponding to L(0) has

the form
cθ(0) = T + (−∂µϕ∂

µϕ + 2µ2ϕ2). (8.15a)

The second term is the contribution of free scalar fields. We now want to find a

Lagrangian that will give the field equation

−(�+ µ2)ϕ = λ[T + (−∂µϕ∂
µϕ + 2µ2ϕ2)+ 3�W (ϕ)]. (8.15b)

The new Lagrangian has the form

L(1) = L(0) + λ�(1)

where �(1) obeys the condition δ�(1)/δϕ = ∂µϕ∂
µϕ − 2µ2ϕ2 − 3�W (1)(ϕ). A

solution for �(1) reads:

�(1) = ϕ∂µϕ∂
µϕ − 2

3
µ2ϕ3

where W (1)(ϕ) = 1
2
ϕ2. After that L(1) takes the form

L(1) = L
(1)
S + LM − λϕT

L
(1)
S = 1

2
(1 + 2λϕ)∂µϕ∂

µϕ − 1
2
µ2(ϕ2 + 4

3
λϕ3).

(8.16)

This change of L(0) yields the field equation (8.15b), but does not solve the

problem: the tensor θ
µν

(0) , the trace of which occurs in (8.15b), is not conserved,

since it corresponds to the old Lagrangian L(0), and not to L(1).

The exact solution. Continuing further we can find θ
µν

(1) , obtain the new

Lagrangian L(2) which yields the field equation −(� + µ2)ϕ = λθ(1), etc. The

iteration procedure goes on and on, introducing higher and higher powers of λ. It

is clear that this would change only LS—the gravitational part of the Lagrangian.

Since a direct computation of higher order corrections becomes very tedious, we

would like to have a more efficient method.

There is a simple approach to finding the complete solution, which is based

on the following ansatz:

LS = 1
2

F(ϕ)∂µϕ∂
µϕ − G(ϕ) (8.17)

as suggested by the lowest order results. The functions F(ϕ) and G(ϕ) will be

determined directly on the bases of the requirements (α) and (β).

Varying L with respect to ϕ we obtain

−F�ϕ − 1
2

F ′∂µϕ∂µϕ − G′ = λT (8.18)

where the prime stands for d/dϕ. On the other hand, using the expression for the

trace of the energy–momentum tensor,

θ = T + (−F + 3W ′′)∂µϕ∂µϕ + 3�ϕW ′ + 4G
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the general requirement (α) takes the form

−(1 + 3λW ′)�ϕ − λ(−F + 3W ′′)∂µϕ∂µϕ − (µ2ϕ2 + 4λG) = λT . (8.19)

The field equation (8.18) will have this form provided

F(ϕ) = 1 + 3λW ′(ϕ)

F ′(ϕ) = 2λ[−F(ϕ)+ 3W ′′(ϕ)]

G′(ϕ) = µ2ϕ + 4λG(ϕ).

(8.20)

The last equation, written in the form e4λϕ[e−4λϕG(ϕ)]′ = µ2ϕ, implies

G(ϕ) = − µ2

(4λ)2
(1 + 4λϕ)+ a1e4λϕ. (8.21a)

Since G(ϕ) ∼ − 1
2
µ2ϕ2 as ϕ → 0, we find a1 = µ2/(4λ)2.

Eliminating W (ϕ) from the first two equations we obtain

F(ϕ) = a2e2λϕ (8.21b)

where a2 = 1, from F(0) = 1. Then, the first equation gives

W (ϕ) = 1

3λ

[
1

2λ
(e2λϕ − a3)− ϕ

]
. (8.21c)

From W (ϕ) ∼ ϕ2/3, we find a3 = 1.

Thus, we obtained the self-consistent Lagrangian,

L = LS + LM − λϕT

LS ≡ 1

2
e2λϕ∂µϕ∂

µϕ − µ2

(4λ)2
[e4λϕ − (1 + 4λϕ)]

(8.22)

which leads to the field equation

−e2λϕ�ϕ − λe2λϕ∂µϕ∂
µϕ − µ2

4λ
(e4λϕ − 1) = λT .

If we introduce $(x) = eλϕ(x), the Lagrangian LS can be rewritten as

LS = 1

2λ2
∂µ$∂µ$− µ2

(4λ)2
($4 − 1 − 4 ln$) (8.23)

while the field equation becomes

−�$− µ2 $
4 − 1

4$
= λT .

This procedure solves the self-consistency problem of the scalar theory of

gravity, in accordance with the requirements (α) and (β).
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8.3 Tensor theory of gravity

We are now going to construct a self-consistent theory of massless spin-2 graviton

field (Feynman et al 1995, Van Dam 1974). The naive formulation (7.41) is not

consistent since the matter energy–momentum tensor is not conserved. To make

the whole procedure as clear as possible, we start, as usual, from the requirements

that the theory should satisfy the following conditions.

The field equations for the graviton ϕµν , following from a complete

Lagrangian L = L(0) +�, should have the form

Kµν,σρϕ
σρ = λθµν . (A)

The dynamical current is equal to the symmetric energy–momentum θµν ,

which is conserved:

∂µθµν = 0. (B)

The iterative procedure

The starting point of the iterative procedure is the Lagrangian

L(0) = LT + LM − λϕµνT (0)
µν (8.24a)

and the corresponding field equations for ϕµν are:

Kµν,σρϕ
σρ = λT (0)

µν . (8.24b)

The term which is missing on the right-hand side is the symmetric energy–

momentum tensor of the graviton field t
(0)
µν . This deficiency may be corrected

by modifying the starting Lagrangian as follows:

L(0) → L(1) = L(0) + λ�(1) (8.25a)

where the additional term �(1) obeys the condition

−δ�(1)

δϕµν
= t(0)µν . (8.25b)

We search �(1) in the form of a general sum over all possible independent trilinear

products of fields and their derivatives (18 terms). Then, demanding (8.25b), the

precise form of this term is determined after a long and hard calculation:

−�(1) = ϕµν ϕ̄στ ϕ̄µν,στ + ϕσ
νϕσµϕ̄µν,τ

τ − 2ϕµνϕντ ϕ̄µσ
,στ

+ 2ϕ̄µν ϕ̄
σµ

,σ ϕ̄
τν

,τ + ( 1
2
ϕµνϕ

µν + 1
4
ϕ2)ϕ̄στ

,στ . (8.26)

The modification L(0) → L(1) leads to the field equations

Kµν,σρϕ
σρ = λ(T (0)

µν + t(0)µν ) ≡ λθ (0)µν .
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Here, θ
(0)
µν is not conserved in the new theory, as it corresponds to the old

Lagrangian L(0). Since �(1) contains field derivatives, θ
(1)
µν differs from θ

(0)
µν by

terms of the order λ, so that the inconsistency in the field equations is of the order

λ2.

The term �(1) can be found by another, equivalent method which is,

however, more convenient for generalization. The tensor T
µν

(0) obeys the relation

(7.63),

(ηνσ + 2λϕνσ )∂µT
µν

(0)
= −[λρ, σ ]T λρ

(0)

which is found upon using the matter field equations. Noting that ∂µT
µν

(0)
= O(λ),

this equation can be written in the form

ηνσ ∂µT
µν

(0) = −[λρ, σ ]T λρ

(0) +O(λ2).

On the other hand, since the inconsistency of the field equations is of order λ2,

we have ∂µθ
µν

(0) = O(λ2) and, consequently,

ηνσ∂µt
µν

(0) = [λρ, σ ]T λρ

(0) +O(λ2).

This relation can be used to calculate �(1). Indeed, starting from the general cubic

expression for �(1), the last relation, written in the form

−ηνσ ∂µ
δ�(1)

δϕµν
= [λρ, σ ]T λρ

(0) +O(λ2) (8.27)

determines all the constants in �(1), leading to the result (8.26).

The realization of the first step in the iterative procedure is followed by a lot

of tiresome calculations. It is obvious that the second step would be extremely

complicated, so that it is natural to ask whether there is some more efficient

approach to this problem. The following considerations are devoted to just this

question.

Formulation of a complete theory

It may be exceedingly difficult to calculate higher order corrections in a particular

expansion of some quantity but yet it might be possible to construct a complete

solution which effectively sums all higher order terms. This is the case with the

scalar theory of gravity, where the calculation of functions F and G corresponds

to a summation of all higher order corrections to the starting Lagrangian L(0).

Following this idea we now make an attempt to deduce the complete form of the

theory based on the requirements (A) and (B).

Consistency requirements. We search for a complete gravitational action

IG =
∫
(LT +�) d4x
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which is determined by the requirement that the resulting field equation (A) may

be written in the form
δ IG

δϕµν
= λT̃µν (8.28)

where T̃µν is the part of θµν that comes from the interacting matter fields. We

allow that in a consistent theory T̃µν may be different from T
µν

(0)
. The consistency

of the gravitational field equation (8.28) and the equation of motion of the matter

may be checked by taking the divergence of (8.28),

∂µ
δ IG

δϕµν
= λ∂µT̃µν

and evaluating the right-hand side using the matter field equation. In order to be

able to realize this procedure we need to have some information about the nature

of the gravitational interaction. We assume that T̃µν satisfies the same divergence

property as T
µν

(0) :

gνσ∂µT̃µν = −[µν, σ ]T̃µν . (8.29)

This property of T
µν

(0) is derived from its form (7.31c) and the corresponding

matter equation. For equations (8.28) and (8.29) to be consistent, the action IG

should satisfy the following functional differential equation:

gνσ∂µ
δ IG

δϕµν
+ [µν, σ ] δ IG

δϕµν
= 0. (8.30)

Solving this equation is an exceedingly difficult problem, since there is no

general procedure for generating the solutions. There is no unique solution of

this problem, even if we demand that for small ϕµν the solution should behave

as described by equation (8.24a). There is, however, a ‘simplest’ solution, which

yields a theory identical to Einstein’s GR.

In order to find a deeper meaning to equation (8.30), we shall convert it to

an equivalent but more transparent form. We multiply (8.30) with an arbitrary

vector 2ξσ (x) and integrate over all space, and then integrate the first term by

parts, which leads to

∫
d4x

δ IG

δϕµν
{−(ξσ gσν),µ + [µν, σ ]ξσ }2 = 0. (8.31)

This form of the consistency requirement can be interpreted in the following way.

Let us introduce an infinitesimal transformation of ϕµν ,

δ0ϕµν = 2{(ξσ gσν),µ − [µν, σ ]ξσ }
= ξµ,ν + ξν,µ + 2λ(ϕµσ ξ

σ
,ν + ϕνσ ξ

σ
,µ + ϕµν,σ ξ

σ )

which can be written as

δ0gµν = 2λ(gµσ ξ
σ
,ν + gνσ ξ

σ
,µ + gµν,σ ξ

σ ). (8.32)
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Equation (8.31) is an invariance condition, telling us that the action IG

is invariant under infinitesimal local transformations (8.32).

The transformation (8.32) can be recognized as the transformation of a tensor

field gµν under infinitesimal coordinate transformations:

x ′µ = xµ − 2λξµ(x). (8.33)

However, the invariance condition (8.31) involves only the transformation (8.32),

without (8.33). For this reason we leave the possibility of a geometric

interpretation, which is based on both (8.32) and (8.33), for later discussion.

Pure gravity. Having understood that our central consistency requirement

(8.30) has a form of an invariance condition, we now proceed to examine the

form of various invariants under the transformation (8.32).

From the transformation properties of the determinant g = det(gµν) under

(8.32), δ0g = 2λg(2ξσ ,σ + ξσ gµνgµν,σ ), it follows that

√
−g′ =

√
−g + 2λ(

√
−gξσ ),σ .

When we integrate this equation over all space, the integral of the total divergence

is irrelevant. Thus, we find one invariant solution for the action:

I
(0)
G =

∫
d4x

√
−g. (8.34)

This solution is not satisfying dynamically, since it involves no field derivatives.

But using an analogous method we shall be able to construct more satisfying

solutions.

Let us note that the scalar field is defined by the condition σ ′(x ′) = σ(x),

which in the case of infinitesimal transformations reads as δ0σ(x) = 2λξ τ ∂τσ(x).

Combining this with the previous results we obtain

√
−g′σ ′ =

√
−gσ + 2λ(

√
−gσξ τ ),τ .

Thus the product of
√−g with a scalar changes only by a total divergence. Hence,

IG =
∫

d4x
√
−gσ(x) (8.35)

is also a solution for the gravitational action.

Is there a combination of the fields gµν and their derivatives which is a

scalar? Bearing in mind the hidden geometric meaning of the transformations

(8.32), it is not difficult to find the answer to this question using well-known

results from differential geometry. In the framework of Riemannian geometry,

the only tensor which can be constructed from the metric tensor and its



Tensor theory of gravity 235

derivatives is the Riemann curvature tensor. The construction of the action is

now straightforward, and the ‘simplest’ solution coincides with Einstein’s GR:

IG = − 1

2λ2

∫
d4x

√
−g R (8.36)

where R is the scalar curvature of Riemann space with metric gµν . The existence

of other solutions (such as the cosmological term (8.34), or invariants quadratic in

the curvature tensor) shows that there is no unique solution of the problem. The

solution (8.36) is normalized so that in the weak field approximation it reduces

to the Pauli–Fierz action IT. This is the gravitational part of the action which is

correct to all orders.

Matter and interaction. We now focus our attention on the part IMI that

describes matter and its interaction with gravity. The matter energy–momentum

T̃µν in equation (8.28) is defined by

−λT̃µν ≡ δ IMI

δϕµν
. (8.37)

It is clear from the previous discussion that the assumption (8.29), concerning the

behaviour of ∂µT̃µν , leads to the conclusion that IMI is invariant under (8.32):

∫
d4x

δ IMI

δgµν
δ0gµν = 0. (8.38)

The verification of condition (8.29), and, consequently, (8.38), demands the

explicit use of the matter field equations.

When matter is described by point particle variables, the action is defined,

up to terms of order λ, by the expression

I (1) =
∫

d4x (LT + LM − λϕµνT
µν

(0) ) ≡ IT + I
(1)
MI .

The part IT is invariant under local transformations δ0ϕµν = ∂µξν+∂νξµ, and the

complete action is invariant under global translations δxµ = aµ, which implies

the conservation of the total energy–momentum. This theory is inconsistent, since

condition (8.38) for I
(1)
MI ,

δ I
(1)
MI

δgµν
δ0gµν = −λT

µν

(0)
(∂µξν + ∂νξµ) = 0 (8.39)

requires the conservation of T
µν

(0) . However, if we limit our our considerations

to the accuracy of order λ, this condition is correct. Indeed, using the geodesic

equation we find that ∂µT
µν

(0) = O(λ), which brings in an error of the order λ2 in

(8.39).
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The inefficiency of the method based on explicit equations of motion

motivates us to to ask ourselves whether condition (8.39) can be checked in some

other, more practical way. The answer is: yes. The automatic validity of this

condition may be ensured by extending the concept of local transformation (8.32)

to the matter sector.

Assume that the action I
(1)
MI is invariant under extended local transformations,

which also act on the point-particle variables:

δ0ϕµν = ∂µξν + ∂νξµ

δxµ = aµ[ξ ].

The invariance of I
(1)
MI leads to

δ I
(1)
MI

δxµ
aµ[ξ ] + δ I

(1)
MI

δgµν
2λ(∂µξν + ∂νξµ) = 0. (8.40)

From the form (7.45) for I
(1)
MI it follows that the invariance condition is satisfied

provided aµ[ξ ] = −2λξµ(x). On the other hand, after using the equations of

motion for matter, the invariance requirement (8.40) automatically carries over

into (8.39).

The invariance requirement (8.40) is a very efficient method for building a

consistent theory. The generalized form of the local transformations is given by

δ0gµν = 2λ(gµσ ξ
σ
,ν + gνσ ξ

σ
,µ + gµν,σ ξ

σ ) (8.41a)

δxµ = −2λξµ (8.41b)

while the invariance of the action is ensured by the choice

IMI = −m

∫
dτ

√
gµν ẋµẋν . (8.42)

Local transformations of the point-particle variables (8.41b) can be realized

in a simple way by assuming that all points of spacetime are transformed in the

same way. In that case:

Generalized local transformations are nothing else but the complete

infinitesimal coordinate transformations.

The introduction of the concept of coordinate transformations becomes necessary

only when we consider the interaction between gravity and matter.

It is important at this stage to clarify the following two questions:

(i) Does the generalized symmetry influence the invariance of the gravitational

action IG?

(ii) Does it have the form (8.41) for all types of matter?
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The answer to the first question follows from the form of the gravitational

action (8.35). Since σ ′(x ′) = σ(x), and d4x
√−g is an invariant measure, it is

evident that the action IG is also invariant under the generalized transformations

(8.41).

If matter is described not by particle variables, but by a field φ, then its

energy–momentum tensor contains ∂φ. Without going into a detailed analysis, it

is clear that the construction of IMI requires an extension of the concept of local

transformations not only to matter fields φ, but also to the derivatives ∂φ. The

result is, again, the infinitesimal coordinate transformation (8.41) followed, this

time, by the transformation rule for φ.

In the process of building a self-consistent theory the symmetry structure has

changed, just as in the Yang–Mills case.

The original global translations and local Abelian symmetry of the

gravitational sector merge into the local translations (8.41).

It is useful to clarify here one simple property of T̃µν . Equation (8.29) tells

us that T̃µν is not a tensor, but a tensor density. The true energy–momentum

tensor is introduced by Tµν = T̃µν/
√−g. Relation (8.29) is the covariant

conservation law of Tµν .

The action I = IG + IMI solves the problem of constructing a self-consistent

theory of gravity. It yields Einstein’s field equations, which are in agreement with

all experimental observations.

We should note finally that the essential step in this construction was the

assumption of divergence condition (8.29). In the next subsection we shall attempt

to obtain the final result in a simpler way, without additional assumptions of this

type.

8.4 The first order formalism

There is no general method for the transition from a linear, non-consistent theory

to a consistent but nonlinear formulation. The iterative formalism in the theory of

gravity requires an infinite number of steps and the use of an ansatz is not always

possible. Feynman’s approach is very elegant, but it is based on assumption

(8.29), the justification of which is seen only after we have solved the problem.

Now we shall see how a transition to the first order formalism significantly

simplifies the iterative procedure, so that the whole path to a consistent theory can

be shortened to just one step (Deser 1970).

Yang–Mills theory

We begin by applying the new formalism to Yang–Mills theory.
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Free Yang–Mills theory. The linearized theory of the free SU(2) Yang–Mills

field in the first order formalism is given by

L
(0)
F = − 1

2
Faµν(∂µAa

ν − ∂ν Aa
µ)+ 1

4
Faµν Fa

µν (8.43)

where Aa and Fa are independent dynamical variables. The field equations,

obtained by varying this with respect to Aa and Fa ,

∂µFaµν = 0

Fa
µν = ∂µAa

ν − ∂ν Aa
µ ≡ F

◦
a
µν

are equivalent to the field equations ∂µF
◦

aµν = 0 of the second order formalism.

The theory is invariant under global SU(2) and local Abelian transformations.

As before, we want to change the starting LagrangianL
(0)
F so as to obtain the

following field equations:

∂µF
◦

a
µν = g( ja

ν + ∂µW a
µν) (YM)

where ja is the Noether current associated with the new Lagrangian.

In the lowest order approximation, the Noether current is obtained from the

Lagrangian L
(0)
F , and has the form

jaν
(0) = ǫabc Ab

µFcµν

which, after we have eliminated Fcµν , coincides with our earlier result. Following

the usual iterative procedure we shall search for a new Lagrangian in the form

L
(1)
F = L

(0)
F − 1

2
g Aa · j (0)a

where the factor 1
2

is chosen since A · j is quadratic in A. Thus, we obtain

L
(1)
F = − 1

2
Faµν(∂µAa

ν−∂ν Aa
µ−gǫabc Ab

µAc
ν)+ 1

4
Faµν Fa

µν ≡ LF. (8.44)

We are slightly surprised that this expression essentially coincides with the Yang–

Mills Lagrangian (8.10a). Since A · j does not contain the field derivatives, the

Noether current of this Lagrangian is the same as ja
(0), hence the construction of

a consistent theory is completed in just one step.

The new field equations can indeed be written in the form (YM):

∂µF
◦

aµν = g[ jaν + ∂µ(ǫ
abc AbµAcν)].
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Interaction with matter. Now we want to find the interaction Lagrangian

corresponding to a general matter field φ. The total Lagrangian of a Yang–Mills

+ matter system yields the field equations

∇µFa
µν = g J ν

a ≡ −δLMI

δAa
ν

or, equivalently,

∂µF
◦

aµν = g[J aν + jaν + ∂µ(ǫ
abc AbµAcν)]. (YMm)

We will assume that

LMI does not depend on ∂Aa , hence it does not influence the construction of

the current ja; and

the dynamical current Ja is equal to the Noether current of LMI, generated

by the global SU(2) symmetry.

Hence,

−∂LMI

∂∂µφ
Taφ = −1

g

δLMI

δAa
µ

where the Ta are the SU(2) generators in the representation corresponding to the

field φ. The solution of this equation reads:

LMI(φ, ∂µφ, Aa
µ) = LM(φ,∇µφ) (8.45)

where ∇µφ ≡ (∂µ + g Aa
µTa)φ.

The consistency requirement in the sector of matter fields and

interaction leads to the so-called minimal interaction.

Einstein’s theory

The first order formalism. The transition to the first order formalism in

symmetric tensor theory can be realized with the help of the Palatini formalism in

GR. In this formalism the action for GR has the form

IP = − 1

2λ2

∫
d4x

√
−ggµν Rµν(Ŵ) (8.46)

where the symmetric connection Ŵ
µ
νλ is defined as an independent dynamical

variable. Varying this with respect to gµν and Ŵ
µ
νλ we find the field equations

Rµν(Ŵ)− 1
2

gµν R(Ŵ) = 0

Ŵµ
νρ = 1

2
gµσ (gνσ,ρ + gρσ,ν − gνρ,σ ) ≡

{
µ
νρ

}

which, after eliminating Ŵ, coincide with the standard Einstein’s equations. The

Palatini formalism is, in fact, the first order formalism in GR.
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Replacing gµν = ηµν + 2λϕµν in IP and keeping only the terms that are

quadratic in the fields and their derivatives, we find the action

IT = − 1

2λ2

∫
d4x [−2λϕ̄µν RL

µν(Ŵ)+ ηµν RQ
µν(Ŵ)] (8.47)

where RL and RQ are the linear and quadratic parts of the curvature,

RL
µν = ∂ρŴ

ρ
µν − ∂νŴµ RQ

µν = ŴρŴ
ρ
µν − Ŵλ

µσŴ
σ
νλ

and Ŵρ ≡ Ŵλ
ρλ. This action describes the tensor theory (7.19) in the first order

formalism. Indeed, varying this with respect to ϕ̄µν and Ŵ
µ
νρ we obtain the field

equations:
1

2λ
RL
(µν) = 0

Ŵ
µ
νρ = ληµλ(ϕνλ,ρ + ϕρλ,ν − ϕνρ,λ).

(8.48a)

Putting the second equation into the first and going over to ϕ̄µν , leads to

1

2λ
RL
(µν)(ϕ̄) = −�ϕ̄µν + 2ϕ̄σ

(µ,ν)σ + 1
2
ηµν�ϕ̄ = 0. (8.48b)

If we rewrite equation (7.20) for ϕµν in the form

−�ϕ̄µν + 2ϕ̄σ
(µ,ν)σ + 1

2
ηµν�ϕ̄ = Jµν − 1

2
ηµν Jλ

λ

it is clear that (8.48b) is the field equation of the tensor field in vacuum.

The consistency of pure gravity. A consistent theory of pure gravity can be

obtained by modifying the action IT.

A new action should yield the field equations

1

2λ
RL
(µν)(ϕ̄) = λ(t̄µν +Wρ

µν,ρ) (G)

where t̄µν ≡ tµν − 1
2
ηµν t , and tµν is the conserved symmetric energy–

momentum of the gravitational field.

In the first approximation, the symmetric energy–momentum tensor can be

calculated from LT using the Rosenfeld prescription:

tµν ≡
2√−γ

δLT(γ )

δγ µν

∣∣∣∣
γ=η

.

Here, LT(γ ) is the covariant Lagrangian obtained from LT by introducing an

arbitrary curvilinear coordinate system with metric γµν :

LT(γ ) = − 1

2λ2

√
−γ [−2λϕ̄µν R

γ
L
µν(Ŵ)+ γ µν R

γ
Q
µν(Ŵ)] (8.49a)
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and R

γ

µν(Ŵ) is obtained from Rµν(Ŵ) by the replacement ∂ → ∇(G), where

G = G(γ ) is the Christoffel connection for the metric γµν .

Further considerations can be greatly simplified if we assume that ϕ̄µν is a

tensor density, rather than a tensor. In that case the covariant Lagrangian is given

as

L
′
T(γ ) = − 1

2λ2
[−2λϕ̄µν R

γ
L
µν(Ŵ)+

√
−γ γ µν R

γ
Q
µν(Ŵ)]. (8.49b)

This change is irrelevant for the form of the energy–momentum tensor. Indeed,

energy–momentum tensors obtained from the covariant Lagrangians LT and L′
T

are the same, up to the field equations for ϕ̄µν :

t ′µν = tµν − ηµν ϕ̄
σρ δLT(γ )

δϕ̄σρ

∣∣∣∣
γ=η

.

Since the consistency requirement (G) is expressed as a statement about the field

equations, the tensors tµν and t ′µν are equivalent as regards the construction of a

consistent theory. In what follows we shall work with t ′µν , which will be shown

to coincide with the energy–momentum tensor of the final theory.

When we calculate the Rosenfeld energy–momentum tensor by varying with

respect to the metric,

δL

δγ µν

∣∣∣∣
γ=η

=
[

∂L

∂γ µν
+ ∂L

∂Gλ
στ

∂Gλ
στ

∂γ µν
− ∂ρ

(
∂L

∂Gλ
στ

∂Gλ
στ

∂∂ργ µν

)]

γ=η

we should note that the second term does not give a contribution for γ = η. After

rearranging this expression and separating the trace, we obtain

t̄ ′µν ≡ t ′µν − 1
2
ηµν t ′ = − 1

2λ2
[RQ

µν(Ŵ)− 2λσµν] (8.50)

where

σµν = ∂ρ[−ηµν(ϕ̄λ
τŴλ

ρτ − 1
2
ϕ̄Ŵρ)− 2ϕ̄ρ

λŴ(µν)λ

− 2ϕ̄(µ
λŴρλν) + 2ϕ̄(µ

λŴν)ρλ − ϕ̄µνŴρ + 2ϕ̄ρ(µŴν)].

The indices of ϕ and Ŵ are raised and lowered with the help of η, and Ŵµνλ =
ηµρŴ

ρ
νλ.

Since t̄ ′µν is a complicated function of the fields, it is not clear whether the

new Lagrangian can be found, as in the Yang–Mills case, by simply adding the

term −λϕ̄µν(αt̄ ′µν). A direct verification shows that we should first remove the

term σµν from t̄ ′µν , so that

L
(1)
T = LT + λϕ̄µν 1

2λ2
αRQ

µν
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whereupon the correct result is deduced for α = 2:

L
(1)
T = − 1

2λ2
[−2λϕ̄µν(RL

µν + RQ
µν)+ ηµν RQ

µν]

= − 1

2λ2
[(ηµν − 2λϕ̄µν)(RL

µν + RQ
µν)− ηµν RL

µν].
(8.51)

If we define

g̃µν ≡
√
−ggµν = (ηµν − 2λϕ̄µν) (8.52)

and discard the divergence ηµν RL
µν = ∂µ(Ŵ

µ − Ŵµν
ν) , the Lagrangian L

(1)
T can

be easily identified with Einstein’s Lagrangian in the first order formalism.

Note that the term ϕ̄µν R
Q
µν does not depend on γ , so that the energy–

momentum tensor associated with L
(1)
T remains the same as t ′µν , whereby the

construction of a self-consistent theory is completed in a single step. The

expression ϕ̄µν R
Q
µν remains γ -independent because we chose ϕ̄µν to be a tensor

density. Were it not so, the corresponding energy–momentum tensors would be

equal only after using the field equations following from LT and L
(1)
T .

In order to verify condition (G) explicitly, we start from the equation

δL
(1)
T /δŴ = 0 written in the form

−2λϕ̄µν
,λ = g̃µνŴλ − 2g̃(µρŴ

ν)
λρ .

Differentiating this equation we can form on the left-hand side the expressions

�ϕ̄µν , ϕ̄(µρ,ν)
ρ and �ϕ̄, and combine them into RL

(µν)
. On the right-hand side

we should use g̃µν = ηµν − 2λϕ̄µν . The result of this calculation is the correct

equation in the form (G):

1

2λ
RL
(µν)(ϕ̄) = λt̄ ′µν .

Note that this equation is also correct in the strong gravitational field when ϕ̄µν is

not a small field.

The assumption that ϕ̄µν is a tensor density reduces the generality and the

power of this method to some extent, but the simplicity and clarity of the resulting

structure is more than sufficient compensation.

Interaction with matter. We now want to find the form of the consistent

interaction between gravity and matter. In the presence of matter, the right-

hand side of equation (G) should contain a contribution from both the gravity

and matter fields:
1

2λ
RL
µν(ϕ̄) = λ(t̄ ′µν +Tµν). (Gm)

We now introduce the following two assumptions:
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LMI does not influence the construction of the gravitational energy–

momentum t̄ ′µν , since it does not depend on ∂ϕµν .

The dynamical tensor Tµν is equal to the symmetrized canonical tensor.

Using the Rosenfeld definition of Tµν the second assumption may be expressed

by the relation

2
δLM(γ )

δγ µν

∣∣∣∣
γ=η

= −1

λ

δLMI

δϕ̄µν

which implies

LMI = LM(ηµν − 2λϕ̄µν). (8.53)

In other words, LMI is equal to the covariantized matter Lagrangian, obtained

from LM by the replacement ηµν → g̃µν ≡ ηµν − 2λϕ̄µν and ∂µ → ∇µ.

The gravitational field is introduced in the sector of matter fields by the

minimal interaction, in accordance with the principle of equivalence.

The geometric interpretation of GR is seen to be a consequence of the self-

consistency requirement.

In conclusion, here is one final comment concerning the power of the first

order formalism. Qualitatively small changes in the first order Lagrangian lead to

significant changes in the theory, because they change not only the field equation

for ϕ̄µν , but also the dependence Ŵ = Ŵ(ϕ); this is why it becomes possible to

introduce the complete nonlinear correction in only one step.

Exercises

1. Consider the following SU(2) invariant field theory:

L
(0) = − 1

4
F
◦

a
µν F

◦
aµν + 1

2
(∂µφ

a∂µφa − m2φaφa)− g Aa · J a
(0)

where the matter fields φa belong to the triplet representation of SU(2) and

J
bµ
(0) = −ǫbcaφc∂µφa is the canonical matter current. Construct the related

self-consistent theory.

2. The self-consistent action for the theory (8.2) has the form I = IF + IMI.

(a) Show that the matter current J
µ
a satisfies the relation ∂ν J ν

a −
gǫabc Ab

ν J ν
c = 0, and derive the condition

∂ν
δ IF

δAa
ν

− gǫabc Ab
ν

δ IF

δAc
ν

= 0.

(b) Show that this condition is equivalent to the SU(2) gauge invariance of

IF.
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3. Find the symmetric energy–momentum tensor t
(0)
µν of the tensor gravitational

field, described by the Lagrangian LT. Show that the first correction �(1) of

LT, given by equation (8.26), satisfies the condition −δ�/δϕµν = t
(0)
µν .

4. Show that the divergence condition (8.29), expressed in terms of the true

tensor Tµν = T̃µν/
√−g, has the covariant form: ∇µTµν = 0.

5. Consider the tensor theory of gravity interacting with a massless scalar

matter field, described by LM = 1
2
∂µφ∂

µφ. Check explicitly whether

the matter energy–momentum tensor T
µν

(0)
satisfies the divergence condition

(8.29).

6. Derive the transformation law of g = det(gµν) under the transformations

(8.32). Show that the quantity
∫

d4x
√−gσ(x), where σ(x) is a scalar field,

is invariant under infinitesimal coordinate transformations (8.41).

7. Show that the action of the relativistic particle IMI, given by equation (8.42),

is invariant under the generalized gauge transformations (8.41).

8. Prove the relation

t̄µν ≡ tµν − 1
2
ηµν t = 2

δL(γ )

δγ̃ µν

∣∣∣∣
γ=η

.

9. Use the relation g̃µν = ηµν − 2λϕ̄µν to show that for a weak gravitational

field gµν = ηµν + 2λϕµν .

10. Derive expression (8.50) for the Rosenfeld energy–momentum tensor of the

gravitational field.

11. Show that the equation of motion for Ŵ, obtained from the action I
(1)
T , has

the form

2g̃(µρŴ
ν)
λρ − g̃µνŴ

ρ
λρ − g̃ρσŴ(µ

ρσ δ
ν)
λ − g̃µν

,λ − g̃(µρ
,ρδ

ν)
λ = 0.

Derive the relation g̃µν
,λ = g̃µνŴλ − 2g̃(µρŴ

ν)
λρ , and solve it for Ŵ.

12. Construct a self-consistent tensor theory of gravity starting from the

Lagrangian LT(γ ) in which ϕ̄µν is a tensor, rather than a tensor density.



Chapter 9

Supersymmetry and supergravity

The concept of the unified nature of all particles and their basic interactions,

which started with Maxwell’s unification of electricity and magnetism, led in

the 1970s to a successful unification of the weak, electromagnetic and, to some

extent, strong interactions. One of the central goals of physics at the present time

is the unification of gravity with the other basic interactions, within a consistent

quantum theory.

The structure of spacetime at low energies is, to a high degree of accuracy,

determined by the Poincaré group. In the 1960s, there was conviction that the

underlying unity of particle interactions might have been described by a non-

trivial unification of the Poincaré group with some internal symmetries (isospin,

SU(3), etc). Many attempts to realize this idea were based on Lie groups, in

which particles in a given multiplet have the same statistics—they are either

bosons or fermions. The failure of these attempts led finally to a number of no-

go theorems, which showed that such constructions are, in fact, not possible in

the framework of relativistic field theories and standard Lie groups (Coleman and

Mandula 1967).

Supersymmetry is a symmetry that relates bosons and fermions in a way

which is consistent with the basic principles of quantum field theory. It is

characterized by both the commutation and anticommutation relations between

the symmetry generators, in contrast to the standard Lie group structure. The

results obtained in the 1970s show that supersymmetric theories are the only

ones which can lead to a non-trivial unification of spacetime and the internal

symmetries within a relativistic quantum field theory. One more point that

singles out supersymmetric theories is the problem of quantum divergences. Early

investigations of the quantum properties of supersymmetric field theories led to

impressive results: some well-known perturbative divergences stemming from

bosons and fermions ‘cancelled’ out just because of supersymmetry (see, e.g.,

Sohnius 1985).

Since the concept of gauge invariance has been established as the basis

for our understanding of particle physics, it was natural to elevate the idea

245
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of supersymmetry to the level of gauge symmetry, thus introducing the

gravitational interaction into the world of supersymmetry. The investigation of

globally supersymmetric models induced a great optimism that the new theory,

supergravity, might lead to a consistent formulation of quantum gravity. Quantum

supergravity is found to be more finite than ordinary GR. To what extent these

results might be extended to a satisfying quantum theory of gravity remains a

question for the future (see, e.g., van Nieuwenhuizen 1981a).

There is no firm experimental evidence that supersymmetry is realized in

nature. However, on the theoretical side, there is hope that supersymmetry could

provide a consistent unification of gravity with the other basic interactions, in the

framework of a consistent quantum theory. If this were the case, supersymmetry

would relate physical phenomena at two very distinct scales: the Planck and the

weak interaction scale. For the phenomenological applications of supersymmetry

and the structure of quantum theory, the reader should consult the existing

literature (see, e.g., West 1986, Srivastava 1986, Bailin and Love 1994).

This chapter deals with the basic aspects of supersymmetry (SS) and

supergravity in the context of classical field theories. Technical appendix J is

an integral part of this exposition.

9.1 Supersymmetry

Fermi–Bose symmetry

Consider a field theory in which there is a symmetry between the bosons and

fermions, by which a boson field and a fermion field can ‘rotate’ into each other

by an ‘angle’ ε (van Nieuwenhuizen 1981a, Sohnius 1985, West 1986, Srivastava

1986, Bailin and Love 1994). The general transformation law which ‘rotates’ a

boson into a fermion has the form†

δA(x) = εψ(x)

where all indices are suppressed. This relation implies several interesting

consequences.

Spin. Since bosons have integer, and fermions half-integer spin, the parameters

ε must have half-integer spin. The simplest choice is s = 1
2
; we assume that

ε = (εα) is a four-dimensional Dirac spinor.

Statistics. In quantum field theory bosons are commuting, and fermions

anticommuting objects, according to the spin-statistics theorem. By taking the

~ → 0 limit, we can retain these unusual (anti)commuting properties even in the

classical limit. Thus, we consider here a classical field theory in which

{εα, εβ} = {εα, ψβ } = {ψα, ψβ } = 0 [εα, A] = [ψβ , A] = 0.

† In this chapter only, the usual symbol of the form variation δ0 is replaced by δ.
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Dimension. The canonical dimensions of the boson and fermion fields are given

by d(A) = 1, d(ψ) = 3/2, in mass units, as follows from the fact that the action

is dimensionless. Hence, the transformation law δA = εψ implies d(ε) = −1/2.

The inverse transformation cannot have the form δψ ∼ εA, since there is one

missing unit of dimension on the right-hand side. If the transformation law

does not depend on mass or coupling constants, the only object that can fill this

dimensional gap is a spacetime derivative.

Object: I d4x ∂/∂xµ A ψ ε

dimension: 0 −4 1 1 3/2 −1/2

Thus, purely on dimensional grounds we find

δψ(x) = ε∂A(x).

Reality. If we restrict ourselves to the simplest case and assume that bosonic fields

are real scalars and fermionic fields are Majorana spinors, then the reality of δA

implies that ε is a Majorana spinors.

Taking into account all these properties, we can write the exact formula for

the transformation law, with all indices and in completely covariant form:

δA = ε̄αψα

δψα = −i(γ µε)α∂µA.

Algebra. If these transformations are to represent a symmetry operation, they

have to obey a closed algebra. Consider the commutator of two infinitesimal

supersymmetric (SS) transformations on A,

[δ(ε1), δ(ε2)]A = 2iε̄1γ
µε2∂µA

obtained by using the identity ε̄1γ
µε2 = −ε̄2γ

µε1. It shows that two global SS

transformations lead to spacetime translations. This is why global supersymmetry

is said to be the ‘square root’ of translations, while local supersymmetry is

expected to be the ‘square root’ of gravity. A discussion of the complete SS

algebra is given later.

Degrees of freedom. As we shall see, an important consequence of this basic

relation of the SS algebra is that a representation of supersymmetry contains an

equal number of boson and fermion components. A massless Majorana spinor

satisfying one complex field equation has two independent degrees of freedom.

Knowing this we might anticipate an SS field theory involving a Majorana spinor

and two boson fields.
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Wess–Zumino model. A simple example of an SS theory in M4 is the Wess–

Zumino model. We start with a Majorana spinor ψ and two boson fields, a scalar

A and a pseudoscalar B . The action for the free massless fields is given by

I0 =
∫

d4x [ 1
2
∂µA∂µA + 1

2
∂µB∂µB + 1

2
iψ̄γ · ∂ψ]. (9.1)

On the grounds of linearity, covariance, dimension and parity we find the

following set of SS transformations:

δA = ε̄ψ δB = ε̄γ5ψ

δψ = −iγ µ∂µ(a A + bγ5 B)ε
(9.2a)

where a and b are dimensionless parameters, and ε is a Majorana spinor. We can

easily verify that these transformations are symmetries of the equations of motion:

�A = 0 �B = 0 iγ · ∂ψ = 0.

The variation of the action yields, up to a four-divergence,

δ I0 =
∫

d4x [∂µA∂µ(ε̄ψ) + ∂µB∂µ(ε̄γ5ψ)+ ψ̄�(a A + bγ5 B)ε]

showing that the invariance holds provided a = b = 1. Thus, the final form of SS

transformations is:

δA = ε̄ψ δB = ε̄γ5ψ

δψ = −iγ · ∂(A + γ5 B)ε [δψ̄ = iε̄γ µ∂µ(A − γ5 B)].
(9.2b)

The commutator of two supersymmetries, with parameters ε1 and ε2, on the

fields A, B and ψ , has the form

[δ1, δ2]A = 2iε̄1γ
µε2∂µA

[δ1, δ2]B = 2iε̄1γ
µε2∂µB

[δ1, δ2]ψ = 2iε̄1γ
µε2∂µψ − ε̄1γ

µε2γµFψ̄

(9.3)

where Fψ̄ ≡ iγ · ∂ψ is the equation of motion for ψ . In these calculations we

make use of the Fierz identity:

(ε̄2ψ)(χ̄ε1)+ (ε̄2γ5ψ)(χ̄γ5ε1)− (ε1 ↔ ε2) = −(ε̄2γµε1)(χ̄γ
µψ).

The invariance of the action holds without using the equations of motion

(off-shell), while the SS algebra closes only when the fields are subject to these

equations (on-shell). This can be explained by noting that the fields A, B and ψ

carry an on-shell representation of SS, since the number of boson and fermion
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components are only equal on-shell. The boson–fermion balance can be restored

off-shell by adding two more boson fields, as we shall see soon.

There is a formulation of this model based on the fact that the kinetic term for

a Majorana field can be expressed in terms of its left (or right) chiral component,

as follows from the relation

ψ̄γ · ∂ψ = ψ̄−γ · ∂ψ− + ψ̄+γ · ∂ψ+ = 2ψ̄−γ · ∂ψ− − ∂ · (ψ̄−γψ−)

where we have used ψ̄+γ · ∂ψ+ = −(∂ψ̄−) · γψ−. Introducing the complex field

A = A + iB , the action (9.1) can be written as

I ′0 =
∫

d4x [ 1
2
∂µA

∗∂µA+ iψ̄−γ · ∂ψ−] (9.4a)

while the SS transformations (9.2b) take the form

δA = ε̄(1 + iγ5)ψ = 2ε̄+ψ−

δψ− = P−δψ = −iγ µε+∂µA
(9.4b)

where P− ≡ 1
2
(1 + iγ5) is the chiral projector. The expression for δψ− is

obtained using P−γ · ∂(A + γ5 B) = γ · ∂AP+. An attempt to reduce the

number of bosons to one by setting B = 0 is not consistent, since it leads

to real A while δA remains complex (ε̄+ψ− is not a real quantity). We see

that infinitesimal SS transformations can be realized on the massless doublet

of complex fields (A, ψ−) with helicity (0, 1
2
). This doublet constitutes an

irreducible representation of a new kind of algebra—the superalgebra.

We also note that the action (9.1) is invariant under two additional global

transformations—chiral and phase transformations:

ψ → eαγ5ψ A→ e−iβA. (9.5)

Super-Poincaré algebra. The field transformations (9.2) can be expressed in

terms of the infinitesimal SS generators Q:

δ = ε̄αQα

where Q is, like ε, a Majorana spinor, which acts on the fields A, B and ψ

according to

Qα(A) = ψα Qα(B) = γ5ψα

Qα(ψβ) = −i[γ · ∂(A + γ5 B)C]βα.

Here, Q(φ) denotes the result of the action of Q on φ, and can be equivalently

represented as the commutator [Q, φ].
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If we discard the term proportional to the equations of motion in the algebra

(9.3), it can be written as

[δ1, δ2] = 2iε̄1γ
µε2∂µ.

The left-hand side of this equation can be expressed in terms of the SS generators

as [δ1, δ2] = −ε̄α1 ε̄
β

2 {Qα, Qβ }, which implies

{Qα, Qβ} = 2i(γ µC)αβ Pµ (9.6a)

where Pµ = −∂µ. The generators Qα , together with Pµ and Mµν , give rise to

a closed algebra called super-Poincaré algebra. The transformation properties of

the constant Dirac spinor Qα under Lorentz transformations and translations are

expressed by

[Mµν , Qα] = −(σµν)α
β Qβ (9.6b)

[Pµ, Qα] = 0 (9.6c)

where σµν are Lorentz generators in the appropriate representation.

The relations (9.6a, b, c), together with the commutation relations of the

Poincaré algebra, express the (on-shell) SS structure of the Wess–Zumino model

in terms of the super-Poincaré algebra:

[Mµν , Mλρ ] = 1
2

fµν,λρ
τσ Mτσ

[Mµν , Pλ] = ηνλPµ − ηµλPν [Pµ, Pν ] = 0

[Mµν, Qα] = −(σµν)α
β Qβ [Pµ, Qα] = 0

{Qα, Qβ } = 2i(γ µC)αβ Pµ {Qα, Q̄β } = −2i(γ µ)αβ Pµ.

(9.7a)

Since Qα is a Majorana spinor, the expression {Qα, Q̄β } is not independent of

{Qα, Qβ }, but is displayed here for completeness.

It is not difficult to see that this algebra remains unaltered under chiral

transformations Q → eαγ5 Q. The invariance of {Qα, Qβ } follows from

γ5(γ
µC) + (γ µC)γ T

5 = 0. The super-Poincaré algebra may be enlarged by

adding the chiral generator R satisfying

[R, Qα] = (γ5 Q)α (9.7b)

while R commutes with P and M .

Relation (9.6a) is the basic relation of the SS algebra. It clearly shows

that supersymmetry is a spacetime symmetry, the ‘square root’ of translations

(Q2 ∼ P). It is also clear that localization of supersymmetry will lead to gravity.



Supersymmetry 251

Supersymmetric extension of the Poincaré algebra

As we have already mentioned at the beginning of this chapter, in the 1960s

physicists attempted to find a symmetry that would unify the Poincaré group with

an internal symmetry group in a non-trivial manner. After much effort it became

clear that such a unity could not be achieved in the context of relativistic field

theory and a Lie group of symmetry.

Coleman and Mandula (1967) showed, with very general assumptions, that

any Lie group of symmetries of the S matrix in relativistic field theory must be a

direct product of the Poincaré group with an internal symmetry group. If G is an

internal symmetry group with generators Tm , such that [Tm, Tn] = fmn
r Tr , the

direct product structure is expressed by the relations

[Tm, Pµ] = [Tm, Mµν ] = 0.

It follows from this that the generators Tm commute with the Casimir operators

of the Poincaré group:

[Tm, P2] = 0 [Tm,W 2] = 0.

In other words, all members of an irreducible multiplet of the internal symmetry

group must have the same mass and the same spin.

Only the inclusion of fermionic symmetry generators opens the

possibility of a non-trivial extension of the Poincaré symmetry.

Supersymmetry algebra. The structure of a Lie group in the neighbourhood

of the identity is determined entirely by its Lie algebra, which is based on the

commutation relations between the generators. The essential property of an SS

algebra is the existence of fermionic generators which satisfy anticommutation

relations. Every Lie algebra is characterized by the Jacobi identities being the

consistency conditions on the algebra. Similar, generalized Jacobi identities

also exist in SS algebras. If we denote bosonic generators by B and fermionic

generators by F , an SS algebra has the form

[B1, B2] = B3 [B1, F2] = F3 {F1, F2} = B3 (9.8a)

and the super-Jacobi identities read:

[[B1, B2], B3] + [[B3, B1], B2] + [[B2, B3], B1] = 0

[[B1, B2], F3] + [[F3, B1], B2] + [[B2, F3], B1] = 0

{[B1, F2], F3} + {[F3, B1], F2} + [{F2, F3}, B1] = 0

[{F1, F2}, F3] + [{F3, F1}, F2] + [{F2, F3}, F1] = 0.

(9.8b)

We can verify that these relations are indeed identities by explicitly expanding

each (anti)commutator.
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An algebra of the type (9.8) is in mathematics known as a Z2 graded Lie

algebra, and can be defined by the following general requirements.

Grading. To each generator (an element of a vector space) we associate a grading

g from Z2 = (0, 1): g(B) = 0, g(F)=1. For each two generators we define a

product rule ◦, such that g(G1 ◦ G2) = g(G1) + g(G2) (mod 2). This defines a

Z2 graded algebra.

Supersymmetry. The product rule satisfies the condition of SS or graded

antisymmetry: G1 ◦ G2 = −(−)g1g2 G2 ◦ G1.

Super-Jacobi identity. The product rule satisfies the consistency condition:

(−1)g1g3 G1 ◦ (G2 ◦ G3)+ cyclic(1, 2, 3) = 0.

The first two properties are realized by choosing G1 ◦ G2 = [G1,G2] or

{G1,G2}, in accordance with (9.8a), while the super-Jacobi identity reduces to

(9.8b).

Consider now an SS extension of the Poincaré algebra. Let us introduce an

SS generator Qα which is, by assumption, a constant (translation invariant) Dirac

spinor. These assumptions can be expressed by the relations (9.6b, c). We now

check various super-Jacobi identities. Identities for (P, P, Q) and (M, P, Q) are

easily verified. To prove the identity for (M, M, Q) it is essential to observe that

the matrices σµν form a representation of the Lorentz algebra. Indeed, the relation

[[Mµν , Mλρ ], Qα] + [[Qα, Mµν ], Mλρ ] + [[Mλρ, Qα], Mµν ] = 0

after using the expressions (9.7a) for [M, M] and [M, Q], reduces to

1
2

fµν,λρ
στ σστ − [σµν, σλρ ] = 0.

This is a correct result since the matrices σµν satisfy the Lorentz algebra.

The anticommutator of two SS generators is, in general, given as a linear

combination of bosonic generators,

{Qα, Qβ } = ia(γ µC)αβ Pµ + ib(σµνC)αβ Mµν

where the right-hand side is symmetric under the exchange of α and β, as follows

from the properties of gamma matrices, and a and b are constants. The Jacobi

identity for (P, Q, Q) implies b = 0, while the identities for (M, Q, Q) and

(Q, Q, Q) are automatically satisfied.

We can impose some additional restrictions on Qα without changing the

structure of the algebra. Four complex operators Qα have eight real components.

If we assume that Qα is a Majorana spinor, then Q̄α and Qα are no longer

independent. We can show that this assumption does not represent a loss of

generality in the present case (West 1986).

Up to now, the coefficient a has remained arbitrary. We shall see that the

positivity of energy implies a > 0, and the standard choice a = 2 is achieved by
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rescaling Qα . This yields the standard SS extension of the Poincaré algebra, as in

equation (9.7a).

The previous discussion assumes that there is only one SS generator Qα

and that the internal symmetry is trivial. A non-trivial internal symmetry may be

easily incorporated into the preceding analysis. Consider a set of SS generators

Qm
α (m = 1, 2, . . . , N) belonging to an irreducible representation of some

internal symmetry group with generators Tm :

[Tm, Tn] = fmn
k Tk [Tm, Qn

α] = tm
n

k Qk
α

[Mµν , Tm ] = 0 [Pµ, Tm ] = 0.
(9.9a)

In this case we find the following result:

{Qm
α , Qn

β} = 2δmn(γ µC)αβ Pµ + Cαβ Zmn
1 + (γ5C)αβ Zmn

2 (9.9b)

where the antisymmetric objects Zmn
1 and Zmn

2 commute with all the generators

and represent the so-called central charges of the algebra.

If there exists only one SS generator Qα , we have a simple supersymmetry,

while the case N > 1 describes an extended supersymmetry. Even in the case

of simple supersymmetry we may have a non-trivial internal symmetry, but only

of the U(1) type; this symmetry, known as the chiral symmetry, is expressed by

equation (9.7b).

This concludes our exposition of possible SS extensions of the Poincaré

algebra. If all masses are zero, the Poincaré symmetry carries over into the

conformal symmetry, and the related SS extension is called the conformal

supersymmetry. We limit our discussion entirely to the super-Poincaré symmetry,

often using the more general term supersymmetry to mean the same for simplicity.

Consequences. There are several immediate consequences of the SS algebra,

which have important physical implications.

Mass degeneracy. The relation [Pµ, Qα] = 0 implies [P2, Qα] = 0, i.e. P2 is

a Casimir operator of the SS algebra. Hence,

all particles in a multiplet of supersymmetry have the same mass.

However, there is no experimental evidence that elementary particles come in

mass-degenerate SS multiplets. Hence, if supersymmetry has any relevance in

nature, it must be realized as a broken symmetry.

Positivity of energy. From the relation {Qα, Qβ} = ia(γ µC)αβ Pµ and using the

fact that Qα is a Majorana spinor, we find that

{Qα, Q̄β } = −ia(γ µ)αβ Pµ.
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Replacing here Pµ → i(E,− p), multiplying with γ 0 and performing a trace over

spinor indices, we find that

∑
(QαQ+

α + Q+
α Qα) = 4a E .

If the space in which SS generators act has a positive definite norm, the left-hand

side of this equality is always ≥ 0, hence, for a > 0, the following statement

holds:

The energy in SS theories cannot take negative values: E ≥ 0.

The boson–fermion balance. We have seen that SS theories can be realized on

a set of fields of definite mass and spin. Every representation of the SS algebra

can be decomposed into representations of the Poincaré subalgebra. We can use

relation (9.6a) to derive a useful theorem that relates the number of bosonic and

fermionic degrees of freedom in each representation of supersymmetry.

Since SS transformations relate bosons and fermions, each representation

space of the SS algebra can be divided into a bosonic and a fermionic subspace, B

and F . The bosonic generators map each of these subspaces into itself, while the

fermionic generators map B into F , and vice versa. Note that these mappings are,

in general, not onto. Consider the action of a composition of two SS generators

on the bosonic subspace B (figure 9.1):

Qα : B→ F1 ⊆ F Qβ : F1 → B2 ⊆ B.

The anticommutator {Qα, Qβ } has a similar effect. If the mapping Pµ : B → B is

onto and 1–1, then, as follows from the relation (9.6a), the mapping {Qα, Qβ } :
B → B is also onto and 1–1, which implies that Qα must be onto and 1–1;

consequently, B2 = B. Similar arguments applied to the mapping F → B → F

lead to the conclusion F1 = F . In other words, the bosonic and fermionic

subspaces B and F have the same number of elements or the same dimension.

What exactly is the meaning of the ‘number of elements’ for a given

representation remains to be seen in more precise considerations. In the case

of finite-dimensional representations on fields, this number is determined by the

number of independent real field components (the number of degrees of freedom),

Figure 9.1. Dimensions of the bosonic and fermionic subspace.
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as we could have expected. As we shall see later, this number may be calculated

with or without using the equations of motion. Therefore, for a large class of

representations, in which the mapping Pµ is onto and 1–1, we have the following

theorem:

The number of fermionic and bosonic degrees of freedom in each

representation space of the SS algebra is equal.

There is a couple of cases when the conditions of this theorem are not fulfilled

(Sohnius 1985).

The free Wess–Zumino model

The previous theorem on boson–fermion balance tells us that the fields A, B and

ψ in the Wess–Zumino model cannot carry a representation of the SS algebra off-

shell. Indeed, without use of the equations of motion the Majorana spinor ψ has

four real components, while the number of bosonic components is two.

In order to establish the boson–fermion balance off-shell, we introduce two

additional scalar fields, F and G. These two bosons should give rise to no on-

shell degrees of freedom, since an on-shell balance already exists (two bosons

and two fermions). Such fields are called auxiliary fields. Since the free action is

bilinear in the fields, the contribution of new boson fields has the form F2 + G2

and, consequently, their mass dimension is two.

On dimensional grounds it follows that the SS transformations of the new

fields have the form

δF = −iε̄γ · ∂ψ δG = −iε̄γ5γ · ∂ψ

where we have assumed that F is a scalar and G a pseudoscalar. Similarly, we

conclude that F and G cannot occur in δA and δB , but their contribution to δψ is

δψ = (δψ)0 + (a F + bγ5G)ε

where (δψ)0 denotes the previous result, obtained in (9.2b). The modification is

of such a form that on-shell, for F = G = 0, we regain the old transformation

law (9.2b).

For a = b = 1 these new transformations form a realization of the SS

algebra, and their complete form reads:

δA = ε̄ψ δB = ε̄γ5ψ

δψ = −iγ · ∂(A + γ5 B)ε + (F + γ5G)ε

δF = −iε̄γ · ∂ψ δG = −iε̄γ5γ · ∂ψ.
(9.10)

The invariant action has the form

I 0
WZ =

∫
d4x [ 1

2
∂µA∂µA + 1

2
∂µB∂µB + 1

2
iψ̄γ · ∂ψ + 1

2
(F2 + G2)]. (9.11)
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This procedure is typical for the construction of free SS theories. We

started with a set of fields (A, B, ψα), transforming according to an on-shell

representation of the SS algebra, and constructed the action (9.1), which is

invariant under these transformations off-shell. In the next step we introduced

auxiliary fields F and G which ensure the closure of the algebra off-shell. Finally,

we constructed the new invariant action (9.11).

The first step is the standard one since, as we shall see, there is a systematic

way to determine on-shell representations of the SS algebra, and construct the

related invariant action. The second step, in which we try to find a set of auxiliary

fields that lead to an off-shell algebra, is the most difficult, as there is no general

rule as to how to do that. The reason lies in the fact that the number of degrees of

freedom changes in a complicated way when we turn off the equations of motion,

so that it is not easy to control the boson–fermion balance by introducing auxiliary

fields. For many SS theories the auxiliary fields are unknown.

The situation becomes even more complicated when we consider interacting

theories, which are the subject of our real interest. The form of the interaction

is often dictated by some additional principles such as the gauge invariance or

general covariance.

Because of great problems which we encounter when trying to introduce

auxiliary fields, it is natural to ask the question whether we really need them.

Without auxiliary fields the SS algebra closes only on-shell. It is usually believed

that this situation may lead to problems; for instance, in the functional integral

all field configurations are important, not only those which satisfy the classical

equations of motion. However, there are very powerful methods of quantization,

such as the Becchi–Rouet–Stora–Tyutin (BRST) approach, which can be applied

even when the algebra does not close off-shell. Nevertheless, it is true that a

theory with a closed algebra is easier to quantize.

With or without auxiliary fields, an SS theory is characterized by a symmetry

in which the generators obey certain algebra. This is of particular importance

for the construction of interacting theories. As an illustration of this statement,

consider the simple model

I =
∫

d4x ( 1
2
∂µA∂µA + 1

2
iψ̄γ · ∂ψ)

which is invariant under the transformations δA = ε̄ψ, δψ = −iγ · ∂Aε that mix

fermion and boson fields. In spite of some similarity with the Wess–Zumino

model, this symmetry has nothing in common with supersymmetry. Indeed,

(a) the algebra of these transformations cannot be generalized to become the

symmetry algebra of an interacting theory; and (b) there is no boson–fermion

balance on-shell, which is necessary for SS representations. The symmetry

structure of an SS theory relies on the existence of the corresponding SS algebra

(West 1986).
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Chiral symmetry. Consider now the realization of the chiral symmetry (9.7b)

on the Wess–Zumino multiplet. Introducing the fields A = A + iB and F =
F − iG, the SS transformations (9.10) take the form

δA = 2ε̄ψ− δF = −2iε̄γ · ∂ψ−
δψ− = −iγ ε+ · ∂A+ Fε−.

We define the chiral transformation of ψ− by δRψ− = αqγ5ψ− = α(−iq)ψ−,

where q is the corresponding chiral charge. The chiral charge for the other

members of the multiplet can be found with the help of (9.7b). By applying

this relation to A we find

δRδSA− δSδRA = αε̄γ5 Q(A) = α(−i)δSA.

If q ′ denotes the chiral charge of A, δRA = α(−iq ′)A, we obtain from the

previous relation

α(−iq)δSA− α(−iq ′)δSA = α(−i)δSA

which yields q ′ = q − 1. Analogously we find that the chiral charge of F is

q ′′ = q+1. Therefore, the chiral transformation acts on the multiplet (A, ψ−,F)

as

(A, ψ−,F) → (A′, ψ ′
−,F

′) = e−i(q−1)α(A, ψ−e−iα,Fe−2iα). (9.12)

The SS transformations of the new fields take the same form, but with the chirally

rotated parameters: ε′ = e−αγ5ε = (eiαε−, e−iαε+).

Supersymmetric electrodynamics

We now examine the possibility of constructing a free SS theory based on the

massless multiplet (ψ, Aµ), with spin s = ( 1
2
, 1). On-shell, the Majorana spinor

carries two degrees of freedom, and the massless boson Aµ three. However,

taking into account that a massless four-vector must have an additional freedom

of Abelian gauge transformations, the bosonic number of degrees of freedom

reduces to two, and the boson–fermion balance is satisfied. The construction of

this model leads to an SS generalization of the free electrodynamics.

The local U(1) symmetry on the set of fields (ψ, Aµ) has the form

δAµ = ∂µλ δψ = 0.

As a result, the Majorana spinor carries no charge.

On dimensional grounds and Lorentz covariance, an SS transformation has

the following general form:

δAµ = iε̄γµψ

δψ = (aσµν Fµν + b∂ · A)ε
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where a and b are constants. The group of symmetries consists of the

supersymmetry and local U(1) symmetry. The commutator of an SS

transformation and a gauge transformation on ψ has the form

[δ(ε), δ(λ)]ψ = −b(�λ)ε.

Since the result is neither a supersymmetry nor a gauge transformation, it follows

that we must take b = 0. Next, the commutator of two SS transformations on Aµ

is given by

[δ1, δ2]Aµ = iaε̄2γµσ
λρε1 Fλρ − (ε1 ↔ ε2) = 2ia(ε̄2γ

νε1)Fµν

= − 2ia(ε̄2γ
νε1)∂ν Aµ + ∂µ(2iaε̄2 Âε1).

The first term is a translation if a = 1, and the second term represents a gauge

transformation with parameter 2iε̄2 Âε1, which depends on A. The commutator

of two SS transformations on ψ ,

[δ1, δ2]ψ = 2i(ε̄1γν∂µψ)σµνε2 − (ε1 ↔ ε2)

shows that the supersymmetry is closed on ψ on-shell, i.e. for γ · ∂ψ = 0.

Therefore, the final form of the SS and gauge transformations is

δAµ = iε̄γµψ + ∂µλ

δψ = σµν Fµνε.
(9.13a)

An action invariant under these transformations has the form

I0 =
∫

d4x (− 1
4

Fµν Fµν + 1
2
iψ̄γ · ∂ψ). (9.13b)

Indeed,

δ I0 =
∫

d4x [−Fµν∂µ(iε̄γνψ)− iFµν∂ρ(ψ̄γρσµνε)] = 0

where we have used ∂µ
∗Fµν = 0.

The algebra of the SS transformations is given by

[δ1, δ2]Aµ = −2i(ε̄2γ
νε1)∂ν Aµ + ∂µ(2iε̄2 Âε1)

[δ1, δ2]ψ = −2i(ε̄2γ
µε1)∂µψ +−(ε̄2σ

λρε1σλρ + 1
2
ε̄2γ

ρε1γρ)Fψ̄ .
(9.13c)

We now wish to find an off-shell formulation of the model. The counting

of bosons and fermions off-shell should be applied only to gauge independent

degrees of freedom. Four components of Aµ minus one gauge degree of freedom

yields three boson components off-shell, while Majorana spinor ψ has four

degrees of freedom. The simplest restoration of the boson–fermion balance is
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achieved by adding one boson field D. If D is a pseudoscalar, we find the

following generalized form of the SS and gauge transformations:

δAµ = iε̄γµψ + ∂µλ

δψ = (σµν Fµν − aγ5 D)ε

δD = iε̄γ5γ · ∂ψ.
(9.14a)

The closure of the algebra requires a = 1 and the invariant action is given by

I 0
ED =

∫
d4x (− 1

4
Fµν Fµν + 1

2
iψ̄γ · ∂ψ + 1

2
D2). (9.14b)

9.2 Representations of supersymmetry

It is clear from the previous discussion of free SS theories without auxiliary

fields that their construction is based on the existence of on-shell representations

of the SS algebra, that is multiplets consisting of a set of fields, or particle

states, on which the SS algebra is realized only on the equations of motion.

These representations give a clear picture of the particle content of the theory.

However, it is also desirable to have multiplets on which the SS algebra is realized

independently of any equations of motion. This will allow us to develop a tensor

calculus, which plays an important role in efficient constructions of interacting

theories and facilitates the building of quantum dynamics where the fields must

be taken off-shell. These two types of the SS representations are the subject of the

present section (Sohnius 1985, West 1986, Srivastava 1986, Müller-Kirsten and

Wiedermann 1987).

Invariants of the super-Poincaré algebra

For m2 > 0, the irreducible representations of the Poincaré algebra are specified

by the values of the Casimir operators P2 and W 2, where

Wµ = 1
2
εµνλρMνλPρ .

In the case of the super-Poincaré algebra, P2 is still an invariant operator, and the

field components (or states) in a supermultiplet have the same mass. However,

W 2 is not an invariant operator and a supermultiplet contains fields (states) of

different spins. Indeed,

[Wµ, Qα] = − 1
2
(P̂γµγ5 Q)α + 1

2
(γ5 Q)α Pµ

[W 2, Qα] = −Wµ(P̂γµγ5 Q)α + 3
4

P2 Qα .

In order to find an SS generalization of W 2 we first introduce an axial vector

Nµ = 1
8

iQ̄γµγ5 Q, such that [Nµ, Qα] = − 1
2
(P̂γµγ5 Q)α . Then, we define

another vector,

Xµ ≡ Wµ − Nµ = Wµ − 1
8
iQ̄γµγ5 Q
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which obeys the relation [Xµ, Qα] = 1
2
(γ5 Q)α Pµ. It is now easy to see that the

tensor

Cµν ≡ XµPν − Xν Pµ

commutes with all Qα , and that the square CµνCµν = 2X2 P2 − 2(X · P)2

represents the generalization of W 2 we were looking for, since it commutes with

all the generators of the super-Poincaré algebra.

The irreducible representations of the simple (N = 1) super-Poincaré

algebra are characterized by the values of P2 and C2. The meaning of the

invariant C2 is clearly seen in the rest frame where Pµ = i(m, 0, 0, 0)‡:

C2 = 2m2 X2 Xa = −imMa − 1
8
iQ̄γ aγ5 Q ≡ −imY a.

The operator Y a obeys the commutation rules of the SO(3) group,

[Y a,Y b] = εabcY c

and represents an SS generalization of the angular momentum Ma . Its eigenvalues

define the superspin y:

Y 2 = −y(y + 1) y = 0, 1
2
, 1, . . . .

Since Y a does not commute with Ma , an SS multiplet must contain components

of different spin. Explicit particle content of these SS multiplets will be discussed

later.

Similar considerations for the massless case lead to the concept of

superhelicity.

The irreducible representations of the Poincaré group can be found using the

Wigner method of induced representations (appendix I). The method consists of

finding a representation of a subgroup of the Poincaré group corresponding to

some standard momentum p
◦

(the little group), whereupon a representation of the

full group, for an arbitrary momentum p, is found by an explicit construction.

The physical interpretation of the method is very simple: a representation

corresponding to momentum p is obtained by ‘boosting’ a representation for p
◦

.

This procedure can be generalized to the whole super-Poincaré group.

In what follows we shall consider only the irreducible super-Poincaré

representations corresponding to the standard frame, having in mind that all the

other representations are thereby uniquely determined.

We also assume that the central charge is absent. In this case the part of

the super-Poincaré algebra that contains Qα has the following form, in the two-

component notation:

{Qm
a , Q̄n

ḃ
} = −2iδmn(σµ)aḃ Pµ

[Mµν , Qm
a ] = −(σµν)a

b Qm
b [Mµν , Q̄m

ȧ ] = Q̄m

ḃ
(σ̄µν)

ḃ
ȧ .

(9.15)

‡ Since we are using anti-Hermitian generators, the corresponding eigenvalues in unitary

representations are imaginary: Pµ = ipµ , Mµν = imµν , etc.



Representations of supersymmetry 261

Massless states

We begin by considering the representations of the super-Poincaré algebra on one-

particle massless states. They are particularly interesting since the most important

SS models are generalizations of non-Abelian gauge theories or gravitation,

which contain complete massless supermultiplets.

For a massless state, we can always choose the standard momentum in the

form p
◦ µ = ω(1, 0, 0, 1), so that the little group contains the generators Qm

α , Pµ

and Tm , since they all commute with Pµ and leave p
◦

unchanged. Moreover,

the momentum p
◦

is invariant under the infinitesimal Lorentz transformations

provided the parameters obey the conditions ω01 = ω31, ω02 = ω32, ω03 = 0.

Hence, the Lorentz generators appear in the combinations

E1 = M01 + M31 E2 = M02 + M32 M12.

These generators form the Lie algebra of E(2), the group of translations and

rotations in the Euclidean plane. In finite-dimensional unitary representations

of E(2) the generators E1 and E2 are realized trivially (with zero eigenvalues),

so that physically relevant representations are determined by the generator M12

alone. These representations are one-dimensional and we have

M12|ω, λ〉 = iλ|ω, λ〉 Wµ|ω, λ〉 = λpµ|ω, λ〉 (9.16)

where λ is the helicity of the state |ω, λ〉, λ = 0,± 1
2
,±1, . . . .

Since M12 does not commute with Qa , every supermultiplet contains states

with different λ. The action of Qa on the standard state |ω, λ〉 leaves the energy

and momentum unchanged since [Pµ, Qα] = 0. The helicity of the state Qa |ω, λ〉
is determined from

M12 Qa |ω, λ〉 = (Qa M12 + [M12, Qa])|ω, λ〉

= i(λ+ 1
2
σ 3)a

b Qb|ω, λ〉.
(9.17)

Substituting the explicit form of σ 3, we see that Q1 raises the helicity for 1
2
, while

Q2 lowers it. A similar calculation for Q̄ȧ shows that Q̄1̇ lowers and Q̄2̇ raises

the helicity for 1
2

(the commutators of Qa and Q̄ȧ with M12 have opposite signs).

The SS algebra on the standard states reduces to

{Qm
a , Q̄n

ḃ} = 2δmnω(1 − σ 3)aḃ = 4δmnω

(
0 0

0 1

)

aḃ

and we find
{Qm

1 , Q̄n
1̇} = 0 {Qm

2 , Q̄n
2̇} = 4ωδmn

{Q, Q} = {Q̄, Q̄} = 0.
(9.18)

The first relation implies

〈ω, λ|Qm
1 (Qn

1)
∗ + (Qn

1)
∗Qm

1 |ω, λ〉 = 0.
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Assuming that the norm of physical states is positive definite, we have

Qm
1 |ω, λ〉 = Q̄n

1̇
|ω, λ〉 = 0. (9.19)

The remaining SS generators define the Clifford algebra for N fermionic

degrees of freedom,

q̄m ≡ (4ω)−1/2 Q̄m
2̇ qm ≡ (4ω)−1/2 Qm

2 .

In each irreducible representation of this algebra there is a Clifford ground state

defined by

qm |!〉 = 0 |!〉 ≡ |ω, λ0〉. (9.20)

This ground state should not be confused with the concept of a vacuum as the

lowest energy state. The existence of the ground state follows from the following

simple argument: if |β〉 is not the ground state, since, for instance, q1|β〉 �= 0,

then q1|β〉 is the ground state, as follows from q1(q1|β〉) = 0, and similarly for

other modes. All the other states are generated by successive application of the

operators q̄m:

q̄n|!〉 = |ω, λ0 + 1
2
, n〉

(q̄m)(q̄n)|!〉 = |ω, λ0 + 1,mn〉

etc. We should note the double role of q̄ and q: they are not only the creation and

annihilation operators in the Clifford algebra but also the operators that change

the helicity for ± 1
2

. The Clifford states are totally antisymmetric in the internal

labels m, n, . . . carried by the operators q̄m . In the set of states generated over

|!〉, there is the highest state

(q̄1)(q̄2) · · · (q̄ N )|!〉 = |ω, λ0 + 1
2

N, 1, 2, . . . , N〉

on which any further application of q̄m produces zero. Each application of q̄

raises the helicity for 1
2
, and the multiplicities of states are given by the binomial

coefficients:

Helicity: λ0 λ0 + 1
2

· · · λ0 + 1
2

N

Multiplicity:

(
N

0

)
= 1

(
N

1

)
= N · · ·

(
N

N

)
= 1.

For a given N it is not difficult to calculate the total number of states, and

check the balance of bosons and fermions. Using the notation

n =
N∑

k=0

(
N

k

)
= 2N n1 =

[N/2]∑

k=0

(
N

2k

)
n2 =

[(N−1)/2]∑

k=0

(
N

2k + 1

)
.
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we find that the binomial expansion of (1 − 1)N implies n1 − n2 = 0, showing

that each irreducible representation of supersymmetry contains an equal number

of bosonic and fermionic states.

If we include the spatial inversion IP as the symmetry operation, then to each

state with helicity λ we should add a similar state with helicity −λ (except for the

so-called PCT self-conjugate multiplets, which automatically contain both sets of

states).

This is the structure of irreducible representations for the standard

momentum p
◦

. General representations are obtained in accordance with the

Wigner method of induced representations.

The number N of independent supersymmetries is restricted by physical

requirements. Spin- 3
2

fields do not allow renormalizable coupling in quantum

field theory. Also, spin- 5
2

fields are believed to have no consistent interaction

with gravity. Therefore:

Renormalizability of quantum theory requires Nmax = 4;

consistency of the gravitational interaction requires Nmax = 8.

For theories in which N > 4 (or N > 8), particles of spin higher than λ = 3
2

(or 5
2
) will occur in the physical spectrum of the model.

Examples. The simplest N = 1 supermultiplet (with IP symmetry included)

has the following structure:

Chiral multiplet λ0 = − 1
2

Helicities: − 1
2

0 0 1
2

States: 1 1 1 1

This corresponds to the massless Wess–Zumino model, which is realized as the

theory of massless fields (A, B, ψ) (scalar, pseudoscalar and Majorana spinor)

and is called the chiral multiplet.

We display here two more N = 1 multiplets:

Gauge multiplet λ0 = −1

Helicities: −1 − 1
2

1
2

1

States: 1 1 1 1

Supergravity multiplet λ0 = −2

Helicities: −2 − 3
2

3
2

2

States: 1 1 1 1

The first one is used in SS electrodynamics and is realized on the set of massless

fields (Aµ, ψ) (photon and photino); the second describes the particle structure of
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N = 1 supergravity and corresponds to massless fields (ϕµν, ψµ) (graviton and

gravitino).

Comment. Limiting our attention to the case N = 1, we write the operator Nµ

(the SS contribution to the angular momentum) in the two-component notation as

Nµ = 1
8
(Q̄σ̄µQ − Qσµ Q̄).

In the space of states with standard momentum, built over the Clifford ground

state |!〉, it has the form

Nµ = 1
8
(Q̄2̇ Q2 − Q2 Q̄2̇)(1, 0, 0, 1) = 1

2
(q̄q − qq̄)p

◦ µ

and satisfies the conditions N1 = N2 = 0, NµNµ = 0. Therefore, the operator

Yµ is proportional to the standard momentum, which enables us to define the SS

generalization of helicity (Srivastava 1986).

Massive states

Going now to the irreducible representations on massive one-particle states,

we choose the standard momentum to be the rest-frame momentum: p
◦ µ =

(m, 0, 0, 0). Finite-dimensional unitary representations of the Poincaré group are

defined by the representations of the little group—SO(3). The states are labelled

by the mass m, the spin j and the spin projection j3, and obey the conditions

M2| j, j3〉 = − j ( j + 1)| j, j3〉 j = 0, 1
2
, 1, . . .

M3| j, j3〉 = i j3| j, j3〉 j3 = − j,− j + 1, . . . , j.
(9.21)

In the absence of central charges, the little group of supersymmetry is

generated by Pµ, Ma, Qα, T m . The algebra of the supercharges in the rest frame

reduces to

{Qm
a , Q̄n

ḃ} = 2mδmn(σ 0)aḃ = 2mδmnδaḃ

while {Q, Q} = {Q̄, Q̄} = 0. After a rescaling, this algebra becomes the Clifford

algebra for 2N fermionic degrees of freedom:

{qm
a , q̄n

ḃ} = δmnδaḃ {q, q} = {q̄, q̄} = 0 (9.22)

where (q, q̄) ≡ (2m)−1/2(Q, Q̄). Unlike the massless case, none of the

supercharges is realized trivially, so that the Clifford algebra has 4N elements.

The irreducible representations of this algebra are found in the usual way. Starting

from the ground state |!〉,

qm
a |!〉 = 0 |!〉 ≡ | j, j3〉 (9.23)

the representation is carried by the states

q̄n
ḃ|!〉, q̄m

ȧ
q̄n

ḃ|!〉, . . . .
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The maximal spin state is obtained by the application of 2N different operators

q̄. Each state is totally antisymmetric under interchange of the pairs of labels

(m, ȧ) ↔ (n, ḃ).

The particle content of a given irreducible representation is not particularly

clear, as we do not see how many states of a given spin are present. More details

will be given for the simple case N = 1.

Consider, first, the value of the SS spin on the Clifford ground state. In the

standard (rest) frame we have

Y a = Ma + 1

8m
Q̄γ aγ5 Q = Ma − 1

8m
i(Q̄σ̄ a Q − Qσ a Q̄)

which implies that the operator Y a has the same value as the standard spin

operator Ma : y = j , y3 = j3.

The effect of the action of Qa on the ground state is seen from the relation

M12 Qa |!〉 = (Qa M12 + [M12, Qa])|!〉 = i( j3 + 1
2
σ 3)a

b Qb|!〉. (9.24a)

Each q1 raises the spin projection for 1
2

, and q2 lowers it, while for q̄ the situation

is reverse: q̄1̇ lowers and q̄2̇ raises the spin projection for 1
2
. Thus, the states q̄1̇|!〉

and q̄2̇|!〉 have spin projections j3 − 1
2

and j3 + 1
2
, respectively.

Applying two different operators q̄ to |!〉 we obtain the state with spin

projection j3:

M12q̄1̇q̄2̇|!〉 = [q̄1̇M12 − 1
2
i(σ̄ 3)1̇

ḃq̄ḃ]q̄2̇|!〉
= q̄1̇q̄2̇M12|!〉 = i j3q̄1̇q̄2̇|!〉.

(9.24b)

Summarizing these results, we see that for each pair of values (m, y) of

the Casimir operators the space of an irreducible representation is split into

2y + 1 subspaces, according to the possible values of the superspin projection

y3 = −y,−y + 1, . . . , y; each of these subspaces contains the states with four

projections of the physical spin: j3 = y3, y3 − 1
2
, y3 + 1

2
, y3.

Examples. Here are two simple examples. The smallest representation

corresponds to the ground state |!1〉 with y = y3 = 0. This state is bosonic, since

j = j3 = 0. The representation is four-dimensional and contains the following

states:

y = 0, y3 = 0.

States: |!1〉 q̄1̇|!1〉 q̄2̇|!1〉 q̄1̇q̄2̇|!1〉
j3: 0 − 1

2
1
2

0

From the representation of IP in the spinor space it follows that two supercharges

carry negative parity. Thus, if |!1〉 is a scalar then q̄1̇q̄2̇|!1〉 is a pseudoscalar,
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and vice versa. This representation is used in the massive Wess–Zumino model

(scalar, pseudoscalar and spin- 1
2

particle).

The second example is related to the ground state |!2〉 with y = 1
2
. This

state is fermion, since it has j = 1
2

. In this case there are two subspaces with

y3 = ± 1
2
, and each of them contains states with four spin projections j3. The

structure of these subspaces is given in the following tables:

y = 1
2
, y3 = 1

2
.

States: |!2〉 q̄1̇|!2〉 q̄2̇|!2〉 q̄1̇q̄2̇|!2〉
j3: 1

2
0 1 1

2

j : 1
2

1, 0 1 1
2

y = 1
2
, y3 = − 1

2
.

States: |!2〉 q̄1̇|!2〉 q̄2̇|!2〉 q̄1̇q̄2̇|!2〉
j3: − 1

2
−1 0 − 1

2

j : 1
2

1 1, 0 1
2

The fermionic ground state |!2〉 has effectively one spinor index: it transforms

like Q̄ȧ |B〉, where |B〉 is a boson. The states |!2〉 and q̄1̇q̄2̇|!2〉 describe two

particles of spin 1
2

; linear combinations of the states q̄1̇|!2〉 and q̄2̇|!2〉 describe

a spin-1 particle and a spin-0 particle (pseudoscalar). The vector state and the

pseudoscalar state arise from the product of two spinors:

(0, 1
2
)⊗ (0, 1

2
) = (0, 1)+ (0, 0).

The fermion–boson balance. In the simple examples considered previously,

we easily found an equal number of boson and fermion degrees of freedom. Since

this is not so clear in more complicated cases, we present here a general proof of

this statement, which follows from the basic relation (9.6a) of the SS algebra. We

first introduce the fermion number operator:

NF =
{

0 on bosonic states

1 on fermionic states.

This operator anticommutes with Qa . For any finite-dimensional representation

of the SS algebra in which the trace operation is well defined, we have

Tr[(−1)NF{Qa, Q̄ḃ}] = Tr[(−1)NF Qa Q̄ḃ] + Tr[Qa(−1)NF Q̄ḃ] = 0

where the last equality follows from (−1)NF Qa = Qa(−1)NF−1. On the

other hand, using relation (9.15) it follows that the previous result implies
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Tr[(−1)NF ] = 0, i.e.

∑

B

〈B|(−1)NF |B〉 +
∑

F

〈F |(−1)NF |F〉 = nB − nF = 0. (9.25)

Thus, in each SS representation the number of boson and fermion states (degrees

of freedom) is found to be equal.

Supermultiplets of fields

Particularly important SS representations are those on fields, as they are used in

the construction of interacting field theories. In this subsection we consider their

off-shell structure for N = 1.

The chiral multiplet. We present here the general method for constructing off-

shell SS field multiplets, step by step, on the simple example of the N = 1 chiral

multiplet (Sohnius 1985).

1. We begin by choosing some complex, scalar A(x) as the ‘ground state’ of

the representation.

2. We define the fields ψα and F by the following transformation laws:

δA = 2ε̄ψ δψ = −aiγ µε∂µA+ Fε.

The dimensions of the fields are: d(A) = 1, d(ψ) = 3/2, d(F) = 2.

3. Then we impose the constraint that ψ is a chiral spinor: ψ = ψ−. This

constraint defines what we know as the chiral multiplet, and means that

ψ is a massless field (Weyl spinor). It can be written equivalently as

Q+(A) ≡ [Q+,A] = 0.

4. Demanding the closure of the algebra on A we find the coefficient a in δψ:

a = 1.

5. The transformation law of F does not introduce new fields, since their

dimension would be higher than two; hence,

δF = −2biε̄γ µ∂µψ.

6. Enforcing the closure of the algebra on ψ determines the coefficient b in δF :

b = 1.

7. Finally, we check the algebra on F and find that it closes.

Thus, we have constructed the multiplet φ = (A, ψ,F), known as the chiral

multiplet, for which the SS transformation laws are:

δA = 2ε̄ψ−

δψ− = −iγ µε+∂µA+ Fε−

δF = −2iε̄γ µ∂µψ−.

(9.26a)
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The componentF is transformed into a divergence, which is always the case with

the highest-dimensional component in any multiplet.

The degrees of freedom are counted as unconstrained real field components

in the multiplet. There are two complex scalar fields A and F with four boson

degrees of freedom, and a chiral spinor ψ with four fermion degrees of freedom.

The number of 4 + 4 degrees of freedom is the smallest possible number, since

each multiplet must contain at least one spinor, and every spinor has at least two

complex or four real components. Therefore, the chiral multiplet is irreducible.

Instead of the complex fields A,F , we can introduce the corresponding real

components,

A = A + iB F = F − iG

while the chiral spinor ψ− can be replaced by the related Majorana spinor ψ . The

transformations laws for the chiral multiplet φ = (A, B, ψ, F,G) follow from

the complex form (9.26a):

δA = ε̄ψ δB = ε̄γ5ψ

δψ = −iγ · ∂(A + γ5 B)ε + (F + γ5G)ε

δF = −iε̄γ · ∂ψ ≡ −ε̄Fψ̄ δG = −iε̄γ5γ · ∂ψ ≡ −ε̄γ5 Fψ̄ .

(9.26b)

The essential property of the multiplet, namely that ψ is a Majorana spinor, is

reflected in the fact that the spinor in δB is equal to γ5 times the spinor in δA.

In a similar way, by replacing the constraint ψ = ψ− with ψ = ψ+ in step

3, we can obtain an antichiral multiplet φ̄. This method can also be applied to

more complicated multiplets, as we shall see.

The general multiplet. If we repeat the previous construction starting, again,

from some complex field C(x), but without imposing the chirality constraint, the

result is a larger multiplet,

V = (C, χα, M, N, Aµ, ψα, D) (9.27a)

with the following transformation rules:

δC = ε̄γ5χ

δχ = (M + γ5 N)ε − iγ µ(Aµ + γ5∂µC)ε

δM = ε̄(ψ − iγ · ∂χ)
δN = ε̄γ5(ψ − iγ · ∂χ)
δAµ = ε̄(iγµψ + ∂µχ)

δψ = (σµν Fµν − γ5 D)ε

δD = iε̄γ5γ · ∂ψ

(9.27b)
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where ε is a Majorana spinor. The scalar M , the pseudoscalars C, N and D, and

the vector Aµ are complex fields, and χ and ψ are Dirac spinors. We note that

the component D with the highest dimension transforms into a divergence. This

multiplet has 16 + 16 degrees of freedom, and is called the general multiplet.

The general multiplet is a reducible representation of supersymmetry.

Imposing a reality condition

V = V+ (9.27c)

(all components are real or Majorana), we obtain the real general multiplet, with

8 + 8 degrees of freedom.

The most general SS multiplets can be obtained from a general multiplet by

attaching an additional Lorentz index to each of its components.

Reducibility and submultiplets. A multiplet is reducible if it contains a subset

of fields which is closed under SS transformations. We assume that none of these

fields satisfy their equations of motion, although some of them may obey some

other differential conditions.

The real general multiplet is reducible. Indeed, the fields ψ, Fµν = ∂µAν −
∂ν Aµ and D transform among themselves, and form a submultiplet—the curl

multiplet dV :

dV = (ψ, Fµν , D) (9.28a)

which has 4 + 4 real components. The transformation laws

δFµν = iε̄(γν∂µ − γµ∂ν)ψ

δψ = (σµν Fµν − γ5 D)ε

δD = iε̄γ5γ · ∂ψ
(9.28b)

represent the algebra provided Fλρ is subject to the condition ∂µ
∗Fµν = 0.

We can also write this multiplet in the form dV = (ψ, Aµ, D), where Aµ

realizes the local U(1) symmetry: Aµ → Aµ + ∂µλ.

If we constrain V by demanding dV = 0, the remaining components of V

form the chiral multiplet,

φ1 = (A,C, χα, M, N) (9.29)

where the scalar A is defined by the solution Aµ = ∂µA of the condition Fµν = 0.

Tensor calculus and invariants

For any symmetry group there are rules of how to combine two multiplets to

obtain a third one. These rules are an analogue of combining two vectors into a

tensor or a scalar. They can be used, among other things, to build invariant objects,

which is of particular importance for the systematic construction of actions. A

similar analysis also exists for the super-Poincaré group, and is called the SS

tensor calculus.
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A. We can combine two chiral multiplets, φ1 = (A1, ψ1,F1) and φ2 =
(A2, ψ2,F2), and form a third multiplet which is based on the lowest component

A3 ≡ A1A2 = (A1 A2 − B1 B2)+ i(A1 B2 + A2 B1).

The multiplet φ3, obtained from A3 and the known transformations of φ1 and

φ2, is also chiral. Explicit calculations show that the components of the product

multiplet

φ3 = φ1 · φ2 (9.30a)

are expressed in terms of the components of φ1 and φ2 in the following way:

A3 = A1 A2 − B1 B2

B3 = A1 B2 + A2 B1

ψ3 = (A1 − γ5 B1)ψ2 + (A2 − γ5 B2)ψ1

F3 = A1 F2 + B1G2 + A2 F1 + B2G1 − ψ̄1ψ2

G3 = A1G2 − B1 F2 + A2G1 − B2 F1 + ψ̄1γ5ψ2.

(9.30b)

This product is symmetric and associative,

φ1 · φ2 = φ2 · φ1 (φ1 · φ2) · φ3 = φ1 · (φ2 · φ3)

hence, the product of any number of chiral multiplets is well defined. Multiplying

φ with the two constant chiral multiplets 1+ = (1, 0, 0, 0, 0) and 1− =
(0, 1, 0, 0, 0), we obtain

φ · 1+ = φ φ · 1− = (−B, A,−γ5ψ,G,−F).

A similar product can be defined for two real general multiplets, V = V1 ·V2,

starting from the lowest state C = C1C2.

B. We can now combine two chiral multiplets in another symmetric product,

V = φ1 × φ2 (9.31a)

which starts from A1 A2 + B1 B2 as the lowest component and represents the real

general multiplet:

C = A1 A2 + B1 B2

χ = (B1 − γ5 A1)ψ2 + (B2 − γ5 A2)ψ1

M = B1 F2 + A1G2 + B2 F1 + A2G1

N = B1G2 − A1 F2 + B2G1 − A2 F1

Aµ = B1∂
↔
µA2 + B2∂

↔
µA1 + iψ̄1γµγ5ψ2

ψ = [G1 + γ5 F1 + iγ · ∂(B1 − γ5 A1)]ψ2 + (1 ↔ 2)

D = −2(F1 F2 + G1G2 + ∂A1 · ∂A2 + ∂B1 · ∂B2)− iψ̄1γ · ∂
↔
ψ2.

(9.31b)
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C. The particular combination

φ1 ∧ φ2 = (φ1 · 1−)× φ2

antisymmetric in φ1 and φ2, has the lowest component A1 B2 − A2 B1, and

represents a real general multiplet.

D. The chiral multiplet φ = (A, B, ψ, F,G) can be used to form another chiral

multiplet, based on F as the lowest component. It is called the kinetic multiplet

and has the form

Tφ = (F,G,−iγ · ∂ψ,−�A,−�B). (9.32a)

Doing this we again find the relation

T Tφ = −�φ (9.32b)

which explains the name kinetic. The operator T is an SS generalization of the

Dirac operator iγ · ∂ .

Invariants. Having found the structure of various SS multiplets and the rules

for their multiplication, it remains to clarify the structure of invariant quantities,

in particular invariant actions.

The highest component F of the chiral multiplet φ varies into a divergence.

This is not an accident, but follows from the fact that F is a component of the

highest dimension, so that, on dimensional grounds, its SS variation must be of

the form ∂(other fields). Therefore, the integral

I1 =
∫

d4x [φ]F (9.33a)

is invariant under SS transformations. If the chiral multiplet φ is a product of

other multiplets, for instance φ = φ1 · φ2, then I1 contains products of the usual

fields, and can be taken as an action integral.

In a similar way we conclude that the highest component D of a real general

multiplet V may be also used to define an action:

I2 =
∫

d4x [V ]D. (9.33b)

The interacting Wess–Zumino model

The most general SS action for a single chiral multiplet, which contains no more

than two derivatives and no coupling constants of negative dimensions, has the

form

IWZ =
∫

d4x ( 1
2
φ · Tφ + 1

2
mφ · φ − 1

3
gφ · φ · φ)F (9.34a)
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and defines the massive Wess–Zumino model with interactions. The term

[φ × φ]D does not give anything new, since it differs from −2[φ · Tφ]F by a

divergence. Using the rules of tensor calculus, we can find the component form

of the Lagrangian:

LWZ = L0 + Lm + Lg

L0 ≡ 1
2
∂µA∂µA + 1

2
∂µB∂µB + 1

2
iψ̄γ · ∂ψ + 1

2
(F2 + G2)

Lm ≡ m(AF + BG − 1
2
ψ̄ψ)

Lg ≡ −g[(A2 − B2)F + 2ABG − ψ̄(A − γ5 B)ψ].

(9.34b)

This Lagrangian is invariant under SS transformations (9.26b). The related

equations of motion can be written most compactly in the super-covariant form:

Tφ = −mφ + gφ · φ.

The field equations for F and G do not describe propagation in spacetime, but are

purely algebraic,

F = −m A + g(A2 − B2) G = −m B + 2g AB

which can be expressed equivalently by saying that F and G are auxiliary fields.

The elimination of these fields leads to the Lagrangian

L′
WZ = 1

2
(∂µA∂µA − m2 A2)+ 1

2
(∂µB∂µB − m2 B2)

+ 1
2
ψ̄(iγ · ∂ − m)ψ + mg A(A2 + B2)

− 1
2

g2(A2 + B2)2 + gψ̄(A − γ5 B)ψ (9.35a)

which represents a generalization of expression (9.1), containing the mass and

interaction terms. We should observe that the masses of all the fields are

equal, and that all interactions (A3, AB2, A4, B4, A2 B2, Aψ̄ψ and Bψ̄γ5ψ) are

determined by two parameters: the mass m and the coupling constant g. The

Lagrangian (9.35a) is invariant under the SS transformations:

δA = ε̄ψ δB = ε̄γ5ψ

δψ = [−(iγ · ∂ + m)+ g(A + γ5 B)](A + γ5 B)ε
(9.35b)

obtained from (9.26b) by eliminating F and G.

The role of auxiliary fields is to establish the boson–fermion balance off-

shell. Transformations (9.26b) obey the SS algebra without any additional

conditions and their form does not depend on the dynamics, i.e. coupling

constants, which is not the case with (9.35b). It is interesting to observe that the

set of field equations is also an SS multiplet. The elimination of auxiliary fields,

which is realized by enforcing their field equations in both the action and the

transformation laws, is not an SS invariant procedure. This is why the resulting

SS algebra closes only on-shell.



Supergravity 273

9.3 Supergravity

When the supersymmetry is localized, the SS algebra contains a local translation,

which is an indication that gravity has to be an intrinsic part of a locally SS

theory. Such a theory, called supergravity, represents a natural framework for the

unified treatment of gravity and other basic interactions. Its quantum properties

are much better than those of Einstein’s gravity. The advantage of supergravity

with respect to ordinary SS theories is that it allows a more natural introduction

of spontaneously broken modes, which are necessary for phenomenological

applications (see the end of this section).

In this section, we want to discuss the SS theory of gravity or the gauge

SS theory, following the analogy with SS electrodynamics. We start with the

linearized theory, in order to be able to recognize the essential features of the

full supergravity in the simpler context. In the linearized approximation, the

graviton is described as a massless spin-2 field. In an irreducible representation

of supersymmetry, the graviton may be joined with either a spin- 3
2

or a spin-
5
2

fermion. If we exclude the spin- 5
2

field as it seems to have no consistent

gravitational interaction, we are left with the supergravity multiplet (2, 3
2
). The

related particle content is described by a symmetric tensor ϕµν (the graviton) and a

Majorana vector spinor ψαµ (the gravitino), subject to their field equations. After

giving a short review of the Rarita–Schwinger theory of gravitino, we examine the

construction of first the linearized and then full supergravity and clarify the role

and structure of the auxiliary fields (Schwinger 1970, van Nieuwenhuizen 1981a,

West 1986, Srivastava 1986).

The Rarita–Schwinger field

The free-field Lagrangian for a massless gravitino in M4 can be constructed

starting from the requirement of invariance under gauge transformations

ψµ → ψ ′
µ = ψ + ∂µθ (9.36)

where the parameter θ is a Majorana spinor. The most general Lagrangian with

first field derivatives has the form

L = iψ̄µ(aγ
µ∂ν + b∂µγ ν + cηµνγ · ∂ + dγ µγ νγ · ∂)ψν .

Varying L with respect to ψµ yields the equations of motion

aγ µ∂ · ψ + b∂µγ · ψ + cγ · ∂ψµ + dγ µγ νγ · ∂ψν = 0.

The requirement of gauge invariance for these equations implies a + d = 0,

b + c = 0. The invariance of the action is achieved if a + b = 0. Choosing

a = − 1
2

as the normalization condition, and using the identity

γ µηνλ − γ νηλµ + γ ληµν − γ µγ νγ λ = εµνλργ5γρ
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we end up with the Rarita–Schwinger Lagrangian:

L = 1
2

iεµνρλψ̄µγ5γν∂ρψλ ≡ LRS. (9.37)

We display here several equivalent forms of the gravitino field equations:

f µ ≡ iεµνρλγ5γν∂ρψλ = 0

−i[γ · ∂(γ · ψ) − ∂ · ψ] = 1
2
γ · f

iγ jψ jµ = −( fµ − 1
2
γµγ · f )

i(γiψ jµ + γµψi j + γ jψµi ) = ερi jµγ5 f ρ

(9.38)

where ψµν ≡ ∂µψν − ∂νψµ.

Mass and helicity. Let us choose the gauge condition

! ≡ γ · ψ = 0 (9.39a)

which is locally admissible since δ(γ ·ψ) = γ · ∂θ can be solved for θ . Then, the

field equations imply

iγ · ∂ψµ = 0 i∂ · ψ = 0 (9.39b)

showing that the gravitino field is massless, as we expected.

We now show that ψµ describes two physical modes with helicities λ =
± 3

2
. Consider the plane wave ψµ = uµ(k)e−ik·x , moving along the z-axis,

k = (k0, 0, 0, k3). Using the complete set of vectors (ǫ(−), ǫ(+), k, k̄), where

ǫ± = (0, 1,±i, 0, 0)/
√

2 and k̄ = (k0, 0, 0,−k3), we expand uµ(k) as

uµ = ǫ
µ

(−)
u− + ǫ

µ

(+)
u+ + kµu0 + k̄µu3.

Here, u−, u+, u0 and u3 are Majorana spinors, and k2 = 0. The first condition in

(9.39b) means that all spinors are massless:

k̂u− = k̂u+ = k̂u0 = k̂u3 = 0

while the second one implies (k · k̄)u3 = 0, i.e. u3 = 0. The gauge condition

(9.39a) allows the residual gauge symmetry ψµ → ψµ − ku, which may be used

to eliminate u0. Thus, after fixing the gauge we have

uµ = ǫ
µ

(−)
u− + ǫ

µ

(+)
u+. (9.40)

Consider now the meaning of the gauge condition for the remaining degrees of

freedom. Multiplying this condition with ǫ̂(−), and using ǫ̂(−)ǫ̂(−) = 0, we obtain

ǫ̂(−)ǫ̂(+)u+ = −(1 − 2�3)u+ = 0

where �3 = 1
2
iγ 1γ 2 is the spin projection operator. This relation means that u+

has helicity + 1
2

. Similarly, helicity of u− is − 1
2
. Since ǫ(±) carries helicity ±1,

we conclude that uµ describes a helicity ± 3
2

field.
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The propagator. The field equations for ψµ in interaction with an external

source are

Kµνψν = Jµ

Kµν ≡ i[γ µ∂ν + ∂µγ ν − γ · ∂ηµν − γ µγ · ∂γ ν].
(9.41a)

Gauge invariance implies that the operator Kµν is singular, ∂µKµν = 0, hence the

consistency requires ∂µ Jµ = 0. In order to solve these equations it is convenient

to go to the momentum space (i∂ → k):

(−γ µkν − kµγ ν + k̂ηµν + γ µk̂γ ν)ψν = −Jµ. (9.41b)

It follows from this that

k̂ψµ − kµγ · ψ = −(Jµ − 1
2
γ µγ · J )

whereupon the application of the gauge condition yields

ψµ = Gµν Jν Gµν ≡ −k̂(ηµν − 1
2
γ µγ ν)D (9.42a)

where D = 1/k2. The previous result for G can be written equivalently as

Gµν = −k̂ 1
2
γ νγ µD = 1

2
γ ν k̂γ µD (9.42b)

where, in the last step, we have ignored the term proportional to kν , which yields

zero when acting on the conserved current.

This procedure for finding the propagator is clarified by introducing

Pµν = (µν − 1
3
γ̄µγ̄ν Lµν = 1

3
γ̄µγ̄ν �µν = kµkν/k2 (9.43)

where (µν ≡ ηµν − kµkν/k2, γ̄µ ≡ γµ − kµk̂/k2. These objects are projectors

in the set of solutions of the field equations for ψµ. Equation (9.41b) may be

rewritten in terms of the projectors as

(Pµν − 2Lµν)k̂ψ
ν = −(Pµν + Lµν +�µν)J ν

which implies �µν J ν = 0, i.e. k · J = 0. The projections of this equation with P

and L take the form

(Pµν + Lµν)k̂ψ
ν = −(Pµν − 1

2
Lµν)J ν

k̂ψµ − k̂�µνψ
ν = −(ηµν − 1

2
γ̄µγν)J ν .

Now, multiplying the last equation with γ̄ µ we find −k̂(γ ·ψ)+ k ·ψ = γ · J/2.

Then, after fixing the gauge we easily obtain the solution (9.42a).
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Energy. The interaction energy between two currents is given by

E = J̄µGµν J ν . (9.44)

We shall show that this energy is positive, thus justifying the choice of sign for

the Lagrangian. The residue of the expression for E may be written as

R = J̄µη
λµγσ (

1
2
k̂)γλη

νσ Jν .

Consider now the following identities:

ηµν = ǫ
µ

(−)
ǫν∗(−) + ǫν(+)ǫ

µ∗
(+)

+ (kµk̄ν + kν k̄µ)/(k · k̄)

k̂ = u−ū− + u+ū+.

The first identity represents the completeness relation for the set of vectors

(ǫ(−), ǫ(+), k, k̄), valid on-shell where k2 = 0, and the second one holds in the

space of massless spinors, normalized according to u+−u− = u++u+ = 2k0. The

terms in R proportional to kµ can be ignored, since k · J = 0 and k̂u∓ = 0. Using,

further, the relations

ǫ̂(+)u+ = ǫ̂(−)u− = 0

which tell us that the helicity of u+ (u−) cannot be raised (lowered), we find that

the residue is given by

R = 1
2
|ū−ǫ̂(−) ǫ(−) · J |2 + 1

2
|ū+ǫ̂(+) ǫ(+) · J |2 (9.45)

where |A|2 ≡ A+A, which proves its positivity.

Linearized theory

The field equations for a graviton and a gravitino are invariant under the gauge

transformations

δξϕµν = ∂µξν + ∂νξµ δθψµ = ∂µθ. (9.46)

The linearized on-shell simple supergravity can be constructed in analogy with

SS electrodynamics, so that its full symmetry is supersymmetry combined with

the gauge symmetry (9.46).

SS transformations. On dimensional grounds the general SS transformations

are

δεϕµν = i 1
2
(ε̄γµψν + ε̄γνψµ)+ c1ηµνεγ · ψ

δεψµ = 2c2 ∂ jϕiµσ
i j ε + c3∂

ρϕρµε

where ε is a constant Majorana spinor, and the constants ci will be determined by

demanding that the algebra of the SS and gauge transformations closes on-shell.
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For the commutator of a local θ symmetry and a global supersymmetry on ϕµν
we find

[δθ , δε]ϕµν = i 1
2
(ε̄γµ∂νθ + ε̄γν∂µθ)+ c1ηµνεγ · ∂θ.

The result is a gauge transformation with the parameter ξµ = iε̄γµθ/2, provided

c1 = 0. The commutators [δθ , δε]ψµ and [δξ , δε]ϕµν automatically vanish, while

[δξ , δε]ψµ = 2c2∂µ(∂ j ξi )σ
i j ε + c3∂

ρ(∂ρξµ + ∂µξρ)ε

is a gauge transformation with parameter θ = 2c2∂ jξiσ
i j ε, provided c3 = 0. We

now test the commutator of two supersymmetries on ϕµν :

[δε1
, δε2

]ϕµν = ic2[ε̄2γµσ
i j ε1∂ jϕiν + (µ ↔ ν)] − (ε1 ↔ ε2)

= ic2[ε̄2γ
jε1∂ jϕµν − ∂µ(ε̄2γ

iε1ϕiν)] + (µ ↔ ν).
(9.47)

The result is a gauge transformation with parameter ξν = −ic2ε̄2γ
jε1ϕ jν, and a

translation. The translation has the correct form if c2 = −1.

Thus, the final form of the SS transformations reads:

δϕµν = i 1
2
(ε̄γµψν + ε̄γνψµ)

δψµ = −2∂ jϕiµσ
i j ε.

(9.48)

The algebra is closed only by taking into account both the global SS

transformations and gauge transformations, in analogy with the electrodynamic

case.

Finally, it remains to verify the algebra of the transformations on ψµ:

[δε1
, δε2

]ψµ = i∂i (ε̄1γ jψµ + ε̄1γµψ j )σ
i j ε2 − (ε1 ↔ ε2)

= − 1
4
(ε̄1ŴAε2)σ

i jŴAi∂i (γ jψµ + γµψ j )− (ε1 ↔ ε2)

= − 1
2
i(ε̄1Ŵaε2)σ

i jŴa(γ jψiµ + 1
2
γµψi j )

− 1
2
i∂µ[(ε̄1Ŵaε2)σ

i jŴaγ jψi ].

Here we have used the Fierz identity in which, due to antisymmetry with respect

to (ε1 ↔ ε2), the only terms that survive are Ŵa = {γm, 2iσmn |m<n}, and also the

relation σ i j ∂i (γ jψµ + γµψ j ) = σ i j [γ jψiµ + 1
2
γµψi j + ∂µ(γ jψi )]. The second

term has the form of a gauge transformation on ψµ, while the first one, on the field

equations, becomes −iε̄1Ŵaε2σ
i jŴaγ jψiµ +O( f ). Using, further, the identities

σ i jσmnγ j = − 1
2
σmnγ i σ i jγmγ j = 1

2
γmγ i − 2ηim

we can see that the contribution of Ŵa = σmn has the form O( f ), and the

evaluation of the contribution of Ŵa = γm leads to the final result:

[δε1
, δε2

]ψµ = 2i(ε̄1γ
ρε2)∂ρψµ

− ∂µ[2i(ε̄1γ
mε2)ψm + 1

2
i(ε̄1Ŵaε2)σ

i jŴaγ jψi ] +O( f ). (9.49)
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The action. We have found an on-shell irreducible representation of

supersymmetry combined with an Abelian gauge symmetry, carried by the fields

ϕµν and ψµ. The action invariant under the SS transformations (9.48) and gauge

transformations (9.46) represents the linearized supergravity theory, and is given

as the sum of the free Fierz–Pauli and Rarita–Schwinger actions for the graviton

and gravitino, respectively:

I L
SG =

∫
d4x ( 1

2
ϕµνGL

µν + 1
2
ψ̄µ f µ) = IFP + IRS (9.50)

where

GL
µν = RL

µν − 1
2
ηµν RL

RL
µν = −�ϕµν + ϕσ

µ,νσ + ϕσ
ν,µσ − ∂µ∂νϕ RL = ηµν RL

µν .

The invariance holds without use of the equations of motion.

The gauge invariance of the action implies the following differential

identities:

∂µGL
µν = 0 ∂µ fµ = 0.

Complete supergravity

Full supergravity may be obtained from the linearized theory by introducing

nonlinear gravitational effects, and this has to be done in accordance with

supersymmetry. The linearized theory possesses an Abelian gauge symmetry and

global supersymmetry. The transition to a consistent self-interacting theory may

be realized by applying the Noether coupling method, which leads to a theory with

gauge supersymmetry or supergravity (West 1986). There is, however, another

approach to the complete supergravity, in which the results of the linearized

supergravity are super-covariantized, i.e. covariantized so as to ensure the validity

of both the Poincaré gauge symmetry and supersymmetry. This leads to a

supersymmetrized Poincaré gauge theory or gauged super-Poincaré theory.

From the point of view of Poincaré gauge theory, it is natural to expect

the full supergravity action to have the form of an Einstein–Cartan theory with

a massless Rarita–Schwinger matter field§:

ISG =
∫

d4x

(
− 1

2κ2
bR + i

2
εµνρλψ̄µγ5γν∇ρψλ

)
(9.51a)

where ∇ρψλ = (∂ρ + 1
2

Ai j
ρσi j )ψλ. Using the Riemannian connection A = �

would be inconsistent, since the presence of spinor fields implies a non-trivial

torsion. In the gravitino action there is no factor b, since εµνρλ is not a tensor, but

§ The usual gravitational constant κ = 8πG/c2 has dimension −2. In order to simplify the form

of the SS gauge transformations we shall use, in this section, the redefined gravitational constant:

κ → κ2.
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a tensor density. The first term in ISG may be rewritten in a more convenient form

as

LG = − 1

2κ2
bR = 1

8κ2
ε
µνρλ

mnkl bk
ρbl

λRmn
µν(A) (9.51b)

while the second term represents the covariant Rarita–Schwinger action. In the

forthcoming discussion we shall see that the action (9.51a) is in agreement with

supersymmetry without any additional modification.

Field equations. The variation of LG with respect to A, by making use of the

Palatini identity δA Rmn
µν = ∇µ(δAmn

ν) − ∇ν(δAmn
µ), yields (up to a four-

divergence)

δALG = 1

2κ2
ε
µνρλ

mnkl (∇νbk
ρ)b

l
λδAmn

µ

while the variation of the Rarita–Schwinger Lagrangian has the form

δAL̃RS = − i

8
ε
µνρλ
kmnl bk

νψ̄ργ
lψλδAmn

µ

where we have used γ5γkσmn → 1
2
εkmnlγ

l . This implies the field equation for A,

T k
νρ ≡ ∇νbk

ρ − ∇ρbk
ν =

κ2

2
iψ̄ργ

kψν (9.52a)

which can be solved for A:

Ai jµ = �i jµ − 1
2
(Ti jm − Tmi j + T jmi)b

m
µ ≡ Āi jµ. (9.52b)

Thus, the dynamics implies that the spacetime has a non-vanishing torsion.

The variation of the action with respect to bi
ν and ψ̄µ yields the field

equations

Fi
ν = b

κ2
Gν

i + 1
2

iεµνρλψ̄µγ5γi∇ρψλ

Fµ = iεµνρλγ5γν∇ρψλ

(9.53)

where Gν
i = Rν

i − 1
2
hi

ν R.

Gauge invariance of the theory implies that these two equations are not

independent, but obey certain differential identities: their covariant derivatives

vanish on-shell. Consider, for instance, an explicit proof of the identity ∇µFµ =
0. We start from the equality

∇µFµ = iεµνρλγ5[(∇µbi
ν)γi∇ρψλ + γν∇µ∇ρψλ]

= 1
4
iεµνρλγ5[iκ2(ψ̄νγ

iψµ)γi∇ρψλ + Ri j
µργνσi jψλ].

where we have used torsion equation (9.52a). In the second term we expand the

product γνσi j in terms of γr and γ5γr , using the cyclic identities

εµνρλγ5γνσi jψλRi j
µρ = εµνρλbiν Ri j

µργ5γ jψλ − 2bGλ
lγ

lψλ

εµνρλR j
νµρ = εµνρλ∇ρT j

νµ
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and express Gλ
l from the equation Fl

λ = 0. That the expression we have obtained

vanishes follows from the Fierz identity for undifferentiated gravitino fields.

Different forms of the gravitino field equations can be easily obtained from

the related linearized equations in M4.

Local supersymmetry. We now demonstrate that action (9.51), in which the

connection A is treated as an independent variable, is invariant under local SS

transformations (Deser and Zumino 1976):

δbi
µ = κ iε̄γ iψµ (δhi

µ = −κ iε̄γ µψi )

δψµ = − 2

κ
∇µε

(9.54a)

and
δAmn

µ = Bmn
µ − 1

2
bm

µBsn
s + 1

2
bn

µBsm
s

Bmn
µ ≡ κ iε̄γ5γµ∇νψρε

mnνρ .
(9.54b)

In further exposition we shall often use κ = 1 for simplicity.

Let us first consider the variation with respect to bi
µ, ψµ and ψ̄µ, which we

denote by δ′. The variation of the gravitational action yields

δ′LG = −b(Ri
µ − 1

2
bi

µR)(−iε̄γ µψi ).

Variation of the gravitino action yields three terms, produced by varying with

respect to ψλ, ψ̄µ and γν = bk
νγk . The first term is given by

δ′1L̃RS = −iεµνρλψ̄µγ5γν∇ρ∇λε = − 1
4
iεµνρλψ̄µγ5γνσi j εRi j

ρλ.

The second term reads:

δ′2L̃RS = − iεµνρλ(∇µε̄)γ5γν∇ρψλ

= iεµνρλε̄γ5[(∇µγν)∇ρψλ + γν∇µ∇ρψλ] ≡ A + B.

The second part of this expression, taken together with δ′LG and δ′1L̃RS, yields

zero. Indeed, the relation

δ′1L̃RS + B = − 1
4

iεµνρλRi j
ρλ[ψ̄µγ5γνσi j ε − ε̄γ5γνσi jψµ]

= − 1
4

iRi j
ρλε

µνρλbk
νεki j l ψ̄µγ

lε = ib(Ri
λ − 1

2
bi

λR)ψ̄iγ
λε

directly implies that δ′1L̃RS + B + δ′LG = 0.

Thus, we are effectively left with the first part of δ′2L̃RS, and δ′3L̃RS:

A = 1
2
iεµνρλT m

µν ε̄γ5γm∇ρψλ

δ′3L̃RS = − 1
2
εµνρλ(ψ̄µγ5γm∇ρψλ)(ε̄γ

mψν).



Supergravity 281

The last term can be further transformed using the Fierz identity:

(ε̄γmψν)(ψ̄µγ5γm∇ρψλ)− (µ ↔ ν)

= − 1
4
(ε̄γmŴAγ5γm∇ρψλ)(ψ̄µŴ

Aψν)− (µ ↔ ν).

Here, due to the antisymmetry in (µ, ν), only those terms that contain Ŵa ∈
{γk, 2iσkl |k<l} may give a non-vanishing contribution. In addition, σkl should

also be discarded since γmσklγm = 0. The calculation with Ŵa = γk leads to

(ε̄γmψν)(ψ̄µγ5γm∇ρψλ) → 1
2
(ε̄γ5γk∇ρψλ)(ψ̄µγ

kψν)

which implies

A + δ′3L̃RS = 1
2
iεµνρλ(T m

µν − 1
2
iψ̄νγ

mψµ)ε̄γ5γm∇ρψλ.

In the next step, we calculate the variation with respect to A:

δA(LG + LRS) = 1
4
ε
µνρλ

mnkl (T
k
µν − 1

2
iψ̄νγ

kψµ)b
l
λδAmn

ρ .

That this term cancels the contribution of A + δ′3L̃RS follows from the identity

εklmnbl
[λδAmn

ρ] = iε̄γ5γkψλρ .

This completes the proof of the local supersymmetry of action (9.51), in the first

order formalism.

Algebra of local supersymmetries

In the rest of this chapter we shall replace the variable Ai jµ by the expression

(9.52b), going thereby to the second order formulation of supergravity. The

resulting action is invariant under the local super-Poincaré transformations with

parameters (aµ, ωi j , εα):

δbi
µ = −aρ∂ρbi

µ − aρ
,µbi

ρ + ωi
sbs

µ + κ iε̄γ iψµ

δψµ = −aρ∂ρψµ − aρ
,µψρ + 1

2
ω · σψµ − 2

κ
∇µε.

(9.55)

The connection is not now an independent variable, and its on-shell

transformation law is derived from the identification Ai jµ = Āi jµ:

δT Ai j
µ = −aρ∂ρ Ai j

µ − aρ
,µAi j

ρ

δL Ai j
µ = ωi

s As j
µ + ω j

s Ais
µ − ∂µω

i j

δS Ai j
µ = 1

2
iκ(−ε̄γ iψµ

j + ε̄γ jψµ
i − ε̄γµψ

i j ).

where δT = δa , δL = δω and δS = δε.
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The Poincaré subalgebra has the standard form,

[δT(a1), δT(a2)] = δT(a1 · ∂a2 − a2 · ∂a1)

[δL(ω), δT(a)] = δL(−a · ∂ω)

[δL(ω1), δL(ω2)] = δL(ω
i
2sω

s j

1 − ωi
1sω

s j

2 )

(9.56)

while the commutator of a supersymmetry transformation and a Poincaré

transformation reads:

[δS(ε̄), δT(a)] = δS(a · ∂ε̄)

[δS(ε̄), δL(ω)] = δS(
1
2
ε̄σ · ω).

(9.57)

The commutator of two supersymmetries on bi
µ is given by

[δS(ε̄1), δS(ε̄2)]bi
µ = [δT(−aρ)+ δL(a

ρ Amn
ρ)+ δS(−aρψ̄ρ)]bi

µ (9.58a)

where aρ = 2iε̄1γ
ρε2. The result follows from

−2iε̄2γ
i∇µε1 − (ε1 ↔ ε2) = − 2i∂µ(ε̄2γ

iε1)− 2iAin
µε̄2γiε1

= − 2i∂µ(ε̄2γ
λε1)b

i
λ − 2i(ε̄2γ

λε1)∇µbi
λ

and the torsion equation.

The commutator of two supersymmetries on ψµ is more complicated:

[δ1, δ2]ψµ = −2iε̄1γ
mε2ψµm − ε̄1γ

αε2Vαµρ Fρ + ε̄1σ
αβε2Tαβµρ Fρ (9.58b)

where the structure functions V and T are given by

4bVαµρ = γαηµρ + 2bεαµρλγ5γ
λ

2bTαβµρ = (ηαρηβµ − ηβρηαµ)− σαβηµρ − bεαβµργ5.
(9.58c)

We note that the first term has the same form as the commutator on bk
µ,

−aλψµλ = [δT(−aρ)+ δL(a
ρ Amn

ρ)+ δS(−aρψ̄ρ)]ψµ

while the structure functions V and T describe terms proportional to the equations

of motion.

In order to prove the result (9.58b) we start from the equality

[δ1, δ2]ψµ = i(ε̄1γ
iψµ

j )σi j ε2 + 1
2
i(ε̄1γµψ

i j )σi j ε2 − (ε1 ↔ ε2)

which is obtained after using the transformation law for Ai j
µ. The right-hand side

is transformed by means of the Fierz identity into

Rµ = − 1
2
i(ε̄1Ŵaε2)σ

i jŴa(γiψµj + 1
2
γµψi j )
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where, because of the antisymmetry with respect to (ε1 ↔ ε2), the only non-

vanishing contribution comes from Ŵa ∈ {γm, 2iσmn |m<n}.
The term with Ŵa = γm is calculated by a suitable transformation of the

expressions σ i jγmγi and σ i jγmγµψi j , and using different forms of the gravitino

field equation:

R(1)
µ = −2iε̄1γ

mε2ψµm − ε̄1γ
αε2Vαµρ Fρ .

The term containing Ŵa = (2iσmn |m<n) is also proportional to the field equation.

After a straightforward calculation we obtain

R(2)
µ = ε̄1σ

mnε2Tmnµρ Fρ

which proves the final result (9.58b).

Auxiliary fields

We now wish to find a formulation of supergravity with auxiliary fields, in which

the algebra closes without imposing any field equations.

Linearized theory. The general idea for the structure of the auxiliary fields

comes from the boson–fermion counting rule. Off-shell the symmetric tensor

ϕµν contributes 10 degrees of freedom minus four gauge degrees of freedom

(local ξ symmetry), giving six independent bosonic degrees of freedom. On the

other hand, four Majorana spinors ψµ contribute 16 degrees of freedom, which,

after subtracting four gauge degrees of freedom (local θ symmetry), yields 12

fermionic degrees of freedom. Thus, the auxiliary fields must be chosen so as to

compensate for the six missing bosonic degrees of freedom.

The choice of auxiliary fields is not unique. We shall try to construct a

minimal formulation, in which there are no auxiliary spinors. We assume that

the set of six bosonic fields consists of a scalar S, a pseudoscalar P and a

pseudo-vector Aµ, and that these fields occur in the action as squares, and are

of dimension d = 2. If the auxiliary fields are chosen so as to vanish on-shell,

they must transform into the field equations. Then, on dimensional grounds we

find the general form of the new SS transformations:

δϕµν = 1
2

i(ε̄γµψν + ε̄γνψµ)

δψµ = −2∂ jϕiµσ
i j ε + z Aµγ5ε + 1

3
iγµ(S + γ5 P)ε + c1γµγ5 Âε

δS = c2iε̄γ · F

δP = c3iε̄γ5γ · F

δAµ = c4ε̄γ5 Fµ + c5ε̄γ5γµγ · F.

These transformations reduce on-shell (S = P = Aµ = 0) to the form (9.48).

The constants ca are determined by requiring that these transformations, together

with the gauge transformations (9.46), form a closed algebra.
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The commutator of two SS transformations on S gives

[δ1, δ2]S = −4ic2ε̄1γ
ρε2∂ρS + 4c2(z − 3c1)[ε̄2γ5σ

ρλε1 − (ε1 ↔ ε2)]∂ρ Aλ

which implies c1 = z/3, c2 = −1/2. Similarly, the correct form of the

commutator on P is obtained provided c3 = −1/2. Finally, carrying out the

commutator on A,

[δ1, δ2]Aµ = −4ic5zε̄1γ
ρε2∂ρ Aµ + 4iz(c5 + 1

3
c4)[ε̄2σµρ∂

ρ Âε1 − (ε1 ↔ ε2)]

we find zc5 = −1/2, zc4 = 3/2. Thus, all constants except z are determined, and

z can be reduced to one by a rescaling of Aµ.

Using the relation

δψ̄µ = 2∂ jϕiµε̄σ
i j + z Aµε̄γ5 − 1

3
iε̄(S + γ5 P)γµ + c1ε̄ Âγ5γµ

in the variation of L̃RS, we obtain

δL̃RS = − 1
3
iε̄(S + γ5 P)γ · F + zε̄γ5(Fµ − 1

3
γµγ · F)Aµ.

Furthermore, it follows from 3δL̃RS = δ(S2 + P2 + z2 A2), with z = 1, that the

invariant action is of the form

I L = I L
SG −

∫
d4x 1

3
(S2 + P2 + A2). (9.59)

Upon eliminating the auxiliary fields S, P and Aµ, this action reduces to the form

(9.50). The final form of the SS transformations reads:

δϕµν = 1
2

i(ε̄γµψν + ε̄γνψµ)

δψµ = −2∂ jϕiµσ
i j ε + Aµγ5ε + 1

3
iγµ(S + γ5 P − iγ5 Â)ε

δS = − 1
2
iε̄γ · F

δP = − 1
2
iε̄γ5γ · F

δAµ = 1
2
ε̄γ5(3Fµ − γ µγ · F).

(9.60)

The complete theory. Analysis of the linearized theory suggests that the action

of the full nonlinear supergravity with auxiliary fields will have the form

I = ISG −
∫

d4x 1
3

b(S2 + P2 + A2). (9.61)

The factor b gives an additional contribution to the variation of the action, and

complicates the construction of SS transformations.
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From the linearized transformation laws for bk
µ and ψµ we find the

following covariant expressions:

δbk
µ = iε̄γ kψµ

δψµ = −2∇µε + Aµγ5ε + 1
3

iγµ(S + γ5 P − iγ5 Â)ε.
(9.62)

Let us now check, by calculating the commutator of two transformations on bk
µ,

whether this result is in agreement with supersymmetry. The contribution of the

term −2∇µε is the same as before, while the contribution of the auxiliary fields

is changed by the term

[δ1, δ2]bi
µ|AF = [ 2

3
iε2γ

ρε1ε
ikm

ρ Am − 4
3
ε̄2σ

ik(S + γ5 P)ε1]bkµ

which represents an additional Lorentz rotation. The complete result for the

commutator of two supersymmetries on bi
µ is:

[δ1, δ2] = δT(−aρ)+ δL(a
ρ Âik

ρ)+ δS(−aρψ̄ρ)

Âik
ρ ≡ Aik

ρ − 1
3
εikm

ρ Am

(9.63)

where aρ = 2iε1γ
ρε2. The algebra closes without use of the field equations, and

the covariance is in agreement with supersymmetry.

The covariant transformation of the auxiliary field S is given by

δS = − 1
2
ε̄γ · F + · · ·

(and similarly for P and Aµ) where dots indicate possible corrections due to

supersymmetry. Applying this transformation rule to the action yields a non-

vanishing result, due to the presence of the term (δb)S2 . Therefore, the

expression for δS must contain an additional term proportional to (δb/b)S,

in order to compensate for the contribution stemming from (δb)S2 (a similar

mechanism operates for P and Aµ).

In order to find the exact form of the additional terms, we observe that the

transformation law for ψµ can be written as

δψµ = −2∇C
µε ∇C

µ ≡ ∇µ − 1
2

Aµγ5 − 1
2

iγµη

where η = (S+γ5 P−iγ5 Â)/3, and ∇C
µ is the so-called super-covariant derivative

which contains, in addition to ∇µ, some extra terms that reconcile covariance and

supersymmetry. Define, further, the object

F
µ

C ≡ Fµ|∇→∇C = iεµνρλγ5γν(∇ρψλ − 1
2

Aργ5ψλ − 1
2

iγρηψλ)

which represents the super-covariant extension of Fµ.

We determine the transformation laws for the auxiliary fields in the

same way as for δψµ: by the replacement ∇µ → ∇C
µ .
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In this way we obtain:

δS = − 1
2
iε̄γ · FC

δP = − 1
2
iε̄γ5γ · FC

δAm = 1
2
ε̄γ5(3Fm

C − γmγ · FC).

(9.64a)

Explicit verification shows that these transformations, together with (9.62), really

represent the symmetry of action (9.61). Using the equalities

γ · FC = γ · F + iγ5 A · ψ + γ λ(S + γ5 P)ψλ

3F
µ

C = − 1
2
iεµνρλγν Aρψλ + 2σµλ(S + γ5 P)ψλ + iγ5 Aµγ · ψ − iγ5γ

µA · ψ

the transformation laws for the auxiliary fields may be written in a more explicit

form:

δS = − 1
2
iε̄γ · F + 1

2
ε̄γ5 A · ψ − 1

2
iε̄γρ(S + γ5 P)ψρ

δP = − 1
2
iε̄γ5γ · F − 1

2
ε̄A · ψ − 1

2
iε̄γ5γρ(S + γ5 P)ψρ

δAm = 1
2
ε̄γ5(3Fm − γmγ · F)− 1

2
ε̄γ5(S + γ5 P)ψm

− 1
2
iε̄γ · ψAm + 1

2
iεmnks (ε̄γ5γnψk)As .

(9.64b)

Dimensional analysis of the right-hand sides of equations (9.62) and (9.64)

shows that the contributions of the auxiliary fields carry one unit of dimension

more than is necessary. This dimensional excess is a consequence of our choice of

units in which κ = 1, and disappears if we reintroduce the gravitational constant

κ , with dimension d(κ) = −1.

General remarks

Bearing in mind that the exposition in this chapter aims to introduce only the

basic aspects of gravity in the context of supersymmetry, we want to mention

here several closely related and important topics. More details can be found in

the additional literature (see, e.g., van Nieuwenhuizen 1981a, Sohnius 1985, West

1986, Srivastava 1986, Bailin and Love 1994).

Matter coupling. The interaction of supergravity with matter fields is

determined by the rules that follow from the structure of local supersymmetry

multiplets and the related local tensor calculus. The supergravity multiplet

(bk
µ, ψµ, P, S, Am ) is defined by the transformation laws that lead to the local

SS algebra (9.63). The local multiplets of matter fields must also have SS

transformations that realize the same algebra. Thus, the first problem is to

define local analogues of the general multiplet, chiral multiplet, etc. The most

transparent method to construct a local multiplet is to apply the Noether coupling
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procedure to the algebra of SS transformations: we start with a global multiplet

and the related SS algebra, and modify both the transformation law and the SS

algebra, order by order in κ , so as to achieve the local algebra (9.63). The

essential step in the construction consists in replacing all partial derivatives

with supercovariant derivatives. If a field F transforms under supersymmetry

according to δF = ε̄ f , then its supercovariant derivative is defined by the relation

∇C
µ F = ∂µF + 1

2
ψ̄µ f.

The transformation law of ∇C
µ F does not contain ∂ε. In the next step, we find the

rules for combining two local supermultiplets into a third one; we can define the

products φ1 · φ2, φ1 × φ2 and φ1 ∧ φ2, with a structure that parallels the related

global results, with the replacement ∂µ → ∇C
µ . The last part of the local tensor

calculus consists in finding formulae for the construction of invariant actions,

which generalize the related formulae of global supersymmetry. After that we

can construct realistic models of supergravity in the interaction with matter fields,

and study their physical implications.

Spontaneous supersymmetry breaking. Exact supersymmetry implies that

bosonic and fermionic states in every supermultiplet have the same mass, so that

all the known elementary particles should have superpartners with the same mass.

Since no such mass degeneracy is observed in nature, supersymmetry must be

broken. In realistic applications supersymmetry is broken spontaneously. This

mechanism can make the unobserved superpartners highly massive, ‘explaining’

thereby their unobservability, whereas the standard particles acquire different

masses.
Particle Spin Superparticle Spin

electron 1
2

selectron 0

quark 1
2

squark 0

photon 1 photino 1
2

gluon 1 gluino 1
2

W±, Z0 1 W -ino, Z -ino 1
2

graviton 2 gravitino 3
2

As we have seen, in a theory with global simple supersymmetry we have

E ≥ 0 for every state. The vacuum state |0〉 has vanishing energy, E0 = 0,

if and only if all the SS generators annihilate it. The state with E0 = 0

is the supersymmetric vacuum, while E0 > 0 means that supersymmetry is

spontaneously broken. Thus, the vacuum energy is an indicator for spontaneously

broken supersymmetry.

For a given field ϕ we have δϕ = [ε̄Q, ϕ], so that supersymmetry is

spontaneously broken if and only if 〈δϕ〉 �= 0 for some δϕ. Consider as an
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illustration the interacting Wess–Zumino model. The Lorentz invariance of the

vacuum implies 〈ψα〉 = 〈∂µA〉 = 〈∂µB〉 = 0, hence the only field variation that

may have a non-vanishing vacuum expectation value is 〈δψ〉 = (〈F〉 + γ 5〈G〉)ε.

A closer inspection of the Wess–Zumino model shows that both 〈F〉 and 〈G〉
vanish, so that supersymmetry is not broken.

The Wess–Zumino model may be modified so as to have 〈F〉 = λ. In that

case, we find an inhomogeneous term in the transformation law for ψ , 〈δψ〉 = λε,

which implies that ψ is a Goldstone fermion, or goldstino. This massless particle

is an analogue of the usual Goldstone boson.

The fact that the goldstino is not found in nature represents a problem for

theories with broken global supersymmetry. The local supersymmetry resolves

this problem through the super-Higgs mechanism: the massless goldstino is

‘gauged away’ and absorbed by the gauge field ψµ, the gravitino, which becomes

massive.

Superspace and superfields. A Poincaré algebra may be realized by a set of

transformations of points in M4. Analysing the behaviour of ordinary fields

φ(x) in M4 under Poincaré transformations, we can define representations of the

Poincaré (and Lorentz) group on fields and use them to construct relativistic field

theories.

We have seen that an SS algebra may be represented on supermultiplets of

fields. A very useful technique for dealing with SS theories is to represent a

supermultiplet by a superfield, which is defined on a superspace with coordinates

zM = (xµ, θa, θ̄
ȧ)

where θ and θ̄ are anticommuting spinors. Supersymmetry transformations may

be conveniently represented as transformations of points in superspace.

In order to indicate the role of superspace, we begin by considering Poincaré

transformations in M4. Let φ be a scalar field on M4, and g(�, a) an element of

the Poincaré group. Acting with the transformation g(�, a) on φx = g(1, x)φ(0)

and using the group composition rules we obtain g(�, a)φx = g(1,�x +
a)φ(0) = φ�x+a . This shows that the Poincaré transformation g(�, a) may be

realized as the coordinate transformation x ′ = �x + a of points in M4.

In a similar way we can obtain a representations of supersymmetry as a

transformation of points in superspace. Let g(x, θ, θ̄) be an element of the super-

Poincaré group generated by (P, Q, Q̄), which describes an ordinary translation

and a super-translation in superspace. We define a scalar field $ at (x, θ, θ̄ ) as

$(x,θ,θ̄) = g(x, θ, θ̄)$(0) g(x, θ, θ̄ ) ≡ exp(x · P − θQ − θ̄ Q̄).

Then, g(a, ξ, ξ̄ )$(x,θ,θ̄) = $(x ′,θ ′,θ̄ ′), where

x ′µ = xµ + aµ − i(ξσµθ̄ − θσµξ̄ )

θ ′a = θa + ξa θ̄ ′ȧ = θ̄ȧ + ξ̄ȧ .
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This defines ordinary and SS translations on superspace. In this representation,

the SS generators have the form

Qa = ∂a − i(σµθ̄ )a∂µ Q̄ȧ = ∂ ȧ + i(θσµ)ȧ∂µ

where ∂a = ∂/∂θa , ∂ ȧ = ∂/∂θ̄ȧ , and Pµ = −∂µ, as before.

Superfields are constructed so as to carry representations of the super-

Poincaré group, in analogy with ordinary fields in M4 which carry representations

of the Poincaré group. They contain just those components that form

supermultiplets. The use of superfields leads to a very elegant formalism

that keeps the supersymmetry manifest. Field theories defined in terms of

superfields become very compact compared with component formulations.

Superfields are particularly useful for calculating quantum corrections, where a

superfield Feynman diagram gives a compact description of many component–

field diagrams.

Quantum effects. In perturbative calculations of physical processes in quantum

field theory, we find divergent integrals with divergences that originate

from integrations over small distances or large (ultraviolet) momenta. In

renormalizable field theories, the problem of ultraviolet divergences is treated

by redefining a finite number of physical parameters, such as masses, coupling

constants, etc, in such a way that physical predictions of the theory remain

finite. The procedure by itself is mathematically not well founded, but has

a clear physical interpretation and leads to theoretical predictions that are in

good agreement with experiments. The gauge theories of electroweak and

strong interactions are renormalizable, but all attempts to construct a consistent,

renormalizable quantum theory of gravity have failed. This is certainly one of the

most important problems of present day elementary particle physics.

In addition to unifying bosons and fermions, SS theories are also attractive

because of their renormalizability properties. Quantum corrections come from

integrations over loop diagrams. Since fermions are anticommuting objects,

fermion loops contribute with an opposite sign compared to boson loops. If the

parameters of the theory (masses and coupling constants) are mutually related

in a convenient way, the contributions of boson and fermion loops may cancel

each other. This is just what happens in SS theories, to some extent. One of the

most impressive cases of this kind is the N = 4 non-Abelian gauge theory, which

is not only renormalizable, but actually finite (to any order of the perturbation

theory): ultraviolet divergences coming from different types of particles ‘cancel’

each other, and we are left only with finite contributions. Physically, however,

this theory seems irrelevant, since its particle spectrum is not realistic.

Einstein’s theory of gravity is finite at the one-loop level. Analysing a large

number of different diagrams at the two-loop level it has been found that the

theory is divergent (Goroff and Sagnotti 1985, 1986). If matter fields are present,

the renormalizability is lost even at the one-loop level.
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Experience with globally SS theories raised the hope that quantum

supergravity might be a renormalizable theory. Explicit calculations in some

supergravity models have proved finiteness at one and two loops, while possible

problems arise at the three-loop level. Although supersymmetry significantly

improves the renormalizability properties of gravity, it seems that standard

supergravity does not represent an appropriate framework for a renormalizable

quantum gravity.

Exercises

1. Consider the relations

{Qα, Qβ } = ia(γ µC)αβ Pµ + ib(σµνC)αβ Mµν

[Pµ, Qα] = c(γµ)α
β Qβ

[Mµν , Qα] = d(σµν)α
β Qβ .

Use the Jacobi identities to find the values of the parameters b, c and d .

2. (a) Find the algebra of the SS transformations (9.10) in the Wess–Zumino

model.

(b) Calculate the corresponding Noether current.

3. Derive the algebra of the transformations (9.14a) in SS electrodynamics.

4. (a) Show that the simple super-Poincaré algebra is invariant under the chiral

transformation Q → eαγ5 Q.

(b) Find the realization of chiral transformations on the Wess–Zumino

multiplet (A, B, ψ, F,G).

5. Derive the following relations, using the super-Poincaré algebra (9.6):

{Qα, Q̄β } = −2i(γ µ)αβ Pµ {Q̄α, Q̄β } = −2i(C−1γ µ)αβ Pµ

[Mµν , Q̄α] = Q̄β(σµν)
β
α.

6. Verify the two-component form (9.15) of the simple super-Poincaré algebra.

7. (a) Show that for m2 > 0 the operator Xµ = Wµ − 1
8

iQ̄γ µγ5 Q obeys the

relations:

[Xµ, Qα] = 1
2
(γ5 Q)α Pµ

[X1, X2] = −im X3 etc (in the rest frame).

(b) Prove that Nµ ≡ 1
8
iQ̄γ µγ5 Q = 1

8
(Q̄σ̄µQ − Qσµ Q̄).

8. Find the helicity structure of the SS multiplets of massless states:

(a) N = 4, λ0 = −1;

(b) N = 8, λ0 = −2.

9. (a) Show that in the Clifford ground state |!〉 for m2 > 0, the superspin

operator in the rest frame has the same value as the usual spin operator:

y = j , y3 = j3.
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(b) Calculate the spin and superspin projections ( j3, y3) for the members

of the massive multiplets built over the ground state |!〉 for which (i)

y = 0, y3 = 0; (ii) y = 1/2, y3 = 1/2; (iii) y = 1/2, y3 = −1/2.

10. (a) Show that the complex form of the transformation law for the chiral

multiplet (9.26a) realizes the SS algebra.

(b) Derive the transformation law for the chiral multiplet φ =
(A, B, ψ, F,G) from its complex form.

11. (a) Prove that the transformations (9.27b) of the general multiplet realize

the SS algebra.

(b) Derive the transformation law of the curl multiplet dV , and verify the

related SS algebra.

(c) Show that the real general multiplet constrained by dV = 0 becomes a

chiral multiplet.

12. (a) Find the components of the antisymmetric product φ1 ∧φ2 of two chiral

multiplets.

(b) Prove that the kinetic multiplet Tφ is a chiral multiplet.

(c) Show that [φ × φ]D differs from −2[φ · Tφ]F by a divergence.

13. Prove the following relation:

(ε̄ψ1)(ūψ2)− (ε̄γ5ψ1)(ūγ5ψ2)+ (ψ1 ↔ ψ2)

= −(ψ̄1ψ2)(ūε)+ (ψ̄1γ5ψ2)(ūγ5ε).

14. Express the interacting Wess–Zumino Lagrangian in terms of the variables

F̃ = F +[m A− g(A2− B2)] and G̃ = G +[m B − 2g AB], and derive their

SS transformations.

15. Find the Noether current corresponding to the SS symmetry of the interacting

Wess–Zumino model.

16. Show that the quantities Pµν , Lµν and �µν , defined in equation (9.43), are

projectors, i.e. that they obey the relations:

Pµν + Lµν +�µν = ηµν

Pµν Lνλ = 0 Pµν�
νλ = 0 Lµν�

νλ = 0

Pµν Pνλ = Pµ
λ Lµν Lνλ = Lµ

λ �µν�
νλ = �µ

λ.

17. Find the explicit form of the term O( f ) in the commutator (9.49), and

calculate the related structure functions defined in (9.58b).

18. (a) Prove the different forms of the gravitino field equations (9.38) in M4.

(b) Find the related gravitino field equations in full on-shell supergravity.

19. Verify the consistency condition ∇µFµ = 0 of the gravitino field equation

in full on-shell supergravity.

20. Prove that Ri
λµ = C i

λµ − T i
λµ has the following transformation laws:

δT Ri
λµ = −aρ

,µRi
λρ − aρ

,λRi
ρµ − aρ∂ρ Ri

λµ

δL Ri
λµ = ωi

s Rs
λµ + ωi

s,λbs
µ − ωi

s,µbs
λ

δS Ri
λµ = iκ[−ε̄γ i (∇µψλ −∇λψµ)+ Ais

µε̄γsψλ − Ais
λε̄γsψµ].



Chapter 10

Kaluza–Klein theory

The spacetime in GR is a Riemannian four-dimensional continuum V4. In

accordance with the principle of equivalence, gravity is determined by the

geometry of spacetime. Very soon after the discovery and experimental

verification of GR, Kaluza (1921) proposed that the four-dimensional spacetime

be supplemented with a fifth dimension, in order to give a unified account of

the gravitational and electromagnetic interactions, the only two basic interactions

known at the time. Although the physical effects of gravity and electromagnetism

are seemingly very distinct (all particles are subject to gravity, but only charged

particles are subject to electromagnetism), Kaluza showed that both can emerge

as different manifestations of a five-dimensional GR. In this theory point particles

move along geodesic lines in a five-dimensional Riemann spacetime V5, and these

trajectories are seen in V4 as trajectories of particles subject to both gravitational

and electromagnetic forces.

Kaluza studied only the classical structure of the five-dimensional gravity.

The first analysis of the compatibility of this theory with quantum mechanics

was given by Klein (1926). Later investigations generalized Kaluza’s idea to a

spacetime having more than five dimensions, giving rise to a unification of gravity

with non-Abelian gauge theories. All higher-dimensional theories that attempt to

unify gauge theories with gravity are now called Kaluza–Klein (KK) theories.

In the papers by Kaluza and Klein it is not clear whether the fifth dimension

should be taken seriously or merely as a useful mathematical device necessary

to obtain a unified four-dimensional theory, whereupon its physical meaning is

completely lost. Nowadays, it is widely accepted that the fifth dimension should

be considered as a true, physical dimension. The explanation of why the new

dimension has not been detected up to now is ‘found’ in the assumption that the

spacetime along the fifth dimension is curled up into an exceedingly small circle,

so small that it could not yet be observed. This is also true for small gravitational

fields, so that the ground state structure of the five-dimensional space V5 has to be

essentially different from that of M5. It can be pictured as an ordinary spacetime

V4, with a tiny circle ‘attached’ to every point of it.

293
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Significant advances in our understanding of the fundamental interactions in

the 1970s brought a revival of interest in Kaluza’s ideas. There are several reasons

for this. First, since the electroweak and strong interactions can be successfully

described as gauge theories, the KK approach may serve as a framework for

studying their unification with gravity. Then, the existence of the ground state

which does not have the form of M5 can be best understood as an effect of

spontaneous symmetry breaking. Finally, using the idea of supergravity in KK

theory it is possible to have a geometric description of both gauge fields and spinor

matter.

In spite of many advances, the realization of these ideas has been

accompanied by many difficulties, so that even today, more than seven decades

after its birth, there is no realistic KK theory. Nevertheless, having a feeling

that there must be at least a part of the truth in these intriguing ideas, physicists

continue to study them, since ‘it appears hard to believe that those relations, hardly

to be surpassed in their formal correspondence, are nothing but an alluring play

of whimsical chance’ (Kaluza 1921).

10.1 Basic ideas

We begin our exposition of KK theories with the theory in five dimensions. The

basic motive of the five-dimensional KK theory is the unification of gravity and

electromagnetism. The realization of this goal demands a deeper understanding of

the role of ground state in gravitational theories (see, for instance, Orzalesi 1981,

Witten 1981a, 1982, Mecklenburg 1983, Freedmann and van Nieuwenhuizen

1985, Bailin and Love 1987).

Gravity in five dimensions

Five-dimensional KK theory is defined in a five-dimensional Riemann space V5

with metric ĝMN of the signature (+,−,−,−;−). The upper-case Latin letters

(M, N, . . . = 0, 1, 2, 3, 5) denote coordinate indices in V5 and the lower-case

Greek letters (µ, ν, . . . = 0, 1, 2, 3) denote, as before, the coordinate indices

in four-dimensional Riemann space V4. The original KK theory is simply five-

dimensional GR, determined by the action

IG = − 1

2κ̂

∫
d5z

√
ĝ R̂ (10.1)

where zM = (xµ, y), ĝ = det(ĝMN), R̂ is the scalar curvature and κ̂ the

gravitational constant in V5. The possibility of having additional matter fields

will be considered later. The equations of motion are

R̂MN = 0.
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The action (10.1) is invariant under general coordinate transformations:

z′M = z′M(z) ĝ′MN(z
′) = ∂zR

∂z′M
∂zL

∂z′N
ĝRL(z).

Kaluza’s mechanism. In order to ensure the unobservability of the fifth

dimension, Kaluza introduced the assumption that there exists a coordinate

system in V5 such that the metric tensor is independent of the extra coordinate:

∂y ĝMN = 0. (10.2a)

The so-called cylinder condition (10.2a) is not generally covariant, but there

is a wide class of coordinate systems in which it holds true. Going over to

new coordinates we find that condition (10.2a) remains fulfilled provided the

partial derivatives (∂x ′µ/∂xλ, ∂x ′µ/∂y, ∂y ′/∂xλ, ∂y ′/∂y) do not depend on y. It

follows that the permitted coordinate transformations have the form x ′µ = x ′µ(x),
y ′ = ρy + ε(x), where ρ is a constant.

The metric tensor ĝMN has 15 components, which can be naturally grouped

in the following way: ĝMN = (ĝµν, ĝµ5, ĝ55). Starting from the idea that 10

components ĝµν describe gravity and four components ĝµ5 the electromagnetic

field, the component ĝ55 appears as a redundant degree of freedom. Following

the ideas from the early period, we eliminate this component by imposing the

additional condition

ĝ55 = −1. (10.2b)

The negative sign of ĝ55 corresponds to having y spacelike. Condition (10.2b)

restricts the value of ρ to ρ = 1, so that the residual coordinate transformations

have the form:

x ′ = x ′(x) (10.3a)

y ′ = y + ε(x). (10.3b)

The metric. The previous suggestion concerning the physical interpretation of

the metric components can be checked by looking at their transformation laws.

Under transformation (10.3a) the components ĝµν and ĝµ5 transform according

to

ĝ′µν =
∂xλ

∂x ′µ
∂xρ

∂x ′ν
ĝλρ ĝ′µ5 = ∂xλ

∂x ′µ
ĝλ5

i.e. as the usual four-dimensional tensors. Next, consider the transformation

(10.3b):

ĝ′µν = ĝµν − ∂µεĝν5 − ∂νεĝµ5 − ∂µε∂νε

ĝ′µ5 = ĝµ5 + ∂µε.

Formally, ĝµ5 transforms like the electromagnetic potential. However, if we

recall that gauge transformations in electrodynamics are, in fact, local U(1)
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transformations, we see that the identification of ĝµ5 with the electromagnetic

potential could be accommodated by postulating the extra dimension to be

geometrically a circle. In that case any movement along y in V5 may be

interpreted as an Abelian gauge transformation of ĝµ5.

On the other hand, it seems natural to demand that the metric of the physical

four-dimensional space be invariant under translations along y, which is not the

case with ĝµν . What, then, is the metric of the physical spacetime V4? By

observing that the combination

gµν ≡ ĝµν + ĝµ5ĝν5

is invariant under (10.3b), we conclude that gµν is the correct metric of V4.

Using the quantities gµν and ĝµ5 ≡ −Bµ, which have a direct physical

interpretation, the original five-dimensional metric takes the form

ĝMN =
(

gµν − BµBν −Bµ

−Bν −1

)
. (10.4a)

The inverse metric has the form

ĝMN =
(

gµν −Bµ

−Bν −1 + BλBλ

)
(10.4b)

where gµν is the inverse of gµν , and Bµ = gµν Bν . Four-dimensional indices are

raised and lowered with the help of gµν and gµν .

The reduced action. A physical interpretation of the theory derives from the

effective four-dimensional form of the action (10.1), restricted by conditions

(10.2a, b). The Christoffel connection Ŵ̂M
NR is given by

Ŵ̂
µ
νρ = Ŵ

µ
νρ + 1

2
(Fµ

ν Bρ + Fµ
ρ Bν)

Ŵ̂5
νρ = 1

2
(∇ν Bρ + ∇ρ Bν)− 1

2
Bλ(Fλν Bρ + Fλρ Bν)

Ŵ̂5
5ρ = − 1

2
BλFλρ Ŵ̂

µ

5ρ = 1
2

Fµ
ρ Ŵ̂

µ

55 = Ŵ̂5
55 = 0

(10.5a)

where Fµν = ∂µBν − ∂ν Bµ. Then a direct calculation yields

R̂µν = Rµν + 1
2
(Bµ∇ρ Fρ

ν + Bν∇ρ Fρ
µ)+ 1

4
BµBν F2 + 1

2
Fρ

µFρν

R̂µ5 = 1
2
∇ρ Fρ

µ + 1
4

BµF2 R̂55 = 1
4

F2

(10.5b)

where Rµν = Rµν(V4), and F2 = Fµν Fµν . This implies

R̂ = R + 1
4

Fµν Fµν . (10.5c)

Now, using the equality
√

ĝ = √−g we see that the integrand in (10.1) does

not depend on y. Therefore, in order to have a finite action the domain of the
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fifth coordinate has to have a finite measure. This is true, in particular, if the

extra spatial dimension is compact, with the geometry of a circle, 0 ≤ y ≤ L, in

accordance with the physical interpretation of ĝµ5. Then, the integration over y

in (10.1) leads to the following, reduced four-dimensional action:

I
(0)
G = − 1

2κ

∫
d4x

√
−g(R + 1

4
Fµν Fµν) κ ≡ κ̂/L . (10.6a)

The form of the first term in the action shows that κ is the usual four-

dimensional gravitational constant,
√
κ~/8πc = 1.6 × 10−33 cm. Moreover, it is

evident that the Maxwell action is not well normalized. Since Bµ is dimensionless

and the electromagnetic potential has the dimension of mass, we define

Bµ = f Aµ f 2 = 2κ (10.6b)

where the condition f 2/2κ = 1 ensures the standard form of the Maxwell action:

− 1
4

F2(A). Had the extra dimension been timelike, ĝ55 = +1, we would have

obtained the wrong sign here.

While the original action (10.1) is invariant under five-dimensional general

coordinate transformations, transition to the Kaluza metric reduces this symmetry

to the form (10.3). Because of the cylinder condition, all that remains from the use

of the fifth dimension is the increased number of fields in d = 4: the reduced four-

dimensional theory describes gravity and electromagnetism. This procedure, in

which the resulting four-dimensional theory is obtained starting from a higher-

dimensional theory in such a way, that its properties can be studied without

attributing physical existence to the extra dimension, is called a dimensional

reduction.

On the other hand, we can accept the fifth dimension as a physical reality,

and obtain all geometric properties of V5, including the compactness of the extra

dimension and the cylinder condition, by relying on the five-dimensional field

equations. This approach, based on the modern concept of spontaneous symmetry

breaking, is known as spontaneous compactification. It makes the idea of higher-

dimensional gravity more natural and attractive.

Now, it is useful to identify several shortcomings in Kaluza’s original

approach.

– The physical meaning of the fifth dimension is not clear (Is it a genuine

physical dimension or merely a mathematical device necessary to obtain

unification in four dimensions?).

– The cylinder condition that accounts for unobservability of the fifth

dimension does not have a natural explanation.

– The metric component ĝ55 is eliminated from the action by imposing an ad

hoc condition. This is not consistent from the point of view of the original

theory, as we are thereby lacking the field equation R̂55 = 0.

– The theory does not account for the electroweak and strong interactions.
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– The approach is purely classical; it does not address itself to the quantum

nature of basic interactions.

– The obtained geometric unification of gravity and electromagnetism does not

include matter.

Some of these objections are given from the point of view of our present

understanding of the basic physical interactions. In the subsequent exposition

of the five-dimensional theory we shall show how the first three objections can be

eliminated. Inclusion of the weak and strong interactions demands a transition to

higher dimensions, and will be discussed in section 10.3. The real explanation of

the last two objections lies outside the scope of this book, although some aspects

of the problems will be mentioned in passing.

Ground state and stability

An important step in studying physical properties of a dynamical system is to

find its ground state or vacuum. Then, the low-energy physics is obtained by

introducing physical fields as excitations around the ground state.

It might seem natural to assume that the ground state of the theory (10.1) is

the five-dimensional Minkowski space M5. However, such an assumption, if true,

shows that the theory (10.1) is wrong, since we certainly know that the space we

live in is not even close to M5. Kaluza’s basic idea can be expressed by stating

that the true vacuum state is the product of four-dimensional Minkowski space

M4 with a circle S1:

(V5)0 = M4 × S1.

It is assumed that the circumference of this circle is very small so that the fifth

dimension is unobservable in standard experiments.

In a large class of field theories the ground state is determined as the stable

solution of the field equations with the lowest energy. However, this definition is

not relevant for gravitational theories where the concept of energy is very subtle

and depends on the boundary conditions. We shall now discuss this problem in

more detail.

Classical vacuum. In classical field theories, the positivity of the energy plays

an important role for the stability of the vacuum. The energy is usually of the

form E =
∫

d3x T00, where T00 = 0 in the vacuum, and T00 > 0 for all other

configurations. Conservation of energy then implies the stability of the vacuum:

there is no other configuration to which it could make a transition, respecting the

conservation of energy. Besides the true vacuum state, a field theory may have

other classically stable solutions, for which the energy has only a local minimum.

Consider now, as an illustrative example, the simple scalar field theory in

1+1 dimensions: L = 1
2
(∂tφ)

2 − 1
2
(∂xφ)

2 − V (φ). The Hamiltonian is

H =
∫ +∞

−∞
dx [ 1

2
(∂tφ)

2 + 1
2
(∂xφ)

2 + V (φ)].
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Without loss of generality, the condition that the energy is bounded from below

may be replaced by the positive energy condition: E ≥ 0. This means that the

potential has to be a non-negative function of φ, V (φ) ≥ 0. Moreover, we restrict

ourselves to finite energy configurations, which implies the following boundary

conditions:

∂tφ, ∂xφ, V (φ) → 0 as x → ±∞.

Consequently, the field φ tends to a constant value at infinity, and this value must

be one of the absolute minima of the potential V (φ):

x → ±∞ : φ → φ± V (φ±) = 0.

The constants φ− and φ+ need not be equal.

The classical vacuum φ0 is the solution of the field equations that has the

lowest possible energy, E0 = 0. It follows from the form of the Hamiltonian that

φ0 must satisfy the relations

∂tφ0 = 0 ∂xφ0 = 0 V (φ0) = 0.

Thus, φ0 is a constant field for which V (φ) has an absolute minimum. In general,

the classical vacuum is not unique.

The classical vacuum is a stable, static solution of the field equations. Its

dynamical role becomes clearer if we analyse all stable and static solutions of

the theory. A static solution φ0(x) is a field configuration for which the potential

W [φ] =
∫

dx [ 1
2
(∂xφ)

2 + V (φ)] has an extremum:

δW [φ]
δφ

= −∂2
xφ + V ′(φ) = 0.

We should note that for static solutions W [φ] = H [φ]. Classically stable static

solutions correspond to the minima of W [φ], i.e. to the minima of the static energy

functional. Thus, the classical stability of a solution is tested by its behaviour

under small perturbations (perturbative stability).

When W [φ] has a single minimum, there is only one static solution, the

unique classical vacuum. More interesting situations arise when W [φ] has several

minima.

When W [φ] has an absolute but degenerate minimum, it is called the

degenerate classical vacuum. A simple example is given by the non-trivial φ4

theory: V (φ) = (λ/4)(φ2 − v2)2. The potential W [φ] has two absolute minima,

φ0 = ±v, so that the classical vacuum is degenerate.

A solution φ0 may only be a local minimum of W [φ]. Returning to the

previous example, we note that for any finite energy solution there are four

possible types of boundary conditions: (φ−, φ+) may take the values (−v,−v),

(+v,+v), (−v,+v) and (+v,−v). Accordingly, the set of all finite energy

solutions can be broken into four sectors. Classical vacuum solutions, φ0 = −v

and φ0 = +v, belong to the first two sectors (vacuum sectors). The remaining
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two sectors are topologically non-trivial (non-perturbativesectors), and the related

solutions are called the kink and antikink, respectively. They correspond to the

local minima of W [φ], and each of them has the lowest energy in its own sector

(Felsager 1981, Rajaraman 1982).

Classical stability. Now, we are going to consider small fluctuations around a

static solution φ0(x):

φ(t, x) = φ0(x)+ η(t, x) |η(t, x)| ≪ |φ0(x)|.

Using the series expansion η(t, x) =
∑

k ηk(x) exp(−iωk t) over a complete set

of static solutions ηk(x), the field equation for φ(t, x) takes the form

[−∂2
x + V ′′(φ0)]ηk(x) = ω2

kηk(x).

Since the operator [−∂2
x + V ′′(φ0)] is Hermitian, the modes ηk are orthogonal,

and ω2
k is real. For the stability of φ0 we must have ω2

k ≥ 0. Indeed, the existence

of a negative ω2
k (imaginary ωk) would imply the appearance of the exponential

factors exp(±|ωk |t) which, for some value of time, become large, and contradict

the stability.

The stability condition can be expressed as a condition on the energy of

the system. Let φ0(x) be a static solution for which the Hamiltonian H [φ] =∫
dx [ 1

2
(∂xφ)

2 + V (φ)] has a minimum. By varying φ0(x) in the set of static

functions, δφ0(x) = εη(x), the variation of energy takes the form

δH [φ0] = 1
2
ε2

∫
dx η(x)[−∂2

x + V ′′(φ0)]η(x).

Using, now, the series expansion of η(x) in terms of the orthogonal modes,

η(x) =
∑

k akηk(x), this relation reads as

δH [φ0] = 1
2
ε2
∑

k

a2
kω

2
k .

Thus, the requirement ω2
k ≥ 0 can be translated into δH [φ0] ≥ 0.

The condition ω2
k ≥ 0 is necessary but not sufficient for stability. If all

ωk are real and not zero, which means that all ω2
k > 0 (there is a strong local

minimum of the energy), then φ0 is a classically stable solution. If all ωk are real

but some of them are zero, the solution φ0 may be either stable or unstable. Thus,

the appearance of zero modes complicates the formalism, and demands additional

criteria for stability (Mecklenburg 1981).

Zero modes are solutions ηk(x) with ωk = 0. They are often related to the

existence of different static configurations which have the same energy and are

connected by a continuous symmetry. In that case any symmetry transformation

of the state φ0(x) is the zero mode deformation. Consider, for example, the
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translational invariance of the scalar field theory. It implies that configurations

φ0(x) and φ0(x + ε) = φ0(x) + ε∂xφ0(x) have the same energy, i.e. the

perturbation along ∂xφ0(x) does not change the energy of the state. To see that

explicitly, we should differentiate the equation of motion for φ0(x) with respect

to x :

[−∂2
xφ0(x)+ V ′′(φ0)]∂xφ0(x) = 0.

For stability, the translation mode should be the lowest one. We can often use

general arguments to show that the eigenvalue ωk = 0 cannot be the lowest,

which implies instability.

This analysis applies to all static solutions, including both local and absolute

minima of the potential, and can be generalized to more complex dynamical

systems (Rajaraman 1982, Mecklenburg 1983).

Semiclassical instability. Standard treatments of quantum field theory are

usually based on perturbation theory. However, perturbation theory is not an

ideal small-coupling approximation, as there are a lot of interesting physical

phenomena in the small-coupling regime that are not covered by perturbation

theory. A typical phenomenon of this kind is quantum tunnelling, which is not

seen in any order of perturbation theory.

There are computational methods based on the semiclassical (small ~)

approximation, in which the functional integral is dominated by the stationary

points of the action. Many nonlinear classical field theories possess non-trivial

stable solutions corresponding to the local minima of the energy functional. If

two local minima are separated by a finite potential barrier, semiclassical analysis

shows that the system can tunnel from one configuration into the other. The

tunnelling is associated with a localized solution of the corresponding Euclidean

field theory that interpolates between the two local minima, called the instanton

(Coleman 1985).

Semiclassical instability in field theory may be investigated by instanton

methods in the following way:

(a) First, we find a local minimum solution of the Euclidean field theory.

(b) Then, we look for a bounce solution—a solution of the Euclidean theory that

asymptotically approaches the local minimum configuration.

(c) Finally, we check the stability of the bounce solution against small

perturbations. If the bounce solution is unstable, its contribution to the energy

of the ground state is imaginary, which indicates the instability of the ground

state (Mecklenburg 1983).

The KK ground state. We now want to apply these considerations to gravity

and to find whether the space M4 × S1 could be the ground state of the five-

dimensional KK theory. The first step would be to compare the energy of M4×S1

to the energy of M5. However, the definition of the gravitational energy depends

on the boundary conditions, so that this comparison would be meaningless.
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A field theory is defined not only by an action but also by boundary

conditions. General covariance describes the symmetry of the action but the

physical symmetry is determined by the symmetry of the boundary conditions.

The choice of boundary conditions defines the asymptotic symmetry of spacetime

and, consequently, the associated concept of time; this time is, then, used to

introduce the energy for generally covariant dynamical systems (see chapter 6).

Therefore,

we can compare energetically only those solutions that have the same

boundary conditions.

Thus, for instance, we may compare the energy of all solutions that are

asymptotically Minkowskian but no more.

With these limitations in mind, we can now understand the real meaning of

a typical positive energy theorem. Consider, for instance, a class of solutions of

Einstein’s equations that are asymptotically Minkowskian. If we can show that

all solutions in this class, which are different from M4, have positive energy and

only M4 has zero energy, then it follows that the Minkowski space is stable (there

are several proofs of this theorem in GR).

Since the definition of the gravitational energy depends on the boundary

conditions, and the boundary conditions for M5 and M4 × S1 are different, ‘a

comparison between them is meaningless, like comparing zero apples and zero

oranges’ (Witten 1981a).

The only criterion for the choice of the gravitational ground state

remains stability.

Consequently, in KK theory we should impose the requirement that M4 × S1

should be stable, both classically and semiclassically.

The space M4 × S1 is classically stable configuration. As we shall see,

the spectrum of small excitations consists of a finite number of massless modes

(a graviton, a photon and a scalar field), expected for symmetry reasons and an

infinite number of massive modes. All frequencies are real and exponentially

growing modes are absent.

In order to explore the semiclassical stability of M4 × S1, we first define

the Euclidean KK ground state by ds2 = dτ 2 + dx2 + dy2 + dz2 + dφ2, or,

after introducing spherical coordinates, ds2 = dρ2 + ρ2 d!2 + dφ2. Here, φ

is a periodic variable, 0 ≤ φ ≤ 2πr , and d!2 is the line element on the three-

dimensional sphere S3. Then, we observe that there is a bounce solution specified

by

ds2 = dρ2

1 − a2/ρ2
+ ρ2 d!2 + (1 − a2/ρ2) dφ2

where a > 0 is a constant. For large values of ρ this solution approaches the

KK vacuum. To obtain a non-singular behaviour at ρ = a, φ has to be periodic
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with period 2π/a, and ρ is restricted to run from a to infinity. Studying small

fluctuations around this solution we find that it represents an instability of M4×S1.

By an appropriate Minkowskian continuation, we can find a solution into

which the KK vacuum decays. That space (a) contains a hole in it and differs

topologically from M4 × S1, (b) has the same asymptotic behaviour and (c)

its energy is zero. Therefore, the KK vacuum decays in the process of the

spontaneous formation of a hole, going over into a final state with the same energy.

However, the interpretation that this bounce solution describes an instability of the

KK vacuum is correct only if spaces with topologies different from M4 × S1 are

allowed dynamically, which is not quite clear. If such spaces are not considered,

the positive energy theorem also holds for the KK vacuum. Moreover, the effect of

the instability could be eliminated by adding elementary fermions (Witten 1982).

In our further exposition we shall leave aside these interesting aspects of the

five-dimensional KK theory and continue to analyse its classical properties. It

should be stressed, however, that the question of the stability of the ground state

has to be clarified in every serious attempt to construct a realistic KK theory.

10.2 Five-dimensional KK theory

In the preceding section we introduced the basic ideas of five-dimensional KK

theory and shed light on the important role of the ground state for its physical

interpretation. Now, we are going to give a systematic account of the geometric

and physical structure of the theory (see, e.g., Zee 1981, Salam and Strathdee

1982, Gross and Perry 1983, Mecklenburg 1983, Duff et al 1986, Bailin and Love

1987).

Five-dimensional gravity and effective theory

We begin by discussing the general structure of the five-dimensional gravity and

its effective form in d = 4.

Gravity in five dimensions. Let X5 be a five-dimensional differentiable

manifold with local coordinates zM. At each point of this manifold we define

the tangent space T5 with a local Lorentz basis (pentad) êI: êIêJ = ηIJ, where

ηIJ = (+,−,−,−;−). Here, (I, J, . . .) are local Lorentz indices, and (M, N, . . .)

are coordinate indices. An arbitrary vector of the coordinate basis êM can be

expressed in the Lorentz basis as êM = bI
M êI, and the inverse relation reads as

êI = hI
MêM.

In each tangent space T5 we can define the metric in the usual way:

ĝMN ≡ êMêN = bI
MbJ

NηIJ.

If, in addition, we introduce an antisymmetric, metric compatible connection

ÂIJ
M = − ÂJI

M, the theory takes the form of PGT in d = 5, and (X5, ĝ, Â) is

a Riemann–Cartan space U5.



304 Kaluza–Klein theory

The theory of gravity in U5 is invariant with respect to local translations

(general coordinate transformations) and local Lorentz rotations SO(1, 4). From

gauge potentials bI
M and ÂIJ

M we can construct the corresponding field strengths:

the torsion T̂ I
MN and the curvature R̂IJ

MN. We assume that the dynamics of the

gravitational field is determined by the simple action

IG = − 1

2κ̂

∫
d5z b̂ R̂( Â) (10.7)

where b̂ = det(bI
M) =

√
ĝ. Matter fields can be coupled to gravity by

generalizing the well-known four-dimensional structures (at the expense of losing

the simplicity of Kaluza’s original idea).

Example 1. The real massless scalar field in U5 is described by the action

IS =
∫

d5z
√

ĝ(− 1
2
ϕ�̂ϕ).

By varying IG + IS with respect to Â we obtain T̂ I
MN ≡ ∇MbI

N −∇NbI
M = 0. This

algebraic equation can be explicitly solved for Â:

ÂIJ
M = �IJ

M ≡ 1
2
(C IJK − CKIJ + CJKI)bKM

where C I
MN = ∂MbI

N − ∂NbI
M. Going into coordinate indices �IJ

M becomes the

Christoffel connection Ŵ̂M
NR. Thus, the condition T̂ = 0 converts U5 into the

Riemann space V5. By replacing Â = � into the original action we obtain an

equivalent formulation of the theory (the second order formalism).

In five dimensions the Dirac field is just a four-component spinor. The

dynamics of the massless Dirac field in U5 is determined by

ID =
∫

d5z 1
2

ib̂ψ̄γ KhK
M∇Mψ + H.C.

where γ K = (γ k, γ 5) are the d = 5 Dirac matrices, ∇Mψ = (∂M + 1
2

AIJ
MσIJ)ψ ,

and H.C. denotes the Hermitian conjugate term. The equations of motion obtained

from IG + ID can be solved for Â:

ÂIJ
M = �IJ

M + K IJ
M

where the contortion tensor K is bilinear in ψ̄ and ψ . The connection is not

Riemannian, and we have here an analogue of EC theory in U4. The replacement

Â = � in the original action does not give an equivalent theory. However, this

theory by itself represents a consistent theory of the Dirac field in Riemann space

V5.
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Ground state. As we have seen, it makes no sense to compare asymptotically

different gravitational solutions on energetic grounds, hence there is no satisfying

criterion for the choice of the ground state of U5. We shall, therefore, adopt

Kaluza’s ansatz by itself,

(U5)0 = M4 × S1 (10.8a)

and explore the consequences.

After introducing local coordinates zM = (xµ, y), with y being an angle that

parametrizes S1, the metric of the ground state takes the form

ĝ0
MN

= ηMN =
(
ηµν 0

0 −1

)
. (10.8b)

Note that it has the same form as the five-dimensional Minkowskian metric, since

M5 and M4 × S1 are locally isometric. This metric is a solution of the classical

field equations, R̂MN = 0. Studying small oscillations around (10.8) we find that

there are no exponentially growing modes, hence the ground state M4 × S1 is

classically stable. Semiclassical analysis indicates that M4 × S1 may be unstable.

The form of the ground state M4 × S1 can be understood as a sort of

spontaneous symmetry breaking. The symmetry of M5 is the five-dimensional

Poincaré group P5, while the symmetry of M4 × S1 is only P4 × U(1). The

possible maximal symmetry of the ground state P5 is spontaneously broken to

P4 × U(1). Since S1 is a compact manifold, the emergence of the ground state

M4 × S1 is called spontaneous compactification.

We know that GR in d = 5 with the ground state M5 can be understood

as a theory based on the local P5 symmetry. In a similar way, KK theory with

the ground state M4 × S1 is a theory based on the local P4 × U(1) symmetry.

The local P4 is responsible for the presence of gravity in d = 4, while local

U(1) describes electromagnetism. This is why KK theory can unify gravity and

electromagnetism.

The harmonic expansion. Having found the ground state, we can now expand

every dynamical variable around its ground state value and determine the

spectrum of excitations. Harmonic expansion is introduced to describe these

excitations. Since the fifth dimension is a circle, we have y = rθ , where r is

a constant and θ an angle, 0 ≤ θ ≤ 2π . Any dynamical variable defined on

M4 × S1 can be expanded in terms of the complete set of harmonics on S1:

ϕ(x, y) =
∑

n

ϕn(x)Yn(y) (10.9a)

where the Yn are orthonormal eigenfunctions of the operator�y = −∂2
y :

Yn(y) = (2πr)−1/2e−iny/r

�yYn(y) = (n2/r2)Yn(y)

∫
dy Y ∗

n (y)Ym(y) = δnm .

(10.9b)
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In five dimensions this is the Fourier expansion of the function ϕ(x, y) periodic

in y ∈ S1, with the coefficients that depend upon x .

Example 2. The physical spectrum of excitations of the five-dimensional metric

can be determined by expanding ĝMN around its ground state value,

ĝMN(x, y) = ηMN + hMN(x, y)

and using the equations of motion. If we choose an appropriate gauge condition

the field equations R̂MN = 0 take the form

�̂hMN(x, y) = 0

where �̂ ≡ ηMN∂M∂N = �x+�y . Thus, hMN are massless fields in five dimensions.

Now, we can make the Fourier expansion hMN(x, y) =
∑

n hn
MN(x)Yn(y) and

obtain the equations for the Fourier components:

(�x + n2/r2)hn
MN(x) = 0.

We have here an infinite number of four-dimensional fields hn
MN(x). The nth mode

of the metric has the (four-dimensional) mass squared m2
n = (n~c/r)2, that stems

from the kinetic energy of the motion along the fifth dimension. All the modes

with n �= 0 are massive and h0
MN(x) is the only massless mode. The massless mode

reflects the existence of local symmetries (to be discussed later) and m2
n > 0, so

that there are no exponentially growing modes.

If r is of the order of the Planck length, lP = (~G/c3)1/2 = 1.6× 10−33 cm,

the modes with n �= 0 have masses of order ~c/r ≈ 1019 GeV. At energies well

below the Planck energy, these modes are very hard to excite. If we restrict our

considerations to the low energy sector of the theory, E ≪ ~c/r , and neglect all

massive modes, the metric ĝMN becomes independent of the fifth coordinate. This

gives a clear meaning to the cylinder condition.

In order to express the complete five-dimensional theory in an equivalent

four-dimensional form, we should Fourier expand all the dynamical variables in

the action, and integrate over the fifth coordinate.

The information about the fifth dimension is completely contained in

the presence of all modes of the original fields in the effective four-

dimensional action.

Very often, we limit our considerations to the zero mode contribution, which

is independent of the fifth dimension. In doing so, we expect the higher excitations

to be too massive to be accessible at present energies. However, more detailed

investigations show that discarding the massive modes is not always consistent

with the higher-dimensional field equations (Duff et al 1986).
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Choosing dynamical variables

We now introduce a suitable parametrization of the five-dimensional metric, so

that the usual gravity and electromagnetism are directly included in the massless

sector of the effective four-dimensional theory (Zee 1981, Salam and Strathdee

1982).

The metric. We want to investigate the general structure of the space U5,

assuming that the ground state is M4 × S1. Let êM = (êµ, ê5) be the coordinate

basis of the tangent vectors, associated with local coordinates zM = (xµ, y). The

metric ĝMN = êMêN has the general form

ĝMN(x, y) =
(

ĝµν ĝµ5

ĝ5ν ĝ55

)
.

We assume that the space U5 has a layered structure, as represented in

figure 10.1: for each fixed point xµ in V4 there is a (one-dimensional) manifold

V1 (layer or fibre), and the coordinate y labels the points in V1. This means

that U5 locally has the structure of the Cartesian product U4 × V1, which is not

necessarily true globally. Two neighbouring points (x, y) and (x, y + dy) in a

layer V1 define an infinitesimal displacement (0, dy) = dy ê5, the square of which,

ds2 = ĝ55 dy2, defines the metric in V1: g55 = ĝ55.

Next, we define the spacetime U4 by demanding that each displacement in

it should be orthogonal to a given layer V1. The motivation for this choice is

found in a simple physical interpretation: any displacement in spacetime should

be orthogonal to the internal space. A displacement (dx, 0) = dxµêµ is not

orthogonal to (0, dy) since êµê5 = ĝµ5 �= 0. Hence, the four-dimensional space

the points of which are (x, y = constant) cannot be the physical spacetime. The

desired displacement orthogonal to V1 has the form (dx,�y) = dxµêµ + �y ê5,

where �y is determined by the orthogonality condition:

(dxµêµ +�y ê5)ê5 = 0 ⇒ �y = −g55ĝ5µ dxµ.

y

y+dy

(x+dx,y)
(x,y)

V1

∆y

Figure 10.1. The layered structure of U5.
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Here, the quantity g55 is the inverse of g55 = ĝ55, and should be clearly

distinguished from ĝ55. The length of the displacement vector (dx,�y) can be

computed to be

(dxµ,�y)ĝMN(dxν,�y) = (ĝµν − g55ĝµ5 ĝν5) dxµ dxν ≡ gµν dxµ dxν

where the last line defines the metric gµν of spacetime U4.

If we introduce the notation

ĝ55 = φ55 ĝµ5 = ĝ55B5
µ

and then, for simplicity, omit the indices 5 in φ55 and B5
µ, the metric of U5 takes

the form

ĝMN(x, y) =
(

gµν + φBµBν φBµ

φBν φ

)
(10.10a)

whereupon we find

ĝMN(x, y) =
(

gµν −Bµ

−Bν φ−1 + BλBλ

)
. (10.10b)

This result is an expression of the local orthogonality of V1 and U4, and leads to

the following form of the interval:

ds2 = gµν dxµ dxν + g55(dy + Bµ dxµ)(dy + Bν dxν). (10.10c)

The pentad. These considerations can be expressed in a suitable form by using

the formalism of orthonormal frames. We observe that the first four vectors

of a Lorentz frame êI = (êi , ê5̄) define the Lorentz frame in T4, the tangent

space of U4. Each vector of the coordinate basis êM can be expressed as

êM = bi
M êi +b5̄

Mê5̄. Applying this expansion to the vector ê5 in the layer V1, and

using the local orthogonality of V1 and U4, we conclude that the expansion of ê5

cannot contain any of the vectors êi in U4:

êµ = bi
µ êi + b5̄

µ ê5̄ ê5 = b5̄
5 ê5̄.

Thus, the local orthogonality condition takes the form

bi
5 = 0 ⇐⇒ bI

M(x, y) =
(

bi
µ 0

b5̄
µ b5̄

5

)
. (10.11a)

From this we easily find the inverse pentad:

hI
M(x, y) =

(
hi

µ hi
5

0 h5̄
5

)
(10.11b)

where hi
µ is the inverse of bi

µ, h5̄
5b5̄

5 = 1, and hi
5 satisfies the condition

bi
µhi

5 + b5̄
µh5̄

5 = 0.
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In terms of the pentad components, we can construct the metric of U5 in the

standard way:

ĝµν = bi
µb j

νηi j + b5̄
µb5̄

νη55 = gµν − b5̄
µb5̄

ν

ĝµ5 = b5̄
µb5̄

5η55 = −b5̄
µb5̄

5

ĝ55 = b5̄
5b5̄

5η55 = −b5̄
5b5̄

5.

After making the identification Bµ = h5̄
5b5̄

µ, we recognize here the result

(10.10a).

Using the basis (êi , ê5̄), we can define the local Lorentz coordinate system

(ξ i , ξ 5̄):

dξ i = bi
µ dxµ dξ 5̄ = b5̄

5 dy + b5̄
µ dxµ = b5̄

5(dy + Bµ dxµ)

in which the interval has the form ds2 = ηi j dξ i dξ j + η55(dξ
5̄)2.

There is another, very convenient, choice of basis obtained by taking

(Eµ, E5) = (bi
µ êi , ê5), i.e.

êµ = Eµ + BµE5 ê5 = E5

which is naturally related to the local orthogonality of V1 and U4. This basis

defines the local coordinate system (Xµ,Y ):

dXµ = dxµ dY = dy + Bµ dxµ

in which the metric is block-diagonal:

ds2 = gµν dXµ dXν + g55 dY 2.

It is important to realize that this is not the coordinate basis, which influences the

calculations of various geometric objects (Toms 1984).

After introducing the metric structure of U5 by the condition (10.11a), we

can also obtain the related (4 + 1) splitting of the Christoffel connection.

Residual symmetry. The original five-dimensional action (10.7) is invariant

under general coordinate transformations and local Lorentz rotations. The

transformation law of bi
µ under general coordinate transformations has the form

b′iµ = ∂xν

∂x ′µ
bi

ν +
∂y

∂x ′µ
bi

5.

If we wish to preserve the fundamental condition bi
5 = 0 which defines the

layered structure of U5, we have to allow only those coordinate transformations

in which x ′ does not depend on y:

x ′ = x ′(x) y ′ = y ′(x, y). (10.12)
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The related transformation rules of the metric components (gµν, Bµ, φ) are:

g′µν =
∂xλ

∂x ′µ
∂xρ

∂x ′ν
gλρ φ′ = ∂y

∂y ′
∂y

∂y ′
φ

B ′
µ = ∂xλ

∂x ′µ

(
∂y ′

∂y
Bλ −

∂y ′

∂xλ

)
.

(10.13)

If we recall the omitted indices 5 in φ and Bµ, these rules become much clearer:

(a) gµν is a tensor with respect to the indices (µ, ν);

(b) φ = φ55 is a tensor with respect to (5, 5);

(c) Bµ = B5
µ is not a tensor, as it transforms inhomogeneously, but in the special

case y ′ = y ′(y) it becomes a tensor with respect to (5, µ).

The coordinate transformations (10.12) reduce to the form (10.3) if we demand

that φ = φ(x).

The massless sector of the effective theory

In our previous considerations, we defined the general geometric structure of

the space U5, in which the metric components are functions of all coordinates

zM = (xµ, y). Now, we focus our attention on the truncated theory that contains

only y-independent, zero modes.

Instead of discussing the general Riemann–Cartan space U5, we restrict our

attention to the important case T = 0, corresponding to the Riemann space V5.

Using metric (10.10) and assuming its independence of y, we find the following

result for the Christoffel connection:

Ŵ̂
µ
νρ = Ŵ

µ
νρ − 1

2
(Fµ

ν Bρφ + Fµ
ρ Bνφ + Bν Bρ∂

µφ)

Ŵ̂
µ

5ρ = − 1
2
(Fµ

ρφ + Bρ∂
µφ) Ŵ̂

µ

55 = − 1
2
∂µφ

Ŵ̂5
νρ = 1

2
(∇ν Bρ + ∇ρ Bν)+ 1

2
Bλ(Fλν Bρφ + Fλρ Bνφ + Bν Bρ∂λφ)

+ 1
2
φ−1(Bρ∂νφ + Bν∂ρφ)

Ŵ̂5
5ρ = 1

2
(BλFλρφ + Bρ Bλ∂λφ + φ−1∂ρφ) Ŵ̂5

55 = 1
2

Bλ∂λφ.

(10.14a)

A straightforward (but lengthy) calculation leads to the curvature scalar:

R̂ = R − 1
4
φFµν Fµν − φ−1�xφ + 1

2
φ−2gµν∂µφ∂νφ

= R − 1
4
φFµν Fµν − 2√−φ

�x

√
−φ.

(10.14b)

Since
√

ĝ = √−g
√−φ, the expression

√
−ĝ R̂ does not depend on the fifth

coordinate, and the integration over y in action (10.7) yields the following
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effective low-energy theory:

I
(0)
G = − 1

2κ

∫
d4x

√
−g

√
−φ(R − 1

4
φFµν Fµν) κ ≡ κ̂/L (10.15)

where we have dropped a four-divergence term. This result represents the

zero mode contribution to the effective four-dimensional action, and should be

compared to expression (10.6), which holds for φ = −1.

This theory can be recognized as a variant of the Brans–Dicke theory,

with σ ≡ √−φ identified as the massless scalar field coupled to gravity

and electromagnetism. The scalar field effectively defines the strength of

the gravitational interaction. While Brans–Dicke theory contains a term

ω∂µσ∂
µσ/σ , with ω ≥ 6, here ω = 0. Also, the coupling of the scalar σ to

matter is completely fixed by the five-dimensional covariance, whereas in the

Brans–Dicke theory this coupling is absent.

The presence of the multiplicative factor
√−φ in the action does not

correspond to the standard formulation, in which the coefficient of
√−gR is

constant. The theory can be transformed into the usual form by a local Weyl

rescaling of gµν and φ. Recall that the scalar curvature in V4 transforms under

Weyl rescaling as

gµν = λ−1 ḡµν R(g) = λ[R(ḡ)+ 3�̄ lnλ− 3
2
λ−2 ḡµν∂µλ∂νλ].

Thus, if we define

gµν = λ−1 ḡµν φ = λ−1φ̄ λ ≡ (−φ̄)1/3 (10.16a)

the effective four-dimensional theory assumes the usual form

I
(0)
G = − 1

2κ

∫
d4x

√
−ḡ(R̄ − 1

4
φ̄ Fµν Fµν − 1

6
φ̄−2 ḡµν∂µφ̄∂ν φ̄) (10.16b)

where we have dropped another four-divergence.

Note that the electromagnetic part of the action is not properly normalized.

This is easily corrected by introducing

Bµ = f Aµ f 2 = 2κ (10.16c)

where the condition f 2/2κ = 1 ensures the standard form of the Maxwell action

for φ̄ = −1. We choose f to be negative, by convention.

The final form of action (10.16b) is obtained by a local Weyl rescaling of

gµν and φ, which is equivalent to the rescaling of the complete five-dimensional

metric (10.10a):

ĝMN(x) = (−φ̄)−1/3

(
ḡµν + φ̄BµBν φ̄Bµ

φ̄Bν φ̄

)
. (10.17)
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This rescaling changes the form of the Christoffel symbol Ŵ̄, as compared to result

(10.14a) for Ŵ.

Thus, KK theory at low energies describes the massless scalar field s =
ln(−φ̄)/

√
6κ coupled to gravity and electromagnetism. While the gravitational

coupling is constant, the electromagnetic coupling is proportional to (−φ̄)1/2 =
exp(

√
3κ/2 s).

Always bearing in mind that the final form of the metric is given by

equation (10.17), we shall omit the overbars for simplicity.

Dynamics of matter and the fifth dimension

The coupling of matter to five-dimensional gravity is fixed by the invariance

properties of the theory. The dynamical behaviour of matter gives us a new insight

into the physics associated with the fifth dimension (Salam and Strathdee 1982,

Gross and Perry 1983, Mecklenburg 1983).

Classical particle. A classical point-particle in the five-dimensional gravita-

tional field (10.17) has the action IM = −m
∫

ds, and the equations of motion

are five-dimensional geodesics:

d2zM

dτ 2
+ Ŵ̂M

NR

dzN

dτ

dzR

dτ
= 0.

Very interesting information concerning the motion along the fifth dimension

may be obtain by studying the metric restricted by the conditions φ = −1 and

gµν = ηµν (Vasilić 1989). By these assumptions we are neglecting the effects

of the scalar and gravitational fields, so that the motion of the test particle is due

merely to electromagnetism. If we also ignore every y dependence, we come to

the following form of the metric:

ĝMN(x) =
(
ηµν − BµBν −Bµ

−Bν −1

)
(10.18)

where Bµ = f Aµ. The Christoffel connection is easily calculated from the

relations (10.5a). Keeping only first order terms in the electromagnetic coupling

for simplicity, we find

Ŵ̂µ
νρ = O2 Ŵ̂5

νρ = 1
2
(∂ν Bρ + ∂ρ Bν)+O2

Ŵ̂
µ

5ρ = 1
2

Fµ
ρ remaining components = O2

where O2 denotes second or higher order terms in Bµ. Using these expressions

the geodesic equation takes the form (Vasilić 1989)

duµ

dτ
+ f Fµ

ρ(A)uρu5 = O2

du5

dτ
+ 1

2
f (∂µAν + ∂ν Aµ)u

µuν = O2.
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The second equation implies u5 = (u5)0+O1, where the constant (u5)0 represents

the initial value of the particle’s velocity in the direction of the fifth dimension.

After this, the first equation yields

duµ

dτ
+ f (u5)0 Fµ

ρ(A)uρ = O2.

Here f = −
√

2κ, and we recognize the well-known equation for the motion of

an electrically charged particle in the electromagnetic field, if the charge of the

particle q is identified with

q/m =
√

2κ(u5)0. (10.19a)

Thus, we deduce a surprising conclusion concerning the nature of the electric

charge:

The electric charge of a particle is a manifestation of its motion along

the fifth dimension.

Now, we use very simple arguments from quantum theory to show that the

electric charge is quantized, i.e. that q is a multiple of some elementary charge

e. If we apply the old Bohr–Sommerfeld quantization rule to the periodic motion

along the fifth dimension, (p5)0 ·2πr = n ·2π~, we deduce that (p5)0 = (n/r)~,

i.e.

qn = ne ≡ n(~
√

2κ/r). (10.19b)

The radius of the fifth dimension is thus fixed by the elementary electric charge.

From the known value of the elementary charge, we find that r is of the order of

the Planck length:

α = e2

4π~c
≈ 1

137
r = 2√

α

√
κ~

8πc
≈ 3.7 × 10−32 cm.

If we could find the radius r from some other considerations, this relation might

be used to calculate the electric charge. The idea of calculating the elementary

electric charge has attracted physicists’ attention for a long time, but no satisfying

solution has been found.

The real scalar field. We are now going to examine the fifth dimension using a

real, scalar field ϕ(x, y). If we apply the coordinate transformation y′ = y + ε,

the scalar field changes according to ϕ′(x, y) = ϕ(x, y − ε). Making the Fourier

expansion ϕ(x, y) =
∑

ϕn(x)Yn(y), we find that the transformation law of the

nth mode is

ϕ′n(x) = ϕn(x)e
i(n/r)ε.

This means that ϕn(x) has an electric charge ∼ n/r .



314 Kaluza–Klein theory

The same result follows from the form of the effective electromagnetic

interaction in V4. The action of the free, real, scalar field in V5 is given by

IS =
∫

d5z
√

ĝ(− 1
2
ϕ�̂ϕ − 1

2
m2ϕ2). (10.20a)

Using the metric (10.18) we find that

�̂ = ηµν(∂µ − Bµ∂y)(∂ν − Bν∂y)+�y .

Substituting the Fourier expansion for ϕ(x, y) in the action, and making use of

the orthonormality of the harmonics Yn to integrate over y, leads to

I
(0)
S =

∑

n

∫
d4x

√
−g 1

2
ϕ∗n(−∇2

n + m2
n)ϕn (10.20b)

where

∇2
n = gµν(∂µ − iqn Aµ)(∂ν − iqn Aν)

qn = n(
√

2κ/r) m2
n = m2 + n2/r2.

The effective four-dimensional theory is seen to consist of one real field ϕ0 of

mass m, and an infinite number of complex scalar modes ϕn with masses mn .

If the original field in d = 5 is massless, the masses of the higher modes are

mn = n/r . Each higher mode has charge qn and minimal coupling. The

connection between the electric charge and the radius of the fifth dimension is

the same as that predicted by point-particle dynamics. In the limit r → 0 all

modes but the zero mode become very heavy. It is usual to assume that all the

massive modes can be discarded at sufficiently low energies, where the zero mode

is dominant. We should note, however, that this may lead to inconsistencies (Duff

et al 1986).

The Dirac field. The action for the massless Dirac field is defined as in

example 1:

ID =
∫

d5z 1
2

ib̂ψ̄γ KhK
M∇Mψ + H.C. (10.21a)

More explicitly, we have

ID =
∫

d5z 1
2

ib̂ψ̄[γ k(hk
µ∂µ + hk

5∂y)+ γ 5̄h5̄
5∂y + γ KωK]ψ + H.C.

where ωK ≡ 1
2

AIJ
KσIJ. Now, we neglect four-dimensional gravity and set φ = −1,

so that the inverse pentad takes the form

hK
M(x) =

(
δk

µ hk
5

0 1

)
hk

5 = −δ
µ
k Bµ. (10.22)
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We assume that the connection is y independent and use the Fourier expansion

for the Dirac field ψ(x, y) =
∑

ψn(x)Yn(y), whereupon the integration over y

in ID yields

I
(0)
D =

∑

n

∫
d4x 1

2
iψ̄n[γ kδ

µ
k ∇nµ − iγ 5̄mn + γ KωK]ψn + H.C. (10.21b)

where ∇nµ = ∂µ − iqn Aµ, mn = n/r .

Similar results are also obtained in the presence of four-dimensional gravity.

This five-dimensional theory of the Dirac field in interaction with gravity is

defined in Riemann–Cartan space U5, in which the connection ÂIJ
M is not

Riemannian. The equations of motion for the connection are algebraic, and can

be solved to yield Â = �+ K . Hence, the replacement Â = � is not consistent

from the point of view of the theory in U5.

We may, alternatively, start from action (10.21a) with Â = �, representing

a theory of the Dirac field in Riemann space V5. It can be shown that γ K�K gives

rise to a non-minimal coupling, proportional to the Pauli term γ 5̄ Fi j σ
i j .

Symmetries and the particle spectrum

The nature of the mass spectrum of the effective four-dimensional theory is best

characterized by the related symmetry properties (Dollan and Duff 1984).

The massless sector. Five-dimensional KK theory is invariant under general

coordinate transformations and local Lorentz rotations. The condition of the

local orthogonality between V1 and V4 restricts the coordinate transformation to

the form (10.12), whereas the related transformations of the metric components

gµν(x, y), Bµ(x, y) and φ(x, y) are given by the rule (10.13). In the truncated

theory (10.15), the metric components are independent of y. The condition

gµν = gµν(x) does not imply any restriction on the coordinate transformations

(10.12), while the conditions Bµ = Bµ(x) and φ = φ(x) imply that ∂y ′/∂y and

∂y ′/∂x do not depend on y. Therefore, the truncated theory (10.15) is invariant

under the restricted general coordinate transformations,

x ′ = x ′(x) y ′ = ρy + ξ5(x) (10.23a)

where ρ = constant, and, correspondingly,

g′µν =
∂xλ

∂x ′µ
∂xρ

∂x ′ν
gλρ φ′ = ∂y

∂y ′
∂y

∂y ′
φ

B ′
µ = ∂xλ

∂x ′µ
ρBλ −

∂ξ5

∂x ′µ
.

(10.23b)

Bearing in mind the physical interpretation of the effective low-energy

four-dimensional theory (10.15), it is convenient to divide these symmetry

transformations into three groups.
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(a) Transformations

x ′ = x ′(x) y ′ = y (10.24a)

are general coordinate transformations in V4, under which the fields gµν, Bµ

and φ transform as second order tensors, vectors and scalars, respectively. Weyl

rescaling by a factor (−φ̄)1/3 defines new variables ḡµν , B̄µ and φ̄. Since φ̄ is a

scalar, the transformation rules for the new variables ḡµν and B̄µ remain the same

as for the old ones.

(b) Next, we consider

x ′ = x y ′ = y ′ + ξ5(x)

δ0φ = 0 δ0gµν = 0 δ0 Bµ = −∂µξ
5(x).

(10.24b)

Originally, the parameter ξ5 corresponded to the change in the periodic fifth

coordinate y, that represented local U(1) symmetry. However, since the

truncated, y-independent action (10.15) has no memory of the periodicity in

y, these transformations are now realization of the local (non-compact) T1

symmetry, which corresponds to the real coordinate y. After Weyl rescaling,

the transformation rule remains the same since δ0φ = 0.

(c) The remaining component of the residual symmetry consists of global

dilatations of the fifth dimension:

x ′ = x y ′ = ρy

φ′ = ρ−2φ B ′
µ = ρBµ g′µν = gµν .

(10.25)

Direct application of this transformation to the action (10.15) yields a slightly

unexpected result—the action is not invariant, IG → ρ IG. However, if we recall

that the four-dimensional coupling constant κ is defined by κ−1 = κ̂−1
∫

dy, it

becomes clear that global dilatations induce the change κ−1 → ρκ−1, whereupon

the invariance of the action is recovered.

Symmetry transformations that involve transformations of the coupling

constant are not customary in four-dimensional theory. Observe, however, that

action (10.15) possesses another, completely standard symmetry—symmetry

under global Weyl rescalings W :

φ′ = λ−4/3φ B ′
µ = λBµ g′µν = λ2/3gµν . (10.26a)

Expressed in terms of the variables (φ̄, B̄µ, ḡµν), it takes the form

φ̄′ = λ−2φ̄ B̄µ = λB̄µ ḡ′µν = ḡµν . (10.26b)

The geometric meaning of this symmetry can be illustrated by looking at the

interval along the fifth dimension, ds2
5 = φ dy2: since M4 × S1 is a flat space, it

satisfies field equations for every value of the radius r
√
−φ.
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The global Weyl invariance of action (10.15) is spontaneously broken by the

KK vacuum (φ0 = −1), giving rise to the appearance of the Goldstone boson φ,

called the dilaton. However, W symmetry is only an ‘accidental’ symmetry, valid

in the massless sector of the classical theory; the inclusion of higher, massive

modes and/or quantum corrections breaks this symmetry. Therefore,

the field φ0 = φ(x) is actually a pseudo-Goldstone boson of global

rescalings.

We expect massless modes of an approximate theory to remain massless in

a complete theory if there is a symmetry that ensures their masslessness.

This is indeed the case with the graviton gµν(x) and the electromagnetic

potential Bµ(x), since four-dimensional coordinate transformations and local

U(1) transformations are the symmetries of the full theory. Certain aspects of

the symmetry of the full theory are discussed later.

In the complete theory the field φ becomes massive and the radius of the fifth

dimension is determined. In the massless sector, however, the radius is usually

fixed by hand, so as to reproduce the experimental values of the electric charge and

the gravitational constant. If there were some dynamical mechanism determining

the radius of the fifth dimension, pseudo-Goldstone bosons would not exist and

the electric charge would be calculable.

Kac–Moody symmetry. In order to analyse the symmetry of the complete

effective theory in four dimensions, we write the general coordinate

transformations in the form

δzM = ξM(x, y) =
∑

ξM

n (x)un(θ) un(θ) ≡
√

2πrYn(y) = e−inθ

where the choice y = rθ reflects the geometry of the ground state.

Whereas the general coordinate transformations (10.24a) and the local U(1)

transformations (10.24b) correspond to the zero modes of ξM(x, y), the global

rescaling (10.26) is no more a symmetry of the complete theory. Indeed, any W

transformation can be regarded as a composition of (i) the global rescaling of the

metric: ĝ′MN = λ2/3ĝMN, i.e.

φ′ = λ2/3φ B ′
µ = Bµ g′µν = λ2/3gµν

and (ii) the general coordinate transformation of a special kind:

y ′ = λy

φ′ = λ−2φ B ′
µ = λBµ g′µν = gµν .

Under transformation (i) the action IG goes over into λIG, so that the classical

equations of motion remain invariant, but transformation (ii) does not satisfy the

periodicity requirement for y. Hence, W is not a symmetry of the field equations

of the full theory.
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Global Poincaré invariance in four dimensions may be regarded as a special

case of the general covariance, δxµ = ξµ(x), in which the parameter ξµ is

restricted to the linear form: ξµ = εµ + ωµνxν , ωµν = −ωνµ. An analogue of

this symmetry in five dimensions is obtained by linearizing the parameter ξM
n (x):

ξµn (x) = εµn + ωµν
n xν ξ5

n (x) = cnr (10.27)

where ε
µ
n , ω

µν
n and cn are constants. If ϕ(x, y) is a scalar function, it transforms

under(10.27) according to

δ0ϕ = −
∑

un(ξ
µ
n ∂µ + ξ5

n ∂y)ϕ =
∑

(εµn Pn
µ + 1

2
ωµν

n Mn
µν + cn Ln)ϕ

where Pn
µ , Ln

µν and Ln are the corresponding generators:

Pn
µ ≡ −un(θ)∂µ Mn

µν ≡ un(θ)(xµ∂ν − xν∂µ)

Ln = un(θ)r∂y = un(θ)∂θ .
(10.28)

These generators define the following infinite-parameter global Lie algebra:

[Mn
µν , Mm

λρ ] = ηνλMn+m
µρ − ηµλMn+m

νρ − ηνρMn+m
µλ + ηµρ Mn+m

νλ

[Mn
µν , Pm

λ ] = ηνλPn+m
µ − ηµλPn+m

ν [Pm
µ , Pn

ν ] = 0
(10.29a)

[Ln, Lm ] = i(n − m)Ln+m

[Ln, Pm
µ ] = −im Pn+m

µ [Ln, Mm
µν ] = −imMn+m

µν .
(10.29b)

Equations (10.29a) define the Kac–Moody extension of the Poincaré algebra

and equation (10.29b) represent the Virasoro algebra without a central charge,

extended by the set of spacetime generators Pn
µ and Mn

µν . If we restrict our

attention to the sector n = m = 0, we find the usual P4 × U(1) algebra, where

P4 ≡ P(1, 3). By adding the generators L1 and L−1, this finite-dimensional

subalgebra can be enlarged to P4 × SO(1, 2).

The algebra (10.29) describes the symmetry of the complete effective four-

dimensional action, containing all the modes of dynamical variables.

Spontaneous symmetry breaking. Since the KK ground state has only P4 ×
U(1) symmetry, the Kac–Moody symmetry (10.29) is spontaneously broken.

The parameters ξ
µ
n (x) and ξ5

n (x), given by equation (10.27), describe a global

(infinite-dimensional) symmetry. The zero modes ξ
µ

0 and ξ5
0 correspond to the

ground state symmetry, while all higher modes ξ
µ
n and ξ5

n , n > 0, describe

spontaneously broken Kac–Moody generators (table 10.1). As a consequence,

the corresponding fields are expected to be Goldstone bosons. In order to identify

Goldstone bosons, we shall look at the transformation laws of all higher modes of

the fields, and find those that transform inhomogeneously under the action of the

broken generators.



Five-dimensional KK theory 319

Table 10.1. Symmetries of the five-dimensional KK theory.

Symmetry P4 × U(1) P4 × SO(1, 2) Kac–Moody

Parameters ξ
µ
0
, ξ5

0
ξ
µ
0
, ξ5

0
, ξ5

1
, ξ5

−1
ξ
µ
n , ξ5

n

Example 3. To illustrate the transformation rule of Goldstone bosons, we return

to example 2.5. There we considered a triplet of scalar fields ϕa , with an action

invariant under three-dimensional internal rotations: ϕa → Ra
bϕ

b. Since the

third component has a non-vanishing value in the ground state, (ϕ3)0 = v, it is

convenient to define new fields ηa ,

ϕ1 = η1 ϕ2 = η2 ϕ3 = v + η3

having the vanishing ground state values. The fields η1 and η2 are Goldstone

bosons corresponding to spontaneously broken symmetry generators. The new

fields transform under rotations as

η3 → R3
1η

1 + R3
2η

2

ηα → Rα
βη

β + Rα
3(v + η3) α, β = 1, 2.

Thus, the field η3 transforms homogeneously whereas Goldstone bosons

transform inhomogeneously.

In the same way, starting from the transformation rules of the fields

gµν(x, y), Bµ(x, y) and φ(x, y) with respect to the general coordinate

transformations in d = 5, and the form of the ground state, we can determine the

transformation properties of gn
µν , Bn

µ and φn under the transformations (10.29),

and identify the Goldstone modes. The result of this analysis is the following:

The fields Bn
µ and φn , n > 0, are Goldstone modes of the broken Kac–

Moody symmetry.

These considerations suggest that the fields Bn
µ and φn , as well as g0

µν and

B0
µ, are massless, while φ0 is massive as the pseudo-Goldstone boson. What

happens with gn
µν? A complete and clear picture of the mass spectrum can be

obtained only after the presence of gauge symmetries in the theory is taken into

account.

The Higgs mechanism. In theories with spontaneously broken symmetries

which also possess gauge invariance, the Goldstone theorem does not hold, and

the physical mass spectrum is determined by the so-called Higgs mechanism:
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Table 10.2. Particle spectrum of five-dimensional KK theory.

Fields φ0 B0
µ g0

µν gn
µν Bn

µ φn

Degrees of freedom 1 2 2 5 — —

Type m �= 0 m = 0 m = 0 m �= 0 Gb Gb

there are no physical particles corresponding to Goldstone bosons—they are

‘gauged away’ and absorbed by the corresponding gauge fields, which become

massive. This mechanism is also responsible for the particle spectrum of the KK

theory.

(a) Five-dimensional KK theory possesses a gauge symmetry described by the

parameters ξ
µ
n (x) and the gauge fields (g0

µν; gn
µν, n > 0). The Higgs

mechanism acts in the following way:

– the gauge field g0
µν remains massless, as a consequence of the local P4

symmetry [with parameters ξ
µ

0 (x)];

– the gauge fields gn
µν (n > 0) (with two degrees of freedom),

corresponding to the broken generators, absorb the potential Goldstone

bosons Bn
µ and φn (with 2 + 1 = 3 degrees of freedom) and become

massive fields (2 + 3 = 5 degrees of freedom).

This is why the full theory, which is invariant under general coordinate

transformations in d = 5, has an infinite tower of massive fields.

(b) Local U(1) symmetry ensures the masslessness of the gauge field B0
µ.

(c) Global rescalings do not represent a symmetry of the full theory, hence φ0 is

merely a pseudo-Goldstone boson, i.e. a massive field.

In conclusion, the particle spectrum of KK theory contains massive scalar

φ0, massless gauge field B0
µ and massless graviton g0

µν , with the whole tower of

massive modes gn
µν (table 10.2).

10.3 Higher-dimensional KK theory

Kaluza and Klein suggested the unification of gravity and electromagnetism

starting from five-dimensional GR. By generalizing this idea to higher

dimensions, we can account for the unification of gravity and non-Abelian gauge

theory (see, e.g., Zee 1981, Salam and Strathdee 1982, Mecklenburg 1983, Duff

et al 1986, Bailin and Love 1987).

General structure of higher-dimensional gravity

We assume, for simplicity, that a non-Abelian generalization of KK theory is

realized in a Riemann space Vd , d = 4 + D.
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Table 10.3. Properties of maximally symmetric spacetimes.

λ Spacetime Symmetry E > 0? SUSY?

< 0 de Sitter SO(1, 4) No No

= 0 Minkowski Poincaré Yes Yes

> 0 anti de Sitter SO(2, 3) Yes Yes

The ground state. Let Vd be a d-dimensional Riemann space with local

coordinates zM = (xµ, yα). At each point of Vd there is a metric ĝMN of signature

(+,−,−,−;−, . . .). If matter fields are absent, the dynamics is determined by

the covariant action

IG = − 1

2κ̂

∫
dz

√
|ĝ|(R̂ +�) (10.30a)

where � is a cosmological constant. The equations of motion are

R̂MN − 1
2

ĝMN(R̂ +�) = 0. (10.30b)

We now look for the ground state solution of the form

(Vd)0 = V4 × BD i.e. ĝ0
MN
(x, y) =

(
g0
µν(x) 0

0 g0
αβ(y)

)
(10.31)

where V4 is Riemannian spacetime with the usual signature (+,−,−,−), and BD

is a D-dimensional space with Euclidean signature (−,−, . . .). It is a standard

assumption that BD is a compact space (it may be visualized as a closed bounded

subset of a Euclidean space; see appendix K). Since a compact space in D ≥ 2

is, in general, not flat, the metric g0
αβ depends on y. The field equations for the

ground state metric (10.31) are

R4
µν − 1

2
g0
µν(R4 + RD +�) = 0 RD

αβ − 1
2

g0
αβ(R4 + RD +�) = 0

where R4 = R(V4), RD = R(BD).

It should be noted that in this theory it is not easy to obtain an acceptable

ground state solution with a flat spacetime V4. Indeed, from R4
µν = 0 and the

field equations it follows RD
αβ = 0, which represents, as we shall see, too strong a

limitation on BD.

Thus, we restrict ourselves to maximally symmetric spacetimes V4, hence to

spaces of constant curvature, R4
µνλρ = 1

3
λ(g0

µλg0
νρ − g0

µρg0
νλ), according to the

possibilities shown in table 10.3 (Duff et al 1986).

Constant curvature spaces are Einstein spaces: R4
µλ = λg0

µλ.

As far as extra dimensions are concerned, we assume that

BD yields physically important non-Abelian gauge symmetries; and
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BD is compact, in order to guarantee a discrete spectrum in four dimensions.

To check the consistency of these assumptions, we start from the relation

R4
µν = λg0

µν for V4, and use the field equations to obtain that BD is also Einstein:

RD
αβ = ρg0

αβ , where ρ = λ. The following theorem holds for Einstein spaces

(Yano 1970):

Compact Einstein spaces with the Euclidean signature (−,−, . . .) and

ρ > 0 have no continuous symmetries.

Thus, an Einstein space BD may have non-Abelian symmetries if λ ≤ 0. On the

other hand, in order for the space V4 to admit a positive energy theorem (stability)

and supersymmetry, we must have λ ≥ 0. Both of these requirements are satisfied

only for λ = 0, i.e. V4 = M4. Field equations then imply RD
αβ = 0.

A simple example of a space that admits a spontaneous compactification with

RD
αβ = 0 is a D-torus: BD = S1× S1×· · ·× S1 (D times). However, this solution

yields the Abelian gauge symmetry U(1)× U(1)× · · · × U(1).

A very economical and simple mechanism for realizing non-Abelian gauge

symmetries is obtained when BD is a coset space. Physically interesting spaces

of this type are Einstein spaces with ρ �= 0, but then V4 cannot be flat.

Therefore, the ground state M4 × (coset) cannot be obtained without

introducing additional matter fields. In that case, of course, the original simplicity

of the KK idea is lost. More detailed considerations concerning the mechanism

for spontaneous compactification are left for the end of this section.

The layered structure. In order to simplify the physical interpretation of

massless modes, it is convenient to express the metric of Vd in locally orthogonal

form. We assume that Vd has a layered structure: for each fixed point xµ in V4

there is a (D-dimensional) hypersurface VD with coordinates yα. Thus, locally,

Vd can be viewed as V4×VD . If êM = (êµ, êα) is a coordinate frame in Vd , the set

of vectors êα defines the coordinate frame in VD . Furthermore, let êI = (êi , êa) be

a Lorentz frame in Td (vielbein); then, êi and êa are Lorentz frames in T4 and TD ,

respectively. Every coordinate frame êM can be expressed in terms of the Lorentz

frame: êM = bi
M êi + ba

M êa. The condition of local orthogonality of V4 and VD

means that the expansion of êα in VD does not contain any vector êi in V4, i.e.

bi
α = 0 ⇐⇒ bI

M(x, y) =
(

bi
µ 0

ba
µ ba

α

)
. (10.32a)

The inverse matrix hI
M has the form

hI
M(x, y) =

(
hi

µ hi
α

0 ha
α

)
. (10.32b)

The usual construction of the metric in Vd yields

ĝMN(x, y) =
(

gµν + φαβ Bα
µB

β
ν B

β
µφβα

φαβ B
β
ν φαβ

)
(10.33a)
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where we have introduced the notation

gµν ≡ bi
µb j

νηi j φαβ ≡ ĝαβ = ba
αbb

βηab

Bα
µ ≡ ha

αba
µ or ba

µ ≡ ba
αBα

µ.

The inverse metric is given by

ĝMN(x, y) =
(

gµν −gµρ Bα
ρ

−Bα
ρ gρν φαβ + gλρ Bα

λ B
β
ρ

)
(10.33b)

where gµν and φαβ are the inverses of gµν and φαβ , respectively.

This form of the metric is directly related to the local orthogonality of V4

and VD . The components gµν and φαβ have a clear geometric meaning: φαβ is

the metric in VD , while gµν defines the distance between neighbouring layers.

The interpretation of Bα
µ follows from the symmetry structure of BD.

The residual symmetry. General coordinate transformations in Vd that do not

violate its layered structure, expressed by condition (10.32a), have the form

x ′ = x ′(x) y ′ = y ′(x, y). (10.34a)

Under these transformations the components of the metric transform according to

g′µν =
∂xλ

∂x ′µ
∂xρ

∂x ′ν
gλρ φ′

αβ = ∂yγ

∂y ′α
∂yδ

∂y ′β
φγ δ

B ′α
µ = ∂xν

∂x ′µ

(
∂y′α
∂yγ

B
γ
ν − ∂y′α

∂xν

)
.

(10.34b)

Therefore,

(a) gµν(x, y) is a tensor in Vd ,

(b) φαβ(x, y) is a tensor in Vd and

(c) Bα
µ(x, y) transforms inhomogeneously, except in the case y ′ = y ′(y) when

it becomes a tensor in Vd .

In particular, we note that the quantities gµν, Bα
µ and φαβ are V4 tensors (i.e.

tensors under x ′ = x ′(x), y ′ = y), and also BD tensors (x ′ = x, y ′ = y ′(y)).

Isometries and harmonic expansion. We expect that geometric symmetries of

the space BD will lead to non-Abelian gauge symmetries of the massless sector in

four dimensions. The symmetry properties of BD are precisely expressed using

the concept of isometries (appendix K).

Consider, first, an infinitesimal coordinate transformation on BD, which can

be written in the form

δyα = εa Eα
a (y) = εaŴa yα Ŵa ≡ Eα

a ∂α a = 1, 2, . . . ,m (10.35)
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where the εa are constant parameters and the Ŵa the generators of the

transformations. The number of parameters m is, in general, different from the

dimension of BD. These transformations represent a faithful realization of the

group G on BD if the generators Ŵa satisfy the commutation rules

[Ŵa, Ŵb] = fab
cŴc ⇐⇒ Eα

a ∂αE
β

b − Eα
b ∂αEβ

a = fab
c Eβ

c (10.36a)

coinciding with the Lie algebra of G.

Of particular importance are those transformations that do not change the

form of the metric: φ′
αβ(y) = φαβ(y); they are called isometries of BD . The

condition that the infinitesimal transformations (10.35) are isometries of the space

BD , δ0φαβ = 0, can be written in the form

∇αEaβ +∇β Eaα = 0 Eaα ≡ φαβ Eβ
a (10.36b)

which is known as the Killing equation. Isometry transformations of a given space

BD are determined by the solutions Eα
a of the Killing equation (Killing vectors).

They form a group G, called the isometry group of BD, which gives rise to the

gauge group of the massless sector, as we shall see.

A space BD is said to be homogeneous if for every two points P and P1

in BD there exists an isometry transformation that moves P into P1. Thus, every

tangent vector at P is a Killing vector. The number of linearly independent Killing

vectors at any point P of a homogeneous space BD is D, and they can be taken

as a basis for TP.

A space BD is said to be isotropic about a point P if there is a subgroup HP

of the isometry group G that leaves the point invariant. Isotropy transformations

around P may be imagined as ‘rotations’ around an axis through P . The

number of linearly independent Killing vectors corresponding to the isotropy

transformations is D(D − 1)/2.

The number of independent Killing vectors may be higher than the

dimension of BD . The maximal number of linearly independent Killing vectors in

a D-dimensional space is D(D+1)/2. A space with a maximal number of Killing

vectors is said to be maximally symmetric. Homogeneous and isotropic spaces are

maximally symmetric: counting the Killing vectors yields D + D(D − 1)/2 =
D(D + 1)/2. The specific structure of maximally symmetric spaces enables us to

express every vector at P in terms of the set of D(D + 1)/2 linearly independent

Killing vectors at P .

A simple illustration for these concepts is the sphere S2, which represents

maximally symmetric space of the rotation group SO(3) and has three Killing

vectors. The action of SO(3) on any point P in S2 is realized in such a way that

only two rotations of SO(3) act non-trivially on P , whereas the third one, the

rotation about the normal to S2 at P , leaves P invariant. Thus, S2 is the coset

space of SO(3) by SO(2): S2 = SO(3)/SO(2), where HP = SO(2) is the

isotropy subgroup of SO(3) at P (see example 4, appendix K).
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Knowledge of the symmetry structure of BD enables a simple transition to

the effective four-dimensional theory, with the help of the so-called harmonic

expansion. If a compact space BD is homogeneous, a complete, orthonormal set

of eigenfunctions Y[n](y) of the Laplacian�y exists on BD , so that every function

$(x, y) can be expanded in terms of Y[n]:

$(x, y) =
∑

[n]
$[n](x)Y[n](y). (10.37)

This expansion is known as the harmonic expansion on BD; it is a generalization

of the Fourier expansion on S1 (Salam and Strathdee 1982, Viswanatan 1984).

Example 4. Consider a real scalar field ϕ in a six-dimensional KK theory, in

which the space B2 is a sphere S2 of radius r . The Laplacian �̂ on V6 may be

shown to reduce as

�̂ = gµν(∇ν − Bα
µ∂α)(∇ν − Bβ

ν ∂β)+�y

where ∇ is the covariant derivative on V4 and �y = (
√
|φ|)−1∂α(

√
|φ|φαβ∂β) is

the Laplacian on B2. In spherical coordinates (θ, ϕ) the metric on B2 has the form

ds2 = −r2(dθ2 + sin2 θ dϕ2), and the operator�y becomes

�y = − 1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
.

Its eigenfunctions are the spherical harmonics Ylm(θ, ϕ):

�yYlm = l(l + 1)

r2
Ylm (l = 0, 1, 2, . . .∞;m = −l,−l + 1, . . . ,+l).

Using the expansion of the scalar field ϕ(x, θ, ϕ) =
∑

l,m ϕlm(x)Ylm(θ, ϕ)

in the six-dimensional action and integrating over S2, we obtain the effective

four-dimensional theory. It contains an infinite number of modes ϕlm(x) with

masses given by m2
l = l(l + 1)/r2. Every mode ϕlm(x) carries an irreducible

representations of SO(3), the isometry group of the sphere S2.

Every dynamical variable in a given d-dimensional theory can be expanded

in terms of BD harmonics, equation (10.37). Replacing this expansion in action

(10.30) and integrating over y (using the orthonormality of the harmonics Y[n])
we obtain an effective four-dimensional action, in which the effect of extra

dimensions is seen in the presence of an infinite number of higher modes $[n].
The mass spectrum of the effective four-dimensional theory depends on the choice

of BD .

The massless sector of the effective theory

After discussing the structure of the effective four-dimensional theory, we now

turn our attention to the zero modes that characterize the low-energy properties of

the theory.
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The metric. In contrast to the full five-dimensional theory, the metric of the

massless sector contains a reduced y-dependence:

gµν = gµν(x) φαβ = φαβ (y) Bα
µ = Eα

a (y)Ba
µ(x) (10.38)

where Eα
a is the Killing vector of BD. Let us now discuss in more detail the

meaning of this ansatz.

The condition gµν = gµν(x) means that all higher modes in the complete

metric gµν(x, y) in V4 are discarded.

In general, the space BD is not flat, and the metric φαβ cannot be constant,

but must depend on y. The condition φαβ = φαβ(y) means that all excitations

around BD are neglected.

The structure of the field Bα
µ is based on the symmetry properties of BD.

The space BD admits an isometry group G with Killing vectors Eα
a . The quantity

Bα
µ, which is a vector on BD , can be expressed in terms of the Killing basis:

Bα
µ = Eα

a Ba
µ. Now, we can impose the restriction Ba

µ = Ba
µ(x), thus obtaining

the last relation in equation (10.38).

Non-Abelian gauge symmetry. Now, we come to the most exciting point of

the KK theory: the isometry group of BD is seen as the non-Abelian gauge

structure in the massless sector of the theory. To see why this is true, consider

an infinitesimal coordinate transformation in BD:

x ′µ = xµ y ′α = yα + ξα(x, y) ≡ yα + Eα
a (y)ε

a(x, y) (10.39a)

where the parameters ξα are expressed in the Killing basis.

Under these transformations gµν(x, y) is a scalar. The same is true if we

assume that gµν = gµν(x), so that this condition does not impose any restrictions

on the parameters ξα .

If we use the expansions Bα
µ = Eα

a (y)Ba
µ(x, y) and ξα = Eα

a (y)ε
a(x, y) in

the transformation law (10.34b) for Bα
µ, we obtain

Eα
a δ0 Ba

µ = [−∂µε
a + fbc

a Bb
µε

c + (εa
,γ Bc

µ − εc Ba
µ,γ )E

γ
c ]Eα

a .

The limitation Ba
µ = Ba

µ(x) now implies εa = εa(x), so that

δ0 Ba
µ = −∂µε

a + fbc
a Bb

µε
c. (10.40)

This is precisely the transformation law of a gauge field with respect to the

gauge transformations δyα = Eα
a (y)ε

a(x) of the group G, as defined in equation

(10.35).

The metric φαβ (y) is invariant under these transformations, since Ea
α are the

Killing vectors of BD:

δ0φαβ = −∇βξα −∇αξβ = −εa(∇β Eaα +∇αEaβ) = 0.
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It is not difficult to see that the transformations x ′ = x ′(x), y ′ = y are

general coordinate transformations in four dimensions. Thus, we conclude that

the adopted form of the metric (10.38) implies the invariance of the theory under

the reduced general coordinate transformations

x ′µ = x ′µ(x) y ′α = yα + εa(x)Eα
a (y). (10.39b)

The field gµν(x) is the metric of the four-dimensional spacetime, and

Ba
µ(x) is the gauge field associated with the isometries of BD.

These results give a simple interpretation of the zero modes in terms of the

basic physical fields—the graviton and the non-Abelian gauge field.

The effective action. After a straightforward but rather lengthy calculation we

obtain from the metric (10.38) the following relation:

R̂ = R4 + RD − 1
4
φαβ Eα

a E
β

b Fa
µν Fbµν (10.41)

where Fa
µν ≡ ∂µBa

ν−∂ν Ba
µ− fbc

a Bb
µBc

ν , and Faµν = gµλgνρFa
λρ . Using, further,

the factorization of the determinant, ĝ = gφ, where φ = det(φαβ), action (10.30)

takes the form

I
(0)
G = − 1

2κ̂

∫
d4x dD y

√
−g

√
|φ|(R4 + RD +�− 1

4
φαβ Eα

a E
β

b Fa
µν Fbµν).

We now choose the constants κ̂ and � in the form

κ̂ = κ

∫
dD y

√
|φ(y)| � = −

∫
dD y

√
|φ(y)|RD(y)∫

dD y
√
|φ(y)|

where κ is the four-dimensional gravitational constant, and � is chosen so as to

cancel the contribution of RD after the integration over y. If we normalize the

Killing vectors according to the rule

− 1

2κ̂

∫
dD y

√
|φ(y)|φαβ Eα

a (y)E
β

b (y) = δab (10.42)

the effective four-dimensional action takes the form

I
(0)
G =

∫
d4x

√
−g

(
− 1

2κ
R4(x)− 1

4
Fa
µν(x)Faµν(x)

)
(10.43)

corresponding to the standard theory of gravity in interaction with non-Abelian

gauge fields.
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The graviton–scalar sector. In the previous discussion we assumed that φαβ is

independent of x . Consider now the ansatz

ĝMN(x, y) =
(

gµν(x) 0

0 φαβ(x, y)

)
(10.44a)

which allows the x dependence of φαβ , while the gauge fields are neglected for

simplicity. This metric leads to the following (4 + D)-dimensional action (Cho

and Freund 1975)

I
(0)
G = − 1

2κ̂

∫
d4x dD y

√
−g

√
|φ|(R4 + RD +�− φαβ∇µ∇µφαβ

− 1
2
∇µφαβ∇µφ

αβ − 1
4
φαβ∇µφαβφ

γ δ∇µφγ δ

+ 1
4
φαβφγ δ∇µφαγ∇µφβδ). (10.44b)

Using the harmonic expansion of φαβ and integrating over y we can obtain the

effective theory in four dimensions.

The coupling constants. The normalization of the Killing vectors by equation

(10.42) determines the gauge coupling constant. Indeed, if the Killing vectors are

not normalized in accordance with (10.42), the change in their norm implies the

change of the coupling constant contained in fab
c:

Eα
a → gEα

a 4⇒ fab
c → g fab

c.

Example 5. We illustrate this effect in the case when BD is the sphere S2 with

radius r . The metric of S2 in spherical coordinates yα = (θ, ϕ) is determined

by ds2 = −r2(dθ2 + sin2 θ dϕ2). Solving the Killing equation we obtain the

generators

Ŵ1 = sin ϕ∂θ + cot θ cosϕ∂ϕ

Ŵ2 = cosϕ∂θ − cot θ sin ϕ∂ϕ

Ŵ3 = ∂ϕ

that satisfy the commutation relations [Ŵa, Ŵb] = −εabcŴc. Using the formulae

∫
d2y

√
|φ| = 4πr2 −

∫
d2y

√
|φ|φαβ Eα

a E
β

b = 8πr4

3
δab

it follows that κ̂ = κ4πr2, and the Killing vectors are normalized as

− 1

2κ̂

∫
dD y

√
|φ(y)|φαβ Eα

a (y)E
β

b (y) =
r2

3κ
δab.
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In order to reconcile this relation with (10.42), we have to rescale both the Killing

vectors and the structure constants:

Eα
a → gEα

a εabc → gεabc g ≡ 1

r

√
3κ

where g is the coupling constant of SO(3). If the value of g is close to unity, the

radius r has to be very small—of the order of the Planck length.

When the internal space is a D-dimensional sphere, the isometry group is

SO(D + 1), and the coupling constant has the value

g = 1

r

√
κ(D + 1). (10.45a)

In this case the quantity r/
√

D has to be small, which can be achieved not only by

having small r but also by increasing D. Since the sphere SD is Einstein space,

RD
αβ = ρφαβ with ρ = −(D − 1)/r2, we find that

g =
√
κ(−ρ)(D + 1)/(D − 1) (10.45b)

which implies that the constant (−ρ) must be large.

A similar connection between the coupling constant and the diameter of

BD also exists for the general BD (Weinberg 1983). If BD is not isotropic,

there are several coupling constants. Going back to isotropic BD we note

that after rescaling fab
c → g fab

c, the field strength takes the standard form:

Fa
µν = ∂µBa

ν − ∂ν Ba
µ − g fbc

a Bb
µBc

ν .

Spontaneous compactification

The field equations following from action (10.30) do not have classical solutions

of the form M4 × BD , where BD is a compact space. The compactification of

the D extra dimensions can be realized by introducing matter fields (for other

possibilities see, e.g., Bailin and Love (1987)).

The KK dynamics of gravity plus additional matter fields is described by the

action

I = − 1

2κ̂

∫
dz

√
|ĝ|(R̂ +�)+ IM. (10.46)

The gravitational field equations are

R̂MN − 1
2

ĝMN(R̂ +�) = κ̂TMN (10.47)

where TMN is defined by the relation δ IM ≡ 1
2

∫
dz
√
|ĝ|TMNδĝMN. If the ground

state is of the form M4 × BD , then R̂µν = 0 implies

Tµν =
C4

κ̂
ηµν C4 = − 1

2
(RD +�) = constant.
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Similarly, demanding that BD be an Einstein space, R̂αβ = ρφαβ , it follows that

Tαβ = CD

κ̂
φαβ CD = − 1

2
(RD +�− 2ρ) = constant.

It then follows from the field equations that

RD
αβ = (CD − C4)φαβ � = (D − 2)C4 − DCD .

This shows that compactification occurs provided

ρ = CD − C4 < 0. (10.48)

This condition ensures that a compact space BD with signature (−,−, . . .) has a

continuous, non-Abelian group of symmetry. In addition, we shall demand that

C4 − CD ≈ 1/κ, which follows from g ≈ 1 and (10.45b).

Freund–Rubin compactification. There is a mechanism for compactification

that arises naturally in 11-dimensional supergravity. It is based on a third-rank

antisymmetric tensor field AMNP, with field strength FKLMN = ∂K ALMN − ∂N AKLM +
∂M ANKL − ∂L AMNK and the action (Freund and Rubin 1980)

IM = − 1
48

∫
dz

√
|ĝ|FKLMN FKLMN. (10.49)

The field equation for AKLMN is ∂K(
√
|ĝ|FKLMN) = 0, and the energy–momentum

tensor is

TIJ = − 1
6
(FKLMI F

KLM
J − 1

8
ĝIJ FKLMN FKLMN).

The field equation has a solution

Fµνλρ = Fεµνλρ/
√
−g all other components = 0 (10.50)

where F is a constant. The related energy–momentum tensor takes the form

Tµν = 1
2

F2ηµν Tαβ = − 1
2

F2φαβ .

Thus, C4 = −CD = κ̂F2/2, and the compactification condition (10.48) is

satisfied. The cosmological constant takes the value � = κ̂(D − 1)F2.

It should be noted that in 11-dimensional supergravity this mechanism

is not satisfying, since a non-vanishing cosmological constant destroys the

supersymmetry.

Extra gauge fields. The presence of extra gauge fields contradicts the spirit

of the original KK approach, where all gauge fields are expected to arise from

the metric ĝMN. Nevertheless, we shall consider this possibility as an interesting

illustration of the compactification mechanism (Luciani 1978).
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The action for extra gauge fields has the form

IM = − 1
4

∫
dz

√
|ĝ|Fa

MN
FMN

a (10.51)

where Fa
MN

is the usual field strength and the energy–momentum tensor is given

by

TMN = −(Fa
KM FK

a N − 1
4

ĝMN Fa
KL FKL

a ).

We assume that the non-Abelian gauge group G coincides with the isometry group

of BD . There is a solution to the equations of motion that has the form

Aa
µ = 0 Aa

α = a Ea
α

φαβ = bEα
a E

β

b gab
(10.52)

where a and b are constants, Ea
α are the Killing vectors of BD, and gab the Cartan

metric of G. Since only the components Fa
αβ have a non-vanishing value, the

substitution in TMN yields

C4

κ̂
= 1

4
Fa
αβ Faαβ CD

κ̂
= C4

κ̂
− 1

D
Fa
αβ Faαβ .

This is consistent with the compactification condition (10.48). The quantity

Fa
αβ Faαβ is positive and can be made sufficiently large by a suitable choice of

a.

General remarks

The dimension of BD . The basic idea of KK theory is that four-dimensional

internal symmetries are, in fact, spacetime symmetries in the extra dimensions.

One of the first problems that we face when trying to construct a realistic KK

theory is the choice of the dimension and symmetry structure of BD. If we

want our (4+ D)-dimensional theory to describe known (electroweak and strong)

particle interactions, BD must contain SU(3) × SU(2) × U(1) as a symmetry

group. A simple choice for BD is C P2 × S2 × S1: SU(3) is the symmetry group

of the complex projective space C P2 (= SU(3)/SU(2)), SU(2) is the symmetry

of the sphere S2, and U(1) is the symmetry of the circle S1. This space has

4+2+1 = 7 dimensions. We should note that C P2×S2×S1 is not the only seven-

dimensional spaces with SU(3) × SU(2) × U(1) symmetry, but no space with

smaller dimensionality has this symmetry. These seven extra dimensions together

with the usual four dimensions of spacetime make the total dimensionality of a

realistic KK theory to be at least 4 + 7 = 11.

On the other hand, there are convincing arguments that d = 11 is the

maximal dimension in which we can consistently formulate a supergravity theory.

These arguments are based on the fact that a supergravity theory in d > 11 has

to contain massless fields of spin greater than two, which are believed to have
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no consistent coupling to gravity. This intriguing numerical coincidence, that the

maximal dimension for supergravity is the minimal dimension in which one can

obtain SU(3)× SU(2)× U(1), suggests that the dimension of the world we live

in is just 11 (Witten 1981a).

Fermions. To have a realistic description of nature we have to overcome a

number of difficulties, such as the incorporation of fermions (quarks and leptons)

and Higgs bosons (necessary for SU(2) × U(1) breaking). On the KK scale,

the fermions should have essentially zero mass. To illustrate the situation, let us

consider massless Dirac field in d = 4 + D dimensions:

iγ M∇M& = iγ µ∇µ& + iγ α∇α& = 0.

The observed fermion masses are determined as the eigenvalues of the mass

operator M ≡ iγ α∇α , M& = λ& . The operator M on a compact space BD

has discrete eigenvalues, with the spacing set by the size of BD: λ = 0 or

∼ 1/r . Since 1/r is of the order of the Planck mass, the observed fermions

must correspond to the zero modes λ = 0 of the mass operator.

However, in many interesting cases the mass operator has no zero

eigenvalues. If BD is Riemannian space, then

M2& = (−∇2 + 1
4

RD)& ∇2 = φαβ∇α∇β .

The operator −∇2 is positive definite, as can be seen from the relation

∫
dD y

√
|φ|&+(−∇2)& =

∫
dD y

√
|φ|(∇α&

+)(∇α&)

where we have used the metricity condition ∇αφβγ = 0. Thus, the Dirac operator

has no zero eigenmodes on a manifold BD with positive scalar curvature RD (Zee

1981). We can overcome this negative result by introducing torsion on BD (Wu

and Zee 1984). However, it seems that the massless fermions so obtained do not

have realistic quantum numbers. Another possibility is to introduce extra gauge

fields, which would modify the form of the Dirac operator.

An explicit analysis of the effective Dirac theory in four dimensions shows

that parity violation only occurs in the massive sector. From the physical point

of view, however, we would like to have parity violation in the zero mode

sector. Thus, the problems of zero modes and parity violation should be treated

simultaneously.

The zero modes of the operator M , if they exist, form representations of the

(internal) symmetry group G0 = SU(3)× SU(2)× U(1). These representations

do not depend on the helicity of fermions. This result, however, contradicts

some of the basic facts about the observed quarks and leptons. We know that

the fermions of a given helicity belong to a complex representation of G, i.e.

left chiral components of the fermions transform differently from the right chiral
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components. The interesting possibility of obtaining massless fermions with

left–right asymmetry is suggested by the following consequence of the index

theorem: the zero modes of the Dirac operator with a definite helicity form a real

representation if extra gauge fields are absent. Thus, in order to have the chance

for the zero modes of fermions to form a complex representation of G we should

introduce extra gauge fields (in topologically non-trivial configuration). Another

solution of the same problem would be to start from a set of chiral fermions in

D dimensions, which contains parts of both chiralities in four dimensions. Then,

of course, the left–right asymmetry in four dimensions would not be a derived

property, but rather a separate assumption.

Similar problems occur for the Rarita–Schwinger field of spin 3
2

. To obtain a

realistic structure for the fermions is a very difficult problem in KK theory (Witten

1982, Mecklenburg 1983, Bailin and Love 1987).

Anomalies. An important property of chiral fermions is that their interaction

with gauge bosons depends on the chirality, i.e. the coupling of gauge bosons to

left and right chiral fermions is different. This feature of chiral fermions leads, in

general, to anomalies (the quantum effects generate a breakdown of the classical

gauge invariance). Since theories with anomalies cannot be quantized in the

standard manner, we usually solve the problem by constructions in which the

anomalies cancel. The requirement of anomaly cancellation imposes additional

restrictions on the structure of fermion representations. In particular, the gauge

group of extra gauge fields must be much larger and, as a consequence, we find a

lot of additional fermions, most of which do not correspond to the physical reality

(Bailin and Love 1987).

Super KK. Apart from the matter fields that are introduced in order to

have spontaneous compactification, fermions are also introduced as additional

matter fields, so that the unified picture for all fields is definitely lost. In the

supersymmetric version of KK theory bosons and fermions are treated in a unified

way. This is why, according to some opinions, ‘the most attractive Kaluza–Klein

theories are the supersymmetric ones’ (Duff et al 1986).

A supersymmetric KK theory is based on supergravity formulated in

more than four dimensions. As we have already mentioned, the structure of

supergravity gives a restriction on the dimension of space: d ≤ 11. In d = 11 the

Lorentz group is SO(1, 10), and the Dirac spinor has 25 = 32 components, which

corresponds to eight four-dimensional spinors in M4. Thus, in four dimensions

there are eight supersymmetry generators (N = 8), each of which can change

the helicity for 1
2

, so that the helicity in a supersymmetric multiplet can take the

values λ = −2,− 3
2
, . . . , 3

2
, 2. In other words, the statements—(a) λ ≤ 2 (in

d = 4), (b) N ≤ 8 (in d = 4) and (c) d ≤ 11 (with N = 1)—are equivalent.

The form of supergravity in d = 11 is uniquely determined by the structure

of supersymmetry (Cremmer et al 1978). Consistency requirements imply that
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it must have only one supersymmetry generator (N = 1). The theory contains

the following fields: the vielbein bI
M (the graviton), the Rarita–Schwinger field

&M (the gravitino) and the antisymmetric tensor field AMNR (connection is not an

independent dynamical degree of freedom). The symmetries of the action are:

general covariance in d = 11, local SO(1, 10) Lorentz symmetry, local N = 1

supersymmetry and local Abelian symmetry of the antisymmetric tensor field.

An antisymmetric tensor field with non-zero F2 enables a natural mechanism

for spontaneous compactification of d = 11 supergravity into Ad S4 × B7, where

Ad S4 is a four-dimensional anti de Sitter space and B7 is a compact space which

may have several different forms (seven-sphere, squashed seven-sphere, etc). The

separation of four physical dimensions of spacetime is a direct consequence of

the existence of four indices of the field FMNRL (Freund and Rubin 1980). If F2 is

zero, the compactification may give the ground state of the form M4 × T7, where

T7 = (S1)
7 is the seven-torus. This leads to N = 8 supergravity in d = 4.

The important questions of unbroken supersymmetries in four dimensions,

the value of the cosmological constant and the effective symmetry of the massless

sector are related to the structure of B7.

Cosmology. Extra dimensions in KK theory have little direct influence on

particle physics at low energies (compared to the Planck scale). In cosmology,

where the energy scale is much higher, the situation might be different. In the

very early Universe, at extremely high energies, we expect all spatial dimensions

to have been of the same scale. How can we explain the evolution of the Universe

to its present form V4 × BD , with two spatial scales? In order to understand this

problem dynamically, it is natural to start with the metric

ds2 = dt2 − a(t)gµν dxµ dxν − b(t)gαβ dxα dxβ

where a(t) is the scale of the physical three-space and b(t) the scale of the

compact space BD . There are explicit models which describe the mechanisms

by which the two scales could have been developed in the dynamical evolution of

the Universe. According to these models, at some moment in the past scale a(t)

started to increase more rapidly than scale b(t). In many of these considerations

we use fine tuning of the initial conditions, which is regarded as an unattractive

explanation. Although many interesting effects are found, the importance of KK

models in cosmology seems not to have been completely investigated (Bailin and

Love 1987).

Instead of a conclusion. KK theory is 80 years old and it has retained

its original charming attractiveness but its physical predictions were never

sufficiently realistic. Why is this so? Looking backwards from today’s

perspective, we can note that the original five-dimensional theory was premature.

The structure of the fundamental interactions was insufficiently known and the

idea of spontaneous symmetry breaking had not yet found its place in physics.
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What we do not know is whether the time is finally ripe for Kaluza–

Klein theory, whether there still are crucial things we do not know, or

whether the idea is completely wrong. Time will tell. (Witten 1981b).

Exercises

1. (a) Find the Christoffel connection Ŵ̂M
NR

corresponding to the metric (10.4a).

(b) Then, prove the relation R̂ = R + 1
4

Fµν Fµν .

2. Derive the factorization property for the determinant of metric (10.4a):

ĝ = −g, where ĝ = det(ĝMN), g = det(gµν).

3. Find the field equations following from the reduced action (10.6a), and

compare them with the five-dimensional equations R̂µν = 0, R̂µ5 = 0 and

R̂55 = 0.

4. Consider the scalar field theory in 1 + 1 dimensions:

L = 1
2
(∂tφ)

2 − 1
2
(∂xφ)

2 − V (φ) V (φ) = (λ/4)(φ2 − v2)2.

Prove the following statements:

(a) Excitations around the classical vacuum φ0 = ±v are physical fields of

mass m2 = 2λv2.

(b) Functions φK(z) = ±v tanh(z), z = m(x − c)/2, where c = constant,

are static solutions of the field equations (the kink and antikink,

respectively).

(c) Both solutions have the same static energy (mass): MK = m3/3λ.

(d) η0(z) = ±v/ cosh2(z) is the zero mode perturbation around φK.

5. (a) Find the Christoffel connection corresponding to metric (10.10a).

(b) Calculate the five-dimensional scalar curvature R̂ when the four-

dimensional space V4 is flat, gµν = ηµν . Then find the general form

of R̂.

6. Show that under Weyl rescalings gµν = ρ ḡµν , the Christoffel connection of

a d-dimensional Riemann space transforms according to

Ŵ
µ
νλ = Ŵ̄

µ
νλ + 1

2
(δµν ρλ + δ

µ
λ ρν − ḡνλρ

µ)

where ρµ = ∂µ lnρ, ρµ = ḡµνρν . Then derive the transformation rule of

the scalar curvature:

R(g) = ρ−1[R(ḡ)+ (1 − d)ρ−1�̄ρ + 1
4
(7d − 6 − d2)ρ−2 ḡµν∂µρ∂νρ].

7. (a) Assuming the rescaling of variables according to (10.16a), prove the

following relations:

√
−g

√
−φR =

√
−ḡ[R̄ + �̄ ln(−φ̄)− 1

6
φ̄−2 ḡµν∂µφ̄∂ν φ̄]

√
−g

√
−φ(−φ)Fµν Fµν =

√
−ḡ(−φ̄)Fµν Fµν .
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Then derive action (10.16b) from (10.15).

(b) Express Christoffel connection (10.14a) in terms of the new variables.

8. A point test particle of mass m moves along the geodesics of the Riemann

space V5 with metric (10.18).

(a) Show that the quantity (Bµuµ+ u5) ≡ q̂/m is a constant of the motion.

(b) Derive the equation describing the effective four-dimensional motion of

the particle.

9. A point test particle of mass m moves along the geodesics of the Riemann

space V5 with metric (10.10a).

(a) Show that ξM = ĝM5 ≡ (φBµ, φ) is the Killing vector of V5.

(b) Show that the quantity ξMuM = φ(Bµuµ + u5) ≡ −q̂/m, where

uM = dzM/dτ , is a constant of the motion.

(c) Derive the equation describing the effective four-dimensional motion of

the particle.

10. Find the effective four-dimensional action of the scalar field theory (10.20a),

assuming that the metric has the form (10.10a) with gµν = ηµν , and without

y dependence.

11. Consider the Dirac action in Riemann space V5, assuming that the pentad is

given by equation (10.22).

(a) Show that the non-vanishing connection coefficients �IJM are

proportional to Fi j , and calculate the form of the term γ KωK.

(b) Find the effective four-dimensional theory.

12. (a) Derive the Kac–Moody algebra (10.29).

(b) Show that the generators P0
µ, M0

µν , L1, L0, and L−1 define the P4 ×
SO(1, 2) algebra.

13. Show that if the ground state metric is of the form (10.31), then R̂ =
R4 + RD .

14. (a) Find the displacement vector (dx,�y) in the spacetime V4, orthogonal

to the layer VD . Then determine the metric gµν of V4.

(b) Using vielbein (10.32) derive the form of the metric (10.33a).

(c) Find the connection between local coordinates (X,Y ) associated with

the basis (Eµ, Eα) = (bi
µ êi , êα), and the original coordinates (x, y).

Show that in these coordinates ds2 = gµν dXµ dXν + φαβ dY α dY β .

15. Show that the Laplacian �̂ = ĝMN∇M∇N corresponding to the metric (10.33)

with gµν = ηµν , can be expressed as

�̂ = ηµν(∂µ − Bα
µ∂α)(∂ν − Bβ

ν ∂β)+�y

where �y is the Laplacian on BD.

16. Find the transformation of the field Bα
µ under the infinitesimal coordinate

transformations: δxµ = 0, δyα = εa(x, y)Eα
a (y). What happens if

εa = εa(x)?

17. (a) Derive the factorization property for the determinant of metric (10.38):

ĝ = gφ, where ĝ = det(ĝMN), g = det(gµν), φ = det(φαβ).
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(b) Find the scalar curvature R̂ for the metric (10.38) in the case gµν = ηµν .

18. Starting from metric (10.44a)with gµν = ηµν , find the (4+D)-dimensional

action for the scalar field φαβ(x, y).

19. (a) Derive field equations and the energy–momentum tensor for the action

(10.51), describing extra gauge fields.

(b) Check that (10.52) is a solution to the equations of motion, and calculate

the value of the cosmological constant in the related KK theory.



Chapter 11

String theory

The description of hadronic processes in the 1960s was based on models with

an infinite number of states, lying on linear Regge trajectories. An important

theoretical realization of these ideas was given by the Veneziano (1968) model,

which actually describes the scattering of one-dimensional objects, strings. The

inclusion of fermions into the theory laid the ground for supersymmetry (Ramond

1971, Neveu and Schwarz 1971). A radical change in the interpretation of the

model has been suggested in the 1970s: the hadronic scale is replaced with the

Planck scale; and the string model is interpreted as a framework for the unification

of all basic interactions including gravity (Neveu and Scherk 1972, Scherk and

Schwarz 1974). The importance of these ideas became completely clear in 1980s,

after the discovery that string theory was free of quantum anomalies (Green and

Schwarz 1984, 1985).

Theories of fundamental interactions are usually formulated starting from

certain symmetry principles, which are then used to construct an invariant action

and derive the S-matrix describing physical processes. In complete contrast, the

first step in string theory was made by Veneziano, who guessed the form of the

hadronic scattering amplitude. In a certain sense, that was an ‘answer looking for

a question’ (Kaku 1985).

The significant success of string theory in providing a consistent treatment of

quantum gravity led to a renewed interest for identifying the underlying symmetry

principles of strings, and construct the related covariant field theory. Although, in

principle, we can discover all the relevant properties of a theory by using a given

gauge, this may be difficult in practice. Our understanding of non-perturbative

semiclassical phenomena and spontaneous symmetry breaking has been devel-

oped in the gauge-invariant framework. Let us mention that standard quantum

consistency requirements imply that strings live in the spacetimes of critical di-

mensions D = 26 or 10. The transition to the effective four-dimensional theory

is a non-perturbative effect. Thus, the identification of gauge symmetries plays an

important role in the formulation of realistic models. We also expect the quantum

properties of the theory to be more transparent in a covariant formulation.

338
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We should note, however, that the construction of the covariant field theory is

only a first step towards a full understanding of the string geometry. The situation

could be compared to one in which a field theorist would study the covariant GR

perturbatively, without having any idea about the Riemannian geometry behind

the theory.

It is our intention here to present an introduction to the covariant field theory

of free bosonic strings, which will cover the main features of the classical theory.

Our exposition is based on the gauge-invariant Hamiltonian formalism, which

clearly relates the two-dimensional reparametrization invariance, given in the

form of the Virasoro conditions, with gauge invariances in field theory. The

bosonic string is used to illustrate the common features of all string models,

without too many technical complications. In particular, we shall see how the

gauge fields, the photon and the graviton, are obtained from string dynamics.

Interacting models and supersymmetric formulations can be described in a similar

way but are technically more involved.

11.1 Classical bosonic strings

The fundamental constituents of standard field theories are point particles. The

replacement of point particles by one-dimensional extended objects—strings—

leads to important changes in our understanding of the nature of the basic

interactions. The root of these changes can be traced back to the classical

dynamics of strings (Scherk 1975, Sundermeyer 1982, West 1986b, Brink and

Henneaux 1988, Bailin and Love 1994).

The relativistic point particle

Many of the concepts used in discussing string theory are already present in the

simpler case of relativistic point particles. We start, therefore, by discussing this

model first.

Classical mechanics. A point particle moving in spacetime M4 describes the

world line xµ = xµ(τ ), where τ is the evolution parameter. The relativistic

action that describes the motion of a point particle is proportional to the length of

its world line:

I = −m

∫
dτ

√
ηµν ẋµ ẋν ≡

∫
dτ L (11.1)

where ẋµ = dxµ/dτ . The action is invariant under reparametrizations of the

world line: τ → τ ′ = τ + ε(τ ), δxµ = xµ(τ ′)− xµ(τ ) = ε(τ )ẋµ.

In order to define the Hamiltonian formalism, which is the first step in the
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quantization procedure, we introduce the canonical momenta by†

pµ = ∂L

∂ ẋµ
= −mẋµ√

ẋ2
ẋ2 ≡ ηµν ẋµ ẋν .

Since the momenta are homogeneous functions of velocities, they satisfy the

constraint

φ ≡ p2 − m2 ≈ 0

and the canonical Hamiltonian vanishes: Hc ≡ pµẋµ − L ≈ 0.

In the presence of constraints, the equations of motion are generated by the

total Hamiltonian,

HT ≡ Hc + v(τ )φ ≈ v(τ )φ

where v(τ ) is an arbitrary multiplier. Using the basic Poisson brackets {xµ, pν} =
δ
µ
ν , we find that the consistency of the primary constraint φ is automatically

satisfied for every v(τ ), φ̇ ≡ {φ, HT} ≈ 0, and no further constraints are

generated in the theory.

The vanishing of the canonical Hamiltonian and the existence of an arbitrary

multiplier in HT are directly related to the reparametrization invariance of the

theory, which is clearly seen from the Hamiltonian equations of motion:

ẋµ = {xµ, HT} = 2v(τ )pµ

ṗ = {pµ, HT} = 0.

The presence of v(τ ) is a sign of the arbitrariness in the choice of τ (in order for

a non-trivial motion to exist, the multiplier v(τ ) must be different from zero).

The reparametrization invariance can be easily broken by imposing a suitable

gauge condition, such as ! ≡ x0(τ ) − τ ≈ 0, for instance. The consistency

requirement on ! determines v(τ ):

!̇ ≡ {!, HT} +
∂!

∂τ
= 2v(τ )p0 − 1 = 0

whereupon the reparametrization invariance is lost.

The first quantization. The canonical transition from the classical to quantum

mechanics in a gauge invariant theory can be realized in the following way (Dirac

1964):

(a) the basic dynamical variables are elevated to operators:

x(τ ) → x̂(τ ) p(τ ) → p̂(τ )

(b) the PBs go over into commutators with an appropriate factor of −i:

{A, B} → −i[ Â, B̂]
† This choice yields different sign compared to the usual physical momenta.
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(c) first class constraints become conditions on the physical states:

φ̂|ψ〉 = 0

(d) the physical state vectors satisfy the ‘Schrödinger equation’:

i
∂

∂τ
|ψ〉 = ĤT|ψ〉.

As φ̂ is the only constraint in the theory, it is first class. The quantum

condition on the physical states has the form

φ̂|ψ〉 ≡ ( p̂2 − m2)|ψ〉 = 0. (11.2)

Since HT is proportional to φ̂, the right-hand side of the ‘Schrödinger equation’

vanishes, and we find that |ψ〉 does not depend explicitly on τ . The essential

dynamical information is contained in the quantum dynamical variables x̂(τ ) and

p̂(τ ), which satisfy the Heisenberg equations of motion.

Classical field theory. If we realize the quantum dynamical variables in the

coordinate representation, x̂µ → xµ, p̂µ → −i∂µ, the state vector |ψ〉 becomes

the wavefunction ψ(x) = 〈x |ψ〉, which is independent of τ and satisfies the

Klein–Gordon equation (11.2): (−� − m2)ψ(x) = 0. The action that leads to

this field equation is given by

I =
∫

d4x ψ+(x)(−�− m2)ψ(x). (11.3)

Classical field theory is an infinite system of classical point particles that occupy

each point x of the three-dimensional space. It is interesting to observe that

the original reparametrization invariance is absent from the field theory; its only

remnant is the Klein–Gordon field equation.

The second quantization. The canonical description of the classical field

theory (11.3), or one of its generalizations that may include interaction terms,

is realized in the phase space (ψ(x), π(x)). Like any other dynamical system, it

can be quantized in the same manner as that described earlier. This procedure is

now called the second quantization, and the related quantum field theory describes

an infinite system of quantum particles.

We now wish to see how these steps can be repeated for strings.

Action principle for the string

A string in D-dimensional Minkowski space MD is a one-dimensional extended

object that sweeps out in time a two-dimensional world sheet �, xµ = xµ(τ, σ ),

labelled by local coordinates ξα = (τ, σ ). The string curve at fixed τ may be
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Figure 11.1. World sheets of closed and open strings.

closed or open (closed or open strings as in figure 11.1), and the spatial coordinate

σ in both cases takes values in the range [0, π], by convention.

The action of the relativistic string is taken to be proportional to the area of

its world sheet � (Nambu 1970, Gotto 1971),

I = − 1

2πα′

∫
d2ξ

√
−γ ≡

∫
d2ξ L(x(ξ), ẋ(ξ)) (11.4a)

where γ is the determinant of the world sheet metric γαβ induced by the

embedding of � in MD , γαβ = ηµν∂αxµ∂βxν ≡ ∂αx · ∂βx , and α′ is a constant

of the dimension [m−2].
An alternative expression for the string action is given by

I ′ = − 1

4πα′

∫
d2ξ

√
−ggαβ∂αx · ∂βx (11.4b)

where the metric gαβ is treated as an independent dynamical variable (Polyakov

1981). This expression, in contrast to I , is quadratic in the derivatives of xµ,

which is more convenient in the path integral quantization. We can think of

I ′ as the action describing D massless, scalar fields xµ(ξ) in two dimensions,

interacting with the gravitational field gαβ .

The new action I ′ is classically equivalent to I . Indeed, the equations of

motion obtained by varying I ′ with respect to gαβ are

γαβ − 1
2

gαβgγ δγγ δ = 0.

These equations imply the relation
√−γ = 1

2

√−ggγ δγγ δ, which, when

substituted back into I ′, yields exactly I‡.

The action I ′ is, by construction, invariant under

(a) global Poincaré transformations in MD :

δxµ = ωµ
νxν + aµ

δξα = 0 δgαβ = 0
(11.5a)

‡ The proof of the quantum equivalence is not so simple, and holds only for D = 26.
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τ = τ 1

τ = τ 2

Figure 11.2. The variation of the world sheet for open strings.

(b) local world sheet reparametrizations:

δξα ≡ ξ ′α − ξα = −εα(ξ)

δxµ = 0 (δ0xµ = εα∂αxµ)

δ0gαβ = ∂αε
γ gγβ + ∂βε

γ gαγ + εγ ∂γ gαβ

(11.5b)

(note that xµ are scalar fields on �) and

(c) local Weyl rescalings:

δgαβ = �(ξ)gαβ

δxµ = 0, δξα = 0.
(11.5c)

Local Weyl invariance is an accidental property of the geometric action in two

dimensions, and is absent when we consider higher-dimensional objects, such as

membranes. We shall see that it imposes important restrictions on the structure of

the theory.

In our further exposition we shall use the action (11.4a), although all the

results can also be obtained from the quadratic form (11.4b).

Consider the action I where the initial and final positions of the string (at

τ = τ1 and τ = τ2) are fixed and 0 ≤ σ ≤ π (figure 11.2). Introducing the

notation

πµ = ∂L

∂ ẋµ
π (σ )
µ = ∂L

∂x ′µ

where ẋ = dx/dτ , x ′ = dx/dσ , the variation of the action with respect to

xµ(τ, σ ) yields

δ I =
∫ π

0

dσ πµδxµ

∣∣∣∣
τ2

τ1

+
∫ τ2

τ1

dτ π (σ )
µ δxµ

∣∣∣∣
π

0

−
∫ τ2

τ1

dτ

∫ π

0

dσ (∂τπµ + ∂σπ
(σ )
µ )δxµ = 0.
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At all points in the interior of the world sheet, the variations δxµ are arbitrary and

independent, and the last term in δ I implies the following equations of motion:

∂τπµ + ∂σπ
(σ )
µ = 0. (11.6)

The consistency of the variational principle depends on the vanishing of the

boundary terms, and can be ensured by imposing suitable boundary conditions.

Since the initial and final string configurations, xµ(τ1, σ ) and xµ(τ2, σ ), are held

fixed, the first term in δ I vanishes. As regards the form of the second term, it is

convenient to distinguish between closed and open strings.

(i) For the closed string, i.e.

xµ(τ, 0) = xµ(τ, π) (11.7a)

we have δxµ(τ, 0) = δxµ(τ, π), π
(σ )
µ (τ, 0) = π

(σ )
µ (τ, π), and the second term

in δ I vanishes.

(ii) For the open string, the situation is more sensitive. If δxµ(τ, 0) and δxµ(τ, π)

are independent variations, it is natural to demand the following boundary

conditions:

π (σ )
µ = 0 at σ = 0, π. (11.7b)

This means that no momentum can flow out of the ends of the string.

Thus, the Lagrangian equations of motion have the usual form for both

closed and open strings, provided we impose these boundary conditions.

Hamiltonian formalism and symmetries

We now introduce the constrained Hamiltonian formalism, which is particularly

suitable for studying the gauge symmetries of the string theory.

Hamiltonian and its constraints. The canonical momenta

πµ(σ ) ≡
∂L

∂ ẋµ(σ )
= 1

2πα′
ẋµx ′2 − x ′µ(ẋ · x ′)

√−γ

are homogeneous functions of the velocities. They satisfy two primary

constraints:
G0(σ ) ≡ π2 + x ′2/(2πα′)2 ≈ 0

G1(σ ) ≡ π · x ′ ≈ 0.
(11.8)

The canonical Hamiltonian vanishes, Hc =
∫

dσ [πµ(σ )ẋµ(σ )−L] ≈ 0, and the

total Hamiltonian contains two arbitrary multipliers,

HT =
∫ π

0

dσ [v0(σ )G0(σ )+ v1(σ )G1(σ )] (11.9)
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as we expected it would.

Using the basic PBs, {xµ(σ ), πν(σ
′)} = δ

µ
ν δ, where δ ≡ δ(σ, σ ′), we can

check that the primary constraints G0 and G1 are first class, since

{G0(σ ),G0(σ
′)} = 1

(πα′)2
[G1(σ )+ G1(σ

′)]∂σ δ

{G1(σ ),G0(σ
′)} = [G0(σ )+ G0(σ

′)]∂σ δ
{G1(σ ),G1(σ

′)} = [G1(σ )+ G1(σ
′)]∂σ δ.

(11.10)

The consistency conditions are automatically satisfied, without producing any

new constraints.

The presence of two arbitrary multipliers v0(σ ) and v1(σ ) in HT is related

to the general reparametrization invariance on �.

The conformal gauge. The reparametrization invariance can be fixed by

imposing convenient gauge conditions. This can be done so as to maintain

the manifest Lorentz covariance in MD , which is of particular interest for the

construction of Lorentz covariant field theory.

The Hamiltonian equations of motion read:

ẋµ ≡ {xµ, HT} = 2v0πµ + v1x ′µ (11.11a)

π̇µ ≡ {πµ, HT} =
2

(2πα′)2
∂σ (v

0x ′µ)+ ∂σ (v
1πµ). (11.11b)

They are complicated and intractable. In order to proceed, we use the fact that

v0 and v1 are arbitrary multipliers, and choose their forms so as to simplify the

equations of motion. One possible choice is

v0 = −πα′ v1 = 0. (11.12)

With this choice the Hamiltonian equations yield the well known MD -covariant

wave equation for xµ:

ẍµ − x ′′µ = 0. (11.13)

It is clear that any definite choice of arbitrary multipliers in HT is equivalent

to a gauge condition, as it represents a restriction on the form of general

reparametrizations. In order to find the geometric meaning of conditions (11.12),

let us write the first equation of motion in the form

πµ = −ẋµ/2πα′. (11.14)

Combining this with the constraints G0 and G1 we find the relations

γ00 + γ11 ≡ ẋ2 + x ′2 ≈ 0

γ01 ≡ ẋ · x ′ ≈ 0
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which imply

ds2 = γαβ dξα dξβ = γ00(dτ
2 − dσ 2). (11.15)

Hence, these gauge conditions do not fix the coordinates on � completely.

The residual reparametrizations are those that leave the form of interval (11.15)

invariant; they are known as the conformal transformations in �. The total

Hamiltonian now has a simpler form:

HT = −πα′
∫ π

0

dσ G0(σ ). (11.16)

The gauge fixing that leads to the metric γαβ = √−γ ηαβ , as in equation

(11.15), is called the conformal gauge; it is consistent with Lorentz covariance in

MD . Note that conditions (11.12) are in agreement with x ′2 < 0, ẋ2 > 0, as can

be seen by comparing equation (11.14) with the definition of πµ.

Poincaré symmetry. Let us now return to global Poincaré symmetry (11.5a),

which is related to the fact that the string is embedded in MD . The quantities

xµ(ξ) (µ = 0, 1, . . . , D − 1) are scalar fields with respect to the coordinate

transformations in �. Global Poincaré transformations look like internal

symmetry transformations in �, as they relate fields xµ(ξ) at the same point ξ

in �.

Starting from the known form of global Poincaré symmetry, we can find the

conserved currents associated with the translations and Lorentz rotations. The

related conserved charges§ are

Pµ =
∫

dσ πµ(σ )

Mµν =
∫

dσ [xµ(σ )πν(σ )− xν(σ )πµ(σ )]
(11.17)

and satisfy the PB algebra of the Poincaré group.

The dimension. So far, the dimension D of the space MD in which the string

moves has remained completely arbitrary. It is interesting to mention here that the

usual consistency requirements in quantum theory lead to D = 26. The transition

to an effective theory in four dimensions is realized through the mechanism of

spontaneous compactification, and represents one of the most difficult problems

of realistic string theory.

11.2 Oscillator formalism

Since the constraints are quadratic in the fields, a natural way to analyse the string

dynamics is Fourier expansion (Scherk 1975, Sundermeyer 1982, West 1986b,

Brink and Henneaux 1988, Bailin and Love 1994).

§ The physical values of the linear and angular momentum have opposite signs.
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Figure 11.3. Possible extensions of open strings.

Open string

Boundary conditions (11.7b) for an open string in the conformal gauge take the

form

x ′µ = 0 at σ = 0, π. (11.18)

We now want to find a Fourier expansion of the real function xµ(τ, σ ), that is

defined on the basic interval 0 ≤ σ ≤ π for a fixed value of τ , and satisfies

boundary conditions (11.18). This can be done in several equivalent ways:

(a) We can Fourier expand xµ(τ, σ ), defined on [0, π], in terms of cos 2nσ and

sin 2nσ .

(b) We can first extend the definition of xµ(τ, σ ) to the region [−π, π] in

accordance with the boundary conditions, and then expand in cos nσ and

sin nσ .

(c) If the extension is symmetric, the Fourier expansion contains only cos nσ .

(d) An antisymmetric extension is only possible if x(τ, 0) = 0.

It is clear that the simplest choice is (c). Hence, the Fourier expansion of the

field x(τ, σ ) has the form (L.3) (appendix L)

xµ(τ, σ ) =
∑

n

xµ
n einσ = x

µ

0 + 2
∑

n≥1

xµ
n cos nσ (11.19a)

where x
µ
n = x

µ
−n (x

µ
−n = x

µ∗
n ). Similarly, the related expansion of the momentum

variable π(τ, σ ) reads

πµ(τ, σ ) =
∑

n

πµ
n einσ = π

µ

0 + 2
∑

n≥1

πµ
n cos nσ (11.19b)

where π
µ
n = π

µ
−n (π

µ
−n = π

µ∗
n ). The time dependence of coefficients x

µ
n and π

µ
n

is determined by the equations of motion.
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The basic PBs between x(σ ) and π(σ) (the dependence on τ is omitted for

simplicity) have the form

{xµ(σ ), πν(σ
′)} = δµν δ(σ, σ

′). (11.20a)

Since x(σ ) and π(σ) are symmetric functions on the basic interval [−π, π],
expression δ(σ, σ ′) should be defined as the symmetric delta function, δ(σ, σ ′) =
δS(σ, σ

′), as in equation (L.7) (appendix L). We shall consider instead the

expressions (11.19a, b) on the interval [0, π], and, accordingly, change the

normalization of the delta function:

δ(σ, σ ′) → 2δS(σ, σ
′).

This implies

{xµ
n , π

ν
m} = ηµν

1

π
(δn,m + δn,−m) (n,m ≥ 0). (11.20b)

Let us now introduce the quantity

(µ(σ ) ≡ πµ + x ′µ

2πα′
− π ≤ σ ≤ π. (11.21a)

It is interesting to note that the two constraints G0(σ ) and G1(σ ) on the interval

[0, π] can be unified into one constraint on [−π, π]:

(2(σ ) = G0(σ )+ G1(σ )/πα
′

where G0(−σ) = G0(σ ), G1(−σ) = −G1(σ ). Fourier expansion of (µ reads:

(µ(σ ) = −1

π
√

2α′

∑

n

aµ
n einσ (11.21b)

where

−aµ
n =

(
πµ

n + in

2πα′
xµ

n

)
π
√

2α′

or, equivalently,

− πµ
n = 1

π
√

2α′
1

2
(aµ

n + a
µ
−n)

xµ
n = i

√
2α′

n

1

2
(aµ

n − a
µ
−n).

The basic PBs can be expressed in terms of an as

{aµ
n , aν

−m} = inδn,mη
µν (n,m ≥ 1) (11.22)
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which suggests that in quantum theory an and a∗m = a−m (n,m ≥ 1) will be the

annihilation and creation operators of the string modes (up to the normalization

factors
√

n,
√

m, respectively).

The time dependence of the string modes is determined by the equations of

motion (11.13):

ẍµ
n + n2xµ

n = 0.

Using πn = −ẋn/2πα′ and the definition of an we find that

an(τ ) = an(0)e
−inτ (n �= 0)

while the time dependence of the zero modes is

x
µ

0 = xµ + pµτ π
µ

0 = −pµ/2πα′

where the variables (xµ, pµ) describe the centre-of-mass motion, and satisfy

{xµ, pν} = −ηµν(2α′).

The general solution of the equations of motion for an open string is given by

xµ(σ ) = x
µ

0 + i
√

2α′
∑

n≥1

1

n
[aµ

n (0)e
−inτ − a

µ
−n(0)e

inτ ] cos nσ

πµ(σ ) = π
µ

0 −
√

2α′

2πα′
∑

n≥1

[aµ
n (0)e

−inτ + a
µ
−n(0)e

inτ ] cos nσ.

(11.23)

Closed strings

For a closed string defined on [0, π], the Fourier expansion is given by

xµ(σ ) = x
µ

0 +
∑

n≥1

(xµ
n e2inσ + xµ⋆

n e−2inσ ) =
∑

n

xµ
n e2inσ

πµ(σ ) = π
µ

0 +
∑

n≥1

(πµ
n e2inσ + πµ⋆

n e−2inσ ) =
∑

n

πµ
n e2inσ .

(11.24)

Here, xn �= x−n and πn �= π−n , in contrast to the open string case (but, as before,

x−n ≡ x∗n , π−n ≡ π∗
n ).

The basic PBs have the form (11.20a), where the periodic delta function is

defined in equation (L.8), and, consequently,

{xµ
n , π

ν
−m} = ηµν

1

π
δn,m (n,m ≥ 0).

In analogy with (11.21a, b), we introduce on the interval [0, π] the following

quantities:

(µ ≡ πµ + x ′µ

2πα′
= −1

π
√

2α′

∑

n

2aµ
n e2inσ

(̃µ ≡ πµ − x ′µ

2πα′
= −1

π
√

2α′

∑

n

2bµn e2inσ .

(11.25)
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Here,

− 2aµ
n =

(
πµ

n + in

πα′
xµ

n

)
π
√

2α′

− 2b
µ
−n =

(
πµ

n − in

πα′
xµ

n

)
π
√

2α′

(a−n = a∗n , b−n = b∗n) and, consequently,

− πµ
n = 1

π
√

2α′
(aµ

n + b
µ
−n)

xµ
n = i

√
2α′

2n
(aµ

n − b
µ
−n).

For an open string we would have an = bn .

The basic PBs, when expressed in terms of an and bn , become

{aµ
n , aν

−m} = inδn,mη
µν = {bµn , bν−m} (n,m ≥ 1)

{aµ
r , bνs } = 0

(11.26)

showing clearly the existence of two types of mode.

The time dependence of the modes is given by

an(τ ) = an(0)e
−2inτ bn(τ ) = bn(0)e

−2inτ (n �= 0)

x
µ

0 = xµ + pµτ π
µ

0 = −pµ/2πα′

with

{xµ, pν} = −ηµν(2α′).

We can now separate the left-moving and right-moving waves in the expressions

(11.24):

xµ(σ ) = x
µ

0 +
√

2α′
i

2

∑

n �=0

1

n
[aµ

n (0)e
2in(σ−τ ) − bµn (0)e

−2in(σ+τ )]

πµ(σ ) = π
µ

0 −
√

2α′

2πα′
∑

n �=0

[aµ
n (0)e

2in(σ−τ ) + bµn (0)e
−2in(σ+τ )].

(11.27)

Classical Virasoro algebra

Reparametrization invariance of the classical string action reflects itself in the

existence of two first class constraints, G0(σ ) and G1(σ ), which satisfy the PB

algebra (11.10). After fixing the gauge as in equation (11.12), the symmetry of the

theory is reduced to conformal symmetry in two dimensions. It will play a crucial

role in the construction of covariant string field theory. We shall now study the

classical form of this symmetry in the oscillator formalism.
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Open strings. As we have seen, for an open string the two constraints, G0(σ )

and G1(σ ), defined on [0, π], can be unified into one constraint, (2(σ ), on

[−π, π]. The Fourier components of (2(σ ), at τ = 0, are given as

Ln ≡ −πα′

2

∫ π

−π

f ∗n (σ )(
2(σ ) dσ (11.28a)

where fn(σ ) = exp(inσ). The constraint (2(σ ) is completely determined by the

set of coefficients Ln , and vice versa. The algebra of Go(σ ) and G1(σ ) can be

easily rewritten in the form

{Ln, Lm} = −i(n − m)Ln+m . (11.29)

The coefficients Ln are referred to as the Virasoro generators (Virasoro 1970) and

their algebra is the conformal algebra in two dimensions (note that this result is

obtained without any gauge fixing).

Using expansion (11.21) the Virasoro generators can be expressed in terms

of the Fourier coefficients an at τ = 0:

Ln = − 1
2

∑

r

ar · an−r . (11.28b)

This expression, combined with (11.22), can be used to rederive the classical

Virasoro algebra (11.29).

The total Hamiltonian HT is a linear combination of constraints, hence it can

be represented as a linear combination of the Virasoro generators. Indeed, the

expression (11.9) for HT can be brought to the form

HT =
∫ π

−π

dσ v(σ)(2(σ ) 2v(σ ) ≡ v0(σ )+ πα′v1(σ )

where v0(−σ) = v0(σ ), v1(−σ) = −v1(σ ). After that, the Fourier expansion

v(σ ) = −(πα′/2)
∑

n vne−inσ gives the result

HT =
∑

n

vn Ln . (11.30a)

In the conformal gauge we have v(σ ) = −πα′/2, and

HT = L0. (11.30b)

It is interesting to observe that L0 can be expressed in terms of the ‘number

of excitations’ N :

L0 = − 1
2
a0 · a0 −

∑

r≥1

a⋆
r · ar = − 1

2
a0 · a0 + N (11.31)
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where

a
µ

0 = −π
µ

0 π
√

2α′ = pµ/
√

2α′.

We should note that N =
∑

r Nr , where Nr is the number of excitations of the

type ar , as a consequence of the factor
√

r in the normalization of ar . For this

reason N is not the true number of string excitations. However, for the lowest

level excitations with r = 0, 1, which we are going to consider, this difference is

irrelevant.

In classical theory the coefficients an commute with each other and satisfy

the PBs (11.22). In quantum theory they become operators and we have to take

care about operator ordering.

Closed strings. The closed string is treated in a similar manner. We have two

types of Virasoro generators:

Ln = −πα′

4

∫ π

0

f ∗2n(σ )(
2(σ ) dσ = − 1

2

∑

r

ar · an−r

L̃n = −πα′

4

∫ π

0

f ∗2n(σ )(̃
2(σ ) dσ = − 1

2

∑

r

br · bn−r

(11.32)

with two independent classical Virasoro algebras:

{Ln, Lm} = −i(n − m)Ln+m

{L̃n, L̃m} = −i(n − m)L̃n+m

{Ln, L̃m} = 0.

(11.33)

The total Hamiltonian is given as a linear combination of Lns and L̃ns.

Indeed, the relation

HT =
∫ π

0

dσ [v(2 + ṽ(̃2]

where 2v = v0 + πα′v1, 2ṽ = v0 − πα′v1, after using the Fourier expansion

v = −(πα′/4)
∑

n vne2inσ , and similarly for ṽ, implies

HT =
∑

n

(vn Ln + ṽn L̃n). (11.34a)

In the conformal gauge we have

HT = 2(L0 + L̃0). (11.34b)

Introducing the excitation numbers N and Ñ we obtain

L0 = − 1
2

a2
0 −

∑

r≥1

a⋆
r · ar = − 1

2
a2

0 + N

L̃0 = − 1
2
b2

0 −
∑

r≥1

b⋆r · br = − 1
2
b2

0 + Ñ
(11.35)
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where

a
µ

0 = b
µ

0 = pµ/2
√

2α′.

Closed strings have an additional invariance, an invariance under global

‘translations’ of σ , σ → σ + a. The generator of these transformations is the

following first class constraint:

L0 − L̃0 ≈ 0. (11.36)

Unoriented strings are defined by invariance under σ → −σ . The existence

of two independent types of excitations makes the closed string intrinsically

oriented, in general. However, there are solutions that are invariant under an ↔
bn; they define an unoriented closed string.

11.3 First quantization

The quantum mechanics of strings is the first step towards a string field theory.

The quantization procedure will be carried out using the standard canonical

approach for dynamical systems with constraints (Peskin 1985, West 1986b,

Green et al 1987, Brink and Henneaux 1988).

Quantum mechanics of the string

To quantize the string model we use the covariant approach outlined in discussing

the point particle. We begin with the open string case.

(a) The basic dynamical variables x(τ, σ ) and π(τ, σ ) become the operators:

x(τ, σ ) → x̂(τ, σ ) π(τ, σ ) → π̂(τ, σ ).

(b) Each {PB} is replaced by (−i)× [commutator]. In particular,

[x̂µ(σ ), π̂ν(σ
′)] = iδµν δ(σ, σ

′) δ(σ, σ ′) = 2δS(σ, σ
′). (11.37a)

In the x-representation we have x̂µ → xµ, π̂ν → −i δ
δxν

. Transition to the Fourier

modes yields

[x̂µ
n , π̂

ν
m ] = ηµν

i

2π
(δn,m + δn,−m) (n,m ≥ 0)

[âµ
n , âν+

m ] = −nδn,mη
µν (n,m ≥ 1)

[xµ, pν] = −iηµν(2α′).

(11.37b)

The xn-representation is given by

x̂µ
n → xµ

n π̂nν → − i

2π

(
∂

∂xν
n

+ ∂

∂xν
−n

)
.
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(c) First class constraints Ln are imposed as quantum conditions on the physical

states, the Virasoro conditions:

(L̂0 − α0)|ψ〉 = 0 (A)

L̂n |ψ〉 = 0 (n ≥ 1). (B)

(d) Physical states satisfy the ‘Schródinger equation’:

i
∂

∂τ
|ψ〉 = HT|ψ〉 ≈ 0. (11.38)

The right-hand side of this equation vanishes because HT ≈ 0, and physical states

do not depend explicitly on time (the time dependence is hidden in dynamical

variables).

The form of Virasoro conditions (A) and (B) differs from what we might

naively expect, and this deserves several comments.

– In order to give a precise meaning to the Virasoro operators L̂n , we assume that

they are determined in the harmonic oscillator representation (11.28b). It is, then,

natural to choose a Fock representation for the Hilbert space of states, which is

based on the existence of a vacuum state, annihilated by all destruction operators

an , n ≥ 1.

– Upon quantization the Virasoro operators suffer from operator ordering

ambiguities, since a−n no longer commutes with an . A closer inspection shows

that it is only L̂0 that is afflicted by this ambiguity. To resolve the problem we

normal order the ans in L̂0:

L̂0 = − 1
2

∑

r

: a−r · ar := − 1
2

∑

r

a−r · ar + α0 (11.39)

where the colons indicate normal ordering with respect to the Fock vacuum, and

α0 is the normal ordering constant appearing in (A).

– Equation (B) tells us that the physical states do not satisfy the condition

L̂n |ψ〉 = 0 for all n �= 0, since this would lead to a conflict with the quantum

Virasoro algebra, as we shall see shortly. However, the condition (B) implies

L̄n ≡ 〈ψ|L̂n |ψ〉 = 0

for every n �= 0 (since L̂−n = L̂+
n ), so that the mean value of L̂n vanishes,

in accordance with the classical constraints. Equation (B) is analogous to the

Gupta–Bleuler quantization condition in electrodynamics.

– In the covariant approach the Lorentz covariance is maintained in the

quantization process. However, the indefiniteness of the Minkowski metric

implies the existence of negative norm states, or ghosts, which are forbidden by
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unitarity. Ghosts are absent from the physical Hilbert space in two cases only

(see, e.g., Green et al 1987):

(a) α0 = 1 D = 26

(b) α0 ≤ 1 D ≤ 25.
(11.40)

With the constraints and states as given in (A) and (B), the covariant quantization

is possible only in D = 26. In D < 26 we have to add the so-called Liouville

modes (Polyakov 1981). We shall limit our discussion in the remainder of this

chapter to the critical dimension D = 26 (and α0 = 1).

For a closed string the basic commutation relations in the oscillator

formalism have the following form:

[x̂µ
n , π̂

ν
−m] = ηµν

i

π
δn,m (n,m ≥ 0)

[âµ
n , âν+

m ] = [b̂µn , b̂ν+m ] = −nδn,mη
µν (n,m ≥ 1)

[xµ, pν] = −iηµν(2α′)

while [âµ
n , b̂ν+m ] = 0. They are realized in the xn-representation as follows:

x̂µ
n → xµ

n π̂−nν → − i

π

∂

∂xν
n

.

In the rest of this chapter we shall study the meaning of the quantum Virasoro

conditions (A) and (B) in detail and use them to construct a covariant field theory.

We shall see that these conditions have an enormously rich content in field theory,

a content that we might not have expected.

Quantum Virasoro algebra

The fact that the quantum Virasoro generators are normal ordered brings a change

into the Virasoro algebra (11.29). In calculating the commutator [L̂n, L̂m ] the

problem of normal ordering arises only when the result contains the term L̂0, i.e.

for n = −m. Let us, therefore, concentrate on the expression

[L̂n, L̂−n] = − 1
2

∑

r

[(n − r)ar · a−r + ra−n+r · an−r ].

Both terms in the infinite sum have to be normal ordered and this is a delicate

problem. In order to do that in a proper manner, we shall first regularize definition

(11.39) (Peskin 1985),

L̂n = lim
�→∞

− 1
2

�∑

m=−�

: am · an−m :
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and then perform the normal ordering before taking the limit � → ∞. In

this way, the regularized sum for [L̂n, L̂−n ] becomes finite, and c-number terms

arising from normal ordering are calculated by a change of the summation

variable, with the result

[L̂n, L̂−n ] = 2nL̂0 + nD

�∑

1

r − 1
2

D

�∑

�−n+1

(r + n)r.

Here, L̂0 is normal ordered, the dimension D originates from the contraction of

δ
µ
ν , and at the end we should take the limit � → ∞. The last step is actually

trivial, since the evaluation of the previous expression shows that it does not

depend on �:

[L̂n, L̂−n] = 2nL̂0 +
D

12
n(n2 − 1).

This result is easily generalized to give

[L̂n, L̂m ] = (n − m)L̂n+m + D

12
n(n2 − 1)δn,−m . (11.41)

The new, c-number term on the right-hand side, the so-called central charge,

arises as a consequence of the normal ordering in [L̂n, L̂m ], and represents a

typical quantum effect.

A change in the algebra of the Virasoro constraints indicates a change in the

symmetry structure of the theory after quantization. Indeed, in classical theory

all Lns are first class constraints, which generate the conformal symmetry of the

theory, while the presence of the central charge in the quantum algebra implies

that only the SL(2, R) subalgebra generated by (L̂0, L̂±1) is first class. The

change of symmetry is a direct reflection of the so-called conformal anomaly in

the theory.

Let us now return to the Virasoro condition (B). It is evident that we cannot

consistently demand L̂n |ψ〉 = 0 for every n �= 0, since in that case algebra

(11.41) would imply |ψ〉 = 0, due to the presence of the central charge.

Fock space of states

Since the ‘Schródinger equation’ only tells us that the physical states are time

independent, the most important dynamical informations are contained in the

Virasoro conditions (A) and (B). We have formally defined the quantum Virasoro

generators by the normal ordering of the ans. The true meaning of this

prescription can be understood only after we have specified the space of the

states on which these operators act. Since a
†
n and an have harmonic-oscillator

commutation relations, it appears natural to choose a Fock representation for

states.
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In order to clarify the physical interpretation of the theory, it is useful to

introduce the mass operator for string excitations. Using the equality a
µ

0 = pµ =
i∂µ and relation (11.31), we find (in units 2α′ = 1):

2(L̂0 − 1) = −p2 +M2

M2 = 2(N − 1)
(11.42)

where N ≡ −
∑

m≥1 a+m · am , and M2 is the mass squared operator, with

eigenvalues 2(n − 1). The state with n = 0 has M2 < 0, and is called the

tachyon, while the states with n = 1 are massless. The tachyonic ground state is

a problem for the bosonic string, which can be solved in superstring theory.

In a similar way, using the relation a
µ

0 = b
µ

0 = pµ/2, we find, for a closed

string:

4[(L̂0 − 1)+ (
ˆ̃
L − 1)] = −p2 +M2

M2 = 4(N + Ñ − 2).
(11.43)

Here, n = ñ = 0 is the tachyonic ground state and n = ñ = 1 are massless states.

Let us now define the string ground state by the condition

am |0〉 = 0 (m ≥ 1) pµ|0〉 = 0. (11.44)

In the coordinate representation it has the form

〈x(σ )|0〉 ≡ $(0) =
∏

m≥1

cm exp

(
mx2

m

2α′

)
.

Note that $(0) does not contain x0, the zero mode of x(σ ). The set of states

obtained by applying a product of the creation operators a+m (m ≥ 1) on the

ground state constitutes the basis of the Fock space of string excitations‖. Each

state in this basis is an eigenstate of the occupation number N , and, hence, of the

mass square operatorM2.

A state of the string |ψ〉 can be given in the coordinate representation as a

functional ψ[x(σ )] = 〈x(σ )|ψ〉. The scalar product is formally defined by the

functional integral

〈ψ1|ψ2〉 =
∫
Dx(σ )ψ∗

1 [x(σ )]ψ2[x(σ )]

with a suitable measure. Every string state ψ[x(σ )] can be expanded in terms of

the occupation number basis as

ψ[x(σ )] = [φ(x)− iAµ(x)a
µ+
1 − hµν(x)a

µ+
1 aν+

1 − · · ·
− iBµ(x)a

µ+
2 − lµν(x)a

µ+
2 aν+

2 − · · ·]$(0) (11.45)

‖ In general, we can also ‘create’ the centre-of-mass momentum k by application of exp(−ik · x):

$(k) = exp(−ik · x)$(0), p$(k) = k$(k).
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where the dependence on the zero mode x = x0 is present in the coefficient

functions φ(x), Aµ(x), etc. It should be stressed that the a+n s are the creation

operators of the string modes, not of the physical particles. The information about

the physical fields resides in the coefficient functions, which are determined by

the Virasoro conditions (A) and (B), and the equation of motion (11.38).

In the case of closed strings, the invariance under σ → σ + a can be

expressed as the condition

(L0 − L̃0)ψ[x(σ )] = (n − ñ)ψ[x(σ )] = 0 (11.46)

where we have omitted the hats over the Virasoro generators for simplicity.

11.4 Covariant field theory

We now turn to the problem of finding a covariant field theory for free strings

which would be consistent with the Virasoro constraints (Peskin 1985, West

1986b, Bailin and Love 1994).

Classical string field theory is constructed in the following way:

– Quantum-mechanical single-string state |ψ〉 is promoted to a classical field

ψ[x(σ )], which satisfies the same field equation and the same Virasoro

conditions.

– Then, the corresponding action for the free field theory is constructed. This step

is much more complicated than in point-particle theory.

– Finally, the interactions are introduced in accordance with certain physical

principles, and an attempt is made to describe realistic physical processes.

After that, we can proceed to construct quantum field theory. We begin

by developing the canonical formulation of classical field theory, i.e. we define

momenta π[x(σ )], find the constraints, Hamiltonian and the equations of motion.

Then, in the process of second quantization, the basic dynamical variables

ψ[x(σ )] and π[x(σ )] become the operators, etc. If the classical theory describes

the interactions, so does its second-quantized version.

The central point in the forthcoming exposition will be to find a covariant

action of classical field theory for free strings. Trying to solve this problem we

shall discover some fundamental symmetry principles of the theory. This is of

great importance not only for operator quantization, which we are using in the

present context, but also for path-integral quantization, where knowledge of the

classical action and its symmetries is of crucial importance. The important subject

of string interactions lies outside the scope of this book.

Gauge symmetries

Virasoro conditions. In order to construct a covariant action, let us consider the

meaning of the Virasoro conditions for open strings:

(L0 − 1)ψ[x(σ )] = 0 (A)
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Lnψ[x(σ )] = 0 (n ≥ 1) (B)

where we write L instead of L̂, for simplicity. A physical state ψ[x(σ )] is

represented by equation (11.45) in the Fock space, where the components φ(x),

Aµ(x), hµν(x), etc, are the standard fields of increasing spin.

Condition (A) represents an equation of the Klein–Gordon type for each

component field of ψ[x(σ )]. It implies that the field φ(x) is a tachyon, Aµ(x)

is a massless field, hµν(x) is a field of mass (α′)−1/2, etc.

In order to discover the meaning of (B), let us recall the definition of the

Virasoro generators for n = 1, 2:

L1 = −(a0 · a1 + a+1 · a2 + a+2 · a3 + · · ·)
L2 = −(a0 · a2 + 1

2
a1 · a1 + a+1 · a3 + · · ·)

where a
µ

0 = pµ = i∂µ. Acting on ψ[x(σ )] with L1 and L2 we find that

L1ψ[x(σ )] = [ipµAµ + (2 pµhµν + iBν)a
ν+
1 + · · ·]$(0)

L2ψ[x(σ )] = [2ipµBµ − hν
ν + · · ·]$(0).

From these equations we can read off the form of conditions (B) in terms of the

component fields:

∂µAµ = 0 2∂µhµν + Bν = 0

2∂µBµ + hν
ν = 0 · · ·

(11.47)

The Virasoro conditions at the massless level lead to the standard gauge

condition: ∂µAµ = 0.

This is rather an unexpected result. In classical theory the Virasoro

generators are related to the reparametrization invariance. After choosing the

conformal gauge, they describe the conformal symmetry in the theory. In field

theory the Virasoro conditions become related to the gauge fixing conditions.

A field theory based on Virasoro conditions (B) would represent a theory

with fixed gauge symmetry. We wish to find an action which possesses gauge

invariances, for which conditions (B) would be a possible gauge choice and

equation (A)—the equation of motion.

Gauge transformations. If Virasoro conditions (B) are interpreted as gauge

conditions on |ψ〉, it is natural to ask: What form do the related gauge

transformations take?

Let us try to construct gauge transformations of ψ[x(σ )] with the L−n as

symmetry generators. Consider the open string and the transformation

δψ = −L−n� (n ≥ 1) (C)
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where � is a functional ‘parameter’ of the gauge transformation:

�[x(σ )] = [λ(x)+ iλµ(x)a
µ+
1 + iεµ(x)a

µ+
2 + · · ·]$(0).

For n = 1, 2, we use

− L−1 = (a+1 · a0 + a+2 · a1 + a+3 · a2 + · · ·)
− L−2 = (a+2 · a0 + 1

2
a+1 · a+1 + a+3 · a1 + · · ·)

and obtain

− L−1� = (pµλa
µ+
1 + ipµλνa

µ+
1 aν+

1 − iλµa
µ+
2 + · · ·)$(0)

− L−2�
′ = (pµλ

′aµ+
2 + 1

2
λ′a+1 · a+1 + · · ·)$(0).

From these expressions and equation (C) we can derive the transformation law for

component fields. The ground state field is gauge invariant:

δφ(x) = 0. (11.48a)

The massless field transforms as

δAµ = −∂µλ (11.48b)

which is just the gauge transformation of a vector field. At the next mass level we

obtain

δhµν = ∂(µλν) − 1
2
ηµνλ

′

δBµ = λµ − ∂µλ
′.

(11.48c)

The transformation (C), at the massless level, represents exactly the

gauge symmetry for which we have been looking.

At higher mass levels it yields many other gauge symmetries, the existence of

which could have been hardly expected. Similar results are also obtained for

closed strings.

Thus, we found that gauge symmetries, at the level of free field theory,

have the simple form (C), which is a very important step towards a deeper

understanding of the geometric structure of the theory. These symmetries take

a complicated form when expressed in terms of the component fields, but their

physical interpretation at the massless level becomes very simple.

These considerations shed a new light on Virasoro conditions (A) and (B),

and suggested the form gauge symmetry (C) should have in a complete, covariant

formulation. Now, we shall try to incorporate these results into an action principle.
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The action for the free string field

We seek a free field action for strings in the form

I = − 1
2

∫
Dx(σ )ψ⋆[x(σ )] K ψ[x(σ )] ≡ − 1

2
(ψ, Kψ). (11.49)

The condition that gauge transformations

δψ = i
∑

n≥1

cn L−n�

are a symmetry of the action leads to

δ I = − i

2

∑

n≥1

cn(ψ, K L−n�)+ C.C. = 0.

We also demand that Virasoro conditions (A) are fulfilled as the equations of

motion.

The Verma module. It will be helpful for the construction of K to first define

some mathematical properties of the Virasoro algebra (Goddard and Olive 1986).

The Virasoro algebra is an expression of conformal symmetry in two

dimensions, and has an infinite number of generators. According to (11.41), we

conclude that L0 is the only generator of the commuting subalgebra. Bearing in

mind the application to string theory, we impose the requirement that (a) L0 be a

positive definite operator:

L0 ≥ 0.

In addition, we shall restrict our considerations to unitary representations of the

algebra, for which (b) a state space is equipped with a positive definite scalar

product, and (c) L+
n = L−n (hermiticity).

Let H [x(σ )] be an eigenstate of L0 with eigenvalue h. According to the

relation

L0 Ln = Ln(L0 − n) (n ≥ 1)

the action of Ln on H [x(σ )] lowers the eigenvalue of L0 by n units. In view

of the positive definiteness of L0, there must be states ψ0 on which this process

stops:

Lnψ0 = 0 (n ≥ 1)

L0ψ0 = hψ0.

In states ψ0, the eigenvalue h ≥ 0 of L0 is the lowest one possible, hence the

eigenvalues of M2 and N are also the lowest. These states are said to be the

states at level v = 0. They are also called the physical states, since we recognize

here the structure of the quantum Virasoro conditions.
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States at level v = 1 are formed by applying L−1 to a zero-level state ψ0,

states at level v = 2 are L−2ψ0 and L−1 L−1ψ0, etc. The space of all states

constructed from a particular ψ0 is called a Verma module. States at different

levels in a Verma module have different eigenvalues of L0, and are orthogonal to

each other; for instance, (L−1ψ0, ψ0) = (ψ0, L1ψ0) = 0.

Thus, starting from a given state ψ0, we can build up a representation of

the Virasoro algebra level by level. A description of the strings at finite levels

of excitation needs only a finite number of generators. This construction is a

generalization of the standard techniques in the theory of finite Lie groups.

The action. The condition of gauge invariance for the action can be fulfilled if

we find an operator K for which

K L−n� = 0 (n ≥ 1).

Since the state L−n� is at least of level v = n, this condition is easily satisfied if

K is proportional to the projector P on the states of level v = 0:

K = K0 P P L−n = 0 (n ≥ 1).

The construction of projector P is known from mathematics (Feigin and Fuchs

1982). Demanding that Virasoro condition (A) holds on the level-0 states, we

conclude that K0 should be proportional to L0 − 1, so that, finally,

K = 2(L0 − 1)P. (11.50)

The action defined by equations (11.49) and (11.50) solves our problem. It

defines a covariant field theory for free strings, which yields Virasoro condition

(A), and possesses gauge symmetry (C), on the basis of which we can impose

Virasoro conditions (B) as gauge conditions. In this way, the conformal symmetry

of the classical string carries over, in field theory, into a gauge symmetry which

will produce, at the massless level, electrodynamics and (linearized) gravity.

We shall see that action (11.50) is non-local, but this non-locality can be

absorbed by introducing a set of auxiliary fields.

Electrodynamics

Up to the first v-level, the projector P for the open string is given by

P(1) = 1 − 1
2

L−1 L−1
0 L1.

Indeed, acting on the level-0 and level-1 states of a Verma module we find

P(1)ψ0 = ψ0 P(1)ψ1 = ψ1 − 1
2

L−1 L−1
0 · 2L0ψ0 = 0.

The operator K is given, with the same accuracy, as

K(1) = 2(L0 − 1)P(1) = 2(L0 − 1)− L−1 L1
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and the action takes the form

I(1) = − 1
2

∫
Dx(σ )ψ∗[x(σ )]K(1)ψ[x(σ )]. (11.51a)

Here, the string functional ψ[x(σ )] is assumed to contain the lowest and first

excited levels (n = 0, 1) without any constraints, while higher excitations are

ignored. The action is invariant under the gauge transformation

δψ = −L−1�0. (11.52a)

Since δψ must have the same structure as ψ , we take �0 to contain only the

lowest, n = 0 excitation level, hence L1�0 = L2�0 = · · · = 0. The invariance

can be checked explicitly by showing that P(1)L−1�0 = 0. Expressed in terms

of the component fields in a Fock space, the symmetry transformation (11.52a)

takes the form of the usual Abelian gauge transformation:

δφ = 0 δAµ = −∂µλ. (11.52b)

What is the content of the action I(1) in terms of the component fields? At

the lowest level,

K(1)ψ|0 = (−p2 + m2)φ$(0)

where m2 = −2 (the tachyon). Using the expression

K(1) = −p2 + 2(N − 1)− pµ pνa
µ+
1 aν

1 + · · ·

we find, at the first excited (massless) level, that

K(1)ψ|1 = (−p2 − pµ pνa
µ+
1 aν

1 )(−iAλaλ+
1 )$(0)

= ip2(µν Aµaν+
1 $(0)

where (µν ≡ ηµν − pµ pν/p2. Let us normalize the integration measure by

demanding
∫
Dx(σ )$(0)∗$(0) =

∫
dDx

∏

n≥1

Dxn$
(0)⋆$(0) =

∫
dDx .

Then, at the massless level we find

I(1)|1 = − 1
2

∫
dDx Aµ p2(µν Aν = − 1

4

∫
dDx Fµν Fµν (11.51b)

where Fµν = ∂µAν − ∂ν Aµ.

This is just the action of free electrodynamics, the result that could have

been expected on the basis of the gauge invariance (11.52).

On higher levels, we find gauge-invariant theories of higher spin fields.

These theories are already non-local at the second level, but they can be made

local by introducing auxiliary fields. We shall see how this general phenomenon

arises at the massless level of closed string field theory.
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Gravity

Repeating this procedure for a closed string, we shall discover linearized

gravitational theory.

We begin by considering the meaning of the Virasoro conditions for closed

strings. Closed strings have a doubled spectrum of normal modes, and two sets of

commuting Virasoro generators, Ln and L̃n . String fields in the Fock space have

the form

ψ[x(σ )] = [φ(x)+ tµν(x)a
µ+
1 bν+1 + · · ·]$(0)

where we have used n− ñ = 0, and here $(0) is the ground state for both types of

excitations. The field φ is the tachyon, tµν is the massless field, etc, as seen from

the form ofM2. The Virasoro constraints become:

(L0 − 1)ψ = (L̃0 − 1)ψ = 0 (A′)

Lnψ = L̃nψ = 0 (n ≥ 1). (B′)

At the massless level, conditions (B′) give the usual gauge condition:

∂µtµν = ∂ν tµν = 0. (11.53)

Using similar arguments as before, we find that the covariant action for the

closed string is given by

I = − 1
2
(ψ, Kψ) K ≡ 4[(L0 − 1)+ (L̃0 − 1)]P P̃ (11.54)

where P and P̃ are projectors on the respective level-0 states. This action is

invariant under the gauge transformations:

δψ = −L−n L̃ − L̃−n� (n ≥ 1). (C′)

Let us consider the form of this symmetry at the massless level. Using the

equality 2a
µ

0 = 2b
µ

0 = pµ = i∂µ, and following the procedure for the open

string, we obtain

δtµν = − 1
2
(∂µλ̃ν + ∂νλµ). (11.55a)

Now, the tensor tµν can be decomposed into its symmetric and antisymmetric

parts, tµν = hµν + bµν , with the transformation laws

δhµν = ∂µλ
S
ν + ∂νλ

S
µ λS

µ ≡ − 1
4
(λµ + λ̃µ)

δbµν = ∂µλ
A
ν − ∂νλ

A
ν λA

µ ≡ − 1
4
(λ̃µ − λµ).

(11.55b)

We can identify hµν with the linearized gravitational field, since its transformation

law is just a linearized general coordinate transformation, while the expression

for δbµν represents a natural gauge transformation of the antisymmetric tensor

field.
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The action for the component fields bµν and hµν can be worked out by

evaluating expression (11.54) at the massless level. We first note that, at the level

n = ñ = 1, the following relation holds:

K(11̄)tµνa
µ+
1 bν+1 $(0) = −p2(λµ(ρν tµνa+1λb+1ρ$

(0).

This result is obtained with the help of

Pa
µ+
1 $(0)|1 = (λµa+1λ$

(0) P̃bν+1 $(0)|1 = (ρνb+1ρ$
(0)

4[(L0 − 1)+ (L̃0 − 1)]|11̄ → −p2.

Then, the action for tµν can be written in the form

I(1) = − 1
2
(tστ a+1σb+1τ$

(0), K(11̄)t
µνa+1µb+1ν$

(0))

= 1
2

∫
dDx tλρ p2(λµ(ρν tµν

(11.56)

where we have used the normalization
∫
Dx(σ )$(0)∗$(0) =

∫
dDx .

The part of the action which is quadratic in bµν is found to be

I (b) = 1
6

∫
dDx HµνλHµνλ (11.57)

where Hµνλ ≡ ∂µbνλ + ∂λbµν + ∂νbλµ is the field strength for bµν , which is

invariant under gauge transformation (11.55).

To obtain the part which is quadratic in hµν is slightly more complicated.

We start with

I (h) =
∫

dDx hλρ p2((λµ(ρν +(ρµ(λν)hµν .

Then, we add and subtract a conveniently chosen term:

I (h) =
∫

dDx hλρ p2[((λµ(ρν +(ρµ(λν)− 2(λρ(µν + 2(λρ(µν]hµν .

The first three terms of this expression may be recognized as the Pauli–Fierz

action for a massless field of spin 2:

IPF =
∫

dDx ( 1
2
hµν,σhµν,σ − hµν,σ hµσ,ν + hµσ

,σh,µ − 1
2

h,σh,σ ) (11.58a)

where h = hν
ν . This action coincides with the quadratic term of the Einstein–

Hilbert action,

IEH(h) = − 1

2λ2

∫
dDx

√
−gR (11.58b)
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where R is the scalar curvature of Riemann space with metric gµν = ηµν+2λhµν

(see chapter 8).

Using R = 2λ(∂µ∂νhµν − �h) = 2λp2(µνhµν , the last term in I (h) can

be written as a non-local expression:

INL = − 1

2λ2

∫
dDx R

1

�
R. (11.59a)

This term can be made local by introducing an additional, auxiliary scalar field

ϕ(x). Indeed, the action

IS =
∫

dDx ( 1
2
∂µϕ∂

µϕ − λ−1ϕR) (11.59b)

reduces to INL when ϕ is eliminated with the help of its equation of motion:

�ϕ + λ−1 R = 0.

Thus, the final action we have obtained is given by

I(1) = I (b)+ IEH(h)+ IS(ϕ, h). (11.60)

The closed string action at the massless level contains an antisymmetric

tensor field bµν , a graviton hµν and a scalar field ϕ.

The field ϕ appears indirectly as a device to remove the non-locality in the

action. This is a generic situation at all higher levels of (open and closed) string

field theory. All non-localities can be eliminated by introducing auxiliary fields,

which are also necessary to complete the particle content of the theory.

11.5 General remarks

To complete the present exposition, we shall mention here several additional

topics, which have played important roles in the development of string theory.

The superstring. The bosonic string is not considered to be an entirely

satisfactory theory for at least two reasons: first, it does not contain fermionic

states; and second, there is a tachyon in its spectrum. A tachyon appears as

a consequence of the positivity of the parameter α0, which is related to the

ordering ambiguity in L̂0. It is therefore natural to try to find a supersymmetric

generalization of the model, where we could expect a cancellation of the

contributions of bosons and fermions, leading to α0 = 0. There are two different

ways to introduce supersymmetry into string models.

(a) We can think of the bosonic string as a two-dimensional field theory

describing D scalar fields xµ(ξ) coupled to gravity. The theory is invariant

under two-dimensional reparametrizations, which can be generalized to a local

supersymmetry (Neveu and Schwarz 1971, Ramond 1971). The critical
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dimension is now D = 10, and the parameter α0 takes the value 1
2

(Neveu–

Schwarz) or 0 (Ramond), depending on the boundary conditions. The potential

problem of tachyonic ground state may be avoided by introducing certain

restrictions on the states (Gliozzi et al 1977).

(b) The bosonic string is invariant under global Poincaré symmetry in MD , which

can be enlarged to global supersymmetry. This leads to the second version of the

superstring, which is anomaly free in D = 10 (Green and Schwarz 1982, 1984).

Surprisingly enough, the first formulation of the superstring, after

appropriate restrictions as mentioned earlier, becomes equivalent to the second

one. While the existence of global supersymmetry in MD is not evident at

first glance, two-dimensional local supersymmetry does not appear in an obvious

way in the second formulation. There is no formulation in which both types of

supersymmetry would be obviously present. The form of supersymmetry in four

dimensions depends on the compactification mechanism.

It turned out that the realistic gauge field content in string theory, which is

necessary to describe the electroweak and strong interactions, can be obtained

by combining elements of both bosonic and supersymmetric strings. Such an

approach is known as a heterotic string (the concept ‘heterosis’ denotes ‘increased

vigour displayed by crossbred plants or animals’) (Gross et al 1986)

Covariant quantization. Historically, string theory was first developed in the

non-covariant, light-cone gauge (see, e.g., Scherk 1975, Green et al 1987), in

which only the physical dynamical degrees of freedom are left. This formalism

is manifestly ghost-free, but not manifestly covariant. The conditions of Poincaré

invariance led to the critical dimension (D = 26 or 10), but the gauge symmetries

and the geometric structure of the theory remain unclear.

In the present chapter we have used the gauge-invariant canonical approach

to explore some basic features of the field theory of free bosonic strings. The

method is develop so as to respect Weyl invariance on the world sheet and MD-

covariance, and yields a remarkable correspondence with the usual, point-particle

fields, which are components of the string functional ψ[x(σ )] in the Fock space

of states. The gauge properties of field theory are ‘derived’ from the Virasoro

constraints, which stem from the conformal invariance on the world sheet. A full

understanding of string geometry demands a direct geometric interpretation of the

‘vector’ ψ[x(σ )].
An important stimulus to the development of a geometric understanding of

string theory came from the modern covariant approach—the BRST formalism

(Kato and Ogawa 1983, Hwang 1983, Siegel 1985, Siegel and Zwiebach 1986),

based on the experience with non-Abelian gauge theories. In this approach all

field components, physical and pure gauge degrees of freedom, are treated as

dynamical variables on an equal footing. The unitarity of the theory is ensured by

introducing additional fields, ‘ghosts’, which compensate for the unwanted effects

induced by pure gauge fields.
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Some problems of the covariant quantization of strings are often studied on

the simpler superparticle models.

Interacting strings. String theory is, by its very nature, a theory of quantum

gravity. Its importance stems from our belief that it lay at the foundation of

a consistent quantum theory of all the basic interactions in nature. Here, of

course, we have to include also string interactions. Earlier studies of string field

theories were based on the light-cone gauge formalism (Kaku and Kikkawa 1974,

Cremmer and Gervais 1974, 1975). Although this formulation is completely

acceptable in principle, there are questions for which it cannot give clear answers.

There is a hope that covariant field theory will enable a deeper understanding

of non-perturbative phenomena, which might be of importance in the process of

compactification. In the covariant formulation, the basic principles of the theory

become evident. As usual, the action is constructed starting from symmetry

principles. First, the structure of the free field theory is clarified (Neveu et al

1985, Neveu and West 1985, Banks and Peskin 1986, Siegel and Zwiebach 1986),

and then the interacting theories are constructed (Hata et al 1986, Neveu and West

1986, Witten 1986). The outstanding power of the BRST method is particularly

useful in treating interacting strings (see, e.g., Thorn 1989).

Effective action. The theory of strings embedded in flat space can be

generalized to the case of a curved background space. Our discussion of the

bosonic string in MD shows that conformal symmetry is of essential importance

for the structure of the theory. Even in the flat space MD , there exists a

conformal anomaly, which can spoil the conformal invariance of the quantum

theory; the anomaly is absent only in D = 26 (Polyakov 1981). The problem of

conformal anomaly is expected to become more severe in a curved background

VD . The requirement that quantum string theory maintains its classical conformal

invariance, which can be expressed as the condition that all the β functions vanish,

implies the field equations of the background geometry. In the bosonic theory of

closed strings, these equations are nothing but the classical field equations for the

massless background fields (the graviton, antisymmetric tensor field and dilaton),

including the Einstein equations for gravity (Fradkin and Tseytlin 1985, Callan et

al 1985). These equations can be derived from an effective action as the equations

of motion.

If we now identify the background fields that describe the geometry of VD

with the massless string fields, this result can be interpreted as a derivation of

the effective action for the massless sector of the closed string. We can think

of the background fields as condensates of the string fluctuations. In this way,

conformal symmetry, in the form of a consistency condition, yields the covariant

field equations for the massless sector of the string. Note that these equations are

not the string equations of motion, they are only consistency conditions for the

string dynamics. Thus, the general covariance of the background field equations
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follows directly from the conformal invariance of the string dynamics. It would

be very interesting to interpret the meaning of these results in string field theory.

Anomalies and compactification. Classical field theories may have symme-

tries that are broken by quantum effects known as anomalies. These effects origi-

nate from certain Feynman diagrams, which do not admit a regularization compat-

ible with all classical symmetries. Anomalies in local symmetries, such as internal

gauge symmetries or general covariance, lead to inconsistencies at the quantum

level, which show up as a breakdown of renormalizability and unitarity. Anoma-

lies can be avoided by imposing certain restrictions on gauge couplings, so that

contributions from anomalies in different Feynman diagrams cancel each other.

Studying these requirements for supersymmetric theories in ten dimensions, it

has been found that the cancellation of gauge and gravitational anomalies singles

out superstring theories based on SO(32) and E8 × E8 gauge groups (see, e.g.,

Green et al 1987). The latter possibility has led to phenomenologically promising

heterotic string models.

In any superstring theory we should be able to construct a realistic four-

dimensional spacetime, starting from the space of D = 10 dimensions in which

the superstring ‘lives’. As in KK theory, this problem could be solved by

spontaneous compactification: we should find a ground state which is ‘curled

up’ in six dimensions at a sufficiently small scale, unobservable at currently

available energies, so that the physical spacetime has effectively 10 − 6 = 4

dimensions. The form of the the true ground state seems to be the central problem

of string theory. If we knew the ground state, we might be able to discover

whether superstring theory is a consistent unified field theory of all fundamental

interactions. However, trying to solve this problem (perturbatively) we discover

thousands of possible ground states, without being able to decide which one is

correct. Clearly, until this fundamental problem is solved by non-perturbative

calculations, we will not be able to build a unique and realistic string theory (Kaku

1991).

Membranes. String theory can be further generalized by considering higher-

dimensional extended objects, such as membranes. The problem is

mathematically more complex, since the basic equations are highly nonlinear (see,

e.g., Collins and Tucker 1976, Howe and Tucker 1978, Taylor 1986, Kikkawa and

Yamasaki 1986).

Exercises

1. A relativistic particle is described by the action

I [x, g, R] = −
∫

dτ [Rµ ẋµ − 1
2

g(R2 − m2)].
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(a) Find the form of the action I [x, g], which is obtained from I [x, g, R]
by eliminating R using its equation of motion. Then, in a similar way,

eliminate g from I [x, g] to obtain I [x].
(b) Construct the canonical gauge generators for the action I [x, g, R], and

find its gauge symmetries.

(c) Repeat the same analysis for I [x, g].
2. Find Noether currents corresponding to the global Poincaré invariance of the

classical string. Prove the conservation of the related charges Pµ and Mµν ,

using the equations of motion and the boundary conditions.

3. Calculate the quantity π (σ ) = ∂L/∂x ′, and derive the relations

(π (σ ))2 + ẋ2/(2πα′)2 = 0 π (σ ) · ẋ = 0.

Show that the end points of the open string move at the speed of light, in the

direction orthogonal to the string.

4. A rigid, open string in M4 rotates uniformly in the x1–x2 plane around its

middle point located at the origin.

(a) Show that its motion is described by the equations

x0 = τ x3 = 0

x1 = A(σ − π/2) cosωτ x2 = A(σ − π/2) sinωτ

where 1
2
πωA = 1.

(b) Prove that a light signal travels from one end of the string to the other

for a finite amount of time.

(c) Compute the values of the mass M and angular momentum J of the

string, and derive the relation J = α′M2.

5. Consider a closed string in M4 that is, at time τ = 0, at rest, and has the form

of a circle in the x1–x2 plane:

x1 = R cos 2σ x2 = R sin 2σ x0 = x3 = 0.

(a) Find x0 = x0(τ ) near τ = 0 by solving the equations of motion and the

constraint equations in the conformal gauge.

(b) Calculate the energy of the string.

6. (a) Use the oscillator basis to calculate the Virasoro generators for an open

string, and check the form of the classical Virasoro algebra. Derive the

form of the Poincaré charges in the same basis.

(b) Repeat the calculations for a closed string.

7. Verify the form of the quantum Virasoro algebra using the regularization

L̂n = lim
�→∞

− 1
2

�∑

m=−�

: am · an−m : .
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8. Consider the quantum Virasoro algebra with a central charge:

[L̂n, L̂m ] = (n − m)L̂n+m + C(n)δn,−m .

(a) Show that C(−n) = −C(n).

(b) Prove the relation C(3n)+5C(n)−4C(2n) = 0 using the Jacobi identity

for n = 2m �= 0.

(c) If C(n) is a polynomial in n, then C(n) = c1n + c3n3. Prove it.

(d) Calculate c1 and c3 directly from the values of [L̂n, L̂−n ] in the Fock

space ground state, for n = 1, 2.

9. Show that the physical state conditions are invariant under Lorentz

transformations, i.e. that [M̂µν , L̂n] = 0.

10. The form of the Hamiltonian in the light-cone gauge is obtained

from expression (11.28b) by the replacement ηµν → −δαβ : H =
1
2

∑
r aα

r a
β
−rδαβ , where α, β = 1, 2, . . . , D − 2.

(a) Prove the relation H =: H :−α0, where α0 ≡ − 1
2
(D − 2)

∑
r>0 r .

(b) Evaluate the regularized value of the sum
∑

r>0 r using a zeta function

regularization. Show that D = 26 yields α0 = 1.

11. Show that the constraint L0− L̃0, in the closed string theory, generates global

spatial ‘translations’, σ → σ + a.

12. Show that the implementation of the conditions L̂nψ = 0, n �= 0, is in

conflict with the quantum Virasoro algebra.

13. Consider the physical state ψ = −iε · a+1 $
(k), where εµ(k) is a polarization

vector, and $(k) = exp(−ik · x)$(0) is the Fock vacuum of momentum k.

(a) Show that L1ψ = 0 implies ε · k = 0.

(b) Calculate the norm of the state ψ .

(c) Use (L0 − α0)ψ = 0 to show that the norm of ψ is negative for α0 > 1.

14. Consider the physical state ψ = [a+1 · a+1 + βa0 · a+2 + γ (a0 · a+1 )2]$(k).

(a) Use the Virasoro conditions and α0 = 1 to find the values of k2, β and

γ .

(b) Show that the norm of ψ is negative for D > 26.

15. Derive, in the field theory of the open string,

(a) the gauge conditions (11.47); and

(b) the gauge transformations (11.48).

16. (a) Show that $(k) = exp(−ik · x)$(0) can be taken as the zero-level state

ψ0 of a Verma module, in the open string model. Construct the states at

levels v = 1, 2, and calculate the corresponding eigenvalues of L0.

(b) Evaluate the matrix S
i j

2 = (ψ
(i)
2 , ψ

( j )

2 ), where ψ
(1)
2 = L2

−1ψ0, ψ
(2)
2 =

L−2ψ0. Can the determinant det(S
i j

2 ) vanish for D > 1 and h > 0?

17. Verify, in field theory of the closed string,

(a) the gauge conditions (11.53); and
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(b) the gauge transformations (11.55).

18. Check the form of the action (11.56) for the closed string, and show that it

can be written as in equation (11.60).



Appendix A

Local internal symmetries

We discuss here certain properties of theories with local internal non-Abelian

symmetries, which will be of particular interest in the process of generalization to

local spacetime symmetries (Utiyama 1956, Kibble 1961, Abers and Lee 1973).

Localization of internal symmetries. Let us consider a multicomponent matter

field φ(x) = {φm(x)}, transforming according to some representation of a Lie

group of internal symmetries G. An infinitesimal transformation has the form

φ′(x) = φ(x)+ δ0φ(x)

δ0φ(x) = θaTaφ(x) ≡ θφ(x) (a = 1, 2, . . . , n)
(A.1)

where the θa are constant infinitesimal parameters, the Ta are the group genera-

tors satisfying the commutation relations

[Ta, Tb] = fab
cTc (A.2a)

and the structure constants fab
c satisfy the Jacobi identity:

fae
m fbc

e + cyclic (a, b, c) = 0. (A.2b)

Since the θa are constant parameters, ∂µφ transforms like the field itself,

δ0∂µφ(x) = ∂µδ0φ(x) = θ∂µφ(x)

because δ0 and ∂µ commute.

The action integral IM =
∫

d4x LM(φ, ∂µφ) is invariant under the previous

transformations if LM satisfies the condition

δ0LM ≡ LM(φ′(x), ∂µφ′(x))− LM(φ(x), ∂µφ(x)) = 0

which implies n identities:

∂LM

∂φ
Taφ + ∂LM

∂∂µφ
Ta∂µφ = 0. (A.3)

373
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These identities, with the help of the equations of motion,

∂LM

∂φ
− ∂µ

∂LM

∂∂µφ
= 0

lead to the conservation of the canonical current:

∂µ Jµ
a = 0 Jµ

a ≡ − ∂LM

∂∂µφ
Taφ. (A.4)

Let us now consider these transformations with the constant parameters

replaced by arbitrary functions of position, θa = θa(x); they are called local

or gauge transformations. The Lagrangian is no longer invariant because the

transformation law of ∂µφ is modified:

δ0∂µφ = θ∂µφ + θ,µφ.

Indeed, a direct calculation yields

δ0LM = ∂LM

∂∂µφ
θ,µφ = −θa

,µJµ
a .

Covariant derivative. The invariance under local transformations can be

restored by certain modifications to the original theory. Let us introduce a new

Lagrangian

L
′
M = LM(φ,∇µφ) (A.5)

where ∇µφ is the covariant derivative, which transforms under local

transformations in the same way as ∂µφ does under the global ones:

δ0∇µφ = θ∇µφ. (A.6)

It is now easy to see, with the help of (A.3), that the new Lagrangian is invariant

under local transformations:

δ0L
′
M = ∂̄LM

∂φ
θφ + ∂LM

∂∇µφ
θ∇µφ = 0

where ∂̄LM/∂φ = [∂LM(φ,∇u)/∂φ]u=φ . The covariant derivative is constructed

by introducing the compensating fields (gauge potentials) Aµ,

∇µφ = (∂µ + Aµ)φ Aµ ≡ Ta Aa
µ (A.7)

for which the transformation law follows from (A.6):

δ0 Aa
µ = (−∂µθ − [Aµ, θ ])a = −∂µθ

a − fbc
a Ab

µθ
c. (A.8)

It is instructive to observe that the form of the covariant derivative ∇φ is

determined by the transformation rule of φ:

∇µφ = ∂µφ + δ0φ|θ→Aµ .
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Field strength. The commutator of two covariant derivatives has the form

[∇µ,∇ν]φ = Fa
µνTaφ ≡ Fµνφ

where Fµν is the field strength,

Fa
µν = ∂µAa

ν − ∂ν Aa
µ + fbc

a Ab
µAc

ν

= (∂µAν − ∂ν Aµ + [Aµ, Aν])a
(A.9)

transforming as

δ0 Fa
µν = fbc

aθb Fc
µν = [θ, Fµν]a.

Therefore, we define the related covariant derivative as

∇λFa
µν = ∂λFa

µν + fbc
a Ab

λFc
µν ≡ (∂λFµν + [Aλ, Fµν])a .

The Jacobi identity for the commutator of covariant derivatives implies the

Bianchi identity for Fµν :

∇λFa
µν + ∇ν Fa

λµ +∇µFa
νλ = 0 ⇐⇒ ∇µ

∗Faµν = 0

where ∗Fµν = 1
2
ǫµνλρ Fλρ is the dual tensor of Fµν .

Invariant Lagrangian. The matter Lagrangian is made invariant under local

transformations by introducing gauge potentials. The next step is to construct

a free Lagrangian LF(A, ∂A) for the new fields, which should also be locally

invariant:

δ0LF = ∂LF

∂Aa
µ

δ0 Aa
µ + ∂LF

∂Aa
µ,ν

δ0 Aa
µ,ν = 0

Demanding that the coefficients of θb, θb
,µ and θb

,µν vanish, we obtain the

following identities:

∂LF

∂Aa
µ

fbc
a Ac

µ + ∂LF

∂Aa
µ,ν

fbc
a Ac

µ,ν = 0 (A.10a)

∂LF

∂Ab
µ

+ ∂LF

∂Aa
µ,ν

fbc
a Ac

ν = 0 (A.10b)

∂LF

∂Ab
µ,ν

+ ∂LF

∂Ab
ν,µ

= 0. (A.10c)

The last identity implies that ∂µAν occurs in LF only in the antisymmetric

combination ∂µAν − ∂ν Aµ. The condition (A.10b) means that the exact form of

that combination is given as the field strength Fµν . From the same condition we

can conclude that the only dependence on Aµ is through Fµν . The first identity

means that LF is an invariant function of Fµν . Indeed, after the elimination of
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∂LF/∂Aµ by using (A.10b) and the Jacobi identity (A.2b), the relation (A.10a)

implies
∂LF

∂Fa
µν

fcb
a Fb

µν =
∂LF

∂Fa
µν

δ0 Fa
µν = 0.

If we require the equations of motion not to contain derivatives higher than

second order ones, LF must the quadratic invariant:

LF = − 1

4g2
gab Fa

µν Fbµν (A.11)

where g is an interaction constant, and gab is the Cartan metric of the Lie algebra

of G, as we shall see soon. The factor g−2 can be easily eliminated by rescaling

the gauge potentials, Aa
µ → g Aa

µ, but then g reappears in the covariant

derivative.

Conservation laws. The equations of motion for matter fields φ can be written

in the covariant form:
∂̄LM

∂φ
−∇µ

∂LM

∂∇µφ
= 0. (A.12)

Here, the covariant derivative of Kµ ≡ ∂LM/∂∇µφ is defined in accordance with

the transformation rule δ0Kµ = −Kµθ , contragradient with respect to φ. Using

the equations of motion, the invariance condition yields the ‘conservation law’ of

the covariant current J
′µ
a :

∇µ J
′µ
a ≡ ∂µ J

′µ
a + fab

c Ab
µ J

′µ
c = 0

J ′µ
a ≡ − ∂LM

∂∇µφ
Taφ = − ∂L′

M

∂Aa
µ

.

(A.13)

Of course, this condition is not a true conservation law, for which the usual four-

divergence should vanish. The covariant current transforms according to the rule

δ0 J ′µ
a = fab

cθb J ′µ
c

which is used to define its covariant derivative.

The complete Lagrangian of the theory L = LF + L′
M yields the following

equations of motion for Aµ:

∇µFa
µν = J ′ν

a . (A.14)

Here, Fa ≡ gab Fb, and we use g = 1 for simplicity. If we write this equation in

the form

∂µFa
µν = J ′ν

a + jνa jνa ≡ − fab
c Ab

µFc
µν

we obtain, using the antisymmetry of Fµν , the true conservation law:

∂ν(J ′ν
a + jνa ) = 0.

Since jνa is not a covariant quantity, the true conservation law is obtained at the

expense of losing the covariance of the conserved quantity.
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Construction of the invariant Lagrangian. Now we shall show how we can

construct the quadratic invariant from the field strength Fa . First, let us mention

two useful facts from the theory of Lie groups. First, from the Jacobi identity for

the generators Ta ,

[Ta, [Tb, Tc]] + cyclic(a, b, c) = 0

we obtain relation (A.2b), which is also called the Jacobi identity. Second, there

exists a representation of the Lie algebra, called the adjoint representation, which

is completely determined by the structure constants: (T ′
a)

b
c = fac

b. This is easily

seen from the relation

[T ′
a, T ′

b]cd = fab
e(Te)

c
d

that follows from (A.2b). If we write the transformation law for Fa in the form

δ0 Fa = θb(T ′
b)

a
c Fc = (θ ′F)a (A.15a)

we can see that the field strength Fa transforms cogradiently to φ, i.e. according

to the same rule as φ. From two quantities Ga and Fa (spacetime indices are,

for simplicity, omitted) we can construct the bilinear invariant Ga Fa , if Ga

transforms contragradiently with respect to φ, i.e. as

δ0Ga = −(Gθ ′)a . (A.15b)

Following the standard terminology, we call Fa a contravariant vector, and Ga a

covariant vector. In order to construct an invariant quadratic in Fa , we choose

Ga = Fa Fa ≡ gab Fb

where gab is the Cartan metric on the Lie algebra of G:

gab = − 1
2

Tr(T ′
aT ′

b) = − 1
2

fae
c fbc

e. (A.16)

With this choice of metric, Fa transforms covariantly. Indeed, if we start with

δ0 Fa = gabδ0 Fb = gab fcd
bθ c Fd

and use the fact that fcda ≡ fcd
bgba is totally antisymmetric, we easily obtain

δ0 Fa = −θ c fcad Fd = −θ c fca
d Fd .

If we consider fab
c as a third rank tensor with its type determined by the

position of its indices, then fab
c is a constant and invariant tensor:

δ0 fab
c = ( fed

c fab
d − feb

d fad
c − fea

d fdb
c)θ e = 0

as follows from the Jacobi identity. The same is true for gab.

If the group G is semisimple, i.e. it does not contain a non-trivial, invariant,

Abelian subgroup, then det(gab) �= 0. In that case, the inverse metric gab exists

and we can construct the standard tensor algebra.
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A semisimple group G is compact if and only if the Cartan metric tensor

is positive (negative) definite. In that case, by a suitable choice of basis we can

transform the metric gab to the form of a unit tensor, gab = δab, and the structure

constants fab
c become completely antisymmetric.

Example 1. Let us consider two examples of the construction of the Cartan

metric tensor. For the rotation group SO(3), the structure constants are

completely antisymmetric, fab
c = −ǫabc, so that

gab = − 1
2
ǫaef ǫb f e = δab gab Fa Fb = δab Fa Fb.

Our second example is the Lorentz group SO(1, 3), with structure constants as

defined in (2.6). The Cartan metric tensor has the form

gi j,kl = − 1
8

fi j,rm
sn fkl,sn

rm = 2(ηikη j l − ηilη j k)

and the quadratic invariant becomes gi j,kl F i j Fkl = 4F i j Fi j .

Exercises

1. (a) Derive gauge transformations for Aµ and Fµν .

(b) Prove the Bianchi identity: ∇µ
∗Fµν = 0.

2. (a) Find the transformation law for Kµ = ∂LM/∂∇µφ and define ∇ν Kµ.

(b) Show that the equations of motion for matter fields φ, derived from the

Lagrangian L′
M, have the G-covariant form (A.12).

3. (a) Find the transformation law for the covariant current J
′µ
a , and define

∇ν J
′µ
a .

(b) Use the equations of motion for matter fields to prove the ‘conservation

law’ ∇µ J
′µ
a = 0.

4. Show that fabc = fab
egce is a totally antisymmetric quantity.

5. Show that the Lagrangian LF in (A.11) is invariant under local G-

transformations.

6. Let a Lie group G contain a non-trivial, invariant, Abelian subgroup. Show

that the Cartan metric tensor is singular.



Appendix B

Differentiable manifolds

In order to make the geometric content of local spacetime symmetries clearer, we

shall give here a short overview of the mathematical structure of differentiable

manifolds (Misner et al 1970, Choquet-Bruhat et al 1977).

Topological spaces. One of the basic concepts of mathematical analysis is the

limiting process, which is based on the existence of distance on the real line.

Many important results are based only on the existence and properties of the

distance. By generalizing the notion of real line as a set on which there exists

a distance, we arrive at the concept of metric spaces. Metric spaces are a natural

generalization of Euclidean spaces. It follows from the study of metric spaces that

the essence of the limiting process lies in the existence of neighbourhoods or open

sets. A further generalization of metric spaces leads to topological spaces, where

open sets are introduced directly; here we have a natural structure for studying

continuity.

Let X be a set, and τ = {Oα} a collection of subsets of X . A collection τ

defines a topology on X if τ contains:

the empty set ∅ and the set X itself;

arbitrary union ∪αOα (finite or infinite) of elements in τ ; and

finite intersection ∩n
α=1 Oα of elements in τ .

The pair (X, τ ), often abbreviated to X , is called the topological space. The sets

Oα in τ are open sets of the topological space, while their complements X\Oα

are closed.

We can introduce different topologies on one and the same set X and

thereby define different topological spaces. The topology may be characterized

by defining a basis, i.e. a collection B of open subsets, such that every open subset

of X can be expressed as a union of elements of B . A basis for the usual topology

on the real line R consists of all open intervals (a, b).

A collection {Uα} of open subsets of X is an open covering if ∪Uα = X . We

can define the induced topology on a subset Y of X by demanding that open sets

in Y are of the form Y ∩ Oα , where Oα are open in X .

379
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The neighbourhood (open) of a point P in X is every open set OP containing

P . The notion of a neighbourhood is here based on the existence of open sets

(not on the existence of distance as our experience with metric spaces might

have suggested). Open sets enable a natural definition of continuous mappings

(a mapping f : X → Y is continuous if the inverse image of an open set in Y is

open in X), and homeomorphisms.

A mapping f : X → Y from a topological space X to a topological space Y

is called a homeomorphism if

f is a 1–1 correspondence (1–1 and onto); and

both f and f −1 are continuous.

Homeomorphic spaces have identical topological properties.

Although topological spaces are the natural generalization of metric spaces,

their structure is, often, too general. In order to single out those topological

spaces that are more interesting from the point of view of specific mathematical

or physical applications, we usually introduce some additional conditions on their

structure, such as connectedness, axioms of separation, etc. Here are several

examples:

– a topological space is connected if it is not a union of two disjoint (non-

empty) open sets;

– a topological space is Hausdorff if any two disjoint points possess disjoint

neighbourhoods;

– a topological space is compact if every open covering has a finite

subcovering (a subset which is itself a covering).

Without trying to clarify the nature of these additional conditions, we shall

assume that they are always fulfilled to an extent which is sufficient for all our

considerations.

Differentiable manifolds. If we think of topological spaces as the natural

structure for studying continuity, differentiable manifolds are the natural structure

for studying differentiability.

A topological manifold X is a (Hausdorff) topological space, such that every

point has a neighbourhood homeomorphic to an open set inRn . The number n is

the dimension of a manifold. Thus, manifolds are ‘locally Euclidean’ topological

spaces. Using this property, we can introduce local coordinate systems (or charts)

on X . Let {Oi } be a covering of X , and ϕi homeomorphisms, mapping Oi onto

open sets !i in Rn, ϕi : Oi → !i . Then, the image of a point P in Oi is

ϕi (P) = (x1
i , x2

i , . . . , xn
i ), and x

µ
i are local coordinates of P .

For a given family ϕ = {ϕi } of homeomorphisms, at each intersection

Oi j = Oi ∩ O j there are two local coordinate systems, (x
µ

i ) and (x
µ

j ), and we

may question their compatibility. A collection of all local coordinate systems

(Oi , ϕi ) defines a coordinate system (or atlas) on X , if the transition functions



Differentiable manifolds 381

ϕi j = ϕ j ◦ϕ−1
i : (xµ

i ) → (x
µ
j ) are smooth functions (= of class Cm), for each pair

(Oi , O j ). This consideration is made mathematically complete by considering

not only one coordinate system, related to a given family ϕ of homeomorphisms,

but the set of all equivalent coordinate systems (two coordinate systems of class

Cm are equivalent if their local coordinate systems are Cm compatible). Then,

a differentiable manifold (or a smooth manifold) is defined as a topological

manifold together with the set of all equivalent coordinate systems.

After introducing local coordinates, we can define differentiable mappings

of manifolds. Consider a mapping f : X → Y , and denote by x
µ

0 and y
µ

0 the

local coordinates of the points P ∈ X and f (P) ∈ Y , respectively. Then, f is

differentiable at P if it is differentiable in coordinates, i.e. if local coordinates y

are differentiable functions of local coordinates x at x = x0. In a similar manner

we can define smooth mappings (of class Cr , r ≤ m). These definitions do not

depend on the choice of local coordinates. The differentiability is used to extend

the notion of homeomorphisms to diffeomorphisms.

A mapping f : X → Y from a differentiable manifold X to a differentiable

manifold Y is a diffeomorphism if

f is a 1–1 correspondence; and

both f and f −1 are smooth (of class Cr , r ≤ m).

Diffeomorphic manifolds have identical differential properties. Diffeomorphisms

are for differentiable manifolds the same as homeomorphisms are for topological

spaces.

Tangent vectors. Consider a smooth curve C(λ) on a differentiable manifold

X , defined by a smooth mapping C : R → X . A tangent vector to C(λ) at the

point P = C(0) is defined by the expression

v = lim
λ→0

C(λ)− C(0)

λ
= dC(λ)

dλ

∣∣∣∣
λ=0

. (B.1)

In the case of a two-dimensional surface embedded in E3, tangent vectors,

according to this definition, can be visualized as vectors lying in the tangent

plane at C(0). But an ‘infinitesimal displacement’, C(λ) − C(0), is not a well-

defined geometric object within the manifold itself. If we imagine that the

manifold of interest is embedded in a higher dimensional flat space, the geometric

interpretation becomes completely clear, but the definition here relies on a specific

way of embedding.

In order to define tangent vectors in terms of the internal structure of the

manifold, we should abandon the idea of the ‘displacement’ of a point, and

consider only changes in objects that always stay within the manifold; such

objects are differentiable functions f : X → R. In the expression for a change

in f , d f/dλ, the part that does not depend on f is the operation d/dλ, so that the
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tangent vector on C(λ) at P = C(0) is defined as the differential operator

v = d

dλ
(B.2a)

calculated at λ = 0. This operator maps differentiable functions to R according

to

v( f ) = d

dλ
( f ◦ C)

∣∣∣∣
C(0)

. (B.2b)

The set of all directional derivatives (B.2) at P has the structure of a vector space

(with respect to the usual addition and multiplication by scalars),

(av1 + bv2)( f ) = av1( f )+ bv2( f )

and is called the tangent space TP of the manifold X at P . Differential operators

v ∈ TP are linear and satisfy the Leibniz rule (these two properties can be taken

as the defining properties of tangent vectors).

Although the notion of ‘infinitesimal displacement’ is now given a precise

mathematical meaning, it may not be quite clear in which sense the differential

operators (B.2) and the tangent vectors (B.1) are the same objects. The answer lies

in the observation that these two vector spaces are isomorphic (an isomorphism

between vector spaces is a 1–1 correspondence that ‘preserves’ the vector space

operations). For instance, any linear combination of vectors (B.1) maps into the

same linear combination of directional derivatives (B.2) and vice versa:

u = av1 + bv2 ⇐⇒ u( f ) = av1( f )+ bv2( f ).

Thus, directional derivatives represent an abstract realization of the usual notion

of tangent vectors. Such a unification of the concepts of analysis and geometry

has many far-reaching consequences.

Consider a coordinate line xµ in Rn , and the curve ϕ−1
i : xµ → X . The

tangent vector to this curve at a point P is

eµ( f ) = ∂

∂xµ
( f ◦ ϕ−1

i )

∣∣∣∣
xµ(P)

(B.3a)

Vectors (e1, e2, . . . , en) are linearly independent, so that every vector v in TP can

be expressed as

v( f ) = vµeµ( f ) (B.3b)

where, by convention, the repeated index denotes a summation. It follows that

dim(TP) = n. The set of vectors eµ forms a basis (frame) in TP which is called the

coordinate (or natural) basis, and vµ are components of v in this basis. The usual

notation for eµ is ∂/∂xµ. A transformation from one coordinate basis to another

has the form

e′µ = ∂xν

∂x ′µ
eν (B.4a)
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while, at the same time, the components of v transform by the inverse law:

v′µ = ∂x ′µ

∂xν
vν . (B.4b)

This equation is known as the vector transformation law, and it can be used to

define tangent vectors in terms of the local coordinates. Vectors v = (vµ) are

often called contravariant vectors.

A vector field VX on X is a mapping that associates a tangent vector vP with

each point P ∈ X . Although the existing structure of a differentiable manifold

does not allow the tangent vectors to be compared at different points, there is a

natural way to define the smoothness of the vector field when we move from one

point to another. Consider a mapping from X to R, defined by P %→ vP( f ),

where f is a smooth real function on X . Then, a vector field VX is smooth if the

mapping vP( f ) is a smooth function on X . In terms of the coordinates, a vector

field is smooth if its components vµ(x) are smooth functions.

Dual vectors. Following the usual ideas of linear algebra, we can associate

a dual vector space T ∗
P with each tangent space TP of X . Consider linear

mappings from TP to R, defined by w∗ : v %→ w∗(v) ∈ R. If a set of

these mappings is equipped with the usual operations of addition and scalar

multiplication, we obtain the dual vector space T ∗
P . Vectors w∗ in T ∗

P are called

dual vectors, covariant vectors (covectors) or differential forms. There is no

natural isomorphism between a tangent space and its dual. However, for a given

basis eb in TP, we can construct its dual basis θa in T ∗
P by demanding θa(v) = va ,

so that

θa(eb) = δa
b .

This implies, in particular, that dim(T ∗
P ) = dim(TP). The correspondence

θa ↔ ea is an isomorphism, but it does not relate geometric objects—it depends

on the choice of the basis ea. The spaces TP and T ∗
P cannot be identified in a

natural (geometric) way without introducing some additional structure on X .

The space T ∗∗
P is isomorphic to TP. This follows from the fact that, with

each u∗∗ in T ∗∗
P we can associate a vector u in TP, such that u∗∗(w∗) = w∗(u),

for every w∗ ∈ T ∗
P

.

Let θµ be the basis dual to the coordinate basis eν. Each form w∗ ∈ T ∗
P can

be represented as

w∗ = w∗
µθµ. (B.5a)

A change of coordinates induces the following change in θµ and w∗
µ:

θ ′µ = ∂x ′µ

∂xν
θν w∗′

µ = ∂xν

∂x ′µ
w∗
ν . (B.5b)

Using the standard convention we shall omit the sign ∗ for dual vectors, and label

dual vectors by subscripts, and vectors by superscripts.
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A dual vector field V ∗
X on X is defined by analogy with VX .

Note that ‘being dual’ is a symmetrical relation. Indeed, just as a dual vector

is a mapping from TP to R, v %→ w∗(v) ∈ R, so a tangent vector is a mapping

from T ∗
P toR, w∗ %→ v(w∗) ∈ R, where v(w∗) = w∗(v).

Tensors. The concept of a dual vector, as a linear mapping from TP to R, can

be naturally extended to the concept of tensor, as a multilinear mapping. We shall

begin our consideration by some simple examples.

A tensor product TP(0, 2) = T ∗
P ⊗ T ∗

P of two dual spaces at P is the vector

space of all bilinear forms ω, mapping TP×TP toR by the rule (u, v) %→ ω(u, v).

The tensor product TP(0, 2) should be clearly distinguished from the Cartesian

product T ∗
P × T ∗

P , defined as a set of pairs (u∗, v∗). A particularly simple,

‘factorized’ tensor product is determined by mappings (u, v) %→ u∗(u) · v∗(v).
Let θa be a basis in T ∗

P , and define θa ⊗ θb by θa ⊗ θb(u, v) = uavb. Then

θa ⊗ θb is a basis in TP(0, 2):

ω = ωab θa ⊗ θb ⇒ ω(u, v) = ωabuavb.

In particular, if ωab = u∗av
∗
b , the tensor product space is ‘factorized’.

A tensor of type (0, 2) is an element of TP(0, 2); it is a bilinear mapping ω

which maps a pair of vectors (u, v) into a real number ω(u, v). Similarly, a tensor

α of type (1, 1) maps a pair (v,w∗) into a real number α(v,w∗).
After these examples it is not difficult to define a general tensor t of type

(p, q). The space of tensors of a given type is a vector space. The components of

a tensor t in the coordinate basis transform as the product of p vectors and q dual

vectors. We can introduce in the usual way a multiplication between tensors and

the operation of contraction.

By associating with each point P ∈ X a tensor tP, we obtain a tensor field

on X .

An important tensor that can be introduced on a differentiable manifold is the

metric tensor. Intuitively, the metric serves to define the squared distance between

any two neighbouring points. Since the displacement between two neighbouring

points represents a tangent vector, the metric can be thought of as a rule for

defining the squared length of a tangent vector. More precisely, the metric tensor

g is a symmetrical, non-degenerate tensor field of type (0, 2), that maps a pair of

vectors (u, v) into a real number g(u, v). The link between this abstract definition

and the ‘squared distance’ point of view is easily exhibited. Let the tangent vector

ξ = dxµ eµ represent the displacement vector between two neighbouring points.

Since in the coordinate basis g = gµν θµ ⊗ θν , the abstract definition gives

g(ξ , ξ ) = gµνθ
µ ⊗ θν(ξ , ξ ) = gµν dxµ dxν = ds2 (B.6)

in agreement with the intuitive viewpoint.

For any given vector u, the quantity u∗ = g(u, ·) belongs to T ∗
P

, since it

maps v to a number u∗(v) ≡ g(u, v). Thus, with the help of the metric we



Differentiable manifolds 385

can define a natural isomorphism u %→ u∗ between TP and T ∗
P

. In terms of

the components, and after omitting the star symbol, this correspondence takes

the form uµ = gµνuν . With a metric tensor defined on a manifold, there are

automatically dual vectors there.

The metric tensor supplies manifolds with a geometric structure that is of

fundamental importance in physical applications.

Differential forms. Totally antisymmetric tensor fields of type (0, p) are

particularly important in the study of differentiable manifolds; such objects are

called (differential) p-forms, or forms of degree p.

A 1-form α is a dual vector, α = αaθa . A 2-form β in the basis θa ⊗ θb can

be written as

β = βab θa ∧ θb θa ∧ θb ≡ θa ⊗ θb − θb ⊗ θa

where ∧ denotes the exterior product (wedge product), an antisymmetrized tensor

product. In a similar way we can represent an arbitrary p-form ω.

The exterior product of two forms, ω1 ∧ω2, is associative, but in general not

commutative.

In the space of smooth p-forms we can introduce the exterior derivative as a

differential operator which maps a p-form α into a (p+ 1)-form dα. It is defined

by the following properties:

d is linear;

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ;

d2 = 0;

if f is a 0-form (real function), d f is the ordinary differential of f .

A good feel for how this operator acts can be obtained by using local

coordinates. A 1-form d f is defined by the relation d f (u) = u( f ), which in

local coordinates reads as d f (u) = uµ∂µ f . If f (x) = xµ (a projection), then

dxµ(u) = uµ implies θµ = dxµ. Therefore, d f = dxµ ∂µ f , i.e. d f is the

differential of f .

The exterior derivative acts on a 1-form α = αν dxν according to

dα = dαν ∧ dxν = ∂µαν dxµ ∧ dxν.

In a similar way we can represent the action of d on an arbitrary form ω. In

local coordinates, the property d2 = 0 follows from the fact that ordinary partial

derivatives commute.

For an arbitrary basis ea in TP, we can define the commutation coefficients

(structure functions) ca
bc by

[eb, ec] = ca
bc ea. (B.7a)
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In the coordinate basis ca
bc = 0. It is interesting to note that the coefficients ca

bc

determine some properties of the dual basis θa . Since dθa is a 2-form, it can be

expressed in the basis θa ∧ θb, with the result

dθa = − 1
2

ca
bcθ

b ∧ θ c. (B.7b)

Components of dθa , up to a factor, coincide with ca
bc.

Parallel transport. Parallel transport is an extremely important concept not

only in differential geometry, but also in theoretical physics (non-Abelian gauge

theories, theory of gravity, etc).

In Euclidean spaces, the parallel transport of a vector v from P to P ′ is the

vector at P ′, the components of which with respect to the basis ea(P ′) are the

same as the components of the original vector with respect to ea(P), where the

basis at P ′ is the parallel transported basis ea(P). Thus, the parallel transport of

a vector is defined by the parallel transport of the basis.

In differentiable manifolds, the idea of parallel transport is applied to tangent

vectors. Consider a smooth vector field v(P) on X , which in local basis has the

form v(P) = va(x)ea(x). Trying to compare tangent vectors at two neighbouring

points P(x) and P ′(x + dx), we find the following two contributions:

(a) the components va(x) are changed into va(x + dx); and

(b) the basis ea(x) is changed by the parallel transport rule.

Since the change in va(x) is easily calculable, the total change is determined by

parallel transport of the basis. The idea of total change is realized by introducing

the concept of a covariant derivative.

A covariant derivative of a vector on a smooth manifold X is a mapping

v %→ ∇v of a smooth vector field into a differentiable tensor field of the type

(1, 1), which satisfies the following conditions:

linearity: ∇(u + v) = ∇u + ∇v; and

the Leibniz rule: ∇( f v) = d f ⊗ v + f ∇v, f is a real function.

The coefficients of linear connection Ŵa
bc are defined by the change of basis,

∇eb = Ŵa
bcθ

c ⊗ ea (B.8)

so that

∇v = ∇(va ea) = dva ⊗ ea + va∇ea

= (∂bv
a + Ŵa

cbv
c) θb ⊗ ea ≡ ∇bv

a θb ⊗ ea.

In terms of the connection 1-form ωa
c = Ŵa

cbθ
b we obtain

∇v = (dva + ωa
bv

b)⊗ ea. (B.9a)
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The fact that ∇v is a tensor can be used to find the transformation rules of the

connection coefficients.

Demanding that the covariant derivative of a real function w∗(v) be a

gradient, the covariant derivative of a 1-form w∗ must be

∇w∗ = (dwb − ωa
bwa)⊗ θb. (B.9b)

The covariant derivative is extended to tensors of arbitrary type by requiring the

following properties:

∇ f = d f , if f is a real function;

linearity: ∇(t + s) = ∇ t +∇s;

Leibniz rule: ∇(t ⊗ s) = ∇ t ⊗ s + t ⊗∇s; and

commutativity with contraction.

The concept of parallel transport (covariant derivative) is independent of the

existence of the metric.

The covariant derivative of v in the direction of u is a mapping v %→ ∇uv of

a vector field into a vector field, defined by

∇uv = (∇v)(u, θa)ea = ub∇bv
a ea.

In particular, ∇bea = Ŵc
abec. A vector v is said to be parallel along a curve C(λ)

if ∇uv = 0, where u is the tangent vector on C(λ). A curve C(λ) is an affine

geodesic (autoparallel) if its tangent vector is parallel to itself, ∇u u = 0.

Introducing spinors on a manifold is a more complex problem than

introducing tensors. Just as tensors are defined by the transformation law

under general coordinate transformations, so we can define (world) spinors

by considering nonlinear representations of the group of general coordinate

transformations. Spinors introduced in this way are infinite dimensional objects

(Ne’eman and Šijački 1985, 1987). Finite spinors can be defined in a much

simpler way. Consider a collection of all frames EP = {ea} in the tangent space TP.

Each frame can be obtained from some fixed frame by a suitable transformation

of the type GL(n, R). If we introduce the Lorentz metric in TP, we can restrict

ourselves to orthonormal frames, so that the related symmetry group becomes

SO(1, n − 1). Since, now, each tangent space has a Minkowskian structure,

we can introduce finite spinors in the standard manner. Spinors can be parallel

transported if we define the parallel transport of orthonormal frames, which leads

to the concept of spin connection.

Torsion and curvature. The torsion and curvature operators are defined by

T (u, v) = ∇uv −∇vu − [u, v]
R(u, v) = ∇u∇v −∇v∇u −∇[u,v].

(B.10)
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Their components with respect to an arbitrary frame are

T (ea, eb) = (Ŵc
ba − Ŵc

ab − cc
ab)ec ≡ T c

abec

R(ea, eb)ec = [∂aŴ
e

cb + Ŵe
daŴ

d
cb − ∂bŴ

e
ca + Ŵe

dbŴ
d

ca − cd
abŴ

e
cd ]ee

≡ Re
cabee.

Due to the antisymmetry of T a
bc and Ra

bcd in the last two indices, it is

possible to define the torsion and curvature 2-forms:

T a ≡ 1
2

T a
bcθ

b ∧ θ c Ra
b ≡ 1

2
Ra

bcdθ c ∧ θd . (B.11)

These forms obey the Cartan structure equations:

(first) T a = dθa + ωa
b ∧ θb

(second) Ra
b = dωa

b + ωa
c ∧ ωc

b.

Application of the exterior derivative to the analysis of torsion and curvature

requires a minor extension of this concept. Let us define an extended exterior

derivative d̄, which acts on a form as d , and on a vector as

d̄v = ∇v ∇ = the covariant derivative. (B.12)

Consider, now, a vector valued 1-form w = θaea(≡ θa ⊗ ea). The action of

d̄ on w yields the torsion:

d̄w = dθaea − θa∇ea = (dθa + ωa
b ∧ θb)ea ≡ T aea. (B.13a)

Similarly, the action of d̄ on the relation d̄ea ≡ ∇ea = ωc
a ec produces the

curvature form:

d̄2ea = dωc
a ec − ωc

a∇ec = (dωb
a + ωb

c ∧ ωc
a)eb = Rb

aeb. (B.13b)

Note that d̄2 �= 0. The advantage of using d̄ lies in the fact that many terms in the

calculation of torsion and curvature automatically cancel.

Differentiation of the Cartan structure equations gives the following Bianchi

identities:

(first) dT a + ωa
b ∧ T b = R

a
b ∧ θb

(second) dRa
b + ωa

c ∧Rc
b − ωc

b ∧Ra
c = 0.

We stress again that the metric and the connection are completely

independent geometric objects. Imposing certain conditions on these objects leads

to special types of differentiable manifolds. Thus, the condition ∇ g = 0 defines

the Riemann–Cartan space, while the additional requirement T a = 0 yields the

Riemann space (alternatively,Ra
b = 0 leads to T4).
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Exercises

1. Show that the following properties define topological, but not Hausdorff

spaces:

(a) X = {x, y}, and the open sets are ∅, X, and {x};
(b) X = [0, 1], and the open sets are the empty set, and all sets obtained by

removing at most a countable number of points from [0, 1].
2. Show that a circle S1 = {(x, y)|x2 + y2 = 1} is a differentiable manifold.

3. Find the components of the tangent vector to curve C(λ) in the coordinate

basis.

4. Let v be the tangent vector at the point P ∈ X to a curve C(λ), and f a

differentiable mapping X → Y . A derivative of f is a linear map f ′ of

tangent spaces TP → T f (P), given as v %→ u : u(h) = v(h ◦ f ), where

h : Y → R is a differentiable function. Show that u is the tangent vector to

the curve f (C(λ)), and find its components in the coordinate basis.

5. Consider a three-dimensional Euclidean space with spherical local

coordinates r, θ, φ. Define the orthonormal basis of tangent vectors

{er , eθ , eφ}, and find the related basis of dual vectors.

6. Prove the relation (B.7b) by using θa = ea
νdxν, or otherwise. Then, use

d2θa = 0 to derive the Jacobi identity if ca
bc are constants.

7. Find the component of the torsion and curvature operators in an arbitrary

basis.

8. In a Riemann space calculate the antisymmetric part of the connection

coefficients Ŵa
bc in an arbitrary basis.

9. Consider the upper half-plane as a Riemann space with the (Poincaré) metric:

ds2 = dx2 + dy2

y2
y > 0.

(a) Find an orthonormal basis of 1-forms θa and calculate the connection

1-form ωa
a .

(b) Calculate the curvature 2-formRa
b, and find the scalar curvature R.

(c) Calculate R in the coordinate basis, in terms of Christoffel symbols.

10. Write the Bianchi identities in the coordinate basis.



Appendix C

De Sitter gauge theory

Although PGT leads to a satisfactory classical theory of gravity, the analogy

with gauge theories of internal symmetries is not perfect, because of the specific

treatment of translations. It is possible, however, to formulate gauge theory of

gravity in a way that treats the whole Poincaré group in a more unified way.

The approach is based on the de Sitter group and the Lorentz and translation

parts are distinguished through the mechanism of spontaneous symmetry breaking

(Townsend 1977, Mac Dowell and Mansouri 1977, Stelle and West 1980, Kibble

and Stelle 1986).

The de Sitter group has the interesting property that in a special limit, when

the parameter a of the group tends to infinity, it reduces to the Poincaré group.

The parameter a represents the radius of the mathematical de Sitter space. Since

for large a the structures of two groups are very ‘close’ to each other, we are

motivated to study the de Sitter group as an alternative for the description of the

spacetime.

The de Sitter theory of gravity can be formulated by analogy with PGT: the

spacetime is assumed to have the de Sitter structure, matter fields are described

by an action which is invariant under the global de Sitter symmetry and gravity

is introduced as a gauge field in the process of localization of this symmetry.

Observationally, a would appear to be of the order of the radius of the universe,

so that the Poincaré symmetry is a good symmetry at all but cosmological scales.

There is, however, another, more interesting possibility:

(a) the spacetime continues to have a Minkowskian structure; and

(b) at each point of the spacetime we have the de Sitter group acting on the

matter fields as the internal gauge symmetry group.

In this approach there is an interesting connection to PGT and the parameter a

might be very small—of the order of the Planck length.

The de Sitter group and its contraction. In order to study the structure of

the de Sitter group, we consider a flat, five-dimensional space M5 with metric

390
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ηab = (+,−,−,−,+) (a, b = 0, 1, 2, 3, 5),

ds2 = (dy0)2−(dy1)2−(dy2)2−(dy3)2+(dy5)2 ≡ ηi j dyi dy j +(dy5)2. (C.1)

A hypersphere H4 of ‘radius’ a embedded in M5,

ηi j yi y j + (y5)2 = a2 (C.2)

is the maximally symmetric subspace of M5 (the de Sitter space). On H4, the

quantity (dy5)2 takes the form (dy5)2 = (ηi j yi dy j )2/(y5)2, so that the interval

becomes

ds2 = ηi j dyi dy j + (ηi j yi dy j )2

a2 − ηmn ym yn
. (C.3)

This expression defines the metric on H4 in coordinates yi (i = 0, 1, 2, 3).

The curvature of any maximally symmetric space is the same at each point.

In the vicinity of yi = 0, the metric and the (Riemannian) connection of H4 have

the form

gi j = ηi j +
yi y j

a2
Ŵi

j k =
1

a2
yiη j k

so that

(Ri j kl )0 =
1

a2
(ηikη j l − ηilη j k).

Therefore, the H4 space has curvature R = 12/a2.

Instead of yi , we can introduce the pseudo-spherical coordinates (t, ρ, θ, ϕ)

which cover the whole space and lead to the metric

ds2 = cosh2 ρ dt2 − dρ2 − sinh2 ρ(dθ2 + sin2 θ dϕ2).

In the conformal coordinates x i ,

yi = $(x2)x i $(x2) ≡ (1 + x2/4a2)−1

where x2 = ηi j x i x j , the metric takes the form

ds2 = $2ηi j dx i dx j .

The isometry group of the hypersphere H4, SO(2, 3), is called the de

Sitter group†. Infinitesimal de Sitter transformations of coordinates are pseudo-

rotations in M5:

δya = ωa
b yb ωab = −ωba. (C.4)

The generators in the space of scalar fields have the form

Mab = ya∂b − yb∂a

† In the literature, SO(2, 3) is usually called the anti de Sitter group, while the de Sitter group is

SO(1, 4); we omit that distinction here.
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and satisfy the Lie algebra:

[Mab, Mcd ] = ηbc Mad − ηac Mbd − ηbd Mac + ηad Mbc. (C.5)

In the general case of arbitrary fields, the generators contain an additional ‘spin’

part (Gürsey 1964).

Conformal coordinates lead to a very simple form of the metric, but from the

point of view of symmetries, the following implicitly defined coordinates ui are

more interesting:

yi = a
ui

u
sin(u/a) y5 = a cos(u/a) (C.6)

where u = (u2)1/2 and u2 = ηi j ui u j . De Sitter transformations of ya in M5

induce complicated, nonlinear transformations of ui in H4. The infinitesimal form

of these transformations can be found by observing that

δui = ω̄i
j u

j + εi u ω̄i j = −ω̄ j i (C.7)

implies

δωyi = ω̄i
j y j δωy5 = 0

δεyi = 1

u
(εi u j − ε j u

i )y j + u · ε
ua

ui y5 δε y5 = −u · ε
ua

ui yi .

Therefore, δωui and δεui realize de Sitter transformations with parameters [ωi j =
ω̄i j , ωi5 = 0] and [ωi j = (εi u j −ε j ui )/u, ωi5 = ui (u ·ε)/ua], respectively. The

quantities

Mi j (u) = ui∂ j − u j∂i Mi5(u) = u∂i

are de Sitter generators in the coordinates ui , that satisfy (C.5).

If we now introduce

Pi =
1

a
Mi5

the de Sitter algebra takes the form

[Mmn , Mlr ] = ηnl Mmr − ηml Mnr − ηnr Mml + ηmr Mnl

[Mmn , Pl ] = ηnl Pm − ηml Pn

[Pm , Pn] = − 1

a2
Mmn .

(C.8)

In the limit a → ∞ this algebra is transformed into the Poincaré form, by the

process called contraction (Inönü 1964).

If we identify the spacetime with the de Sitter space H4, it is clear that the

parameter a must be large in order for the deviation from Poincaré symmetry to

be sufficiently small. Instead of that, we shall consider the alternative possibility

in which the spacetime retains the basic structure of M4.
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Localization of de Sitter symmetry. We assume that the spacetime has the

structure of Minkowski space M4, and ‘attach’ at each point of M4 a ‘tangent’

space Fx (a fibre), representing a copy of the de Sitter space H4. The de Sitter

group SO(2, 3) acts on the matter fields in Fx as a group of internal symmetries.

We also assume that the initial theory of matter fields is invariant under

global SO(2, 3) transformations. The symmetry is localized by introducing the

covariant derivative ∇µφ = (∂µ+ 1
2

Aab
µ�ab)φ, the transformation law of which

defines the transformation properties of the gauge fields:

δ0 Aab
µ = −∇µω

ab − ξλ,µAab
λ − ξλ∂λAab

µ. (C.9)

Here, ξ i ≡ δui = ωi
j u

j + εi u as in (C.7), and ξλ = δλl ξ
l . The commutator of

the covariant derivatives determines the field strength:

Fab
µν = ∂µAab

ν − ∂ν Aab
µ + Aa

cµAcb
ν − Aa

cν Acb
µ. (C.10)

Internal indices (a, b, . . .) and spacetime indices (µ, ν, . . .) are at this level

completely unrelated, as there is no quantity analogous to the tetrad that could

connect them.

Introducing the notation

Pi =
1

a
Mi5 λi = aωi5 B i

µ = a Ai5
µ (C.11)

equations (C.9) and (C.10) become

δ0 Ai j
µ = δP

0 Ai j
µ − 1

a2
(λi B j

µ − λ j B i
µ)

δ0 B i
µ = δP

0 B i
µ − λs Ais

µ − λi
,µ

(C.12)

F i j
µν = Ri j

µν −
1

a2
(B i

µB j
ν − B i

ν B j
µ)

F i5
µν =

1

a
T i

µν =
1

a
(∇µB i

ν −∇ν B i
µ).

(C.13)

Here, δP
0 denotes the Poincaré transformation, ∇µB i

ν = ∂µB i
ν + Ai

sµBs
ν , and

Ri j
µν , T i

µν are the curvature and torsion of PGT, respectively. The form of the

algebra (C.8) suggests the identification of B i
µ with the tetrad field:

B i
µ = bi

µ ? (C.14)

However, the transformation law of B i
µ shows that such an identification is

correct only if λi = aωi5 = 0, i.e. when the de Sitter symmetry is broken.

In constructing an SO(2, 3) invariant action we may use, in addition to the

field strength F , the completely antisymmetric tensor εabcde, the tensor density

εµνλρ and the metrics ηab and ηµν . With these ingredients we cannot construct an
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action linear in F . The only quadratic action is
∫

d4x εµνλρFab
µν Fabλρ , but it is

trivial as a topological invariant. The action
∫

d4x
√

ggµλgνρ Fab
µν Fabλρ , where

gµν is defined by (C.5), is not a polynomial and, moreover, condition (C.5) breaks

the de Sitter symmetry.

A simpler solution can be found by using the mechanism of spontaneous

symmetry breaking. Let us choose the Lagrangian

L = f

a
εµνλρ Fab

µν Fcd
λρεabcdeφ

e − λ(φeφe − a2) (C.15)

where f is a dimensional constant, φe is an auxiliary field, and λ is a multiplier,

imposing the constraint φeφe = a2 as the equation of motion. Now, we can

choose the solution

φe = (0, 0, 0, 0, a) (C.16)

so that the effective Lagrangian becomes

L = f εµνλρ F i j
µν Fkl

λρεi j kl5. (C.17)

The solution (C.16) corresponds to spontaneous breaking of the local de Sitter

symmetry down to the Lorentz subgroup SO(1, 3), whereupon the identification

(C.14) becomes correct.

Now, we shall find the connection of this theory with PGT. After using (C.13)

and (C.14) the Lagrangian takes the form

f −1
L = L2 −

4

a2
εµνλρ Ri j

µνbk
λbl

ρεi j kl +
4

a4
εµνλρbi

µb j
νbk

λbl
ρεi j kl

where εi j kl ≡ εi j kl5. The termL2 is quadratic in Ri j
µν , and represents the Gauss–

Bonnet topological invariant. It gives no contribution to the equations of motion

and can be discarded, at least classically. Using the identity εµνλρεi j kl b
k
λbl

ρ =
−2b(hi

µh j
ν − h j

µhi
ν), we finally obtain

L = 16 f

a2
b(R +�) (C.18)

where � = 6/a2. Thus, the Lagrangian (C.17), quadratic in F , leads to the

Einstein–Cartan theory with a cosmological constant.

We should observe that a2/ f is proportional to the gravitational constant G,

so that dim( f ) = energy × time. If we identify f with the Planck constant ~,

the de Sitter theory of gravity leads to a natural introduction of the dimensional

constant a, which has the value of the Planck length (10−33 cm). This scale

(together with ~) sets the scale for the gravitational constant G and the small-

scale structure of spacetime is determined by the de Sitter group.

This interpretation leads to a large cosmological constant, which is

unacceptable in classical theory. The suggestion that this term might be cancelled

by quantum corrections currently remains only a hope. Certainly, we can assume
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that a is very large, since in the limit a → ∞ the cosmological constant vanishes,

and the only term that survives is bR. However, in this case the small-scale

structure of the spacetime remains untouched.

Although some aspects of de Sitter gauge theory are not satisfying, this

approach yields an inspired insight into the structure of gravity.

Exercises

1. Derive the following relations for Riemann space with the metric (C.3):

Ŵi
j k =

1

a2
yi g j k Ri j kl =

1

a2
(gik g j l − gil g j k).

2. Show that the conformal coordinates of the de Sitter space satisfy the

following relations:

x i = 2yi

1 + y5/a

x2

4a2
= 1 − y5/a

1 + y5/a
y5 = (2$− 1)a.

3. Show that the contraction of the Lorentz group defines the Galilei group, i.e.

the group containing Galilean transformations to a moving reference frame,

and spatial rotations.

4. Show that the action
∫

d4x εµνλρ Fab
µν Fabλρ can be written in the form of a

surface term
∫

d4x ∂µKµ.

5. Show that the action
∫

d4x εµνλρεi j kl Ri j
µν Rkl

λρ is proportional to the

Gauss–Bonnet topological invariant, and verify that its variation vanishes

identically.

6. Express the non-polynomial action
∫

d4x
√−ggµλgνρ Fab

µν Fabλρ in terms

of the curvature and the torsion, using (C.14) to identify the tetrad field.
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The scalar–tensor theory

Various attempts to modify certain properties of GR led to alternative

formulations of gravitational theory, in which new principles appear together

with new dynamical variables. Starting from the conviction that Mach’s ideas

about inertia have found only a limited expression in GR, Brans and Dicke

(BD) proposed an alternative theory of gravity in which the metric tensor is

accompanied by a scalar field as a new dynamical variable (Brans and Dicke

1961).

The Brans–Dicke theory. According to Mach’s ideas, inertial forces that are

observed in an accelerated reference frame can be interpreted as a gravitational

field, with its origin in distant matter of the universe, accelerated relative to

that frame. In GR, the influence of matter in defining local inertial frames

is sometimes negligible compared to the influence of the boundary conditions.

Consider a space containing nothing but a single observer in his/her laboratory,

which is of standard size and mass. If we use GR and the boundary conditions

according to which the space is asymptotically Minkowskian, the effect of

the laboratory on the metric is minor and can be calculated in the weak

field approximation. The laboratory is practically an inertial reference frame.

However, if the observer fires a bullet through an open window tangentially to the

wall, the laboratory is set into the state of rotation, which can be registered with

the help of the gyroscope. After some time, the bullet, which is almost massless

and at great distance from the laboratory, becomes dominant in determining the

local inertial frame (orientation of the gyroscope). This situation in GR is much

closer to a description of an absolute space in the sense of Newton than a physical

space as interpreted by Mach. According to Mach, the influence of the massive,

nearby laboratory should be dominant.

The influence of all masses in the universe on the local gravitational field

can be simply described by introducing a scalar field φ. If φ obeys the

Poisson equation, its average value can be estimated by calculating the central

gravitational potential of a homogeneous sphere, with a radius which is equal to

396
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the dimension of the visible universe, R ∼ 1028 cm, and which contains mass M

distributed with the cosmological density ρ ∼ M/R3 ∼ 10−29 g cm−3. In this

way, we obtain

〈φ〉 ∼ ρR2 ∼ 1027 g cm−1.

Recalling the value of the gravitational constant, G = 0.68 × 10−28 g−1 cm (in

units c = 1), we find an interesting relation:

〈φ〉 ∼ 1

G
. (D.1)

It connects the average value of φ, representing the influence of the cosmological

mass distribution, with the gravitational constant, which defines the locally

observed gravitational field.

According to Mach’s interpretation of inertia, the local gravitational field

(which defines the local inertial reference frame or local standard of inertia)

should depend on the distribution of all masses in the universe. If the influence

of these masses is realized through a scalar field φ, then Mach’s idea means that

the gravitational ‘constant’ is a function of φ. Relation (D.1) suggests that a true

Machian theory of gravity can be obtained from GR by replacing 1/G → φ, and

adding the usual kinetic term for φ:

IBD =
∫

d4x
√
−g[−φR + (ω/φ)gµν∂µφ∂νφ + 16πLM]. (D.2)

Here, φ plays a role analogous to that of G−1, and ω is a dimensionless constant.

This constant has to be positive in order for the energy of the scalar field to be

positive. The matter Lagrangian LM does not depend on φ and has the same form

as in GR, therefore the equations of motion of matter also have the same form as

in GR. The gravitational field in (D.2) is described in part by geometry (metric)

and in part by a scalar field.

It is interesting to observe that this theory satisfies the ‘medium-strong’

principle of equivalence: it predicts, like GR, that the laws of motion of matter

fields (or particles) in every local inertial frame are the same as in SR; in

particular, all dimensionless constants are the same at every point of spacetime.

On the other hand, since the gravitational ‘constant’ varies from point to point,

the gravitational effects (e.g. the ratio of electromagnetic and gravitational force

between two electrons) also vary from point to point. Thus, the ‘very strong’ form

of the principle of equivalence is not compatible with BD theory.

The equations of motion are obtained from (D.2) in the usual way. Using the

definition of the energy–momentum tensor for the scalar field,

1
2

Bµν = (∇µ∇ν − gµν�)φ + (ω/φ)[∂µφ∂νφ − 1
2

gµν(∂λφ∂
λφ)] (D.3)

we find the following equations of motion for gµν and φ:

φGµν = 8πTµν + 1
2

Bµν (D.4a)

− 2(ω/φ)�φ + (ω/φ2)∂λφ∂
λφ − R = 0. (D.4b)



398 The scalar–tensor theory

The first equation is an analogue of Einstein’s field equation but with a

variable gravitational coupling φ−1 and the source of gravity is the energy–

momentum tensor of matter and scalar field. When Tµν dominates Bµν , this

equations differs from Einstein’s only by the presence of a variable gravitational

‘constant’. The covariant divergence of this equation has the form

∇µTµν = 0

which is the same as in GR (it implies, in particular, that point particles move

along geodesic lines). The second equation can be transformed in such a way that

the source of the field φ is given by the trace of the matter energy–momentum,

in agreement with Mach’s principle. Indeed, the contraction of equation (D.4a),

−φR = 8πT − 3�φ − (ω/φ)∂λφ∂
λφ, combined with (D.4b), leads to

(2ω + 3)�φ = 8πT . (D.5)

The observational consequences of the theory can be found by solving

equations (D.4a) and (D.5). The results obtained here differ from those in GR,

and can be used to test the validity of the theory, and find the allowed values of ω.

For large ω, equation (D.5) has a solution

φ = 1

G
+O(1/ω).

Using this solution in equation (D.4a) we obtain

Gµν = 8πGTµν +O(1/ω).

Thus, in the limit of large ω, the theory carries over to GR.

In order to set the lower limit on ω it is useful to calculate the perihelion

precession, which leads to the following result:

3ω + 4

3ω + 6
× (the value of GR).

Since the value computed from GR agrees with observations with an accuracy of

8%, this equation implies (3ω + 4)/(3ω + 6) & 0.92, i.e.

ω & 6.

A detailed comparison of the predictions of BD theory with observations can be

found in standard textbooks (see, e.g., Weinberg 1972).

Connection with Weyl theory. It is interesting to clarify the connection

between BD theory and Weyl theory in Riemannian space V4. The scalar field

φ in (D.2) has weight w = −2. It is convenient to define a new scalar field,

ϕ2 = φ, having weight w = −1. Then the action (D.2) takes the form

IBD =
∫

d4x
√
−g (−ϕ2 R + 4ωgµν∂µϕ∂νϕ + 16πLM). (D.6)
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In the absence of matter, the action is invariant under local rescalings

gµν → e2λgµν ϕ → e−λϕ

provided the parameter ω has the value

ω = − 3
2

(D.7)

as follows from equation (4.46). However, for negative ω the energy of the scalar

field becomes negative. Weyl invariance fixes the relative sign of the first two

terms, while their overall sign can be fixed by demanding that the energy of the

scalar field be positive. This leads to the following modified action as a model for

gravitation:

I =
∫

d4x
√
−g(ϕ2 R + 6gµν∂µϕ∂νϕ + 16πLM). (D.8)

(Alternatively, the condition of the positive gravitational energy would change the

sign of the first two terms.)

The equations of motion following from (D.8) include the matter field

equations together with

(�− 1
6

R)ϕ = 0

ϕ2Gµν + 6θµν + 8πTµν = 0
(D.9)

where θµν is the improved energy–momentum tensor of the field ϕ:

θµν = ∂µϕ∂νϕ − gµν
1
2
(∂ϕ)2 − 1

6
(∇µ∇ν − gµν�)ϕ

2.

Taking the trace of the second equation we find

6ϕ(�− 1
6

R)ϕ + 8πT = 0

whereupon the first equation implies that the trace of the matter energy–

momentum has to vanish. This means that only scale invariant matter can be

present in (D.8) (which is not the case with BD theory, where the matter field

may be massive).

To allow for the presence of massive matter, Deser (1970) suggested

explicitly breaking the scale invariance by adding a mass term for the scalar field.

Then, instead of having the vanishing trace of the matter energy–momentum, we

get a consistent relation

12m2ϕ2 + 8πT = 0.

Another possibility is to withhold scale invariance from the complete theory,

retreating thereby from BD’s original idea. The algebraic dependence of the

equations of motion for gµν and ϕ is a consequence of Weyl invariance. In

this case, the scalar field is not a true dynamical variable and can be entirely



400 The scalar–tensor theory

removed from the theory. To show this, consider action (D.8) without the matter

component. Applying rescaling transformation with parameter λ = ln ϕ, the field

ϕ goes over into ϕ̄ = e−λϕ = 1, so that the complete theory reduces to GR in the

space with metric ḡµν = ϕ2gµν ,

∫
d4x

√
−g(ϕ2 R + 6gµν∂µϕ∂νϕ) =

∫
d4x

√
−ḡR(ḡ).

Thus, the scalar field completely disappears as an independent degree of freedom.

The presence of Weyl invariant matter does not change this conclusion (Anderson

1970). Of course, when the Lagrangian LM is not Weyl invariant the situation

changes and the equivalence with GR is lost.

If the scalar field is not determined dynamically, as in Weyl invariant

theories, we could consider the possibility of fixing its value by experimental

conditions. There have been attempts to formulate a theoretical interpretation

of the hypothesis of large numbers by making a distinction between the

‘cosmological’ and ‘atomic’ scales (Canuto et al 1976).

We see that the role of the scalar field in the modified BD theory with

ω = − 3
2

is essentially different from that in the original BD theory.

Discussion. If we want to investigate matter fields with non-vanishing spin, it

is natural to generalize BD theory (D.2) to the case of Riemann–Cartan space U4

(Kim 1986). An interesting conclusion from this model is that the torsion may be

generated even by spinless matter—the source of the torsion is the gradient of the

scalar field.

The basic characteristics of the theory can be clearly seen by studying the

following simple action:

I = −
∫

d4x
√
−gφR w(φ) = −2. (D.10)

The torsion here is also given in terms of ∂φ. It is interesting to note that after

eliminating the torsion from the action with the help of the equations of motion,

the resulting effective action is Weyl invariant and equivalent to GR with metric

ḡµν = φgµν . Weyl invariance is a consequence of the existence of some hidden

symmetry in the original theory (German 1985).

Action (D.10) in Weyl space W4 does not give anything new: using the

equations of motion we can express the Weyl vector ϕµ in terms of the gradient of

the scalar field, whereupon the elimination of ϕµ from the action leads to a theory

which is, again, equivalent to GR (Smalley 1986).

Trying to establish a theoretical foundation for the hypothesis of large

numbers, Dirac (1973) studied action (D.8) in Weyl space W4. This action is

invariant under Weyl rescalings. We can show that in this case the scalar field is

also non-dynamical, i.e. decoupled from other dynamical variables (Pietenpol et

al 1974).
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Exercises

1. Using the equations of motion of BD theory, show that the energy–

momentum of matter obeys the relation ∇µTµν = 0.

2. Find the trace of the energy–momentum of matter in a theory obtained from

(D.8) by adding a mass term for the scalar field.

3. Find the change in the GR action under Weyl rescaling gµν → φgµν .

Rewrite the result in terms of ϕ, where φ = ϕ2.

4. Find an expression for the torsion using the equations of motion of the theory

(D.10) in the U4 space.

5. Calculate Weyl vector using the equations of motion of the theory (D.10) in

the W4 space.



Appendix E

Ashtekar’s formulation of GR

The discord between quantum theory and gravitation is one of the greatest

mysteries of modern physics. The perturbative methods of quantum field theory

have been very successful in studying non-gravitational phenomena, but not

very adequate for quantum GR. It seems, therefore, useful to try to develop

a non-perturbative understanding of this theory. The Hamiltonian method is

one of the standard approaches of this type. However, it usually leads to great

difficulties in GR, where the connection is expressed in terms of the metric and

the constraints are complicated, non-polynomial functions of metric (geometro-

dynamics). In Ashtekar’s formalism, the connection remains one of the basic

dynamical variables (connexo-dynamics) and the constraints become simpler by

passing to a new set of complex variables (Ashtekar 1988, 1991). The main

achievement of this approach is that the constraints now become polynomial

functions of canonical variables.

As a gauge theory, gravity is naturally formulated in terms of tetrads and

the connection. Ashtekar’s formulation of GR can be understood as a canonical

transform of Einstein–Cartan theory without matter, which is equivalent to

GR, in the region of complex variables (Kamimura and Fukuyama 1990). In

order to show this, we shall first clarify the Hamiltonian structure of a suitable

reformulation of the EC theory.

Tetrad formulation of GR. EC theory without matter is defined by the Hilbert–

Palatini (HP) action (5.47). As we mentioned in chapter 5, there exists a

canonically equivalent formulation defined by

I ′HP = a

∫
d4x 1

2
ε
µνλρ
mnkl [−∂µ(b

k
λbl

ρ)Amn
ν + bk

λbl
ρ Am

sµAsn
ν] (E.1)

where the ∂A terms are eliminated by adding a suitable four-divergence to the

original EC action. In this approach, we can simply eliminate the connection

A and the related momenta by using constraints and obtain the so-called tetrad

formulation of GR.

402
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In addition to the sure primary constraints, πi
0 ≈ 0 and πi j

0 ≈ 0, action

(E.1) also yields the following additional primary constraints:

φi
α ≡ πi

α + aε
0αβγ
i jmn b j

β Amn
γ ≈ 0

φi j
α ≡ πi j

α ≈ 0.
(E.2)

Comparing these relations with (5.48), we see that this theory can be obtained

from the HP formulation by the following canonical transformation:

πi
α → πi

α + aε
0αβγ
i jmn b j

β Amn
γ

πi j
α → πi j

α + aε
0αβγ
i jmn bm

βbn
γ

while bi
µ and Ai j

µ remain unchanged.

Since the Lagrangian is linear in velocities ḃi
µ, the canonical Hamiltonian

is given asHc = −L(ḃ = 0). Explicit calculation leads to

Hc = bi
0Hi − 1

2
Ai j

0Hi j + ∂αDα (E.3a)

where

Hi = − 1
2
aε

0αβγ
i jmn b j

α Rmn
βγ Hi j = −aε

0αβγ
i jmn bm

αT n
βγ

Dα = −aε
0αβγ
i jmn bm

βbn
0 Ai j

γ .
(E.3b)

Note that the expressions for Hi and Hi j are the same as in the HP formulation.

This is not a surprise, since they are invariant under the canonical transformations.

Going over to the total Hamiltonian,

HT = Hc + ui
0πi

0 + 1
2

ui j
0πi j

0 + ui
αφi

α + 1
2

ui j
απi j

α

we obtain the consistency conditions of the sure primary constraints:

Hi ≈ 0 Hi j ≈ 0. (E.4a)

Although the constraints φi
α and φi j

α are different from the related HP

expressions, their consistency conditions remain of the same form:

χi
α ≡ 1

2
aε

α0βγ
i jmn (b j

0 Rmn
βγ − 2b j

β Rmn
0γ ) ≈ 0

χi j
α ≡ −aε

α0βγ
i jmn (bm

0T n
βγ − 2bm

β T n
0γ ) ≈ 0

(E.4b)

where the underbars in R and T have the same meaning as in chapter 5, and will

be omitted in further exposition for simplicity.

Combining the conditions (−Hi , χi
α) and (Hi j , χi j

α) we obtain the

relations

hk
µRk

i − 1
2
hi

µR ≈ 0 T k
µν ≈ 0
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which can be recognized as the Einstein equations for a gravitational field without

matter. Out of 16 + 24 of these equations, we have 4 + 12 secondary constraints

(Hi ≈ 0 and T k
αβ ≈ 0), while the remaining 12+ 12 equations are used to fix 30

multipliers ui j
α and uk

α (χi
α ≈ 0 and T k

0α ≈ 0).

The consistency of the secondary constraints produces no new constraints.

Indeed, the consistency condition for Hi is automatically fulfilled, while the

consistency of T k
αβ ≈ 0 yields additional equations for the determination of

ui j
α .

Among 40 primary constraints, we find 10 first class constraints (πi
0, πi j

0)

and 30 second class (φi
α, πi j

α) ones; out of 16 secondary constraints, 10 of them

are first class (Hi ,Hi j ), and the remaining six are second class (they are unified

withHi j into T k
αβ ≈ 0).

In order to study the elimination of the connection variables, we impose

the time gauge condition: b0
α ≈ 0. Then, H0a effectively becomes second

class. We shall now show that the 21 field variables (b0
α, Ai j

α) and the

corresponding momenta can be eliminated from the 42 second-class constraints

(φi
α, πi j

α, T a
αβ , b0

α).

In the time gauge, the constraints φi
α are simplified:

φ0
α ≈ π0

α + aε
αβγ

ebc be
β Abc

γ

φa
α ≈ πa

α − 2aε
αβγ

abc bb
β Ac0

γ

where εαβγ ≡ ε0αβγ , εabc ≡ ε0abc. Using 24 constraints b0
α ≈ 0, φ0

α ≈ 0,

T a
αβ ≈ 0 and πab

α ≈ 0, we can easily eliminate (b0
α, Aab

α) and the related

momenta:

b0
α ≈ 0 π0

α ≈ −aε
αβγ

ebc be
β Abc

γ

Aab
α ≈ �ab

α πab
α ≈ 0.

In order to solve the constraints φa
α for Ac0

γ , it is useful to introduce the

canonical transformation (ba
α, A0b

β ) → (Ea
α, Pb

β), defined by

Ea
α ≡ − 1

2
ε
αβγ

abc bb
βbc

γ πa
α ≡ −ε

αβγ

abc bb
β Pc

γ . (E.5)

In terms of the new variables, the constraint φa
α has the simple form Pc

γ +
2a Ac0

γ ≈ 0, so that the remaining 18 equations φa
α ≈ 0 and πa0

α ≈ 0 can be

used to eliminate (A0a
α, π0a

α):

A0a
α ≈ 1

2a
Pa

α π0a
α ≈ 0.

In the time gauge, the variable A0b
0 is also fixed. Indeed, the consistency of

the time gauge implies ḃ0
α = u0

α ≈ 0, where u0
α is determined by the relation

T 0
0α ≈ 0. This leads to the additional relations

A0
c0bc

α ≈ ∂αb0
0 +

1

2a
Pcαbc

0 πb0
0 ≈ 0



Ashtekar’s formulation of GR 405

which do not influence the form of the FC constraints, since Hi and Hab are

independent of A0a
0 (H0b is effectively second class).

After imposing the time gauge, the FC constraints Hi and Hab become

simpler:

Ma ≡ − 1
2
εabcH

bc = aεαβγ T 0
αβbaγ

−(1/a)H0 = ε
αβγ

abc ba
α(∂β Abc

γ + Ab
eβ Aec

γ + Ab
0β A0c

γ )

Ha = 2aε
αβγ

abc bb
α(∂β Ac0

γ + Ac
dβ Ad0

γ ).

(E.6)

They are polynomial in the basic canonical variables, up to the multiplicative

factor J−1. This property is spoiled after the connection is eliminated with

the help of the second-class constraints. After eliminating Aab
α and A0b

α , the

constraintsHab andHa take the form

Ma = −εabc Pb
αEcα

Ha = J−1[Ea
γ Eb

β (∂β Pb
γ − ∂γ Pb

β)+ Paβ Eb
β∂αEbα].

(E.7a)

Turning now to H0, we note that its first term can be written in the form

2∂β(J−1 Eb
β∂αEbα) + 2∂β(Eb

βhc
γ )�bc

γ . Half of the second part of this

expression is cancelled with the term �b
eβ�

ec
γ , so that

−(1/a)H0 = 2∂β(J−1 Eb
β∂αEbα)+ 1

4a2
εabc(J−1 Eb

β Ea
γ )(εce f Pe

β P f
γ )

+ ∂β(J−1 Eb
β Ec

γ )�bc
γ . (E.7b)

Constraints Ma and JHa remain polynomial on the reduced set of new

canonical variables. Unfortunately, this is not the case with H0, the reason being

not only the presence of the last term, but also the appearance of the factor J−1. In

further analysis, we shall see how the transition to complex variables transforms

the FC constraints into the polynomial form, thereby simplifying some aspects of

the canonical structure of the theory.

Ashtekar’s formalism. The complex canonical formalism can be simply

introduced by adding an imaginary total divergence to the Lagrangian in (E.1).

Although the action is complex, it correctly describes the equations of motion of

the real theory. The canonical variables also become complex; however, their

structure is not arbitrary, but precisely determined by the form of the imaginary

total divergence. This implies the existence of certain relations between canonical

variables and their complex conjugates, called the reality conditions, which play

an important role in the new formalism.

Ashtekar’s formulation can be obtained starting from the following complex

action:

IA = I ′HP − a

∫
d4x iεµνλρ∂µ(b

k
ν∂λbkρ ). (E.8)



406 Ashtekar’s formulation of GR

The imaginary four-divergence implies the appearance of complex momenta, as

can be seen from the form of primary constraints:

φi
α ≡ πi

α + aε
0αβγ
i jmn b j

β Amn
γ + 2iaε0αβγ ∂βbiγ ≈ 0

πi j
α ≈ 0.

(E.9a)

Since the imaginary part of the action is linear in the velocities, the canonical

Hamiltonian remains essentially of the form (E.3): the only effect is the

replacement Dα → Dα + iaεανλρ(bk
ν∂λbkρ ). The imaginary part of the

constraints, which depends only on the fields (and not on the momenta), does

not change earlier considerations of the consistency, so that, again, we obtain

relations (E.4a, b). These results can be understood by observing that the

canonical transformation acts only on the momenta, so that all expressions that

are independent of the momenta remain unchanged. Of course, the same results

can also be obtained by direct calculation. Therefore, the only important change,

compared to the real formulation, is the change in the form of the primary

constraints (E.9a).

As before, we shall now impose the time gauge for simplicity, whereupon

the primary constraints take the form

φ0
α ≈ π0

α + aε
αβγ

ebc be
β Abc

γ

φa
α ≈ πa

α − 2aε
αβγ

abc bb
β Ac0

γ + 2iaε0αβγ ∂βbaγ .
(E.9b)

Let us now introduce the concept of self-dual connection. Omitting the

spacetime index, we first define the dual of Ai j by ∗Ai j = 1
2
εi jmn Amn , so

that ∗∗Ai j = −Ai j . Each Lorentz connection can be decomposed according to

Ai j = 1
2
(A

i j
+ +Ai j

−), where

A
i j
± = Ai j ∓ i∗Ai j (E.10a)

are the complex self-dual (+) and anti self-dual (−) parts of Ai j , ∗Ai j
± = ±iA

i j
±.

These parts are orthogonal in the sense that (A+B−)i j ≡ Aim
+ B−m

j = 0, and,

as a consequence, [A,B]i j = [A+,B+]i j + [A−,B−]i j . The complexified

Lorentz algebra can be decomposed into self-dual and anti self-dual subalgebra:

so(1, 3,C) = so(3)⊕ so(3). In further exposition we shall use only the self-dual

connection, omitting its index + for simplicity.

In the time gauge, the complex self-dual connection has the form

A
a0

α = Aa0
α + 1

2
iεabc�bcα (E.10b)

and the constraints φa
α can be expressed as

φa
α = πa

α − 2aε
αβγ

abc bb
βA

c0
γ .
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Of course, this is not just a coincidence: the imaginary part of the action has been

chosen so that φa
α contains the whole complex self-dual connection.

After we apply the canonical transformation (E.5), the constraint φa
α

acquires the simple form Pa
α + 2aAa0

α ≈ 0, which can be solved for A0a
α:

A0a
α = 1

2a
Pa

α +
i

2
εaef �e f α .

Now, we shall find the form of the remaining FC constraints (E.6) in terms

of the new variables. Look, first, at Ma . Using the previous expression for A0a
α

and the definition of T 0
αβ , we obtain

(1/2a)Ma = i∇αEa
α ∇αEa

α ≡ ∂αEa
α + i

2a
εabc Pb

αEcα . (E.11a)

After eliminating the connection, the first term on the right-hand side of

−(1/a)H0 takes the form 2∂β(J−1 Eb
β∂αEbα)+2∂β(Eb

βhc
γ )�bc

γ . Combining

the first part of this expression with terms linear and quadratic in Pc
γ that stem

from Ab
0β A0c

γ ,

ε
αβγ

abc ba
α

(
− 1

4a2
Pb

β Pc
γ − i

2a
εbef �e fβ Pc

γ + 1

4
εbef �e fβε

cdg�dgγ

)

and taking into account that all the remaining contributions cancel out, we find

that

H0 = i∂β(J−1 Eb
β Mb)− i

2
εabc(J−1 Ea

β Eb
γ )Fcβγ

Fcβγ ≡ ∂β Pcγ − ∂γ Pcβ + i

2a
εce f Pe

β P f
γ .

(E.11b)

Note the importance of the imaginary part of the connection in the calculations

leading to this result.

After we have eliminated the connection in Ha , the related contribution of

the terms linear in Pa
α is given by

J−1[−Ea
β Ec

γ Fc
βγ + (Paβ + iaεaef �

e f
β )Eb

β(∇αEbα)]
− J−1iaεaef �

e f
β Eb

β∂αEbα .

Terms quadratic in Pa
α are also present, but they cancel each other out. After the

last part of this expression is cancelled out with the remaining contributions from

Ha , the final result takes the form

Ha = J−1

[
Ea

γ Eb
β Fb

βγ − i

2a
(Paβ + iaεaef �

e f
β)EbβMb

]
. (E.11c)

Summarizing, we can conclude that after the elimination of all second-class

constraints, the following FC constraints remain:

G0 ≡ − 1
2
iεabc Ea

αEb
β Fcαβ

Gα ≡ Ebβ Fbβα Ma ≡ 2ia∇αEa
α

(E.12)
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which are expressed as polynomials in the complex variables Ea
α and Pa

α .

Starting from the relations

H0 = J−1G0 + i∂β(J−1 Ebβ Mb)

Ha = J−1

[
Ea

αGα −
i

2a
(Paβ + iaεaef �

e f
β)Ebβ Mb

]
.

we can rewrite the canonical Hamiltonian in the form

Hc = NG0 + NαGα +�a Ma (E.13)

where N and Nα are real, and �a is a complex multiplier.

The use of complex variables demands a careful analysis of the reality

conditions in the theory. The transition to the complex action, in which bi
µ

and Ai j
µ are real variables, implies that the momenta πa

α become complex.

We note that the momenta always appear in constraints in the real combination

πa
α + 2iaεαβγ ∂βbaγ . Consequently, all constraints are real, as is the total

Hamiltonian. Real constraints are, however, non-polynomial in real variables.

The transition to polynomial constraints Ma ,Ha andH0 is realized by introducing

complex variables. It is important to stress that the Hamiltonian is a real quantity,

as a consequence of the fact that complex constraints in (E.13) are not arbitrary

complex functions, but satisfy definite reality conditions. Thus, for instance, since

the quantity Pa
α + iaεaef �e f α is real, the reality condition for Pa

α has the form

Pa
α
+ = Pa

α + 2iaεaef �e f α (E.14)

and similar conditions exist for constraints Ma , Ha , H0 and multipliers �a . In

general, these conditions are non-polynomial.

From the mere fact that the constraints are polynomial, it is not easy to

understand the importance of this property for the theory. Studies of quantum

physical states, that obey all conditions imposed by the constraints, led to the

result that these states can be constructed using certain gauge invariant variables.

Variables of this type are known in non-Abelian gauge theories under the name of

Wilson loops. Despite great efforts, such a result has been never obtained in the

standard formulation of GR.

Polynomial constraints are also obtained in the presence of some matter

fields. In particular, supergravity can be successfully studied in this way.

However, the construction of physical states is not sufficiently clear here.

Generalization of Ashtekar’s approach to higher dimensional theories seems

rather difficult, since the concept of self-duality is specific to d = 4.

The transition to complex polynomial constraints is accompanied by the

corresponding reality conditions, in which all the specific features of the

gravitational interaction are reflected. In spite of many encouraging results, there

is much work still to be done before we can reach a final conclusion concerning

the role and importance of this programme in the search for quantum gravity.
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Exercises

1. Prove the following identities in the time gauge:

εαβγ ba
αbb

βbc
γ = Jεabc εabcha

αhb
βhc

γ = J−1εαβγ

εαβγ bb
βbc

γ = Jεabcha
α ε

αβγ

abc bb
βbc

γ = −2Jha
α

εαβγ bc
γ = Jεabcha

αh
β

b ε
αβγ

abc bc
γ = −2Jh[a

αhb]
β

2. Check whether the following identities are correct in the time gauge:

Ea
α = Jha

α Pa
α = J−1(ba

βbb
α − 1

2
ba

αbb
β)πb

β

− 2ba
α = J−1εabc

αβγ Eb
β Ec

γ

∂αEaα = −J�ab
b ε

αβγ

abc bb
β(

1
2
εce f �e f γ ) = −εαβγ ∂βbaγ .

3. Show that the constraints (E.6) of the real formulation (E.1) are polynomial

in the variables Ea
α, Pb

β and Aab
γ , up to the multiplicative factor J−1.

4. Derive relations (E.11a, c) for constraints Ma and Ha . Taking the variable

Pa
α as real, find the real parts of constraints Ma andHa , and compare them

with the result (E.7a) for the real formulation.

5. Derive the relation (E.11b) for constraint H0. Taking the variable Pa
α

as real, find Re(H0) and compare it with the result (E.7b) for the real

formulation. Explain any disagreement.

6. Derive the form of the canonical Hamiltonian (E.13) and find the explicit

form of the multipliers N , Nα and �a .

7. Find the reality conditions for the constraints Ma ,Ha andH0, as well as for

the multipliers N , Nα and �a .

8. Find the Hamiltonian equations of motion for Ea
α and Pa

α when the

multipliers Nα and �a vanish (‘pure’ temporal evolution).



Appendix F

Constraint algebra and gauge symmetries

In the framework of the Hamiltonian formalism, Castellani (1982) developed

an algorithm for constructing all gauge generators on the basis of the known

Hamiltonian and the algebra of constraints. His arguments can also be used in

a reversed direction: PGT possesses local symmetry for which the generators

have been found in chapter 6, which allows us to obtain very precise information

about the algebra of FC constraints (Blagojević and Vasilić 1987).

Dirac found the algebra of FC constraints in any generally covariant theory,

such as metric gravity (Dirac 1964). The same result was derived on the basis of

the principle of ‘path independence’ of dynamical evolution (Teitelboim 1973).

These ‘geometric’ methods are very powerful and give us a deep insight into the

structure of the theory. However, they are unable to give us complete information

on the structure of the constraint algebra, such as, for instance, the information

on the presence of squares of constraints, and must be supplemented by specific

additional considerations.

When the only constraints in PGT are those related to the Poincaré gauge

symmetry, the algebra of constraints has the standard form (6.1), containing no

squares of constraints. Here, we shall show that this algebra also has the same

form in the general case, up to the presence of PFC constraints and squares or

higher powers of constraints. The conclusion follows from certain consistency

requirements on the structure of gauge generators. In the course of our exposition,

it will become clear that all methods based on ‘geometric’ arguments have the

same degree of uncertainty.

The Hamiltonian of the general theory has the form (5.44), and the gauge

generator is given by the expression (6.7), where the phase-space functions

G(0),G(1) must satisfy the following consistency requirements:

G1 = CPFC (F.1a)

G0 + {G1, HT} = CPFC (F.1b)

{G0, HT} = CPFC. (F.1c)
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Here, CPFC denotes PFC constraints, and the equality means an equality up to the

constraints of the type χn(n ≥ 2), which are FC. Therefore, all consequences

of these relations have the same ambiguity. Now, we are going to follow the

‘inverse’ Castellani method, i.e. we shall start with the known Hamiltonian and

gauge generator, and examine all consequences of the consistency requirement

(F.1) on the algebra of the FC constraintsH⊥, Hα andHi j .

The first requirement (F.1a) applied to the gauge generator (6.7) leads

immediately to

πk
0, πi j

0 = CPFC. (F.2)

Using the fact that primary constraints do not depend on the unphysical variables

bk
0 and Ai j

0, we can easily show that

{πk
0,C ′

PFC} = CPFC {πi j
0,C ′

PFC} = CPFC.

Let us now denote primary first- and second-class constraints by φ1 and φ2,

and the related multipliers by v and u2, respectively, so that the total Hamiltonian

(5.44a) can be written as

ĤT = Hc + (vφ1)+ (u2φ2). (F.3a)

Taking into account that G0
i j ,G0

α = CPFC, the second requirement (F.1b)

applied to Gi j ,Gα and G0 leads to

∫
{πi j

0, (u2φ2)
′} = CPFC

∫
{bk

απk
0, (u2φ2)

′} = CPFC

(u2φ2)+
∫
{bk

0πk
0, (u2φ2)

′} = CPFC.

By solving these equations, we conclude that all determined multipliers u2 can be

chosen so that (a) they do not depend on Ai j
0, and (b) their dependence on bk

0 is

given by a proportionality to N . Therefore,

u2 = N�⊥(bk
α, Ai j

α, πk
α, πi j

α).

Consequently, we can redefine the canonical Hamiltonian by including the

contribution of the term u2φ2,

Hc = NH⊥ + NαHα − 1
2

Ai j
0Hi j

H⊥ ≡ H⊥ +�⊥φ2

(F.3b)

and rewrite the total Hamiltonian as

ĤT =Hc + (vφ1). (F.3c)
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The third requirement (F.1c) results in two sets of conditions. Demanding its

validity for an arbitrary multiplier v, the (vφ1) part of ĤT gives rise to

{Hi j , φ
′
1} = CPFC

{Hα − 1
2

Ai j
αHi j , φ

′
1} = CPFC

{Hc + (u2φ2), φ
′
1} = CPFC

{CPFC, φ
′
1} = CPFC

(F.4)

whereas the H c part produces

{Hi j ,H c} = −2b[i0H j ] − 2As [i0H j ]s + CPFC (F.5a)

{Hα − 1
2

Ai j
αHi j ,H c} = bk

0,αHk − 1
2

Ai j
0,αHi j + CPFC (F.5b)

{Hc,H c} = CPFC. (F.5c)

The first set of conditions is trivially satisfied by φ′
1 = π ′

k
0, π ′

i j
0. As for extra

FC constraints, we could also find some useful relations for them but they would

be of no interest here.

An analysis of the second set of conditions gives the most interesting

consequences. Indeed, explicitly extracting the dependence of the left-hand sides

of equations (F.5) on the unphysical variables bk
0 and Ai j

0, and then comparing

with the right-hand sides, leads directly to the algebra of constraints.

The left-hand side of (F.5a) can be written as

L i j ≡ {Hi j ,H c} =
∫

b′k0{Hi j ,H
′
k} − 1

2

∫
A′kl

0{Hi j ,H
′
kl }

sinceHi j does not contain the momenta πk
0, πi j

0. We search for a solution of the

Poisson brackets of constraints in the form

{Hi j ,H
′
k} = �i j kδ +�i j k

α∂αδ + · · ·
{Hi j ,H

′
kl } = �i j klδ +�i j kl

α∂αδ + · · ·

where the coefficients � do not depend on the unphysical variables. By using

these relations in L i j , and comparing with the right-hand side of equation (F.5a),

we find that

�i j k = −2ηk[iH j ] + CPFC �i j k
α = CPFC

�i j kl = 4η[i[lH j ]k] + CPFC �i j kl
α = CPFC

and, consequently,

{Hi j ,H
′
kl } = 1

2
fi j

mn
klHmnδ + CPFC

{Hi j ,H
′
k} = −2ηk[iH j ]δ + CPFC.
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Going, now, to the ADM basis e′µ = {n, eα}, we finally obtain

{Hi j ,H
′
kl } = 1

2
fi j

mn
klHmnδ + CPFC (F.6a)

{Hi j ,H
′
α} = CPFC (F.6b)

{Hi j ,H
′
⊥} = CPFC. (F.6c)

The rest of the algebra of constraints is obtained in a similar way and has the

form

{Hα,H
′
β} = (H′

α∂β +Hβ∂α − 1
2

Ri j
αβHi j )δ + CPFC (F.6d)

{Hα,H
′
⊥} = (H⊥∂α − 1

2
Ri j

α⊥Hi j )δ + CPFC (F.6e)

{H⊥,H′
⊥} = −(Hα +H′α)∂αδ + CPFC (F.6f)

where Hα = 3gαβHβ . The time derivative Ȧi j
α u Ri j

α⊥ is only short for

{Ai j
α,H c}, so that these relations do not depend on arbitrary multipliers v

appearing in ĤT.

Let us observe once more that the equalities in (F.6) are equalities up to the

powers of constraints χn(n ≥ 2). This is a consequence of our method, which is

based on symmetry requirements, as expressed by (F.1).

At the end of these considerations, it is natural to ask the following question:

can the form of the constraint algebra (F.6) be improved, with more precise

information concerning terms of the type CPFC and χn? Because of the simple

form of the kinematical generatorsHi j andHα, their Poisson brackets can easily

be checked by a direct calculation (as we have seen in chapter 6), and the result

is that CPFC and the χn terms are in fact absent. The remaining relations in

(F.6) involve the dynamical part of the Hamiltonian H⊥, so that an explicit

calculation becomes much more difficult. Since Hi j ,Hα andH⊥ do not depend

on πk
0, πi j

0, we can conclude that CPFC terms in (F.6) are extra PFC constraints.

Consider, further, relations (F.6c) and (F.6e) that describe the behaviour ofH⊥
under Lorentz rotations and space translations. The absence of CPFC and χn terms

in these relations is equivalent to the statement thatH⊥ is a scalar density. The

nature ofH⊥ can be checked on the basis of the known behaviour of all variables

inH⊥ under the Poincaré gauge transformations. Finally, the question of the

exact form of the Poisson bracket {H⊥,H′
⊥} is the most difficult one. It cannot be

improved by a similar method, as the generators of the time translations are not,

and cannot be, off-shell generators. The only thing we can do is calculate CPFC

and the χn terms in (F.6 f ), in a particular theory (Nikolić 1995).

It should be noted that there are certain features of the constraint algebra

which do not follow from a given theory, but from ambiguities in the process

of constructing the Hamiltonian. For instance, we can choose all determined

multipliers to be independent of the momentum variables appearing in the

constraints, while any other choice would be equivalent to the replacement

u2 → u2 + λ2φ. It is clear that this would change not only the form ofH⊥,



414 Constraint algebra and gauge symmetries

but also the corresponding Poisson brackets (by adding terms of the form CPFC

and χn). The most natural choice is one that gives the simplest gauge algebra.



Appendix G

Covariance, spin and interaction of

massless particles

In relativistic quantum field theory, a process in which a massless particle of spin

1 or 2 is emitted (or absorbed) is described by the scattering (S) matrix, which

may be written in the form

ǫµMµ or ǫµν Mµν .

Here, ǫµ and ǫµν are the respective polarization states, and Mµ, Mµν are formed

from the variables corresponding to the other particles. The polarizations ǫµ and

ǫµν are not covariant objects (vectors or tensors) with respect to the Poincaré

group, but undergo additional gauge transformations (appendix I),

ǫµ → ǫµ + kµη ǫµν → ǫµν + kµην + kνηµ

which are specific for massless particles. Hence, the Poincaré invariance of

quantum field theory requires the conditions

kµMµ = 0, kµMµν = 0. (G.1)

These conditions, usually referred to as the gauge invariance conditions of the S

matrix, give very stringent restrictions on the structure of the theory through the

so-called low-energy theorems (Weinberg 1964, Kibble 1965).

In order to illustrate the nature of the gauge-invariance conditions (G.1), we

assume that matter is described by a complex scalar field $,

LM = ∂µ$
∗∂µ$− m2$∗$ (G.2)

in which the propagator has the form D(k,m2) = 1/(k2 − m2).

For massless fields of spin s > 0, gauge invariance implies the conservation

of the matter current. The matter Lagrangian usually has a global symmetry which

automatically leads to a conserved current. This is the case with the standard

415
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Figure G.1. The vertex diagram.

electrodynamics, where the global U(1) symmetry in the matter sector generates

the conserved current Jµ. Similarly, the global translational symmetry leads to

the conserved energy–momentum tensor Tµν (to which the massless spin-2 field

is coupled).

The vertex of the spin-1 graviton. The massless spin-1 field ϕµ, usually

called the photon, is coupled to the conserved matter current Jµ. The complete

Lagrangian has the form

L = LV + LM + LI (G.3)

where LV and LM are given by equations (7.5) and (G.2), andLI is the interaction

term:
LI = −λϕµ Jµ

Jµ ≡ −i[(∂µ$∗)$−$∗(∂µ$)].
(G.4)

Here, Jµ is the conserved current defined by the global U(1) symmetry of the

matter Lagrangian: $ → exp(−iα)$, $∗ → exp(iα)$∗.

Note that the theory defined in this way differs from the usual U(1) gauge

theory: it is invariant under gauge transformations ϕµ → ϕµ + ∂µω, while, at the

same time, the matter field remains unchanged.

A coupling of type (G.4) is represented by a vertex diagram, as in figure G.1:

the straight lines correspond to the matter field, wavy lines to the photon and

the vertex Ŵ (in the momentum representation) is obtained from λJµ by the

replacement i∂µ$ → pµ, i∂µ$
∗ → −pµ:

Ŵµ = λ(p
µ

2 + p
µ

1 ) = λ(2 p
µ

2 + kµ). (G.5a)

In the soft photon limit, when the photon momentum k is much smaller than the

matter field momentum p, the vertex Ŵµ takes the effective form

f µ = Ŵµ(k = 0) = 2λp
µ

2 . (G.5b)
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This limit is sufficient to define the electric charge as the soft photon coupling

constant: e = λ. On-shell (for p2
2 = m2), f µ represents the classical particle

current.

The vertex of the spin-2 graviton. The massless spin-2 field ϕµν is coupled

to the matter energy–momentum tensor Tµν , so that the complete Lagrangian is

given by

L = LT + LM + LI (G.6)

where LT and LM are determined by expressions (7.19) and (G.2), and

LI = −λϕµνTµν

Tµν ≡ ∂µ$
∗∂ν$+ ∂ν$

∗∂µ$− ηµνLM.
(G.7)

The vertex Ŵµν has the form

Ŵµν = λ[p
µ

2 pν1 + pν2 pν1 − ηµν(p1 · p2 − m2)] (G.8a)

where p2 = p1−k. In the soft graviton limit (k → 0) the coupling of the graviton

to the external matter field line (p2
2 − m2 = 0) yields the effective vertex

f µν = Ŵµν(k = 0, p2
2 = m2) = 2λp

µ

2 pν2 (G.8b)

which corresponds to the classical particle energy–momentum. The form of the

soft graviton vertex defines the gravitational charge: κ = λ.

The general structure of the vertex. These properties of the photon and

graviton vertex are obtained for the scalar matter, but can be easily generalized

to an arbitrary matter field with spin s > 0.

The general form of the current for a complex boson field $λσ ... follows

from expression (G.4) by replacing $ → $λσ ... (up to a sign, which is the same

for even, and opposite for odd spins, as a consequence of the alternation of signs

of the Lagrangians with growing spin). The transition to the momentum space

reproduces result (G.5a), whereupon the soft photon limit yields the effective

vertex (G.5b). Similarly, the tensor Tµν is obtained (up to a sign) from (G.7) by

$ → $λσ .... Going over to the momentum space, the term proportional to LM

tends to zero as k → 0, p2 → m2, and we end up with result (G.8b).

The same result also holds for arbitrary spinor matter fields.

Low-energy theorems and the spin of the graviton. The general

considerations in chapter 7 show that the massless graviton can have spin 0 or

spin 2, while the possibility of spin 1 is eliminated. What about higher spins?

We shall see that the low-energy theorems in quantum field theory eliminate the

possibility s > 2.
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( )a ( )b

p�

G

k

p�

p k�+

Figure G.2. The modified process (b) contains an additional graviton.

Let us consider a scattering process described by an amplitude M

(figure G.2(a)), and compare it with a slightly modified process, in which an

additional graviton of momentum k is emitted (or absorbed) (figure G.2(b)).

When k → 0, the dominant diagrams are those in which the graviton is ‘attached’

to an external matter field line, as they possess an additional propagator (between

the vertex Ŵ and the rest of the diagram) which is close to its pole. The additional

propagator, corresponding to a line carrying momentum pα + k, becomes, in the

limit k → 0,

D(pα + k,m2) = 1

(pα + k)2 − m2
≈ 1

2 pα · k
.

We write a detailed form of the original amplitude M , with all spinor indices

and external line momenta explicitly indicated, as

M → Mσ1...σα ...σn (p1, . . . , pα, . . . , pn).

Consider, first, the case of the spin-1 graviton. The modified process is

described by the matrix element ǫµM
µ

(α)
, where

M
µ

(α)
= Ŵµ(pα, k)D(pα + k,m2)M(pα → pα + k)

≡
∑

σβ

Ŵµ
σασβ

(pα, k)D(pα + k,m2)Mσ1...σβ ...σn (pα → pα + k)
(G.9a)

and Ŵµ(pα, k) is a vertex of type (G.5a), which describes the coupling of the

graviton to the line (σα, pα). In the limit k → 0, we find that

M
µ

(α)
≈ f

µ
α

2 pα · k
M (G.9b)

where f
µ

(α)
= Ŵµ(pα, 0). After summing the contributions of the gravitons

emitted from all external lines (sum over α), the gauge invariance requirement
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(G.1), applied to the complete amplitude Mµ =
∑

α M
µ

(α)
, yields

∑

α

kµ f
µ

(α)

2 pα · k
M = 0. (G.10)

Since we are considering only soft gravitons, the vertex f
µ

(α)
is of the form (G.5b),

f
µ

(α)
= 2eα p

µ
α , so that this requirement reduces to

∑

α

eα = 0 (G.11)

provided M �= 0. This is, of course, the charge conservation law.

Now, we turn our attention to the spin-2 graviton. A completely analogous

procedure leads to the result

∑

α

kµ f
µν

(α)

2 pα · k
M = 0. (G.12)

In the limit k → 0, the vertex takes the form (G.8b), f
µν

(α)
= 2κα p

µ
α pνα, and the

previous condition, for M �= 0, reduces to

∑

α

κα pνα = 0. (G.13)

Taking into account the momentum conservation law,
∑

α pνα = 0 (all external

momenta are directed outwards), relation (G.13) can only be satisfied by choosing

κα = κ (G.14)

where κ is a constant. Thus, all particles have the same gravitational charge. This

demonstrates the universality of the gravitational coupling, in accordance with the

principle of equivalence.

It should be noted that the graviton field ϕµν can be coupled to its own

energy–momentum tensor. In other words, the graviton carries the gravitational

charge (energy–momentum) and can interact with itself. This is not the case

with the photon: the electric charge of the photon vanishes and the photon is

electrically neutral.

For gravitons with higher spins, the condition of gauge invariance leads to

equations that cannot be satisfied at all (for instance,
∑

α gα p
µ
α pνα = 0). Thus,

we conclude that

the only massless bosons which can be consistently coupled to matter

in the limit k → 0 are those of spins s ≤ 2.

Since the expressions epµ and κpµ pν should remain invariant if we replace

p → −p and reinterpret the particle line as an antiparticle line, it follows that the
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particle and antiparticle must have opposite coupling to the spin-1 field, and the

same coupling to the spin-2 field.

We should emphasize that these arguments do not show that massless fields

of spin s > 2 do not exist, but only that their interaction with matter in the limiting

case k → 0 must vanish (M → 0), otherwise it will be inconsistent. Such

interactions do not generate long-range static forces, hence they are not expected

to be of any importance in describing macroscopic gravitational phenomena.



Appendix H

Lorentz group and spinors

In classical relativistic physics, the basic physical quantities are represented by

tensors and the covariance of the physical laws is achieved with the help of tensor

equations which have the same form in every reference frame. On the other

hand, quantum physics is formulated in terms of both tensor and spinor fields.

This motivates us to reconsider the role of relativistic spinors in classical field

theory (Carruthers 1971, Novozhilov 1972, Wybourne 1973, Barut and Raczka

1977, Berestetskii et al 1982). We should note that Lorentz spinors, which are

used to build relativistic actions, are not directly related to physical particles,

having definite mass and spin; the physical particles are properly described by

the representations of the Poincaré group (see appendix I).

Consider two observers who are in different inertial reference frames S and

S′ of the Minkowski space M4. We assume that they describe the same physical

event by the spacetime coordinates x and x ′, respectively, which are related to

each other by a Lorentz transformation:

x ′µ = �µ
νxν . (H.1)

The invariance of the spacetime interval (2.1) leads to the orthogonality conditions

on the real matrix � = (�µ
ν): �

T η� = η. This implies

det� = ±1

�00 ≥ 1 or �00 ≤ −1.

If � is any invertible 4 × 4 matrix with real elements, we introduce the

following terminology:

the full Lorentz group: L ≡ O(1, 3) = {� | �T η� = η};
the proper Lorentz group: L+ ≡ SO(1, 3) = {� ∈ L | det� = +1};
the restricted Lorentz group: L0 = {� ∈ L | det� = +1,�00 ≥ +1}.

The discrete transformations of space inversion IP and time inversion IT are

improper, i.e. such that det� = −1. The full Lorentz group contains L0,

421
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IP L0, IT L0 and IP IT L0. The proper and restricted Lorentz transformations are

subgroups of L. The restricted Lorentz group L0 (Lorentz group) is the only

subgroup in which the elements are continuously connected to the identity; it

contains ordinary three-dimensional rotations and boosts, but not space nor time

inversions.

Lie algebra. An infinitesimal transformation of the restricted Lorentz group L0

can be written as �µ
ν = δ

µ
ν + ωµ

ν , where ωµν = −ωνµ, or, in matrix notation,

� = 1 + 1
2
ωλρMλρ (Mλρ )

µ
ν = δ

µ
λ ηρν − δµρ ηλν .

Here, Mλρ are the infinitesimal generators of L0 which satisfy the Lie algebra

[Mµν, Mλρ ] = ηνλMµρ − ηµλMνρ − ηνρMµλ + ηµρ Mνλ

≡ 1
2

fµν,λρ
στ Mστ .

(H.2a)

The matrices Mµν are anti-Hermitian, (M+)µν = −Mµν , and equation

(H.2a) defines the Lie algebra of the Lorentz group. The problem of finding

representations of the Lorentz algebra leads to solutions for Mµν which are

different from the particular form from which we started.

We now introduce the angular momentum and boost generators,

M i = 1
2
εi j k M j k = (M23, M31, M12)

K i = M0i = (M01, M02, M03)

which obey the commutation rules

[M i , M j ] = εi j k Mk [M i , K j ] = εi j k K k

[K i , K j ] = −εi j k K k .
(H.2b)

The first equation defines the algebra so(3) of the rotation subgroup SO(3) of L0,

while the second one states that K i is a vector with respect to these rotations. The

minus sign in the third equation expresses the difference between the non-compact

Lorentz group SO(1, 3) and its compact version SO(4). This seemingly small

difference in sign leads to essential differences in the structure of two groups,

with physically important consequences.

Finite-dimensional representations. The form of the finite Lorentz transfor-

mations in M4 shows that the four-dimensional representation is not unitary: ro-

tations are represented by unitary and boosts by non-unitary matrices. The same

is true for every finite-dimensional irreducible representation (IR), in accordance

with the following general theorem:

All (non-trivial) unitary IRs of a connected, simple, non-compact Lie

group must be of infinite dimension.
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In covariant field theories of particle physics, finite-dimensional representa-

tions of the Lorentz group are needed to describe the spin degrees of freedom. In

order to classify these representations, we introduce the complex linear combina-

tions of the generators:

J i
1 = 1

2
(M i − iK i ) J i

2 = 1
2
(M i + iK i ).

Their algebra decomposes into the direct sum of two so(3) algebras:

[J i
1, J

j

1 ] = εi j k J k
1 [J i

1, J
j

2 ] = 0

[J i
2, J

j

2 ] = εi j k J k
2 .

Linear combinations with complex coefficients are not allowed in so(1, 3)—

in fact they define the complexified Lie algebra so(1, 3)c. However, since

there is a 1–1 correspondence between representations of a complex Lie algebra

and representations of any of its real forms, we can use the classification of

representations of so(3)1 ⊕ so(3)2 to classify the representations of so(1, 3).

Consequently, the finite-dimensional IRs of the Lorentz algebra can be labelled

by a pair of half-integer or integer numbers,

( j1, j2) j1, j2 = 0, 1
2
, 1, 3

2
, . . . (H.3a)

which correspond to the Casimir operators for the two so(3) subalgebras: J1
2 =

− j1( j1 + 1) and J2
2 = − j2( j2 + 1). Since M = J1 + J2, the total angular

momentum, or spin, of the representation may take the values

j = | j1 − j2|, | j1 − j2| + 1, . . . , j1 + j2 (H.3b)

and the dimension of the representation space is d = (2 j1 + 1)(2 j2 + 1). Here

are some examples:

(0, 0), the scalar representation, j = 0, d = 1;

( 1
2
, 0), the left-handed spinor representation, j = 1

2
, d = 2;

(0, 1
2
), the right-handed spinor representation, j = 1

2
, d = 2;

The importance of the basic representations ( 1
2
, 0) and (0, 1

2
) lies in the fact

that any other finite-dimensional representation of the Lorentz algebra can be

generated from these two. Thus, for instance, the direct product of these

representations, ( 1
2
, 0) × (0, 1

2
) = ( 1

2
, 1

2
), gives a four-vector representation

with spin j = 0, 1, and d = 4 (any four-vector, such as xµ, belongs to this

representation). Finite-dimensional representations, in general, have no definite

spin.

The universal covering group. The Lie algebra only defines the local structure

of a given Lie group. For every Lie group there is a Lie algebra, but the inverse
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is not true. In order to understand the importance of Lie algebras for the structure

of Lie groups, we have to clarify the global (topological) properties of Lie groups

sharing the same Lie algebra.

Consider a family G of multiply connected Lie groups which are locally

isomorphic (have the same Lie algebra). We can show that in each family G there

is a unique (up to an isomorphism) simply connected group Ḡ, known as the

universal covering group of the family G, such that Ḡ can be homomorphically

mapped onto any group G in G. The group Ḡ contains a discrete invariant

subgroup Z such that every group G is locally isomorphic to the factor group

Ḡ/Z .

An arbitrary Lorentz transformation � in L0 can be represented as the

combination of a boost and a three-dimensional rotation. Since the space of

parameters of the rotation group is double connected, the same is also true for

L0. We shall show that the universal covering group of L0 is SL(2,C), the group

of complex 2 × 2 matrices with a unit determinant.

We start by introducing the notation

σµ = (1, σ ) σ̄µ = (1,−σ )

where σ are the Pauli matrices,

σ 1 =
(

0 1

1 0

)
σ 2 =

(
0 −i

i 0

)
σ 3 =

(
1 0

0 −1

)

satisfying σ aσ b = iεabcσ c + δab. The matrices σµ and σ̄µ obey the identities

Tr(σµσ̄ ν) = 2ηµν σµσ̄ ν + σ ν σ̄µ = 2ηµν .

Now, we show that L0 is homomorphic to SL(2,C). First, we construct a

mapping from M4 to the set of Hermitian complex 2 × 2 matrices:

xµ → X = xµσ
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
det X = x2.

Then, we consider the action of SL(2,C) on X defined by

X ′ = AX A+ A ∈ SL(2,C). (H.4a)

This action conserves x2 = det X and represents, basically, a Lorentz

transformation. Indeed, to each such transformation A in SL(2,C), there

corresponds a Lorentz transformation of xµ defined by

x ′µ = �µ
νxν �µ

ν(A) = 1
2

Tr(σ̄µAσν A+) (H.4b)

where σν = ηνλσ
λ. The mapping A → �(A) is a homomorphism of SL(2,C)

on L0, i.e.

�µ
ν(A) ∈ L0

�µ
ρ(A1 A2) = �µ

ν(A1)�
ν
ρ(A2).
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Since �(−A) = �(A), the inverse mapping is defined only up to a sign:

A = ± 1

[det(�ρ
λσρ σ̄ λ)]1/2

�µ
νσµσ̄

ν . (H.4c)

This follows from the relation �ρ
νσρ σ̄

ν = Aσν A+σ̄ ν = 2A Tr(A+).
For the infinitesimal SL(2,C) transformations,

A = 1 + 1
2
ωµνσ

µν A∗−1T = 1 + 1
2
ωµν σ̄

µν (H.5a)

the relation (H.4c) implies

σµν = 1
4
(σµσ̄ ν − σ ν σ̄µ) = [− 1

2
σ ,− 1

2
iσ ]

σ̄µν = 1
4
(σ̄µσ ν − σ̄ νσµ) = [ 1

2
σ ,− 1

2
iσ ]

(H.5b)

where the rotation and boost parts of the generator are displayed in the square

brackets: σµν = [ 1
2
εabcσ bc, σ 0a], and similarly for σ̄µν . These generators satisfy

the Lorentz algebra (H.2).

In conclusion,

(a) there is a homomorphism SL(2,C) → L0, for which the kernel is the

discrete invariant subgroup Z2 = (1,−1) (the elements A = ±1 in SL(2,C)

are mapped into the identity element in L0):

L0 = SL(2,C)/Z2

(b) the groups SL(2,C) and L0 have the same Lie algebra.

The group SL(2,C) is simply connected, and represents the universal covering

group L̄ of L0.

The importance of the universal covering group L̄ lies in the fact that

all its IRs are single-valued, whereas those of L0 may be both single- and

double-valued (L0 is double connected); and

every IR of L0 is a single-valued representations of L̄ .

Bearing in mind this connection, we continue the study of L̄ = SL(2,C).

Two-component spinors. Let us now consider several important representa-

tions of SL(2,C). A two-component spinor is a pair of complex numbers ξa

(a = 1, 2) transforming under SL(2,C) according to the rule

ξ ′a = Aa
bξb. (H.6a)

The spinors ξa are elements of a complex two-dimensional vector space, the

representation space of SL(2, R) such that, to each Lorentz transformation in

M4, there corresponds an SL(2,C) transformation of ξ :

ξ =
(
ξ1

ξ2

)
ξ ′ = Aξ.
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Since the mapping SL(2,C) → L0 is a two-to-one mapping, the spinors are only

defined up to a sign. The spinors ξa are called the left-handed Weyl spinors and

they belong to the representation ( 1
2
,0).

We introduce spinors ηa , dual to ξa , by demanding that the bilinear forms

ηaξa remain invariant under the action of SL(2,C). Consequently,

η′a = A−1T a
bη

b. (H.6b)

The representations (H.6a) and (H.6b) are equivalent since

A = g A−1T g−1 g = −g−1 =
(

0 1

−1 0

)
= iσ 2

or, using the index notation,

gab = εab g−1ab ≡ gab = −εab ε12 = ε12 = 1.

The inverse matrix g−1 is denoted simply as gab. Using ηa = gabηb and

ξa = gabξ
b we find that

ηaξa = gabηbgacξ
c = −ηaξ

a .

The matrices g and g−1 are used to raise and lower the spinor indices, and play

the role of a metric and its inverse in the space of spinors ξa and ηa . The metric

tensor is an invariant tensor:

ε′ab = Aa
c Ab

dεcd = εab det A = εab.

The complex conjugate spinor ξ∗a transforms as

ξ∗′a = A∗
a

bξ∗b

where the matrix A∗ is the complex-conjugate of A. Writing the components of

ξ∗a as ξ̄ȧ and the matrix elements of A∗ as A∗
ȧ

ḃ, we have

ξ̄ ′ȧ = A∗
ȧ

ḃ ξ̄ḃ. (H.7a)

The components ξ̄ȧ define the right-handed Weyl spinor, transforming according

to the representation (0, 1
2
). Since, in general, there is no linear connection

between A and A∗ of the form A = C A∗C−1, the spinors ξa and ξ̄ȧ transform

according to inequivalent representations. If A is a unitary matrix, as in the

case of space rotations, then A∗ = A−1T , and the spinors ξ̄ȧ and ξa transform

equivalently.

Finally, we introduce spinors η̄ȧ , dual and equivalent to ξ̄ȧ :

η̄′ȧ = A∗−1T ȧ
ḃη̄

ḃ. (H.7b)
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The matrix ḡ is of the form

ḡȧḃ = εȧḃ ḡ−1ȧḃ ≡ ḡȧḃ = −εȧḃ ε1̇2̇ = ε1̇2̇ = 1

and we have η̄ȧ ξ̄ȧ = −η̄ȧ ξ̄
ȧ .

Thus, we have defined two-dimensional elementary spinors ξa, ξ̄ȧ and

the related dual spinors ηa, η̄ȧ , which transform according to the SL(2,C)

representations A, A∗ and A−1T , A∗−1T = A−1+, respectively. Multiplying

these spinors with each other we obtain higher spinors, which transform under

SL(2,C) as the appropriate product of elementary spinors. The rank of a higher

spinor is determined by a pair of numbers (k, l)—the numbers of undotted and

dotted indices.

Contraction of the same type of upper and lower indices, with the help of

g or ḡ, lowers the rank for two. The contraction of symmetric indices yields

zero, which is related to the fact that symmetric spinors form IRs of SL(2, R). A

symmetric spinor of rank (k, l) has (k + 1)(l + 1) independent components.

Spinors and four-vectors. We now investigate some elements of the spinor

calculus, and establish a direct connection between transformations in spinor

space and Lorentz transformations in spacetime.

We postulate that the components of spinors are anticommuting variables,

in accordance with the spin-statistics theorem. Since the matrix elements of A

and A+ are given by A = (Aa
b) and A+ = (A+ȧ

ḃ), the relations X ′ = AX A+,

X = xµσ
µ and Tr(σµσ̄ ν) = 2ηµν imply that X = (Xaḃ), σ

µ = (σ
µ

aḃ
) and

σ̄µ = (σ̄µḃa).

Let us now find xµ from the equation X = xµσ
µ, and replace Xaḃ with the

quantity ξa ξ̄ḃ, which has the same transformation properties:

xµ = 1
2

Tr(X σ̄µ) ∼ 1
2
ξa ξ̄ḃ(σ̄

µ)ḃa = − 1
2
ξ̄ σ̄µξ.

Then, the completeness relation

σ
µ

aḃ
σ̄ ċd
µ = 2δd

a δ
ċ

ḃ

implies that the right-hand side of this equation transforms exactly as a four-vector

under SL(2,C):

V µ ≡ ξ̄ σ̄µξ ξ → Aξ ⇒ Vµ → �µ
νV ν . (H.8)

The matrix σ̄µ serves to convert the spinor product ξ̄ȧξb into a four-vector.

Equation (H.8) lies at the root of the whole subject of relating Lorentz

transformations in spacetime with spin-space transformations.

In order to simplify the notation, we shall often omit the summed spinor

indices and write

ξη = ξaηa ξ̄ η̄ = ξ̄ȧ η̄
ȧ
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in agreement with the index structure of σµ, σ̄µ: ξσµη̄ = ξaσµ
aḃη̄

ḃ, etc.

Consider now some useful properties of σµ and σ̄µ. Using the result (H.4a)

we find

�µ
νσµ = Aσ ν A+ 4⇒ σµ = �µ

ν Aσ ν A+. (H.9a)

This relation shows that σ
µ

aḃ
can be interpreted as both a four-vector and a mixed

spinor and that, moreover, this quantity is an invariant object (the effects of spinor

and four-vector transformations cancel each other).

Raising both spinor indices in σ
µ

aḃ
, we find

σµaḃ ≡ [−g−1(1, σ )ḡ−1]aḃ = (1,−σ ∗)aḃ.

Then, taking the complex conjugation, we obtain

(σµaḃ)∗ = (1,−σ )ȧb ≡ σ̄µȧb.

The matrix σ̄µȧb is numerically equal to σµaḃ, but has a different spinor structure;

it is denoted by σ̄µ. From g−1 Ag = A−1T and our previous considerations, we

find one more useful relation:

σ̄µ = �µ
ν A−1+σ̄ ν A−1. (H.9b)

On the other hand, σ ∗ = σ T implies σµaḃ = σ̄µḃa .

Space inversion and Dirac spinors. The space inversion IP acts on the Lorentz

generators according to the rule M i → M i , K i → −K i , hence it transforms J i
1

into J i
2 and vice versa, IP: ( j1, j2) → ( j2, j1).

Thus, for instance, IP : ( 1
2
, 0) ↔ (0, 1

2
), by ξa → z pη̄

ȧ and η̄ → z pξ , where

z p is a phase factor. Two applications of the space inversion should return a spinor

to its original configuration, which may be thought of as a rotation for 0 or 2π .

Since basic spinors change sign under the rotation for 2π , there are two possible

definitions of the space inversion, with

z2
p = 1 or z2

p = −1.

In the first case we may choose z p = +1:

IPξa = η̄ȧ IPη̄
ȧ = ξa

which implies IPξ
a = −η̄ȧ , IPη̄ȧ = −ξa . On the other hand, for z2

p = −1 we

may choose z p = +i :

IPξa = iη̄ȧ IPη̄
ȧ = iξa

whereas IPξ
a = −iη̄ȧ , IPη̄ȧ = −iξa .

The only difference in physical consequences between the two definitions

would occur for truly neutral spin- 1
2

fields (Majorana spinors), for which particles
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are identical with antiparticles: in the case z2
p = 1, the condition of neutrality

would not be consistent with the space inversion symmetry. We choose z p = i in

order to include Majorana spinors in our discussion.

As we have seen, the space inversion cannot be represented within a single

basic spinor representation. In order to have an IR for a symmetry which includes

IP and SL(2,C), it is necessary to consider a pair (the direct sum) of spinors ξa

and η̄ȧ . Such a pair is called the Dirac spinor or four-spinor and may be written

in the form

ψ =
(
ξ

η̄

)
. (H.10a)

It transforms under SL(2,C) as

ψ ′ = S(A)ψ =
(

A 0

0 A−1+

)(
ξ

η̄

)
=
(

Aξ

A−1+η̄

)
(H.10b)

whereas the space inversion is represented by

IPψ = i

(
η̄

ξ

)
i.e. IP = i

(
0 1

1 0

)
. (H.10c)

The Dirac equation. The concept of two-spinors provides a simple and

systematic way of deriving SL(2,C) covariant equations. The basic objects

from which typical physical equations are constructed are spinor fields, partial

derivatives and some parameters. The spinor structure of these equations ensures

their covariance.

Consider a simple example of a linear differential spinor equation, which

illustrates the general method and, at the same time, represents physically

important case of the free Dirac equation. Using the spinor fields ξ(x), η̄(x)

and the operators p = σµ pµ, p̄ = σ̄µ pµ, (pµ = i∂µ), the conditions of linearity

and covariance lead to the pair of coupled equations

p̄ȧbξb = mη̄ȧ paḃη̄
ḃ = mξa (H.11a)

where m is the mass parameter. These equations are clearly covariant provided

the spinor fields transform as

ξ ′(x ′) = Aξb(x) η̄′(x ′) = A∗−1T η̄(x).

In the four-dimensional notation, these equations take the form

(
0 σµ pµ

σ̄µ pµ 0

)(
ξ

η̄

)
= m

(
ξ

η̄

)

which is equivalent to the usual Dirac equation:

γ µ pµψ = mψ (H.11b)
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where γ µ are the Dirac matrices in the spinor representation,

γ µ =
(

0 σµ

σ̄µ 0

)
. (H.12a)

The Dirac matrices satisfy the algebra

{γ µ, γ ν} = 2ηµν (H.12b)

and have different equivalent representations.

Covariant bilinear combinations of the type ψ̄ψ are defined with the help

of the Dirac adjoint spinor ψ̄ = ψ+γ 0, and not ψ+ = (ξ∗, η̄∗). The reason

for this lies in the fact that γ 0 interchanges ξ∗ and η̄∗ in ψ̄ , so that two-spinors

in ψ̄ = (η̄∗, ξ∗) are of the correct type (index structure), which leads to the

covariantly defined expression ψ̄ψ = η̄∗ξ + ξ∗η̄.

Multiplying equation (H.11b) with γ · p, we find that ψ(x) obeys the free

Klein–Gordon equation, (�+m2)ψ = 0. Thus, the Dirac field, as the direct sum

of two basic spinors, describes two physical spin- 1
2

particles (in fact, a particle

and an antiparticle) of equal mass m.

Majorana and Weyl spinors. The Dirac equation makes sense even when η is

not distinct from ξ , i.e. when η̄ȧ = ξ̄ ȧ
c , where ξ̄c is obtained from ξ by the charge

conjugation operation:

ξa → ξ̄ ȧ
c = ḡȧḃ ξ̄ḃ ξ̄ḃ ≡ (ξb)

∗.

We similarly define η̄ȧ → ηc
a = gabη

b, ηb ≡ (η̄b)
∗, and, consequently,

ψ → ψc =
(
ηc

a

ξ̄ ḃ
c

)
= Cψ̄T C ≡ iγ 2γ 0 =

(
iσ 2 0

0 −iσ 2

)
(H.13)

where C is the charge conjugation matrix.

Charge conjugation is a discrete, non-spacetime operation, which transforms

particles into antiparticles and vice versa: ψ → ψc, ψc → (ψc)c = ψ . The

condition ψ = ψc defines the Majorana spinor, a truly neutral field (with the

particles identical to the antiparticles) which has only two independent complex

components.

In the case m = 0, the Dirac equation splits into separate equations for ξ and

η̄, called the Weyl equations. They describe left- and right-handed massless fields,

which transform into each other under the space inversion, and are especially

important when treating neutrinos. In the four-component notation Weyl spinors

ξ and η̄ may be represented as chiral projections

ψ∓ = P∓ψ ψ− =
(
ξ

0

)
ψ+ =

(
0

η̄

)
(H.14a)

where P∓ are the projection operators:

P∓ = 1
2
(1 ± iγ5) γ5 = γ0γ1γ2γ3 = −i

(
1 0

0 −1

)
. (H.14b)
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Exercises

1. Show that the Lorentz transformations of coordinates in M4 that describe a

rotation by angle θ around the x1-axis and a boost with velocity v = tanhϕ

along the x1-axis, are described by the following matrices:

R1 =




1 0 0 0

0 1 0 0

0 0 cos θ sin θ

0 0 − sin θ cos θ




L1 =




coshϕ − sinhϕ 0 0

− sinhϕ coshϕ 0 0

0 0 1 0

0 0 0 1


 .

2. Demonstrate that the mapping (H.4b) is a homomorphism of SL(2,C) on

L0, and derive equation (H.4c).

3. Show that the generators M i and K i in the spinor representations ( 1
2
, 0) and

(0, 1
2
) have the form

r1(M
1) = σ23 = − 1

2
iσ 1 r1(K

1) = σ01 = 1
2
σ 1

r2(M
1) = σ̄23 = − 1

2
iσ 1 r2(K

1) = σ̄01 = − 1
2
σ 1

and similarly for the other components.

4. Show that a finite rotation of the spinor ξ by angle ω23 = θ around the

x1-axis is described by the matrix

A = e
− 1

2
iθσ 1

= cos
θ

2
− iσ 1 sin

θ

2

which is unitary, A+ = A−1, and obeys the conditions A(0) = 1, A(2π) =
−1. Find the related transformations of the four-vector xµ in M4.

5. Show that a finite boost of the spinor ξ̄ with velocity v = tanhϕ (ω01 = ϕ)

along the x1-axis is described by the matrix

A = e
− 1

2
ϕσ 1

= cosh
ϕ

2
− σ 1 sinh

ϕ

2

which is Hermitian, A+ = A. Find the related transformations of the four-

vector xµ in M4.

6. Prove the following relations:

σ
µ

aḃ
σ̄ ċd
µ = 2δd

a δ
ċ

ḃ
(the completeness relation)

Tr(Gσµ)Tr(H σ̄µ) = 2 Tr(G H ).

7. Find the transformation laws of ξσµη̄ and ξσµνη under SL(2,C).



432 Lorentz group and spinors

8. Show that anticommuting spinors obey the following identities:

θaθb = 1
2
εab(θθ) (ξη)∗ = (η̄ξ̄ )

ξη = ηξ ξ̄ η̄ = η̄ξ̄ (ξσµη̄)∗ = (ησµξ̄ )

ξσµη̄ = −η̄σ̄µξ [(σµη̄)a]∗ = (ησµ)ȧ .

The complex conjugation is defined so as to reverse the order of spinors.

9. Prove the following Fierz identities:

(θξ)(θη) = − 1
2
(θθ)(ξη) (ξσµη̄)(σ̄µη)

ȧ = −2(ξη)η̄ȧ

2ξa η̄ḃ = (ξσµη̄)σ̄ ḃa
µ (ξ1ξ2)(η̄1η̄2) = − 1

2
(ξ1σ

µη̄1)(η̄2σ̄µξ2).

10. Show that the Majorana condition ψc = ψ is consistent with the space

inversion symmetry provided we choose IP = iγ 0. What happens if

IP = γ 0?



Appendix I

Poincaré group and massless particles

The finite dimensional IRs of the Lorentz group studied in appendix H are non-

unitary. These representations cannot be associated with elementary physical

objects, because the invariants of an IR do not correspond directly to the physical

invariants of elementary particles, the mass and the spin (the same conclusion

also holds for infinite dimensional unitary representations). Only when we add

translations and enlarge the Lorentz group to the whole Poincaré group, do we

obtain proper description of the elementary particles.

In this appendix we give a short review of the Poincaré group, with an

emphasis on the properties which characterize the massless particles and gauge

symmetries in field theory (Carruthers 1971, Novozhilov 1972, Van Dam 1974,

Barut and Raczka 1977).

The most general linear transformation of coordinates between two inertial

frames in M4 is obtained by composing a Lorentz transformation and a

translation:

x ′µ = �µ
νxν + aµ. (I.1a)

The resulting ten-parameter group is called the Poincaré group P . Denoting the

elements of P by g = (�, a), the group multiplication law reads:

(�2, a2)(�1, a1) = (�2�1, a2 +�2a1). (I.1b)

This shows that P is not a direct product of the Lorentz transformations and

translations (this structure is known as the semidirect product).

The Lie algebra. In order to find the Lie algebra of the Poincaré group, consider

a scalar field φ(x) which transforms under P according to

φ′(x ′) = φ(x) or φ′(x) = φ(�−1(x − a)) ≡ U(g)φ(x)

where U(g) represents the action of P on scalar fields. For infinitesimal Poincaré

transformations the operator U takes the form

U(g) = 1 + 1
2
ωµν Lµν + aµPµ

433
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where Mµν = xµ∂ν − xν∂µ and Pµ = −∂µ are Poincaré generators in the

particular representation, which satisfy the following Lie algebra:

[Mµν , Mλρ ] = ηνλMµρ − ηµλMνρ − ηνρMµλ + ηµρ Mνλ

[Mµν , Pλ] = ηνλPµ − ηµλPν [Pµ, Pν] = 0.
(I.2)

Note that there exist representations in which Mµν and Pµ differ from these

expressions, obtained in the space of scalar fields.

Very general considerations in quantum field theory require the symmetry

operators, which relate the quantum states in different reference frames, to be

either unitary or anti-unitary. If the symmetry group is continuously connected

to the identity, the symmetry operators are unitary, which is why we are going

to consider only unitary representations of P . Since P is simple, connected and

non-compact, all its unitary IRs are necessarily infinite-dimensional.

The universal covering group. Let P0 be the subgroup of the Poincaré group

which contains the elements of the restricted Lorentz group L0 and translations.

It is continuously connected to the identity, and also double connected, like L0.

Denote the related universal covering group by P̄ . Starting from the fact that the

universal covering group of L0 is SL(2,C), we find that a general element of P̄

has the form ḡ = (A, a), where A ∈ SL(2,C), a = aµσ
µ. The composition law

takes the form

(A2, a2)(A1, a1) = (A2 A1, a2 + A2a1 A+
2 ). (I.3a)

From this, we obtain the important relation

(A, a) ≡ (1, a)(A, 0) = (A, 0)(1, A−1a A−1+) (I.3b)

which will be useful for constructing unitary IRs of the Poincaré group in terms

of the related representations of translations (1, a) and Lorentz transformations

(A, 0).

For infinitesimal transformations ḡ, the operator U(ḡ), which represents the

group P̄ in some representation space, is close to the identity:

U(ḡ) = 1 + 1
2
ωµν Mµν + aµPµ. (I.4)

The generators Mµν and Pµ satisfy the Lie algebra (I.2), in accordance with the

local isomorphism of P̄ and P0.

The invariants. Using the generators Pµ and Mµν , we now construct invariant

operators the eigenvalues of which may be used to characterize the IRs of P̄ . It

is useful to introduce the notation Pµ = ipµ and Mµν = imµν , where pµ and

mµν are Hermitian in unitary representations and have a more direct physical

interpretation.
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There is only one general invariant composed from the momentum

components:

pµ pµ = m2. (I.5a)

For m2 ≥ 0, the quantity m is interpreted as the rest mass of a system. In this

case, we can define another invariant function of the momentum components:

ǫ = the sign of p0 (I.5b)

which is positive on physical states. The invariance of ǫ is a consequence of the

fact that P0 is orthochronous (�0
0 > 0).

From the generators Pµ and Mµν , we can construct the four-vector

Wµ ≡ 1
2
εµνλσ MνλPσ (I.5c)

which commutes with Pµ. Its square is also an invariant object. The physical

meaning of W 2 is easily seen for m2 > 0: in the rest frame, the invariant W 2/m2

is equal to the square of the angular momentum M2, i.e. to the square of the

intrinsic spin. When m2 = 0, the square W 2/m2 is replaced by the helicity λ, as

we shall see.

The unitary IRs of P̄ are labelled by the invariants (m2,W 2 or λ, ǫ),

which describe elementary particle states in quantum field theory.

The little group. The Hilbert space of quantum field theory is a vector space in

which the action of P̄ is realized in terms of the operators U(ḡ), composed from

quantum fields. Vectors within an IR carry labels which characterize the invariant

physical properties of particle states (i.e. mass and spin). The set of all momentum

states {| p, s〉}, where s labels different spin states, can be chosen as the basis of

an IR. The momentum eigenstates satisfy p̂µ| p, s〉 = pµ| p, s〉, where we have

used the hat to denote quantum operators. Every momentum eigenstate realizes a

one-dimensional representation of the translations:

U(0, a)| p, s〉 = exp(−ip · a)| p, s〉. (I.6a)

Hence, in order to construct IRs of the whole P̄ it is sufficient to find the related

representations of the Lorentz transformations U(A, 0) ≡ U(A), as follows from

(I.3b).

Since an SL(2,C) transformation A maps pµ into p′µ, the action of U(A)

on | p, s〉 produces a state of momentum p′µ:

U(A)| p, s〉 =
∑

s ′
| p′, s′〉Ds ′s(A) p′µ = �µ

ν(A)pν (I.6b)

where D is a matrix acting on spin indices. We will specify this matrix using the

so-called little group method.
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A Hermitian matrix p = pµσ
µ transforms according to p′ = Ap A+.

Consider the elements of SL(2,C) that leave p invariant:

p = Ã p Ã+. (I.7)

The form of Ã depends on p, Ã = Ã(p), and the set of all matrices Ã(p) forms a

subgroup of SL(2,C)—the little group L(p) associated with the momentum p.

If momenta p and p
◦

are related by a Lorentz transformation,

p = α(p, p
◦
)p
◦
α+(p, p

◦
)

the little groups L(p) and L(p
◦
) are isomorphic and

Ã(p) = α(p, p
◦
) Ã(p

◦
)α−1(p, p

◦
).

Thus, for a given p2 = m2, it is sufficient to consider the little group of a particular

momentum p
◦

, the standard momentum, which may be chosen arbitrarily.

The operator α(p, p
◦
) is called the Wigner operator. Using the relations

p′ = Ap A+ p = α( p)p
◦
α+( p) p′ = α( p′)p

◦
α+( p′)

where α( p) ≡ α(p, p
◦
), we find that an arbitrary matrix A in SL(2,C) may be

represented as

A = α( p′) Ã(p
◦
)α−1( p). (I.8)

The operator α( p) is not uniquely defined, since α( p) and α( p) Ã(p
◦
) produce

the same effect on p
◦

. However, if we fix α( p), the relation between A and Ã(p
◦
)

becomes unique.

Let us now clarify the role of the little group in constructing IRs of the

Lorentz group. The relation | p, s〉 = U [α( p)]| p
◦
, s〉 implies

U(A)| p, s〉 = U(A)U [α( p)]| p
◦
, s〉.

Since A(p)α( p) = α( p′) Ã(p
◦
), we find

U(A)| p, s〉 = U [α( p′)]U [ Ã(p
◦
)]| p

◦
, s〉

= U [α( p′)]
∑

s ′
| p
◦
, s′〉Ds ′s [ Ã(p

◦
)] =

∑

s ′
| p′, s′〉Ds ′s [ Ã(p

◦
)].

Therefore, in order to find the IRs of the Lorentz transformations U(A), it is

sufficient to find the matrix D only for the standard momentum p
◦

.

It is now easy to conclude that a unitary IR of P̄ has the form

U(A, a)| p, s〉 = exp(−ip′ · a)
∑

s ′
| p′, s′〉Ds ′s [ Ã(p

◦
)] p′ = �(A)p (I.9)

where Ds ′s is a unitary IR of the little group for the standard momentum.
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Unitarity and irreducibility of the representations of P̄ are directly

related to the same properties of the little group.

According to the value of p2, there are four classes of representations of P̄ :

(1) p2 > 0, (2) p2 < 0, (3) p2 = 0 and (4) p = 0 (the first and third cases

correspond to physical states). We now give a detailed account of the third case,

which describes massless particle states.

Unitary representations for m2 = 0. The representations on massless states

are particularly interesting for a better understanding of the structure of gauge

theories. Since p2 = 0, the standard momentum may be chosen as p
◦ µ =

ω(1, 0, 0, 1), so that p
◦ = ω(1 − σ 3). The little group of p

◦
is defined by

Ã(1 − σ 3) Ã+ = 1 − σ 3.

For infinitesimal Ã, this equation yields

Ã = t (ε)u(θ)

t (ε) = 1 + 1
2
(σ 1 − iσ 2)ε u(θ) = 1 − 1

2
iσ 3θ

(I.10)

where ε is a complex and θ a real parameter. If we write ε = ε1 + iε2, it follows

that u(θ) and t (ε) define the Euclidean group E(2)—the group of rotations and

translations in the Euclidean plane E2.

The Wigner operator is determined from the relation

α( p)ω(1 − σ 3)α+( p) = | p|σ 0 + pασ
α ≡ pµσ

µ.

The meaning of the little group can be clarified by looking at the form of

U(ḡ) for infinitesimal ḡ. Replacing the infinitesimal transformations (I.10) in

(H.4b), we find the following values for ωµ
ν = �µ

ν − δµν :

ω12(θ) = θ ω02(ε) = ω32(ε) = ε2 ω01(ε) = ω31(ε) = ε1

so that U(ḡ) takes the form

U(θ, ε) = 1 + θM12 + ε1 E1 + ε2 E2

E1 ≡ M01 + M31 E2 ≡ M02 + M32.
(I.11)

The little group algebra generated by E1, E2 and M12 is isomorphic to the Lie

algebra of E(2):

[E1, E2] = 0 [M12, E1] = E2 [M12, E2] = −E1. (I.12)

IRs of the group E(2) are labelled by the eigenvalues t = (t1, t2) and λ of

the generators −iE = −i(E1, E2) and −iM12 = m12, respectively. Hence, the

state vectors are | p, t, λ〉.
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For t2 > 0, the ‘momentum’ of E(2) takes continuous eigenvalues which

differ from zero, and we have infinite dimensional IRs. They should be interpreted

as particles of infinite spin. Since no such particles are observed in nature, these

representations are of no physical interest.

For t2 = 0, the group E(2) effectively acts as a group of rotations in the

Euclidean plane, i.e. as U(1). Its representations are one-dimensional, and are

labelled by real, integer or half-integer eigenvalues λ:

U(ḡ) → exp(iλθ) (λ = 0,± 1
2
,±1, . . .).

In the representation | p, t, λ〉, the four-vector Wµ can be written as Wµ =
iω(−M12,−E2, E1, M12). For t2 = 0, we find that Wµ is collinear with pµ:

Wµ = λpµ.

The quantity λ is the eigenvalue of the helicity operator λ = mp/| p|. The change

of sign of λ defines, in general, a different particle state (which may not exist

physically). The absolute value of λ is called the spin of the zero mass particle.

Thus, we conclude that massless states are classified by the eigenvalues λ of

the helicity operator, and have the transformation law

U(a, A)| p, λ〉 = exp(−i p · a) exp(iλθ)| p, λ〉. (I.13)

It is known that the photon has two helicity states, λ = ±1. This means that

the photon is described by a reducible representation of P̄: under space inversion,

the states with λ = ±1 transform into one another. These two states form an IR

of P̄ together with IP.

Massless states and covariance. If we demand space inversion symmetry, a

massless particle of spin 1 is described by two helicity states. Can these two

states be considered to be the components of one four-vector? In order to

examine this suggestion, let us first write the generators of the little group for

p
◦ µ = ω(1, 0, 0, 1) in the four-vector representation:

E1 =




0 1 0 0

−1 0 0 −1

0 0 0 0

0 1 0 0


 E2 =




0 0 1 0

0 0 0 0

−1 0 0 −1

0 0 1 0




M12 =




0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0




where we have used (Mµν)
λ
ρ = δλµǫνρ − δλν ǫµρ . The states of helicity λ = ±1,

the eigenstates of m12 = −iM12, have the form

ǫ(±1) =
1√
2
(ǫ(1) ± iǫ(2))
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where ǫ(1) = (0, 1, 0, 0) and ǫ(2) = (0, 0, 1, 0). They transform into one another

under space inversion. However, the four-vectors ǫ(1) and ǫ(2) are not invariant

under E(2) translations:

ǫ(a) → ǫ(a) + t ′a(1, 0, 0, 1) = ǫ(a) + ta p
◦

a = 1, 2.

Hence, they cannot be used to describe two polarization states of the photon.

These states, however, can be described as the equivalence classes of these four-

vectors,

{ǫ(1) + t1 p
◦ } {ǫ(2) + t2 p

◦ }
which are invariant under E(2) translations. For the general momentum pµ, the

polarization states of the photon are described by the equivalence classes

{ǫ(1) + t1 p} {ǫ(2) + t2 p}
p · ǫ(1) = p · ǫ(2) = ǫ(1) · ǫ(2) = 0.

(I.14)

Two four-vectors in the same equivalence class are related to each other by a

gauge transformation: ǫµ → ǫ′µ = ǫµ + t pµ.

In the Lagrangian formulation, the dependence of the theory on the classes

of equivalence, and not on the individual four-vectors ǫ, is ensured by the gauge

invariance:

(a) the Lagrangian of the free electromagnetic field depends only on the gauge

invariant combination pµǫν − pνǫµ; and

(b) the interaction with matter is of the form ǫµ Jµ, where Jµ is the conserved

current.

Let us now try, in analogy with the photon, to describe a massless particle

with helicities λ = ±2, the graviton, by a symmetric tensor of rank 2. Choosing

the same p
◦

, the generators of the little group take the form

(E1)
i j

kl = (E1)
i
kδ

j
l + (E1)

j
lδ

i
k

and similarly for E2 and M12. Here, (E1)
i
k is the four-vector representation of

E1. The linear polarization states are described by the tensors

ǫ(1) =
1√
2




0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


 ǫ(2) =

1√
2




0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0




which are obtained from the symmetrized product ǫ
µ
λ ǫ

ν
(λ′) by subtracting the

trace. Demanding the invariance under E(2) translations leads to the following

definition of the classes of equivalence:

{ǫµν
(1)(p)+ pµtν1 + pν t

µ

1 | p · t1 = 0}
{ǫµν

(2)(p)+ pµtν2 + pν t
µ

2 | p · t2 = 0}
pµǫ

µν

(λ)
= 0 ǫ

µν

(λ)
= ǫ

νµ

(λ)
ηµνǫ

µν

(λ)
= 0.

(I.15)
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The gauge invariance of the theory is ensured by demanding that

(a) the Lagrangian of the free graviton is gauge invariant; and

(b) the tensor ǫµν interacts with a symmetric, conserved current Jµν .

Fields and states. We have seen in appendix H that Lorentz transformations of

the classical Dirac field have the form

ψ ′(x ′) = S(A)ψ(x) x ′ = �x

where the matrix S(A) realizes a four-dimensional non-unitary representation of

L̄. This is a typical situation for an arbitrary spinor field. We should note that

since we are dealing with fields there is a dependence on x in the transformation

law, so that the complete transformation defines, in fact, an infinite dimensional

representation. Spinor fields are used to construct covariant field equations,

whereby these fields acquire definite mass and spin. On the other hand, we have

also seen that infinite dimensional unitary representations of the Poincaré group

P̄ in the Hilbert space of states describe particle states of definite mass and spin.

Is there any direct relation between these two results?

In quantum field theory, we have both physical states and quantum field

operators. A field operator is a spinor field, an object which, in general, does not

carry a definite spin. There is an important result of quantum field theory which

gives an algorithm for constructing the field operators of definite spin, such that

they are subject to no additional conditions at all. The construction is realized with

the help of the creation and annihilation operators corresponding to one-particle

states, and provides a direct bridge between the representations on states and on

fields.

The same result can also be simply illustrated at the classical level. Consider

a four-vector field Aµ(x), transforming under P̄ according to

A′µ(x ′) = �µ
ν Aν(x) x ′ = �x + a.

From the behaviour of the field under Lorentz transformations, we know that it

carries spin j = 0, 1. Let us now impose the conditions

∂µAµ = 0 (�+ m2)Aµ = 0

with m �= 0. The first condition eliminates the spin component j = 0, whereas

the second one ensures that the field has mass m. Indeed, in the rest frame, the

first condition has the form pµAµ = m A0 = 0, i.e. A0 = 0, and we are left with

a three-vector A which carries spin j = 1. In this way, we have constructed a

field of spin j = 1 and mass m starting from a four-vector Aµ. Both of these

conditions can be realized by adopting the following free field equation:

∂µ(∂
µAν − ∂ν Aµ)+ m2 Aν = 0.
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Differentiating this equation we obtain ∂ · A = 0, whereupon the equation itself

reduces to (�+ m2)Aµ = 0.

The previous example illustrates that

relativistic equations for free fields represent kinematical conditions

which ensure that a given field has a definite mass and spin.

Usually field equations are obtained from the action principle.

Exercises

1. (a) Use the multiplication law (I.1b) to prove the relations:

g−1(�, a) = g(�−1,−�−1a)

g(�)Ta = T�a g(�)

g−1(�)g(�′, a)g(�) = g(�−1�′�,�−1a)

where Ta ≡ g(1, a), g(�) ≡ g(�, 0).

(b) Derive the transformation properties of the Poincaré generators Pµ and

Mµν under g(�), using the last relation with �′ = 1 and a = 0,

respectively.

(c) Find the algebra of the Poincaré generators.

2. Derive the Lie algebra of the universal covering group P̄ using the

composition rule (I.3a).

3. Consider the set of scalar fields φ(x) satisfying the Klein–Gordon equation

(�+m2)φ = 0. Show that the operators Lµν = xµ∂ν−xν∂µ and Pµ = −∂µ
are anti-Hermitian within the scalar product

(φ1, φ2) = i

∫
d3x [φ∗

1(x)∂0φ2(x)− ∂0φ
∗
1 (x)φ2(x)].

4. Show that the four-vector Wµ, defined in (I.5c), satisfies the following

relations:

W 2 = MνλMνρ PλPρ − 1
2

MνλMνλP2

Wν = [Pν,C] C ≡ 1
8
εµνλρMµν Mλρ

[Pµ,Wν ] = 0 [Mµν,Wλ] = ηνλWµ − ηµλWν [Mµν ,W 2] = 0.

5. Find the form of matrix Ã that describes infinitesimal transformations of the

little group for m2 = 0. Then construct the operator U(ḡ).

6. Show that in the space of massless states |p◦ 〉, with the standard momentum

p
◦ µ = ω(1, 0, 0, 1), the components of Wµ satisfy the commutation

relations

[W1,W2] = 0 [M12,W1] = W2 [M12,W2] = −W1.
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7. (a) Verify the following commutation rules in the space of massless states:

[m12,W±] = ∓W± [W+,W−] = 0 [W 2,m12] = 0

where W± = W1 ± i W2 and m12 = −i M12.

(b) Find the spectrum of the operators m12 and W 2.

8. Show that in the case p2 > 0, the standard momentum may be chosen in the

form p
◦ = (m, 0, 0, 0) and the little group is SO(3).



Appendix J

Dirac matrices and spinors

In this appendix, we review basic conventions and properties of the Dirac matrices

and spinors, which are used in discussing supersymmetry and supergravity

(Sohnius 1985, Srivastava 1986, van Nieuwenhuizen 1981).

Dirac matrices. Dirac matrices in a flat space of dimension d are defined as IRs

of the algebra

{γi , γ j } = 2ηi j . (J.1)

In even dimensions IRs of the Dirac algebra are complex n×n matrices,

where n = 2d/2. All IRs are equivalent, i.e. any two representations γi

and γ ′
i are connected by the relation γi = Sγ ′

i S−1, where S is a non-

singular matrix.

If γi is an IR of the Dirac algebra, then

±γi ± γ+
i ± γ T

i ± γ ∗
i

are also IRs. On the basis of this theorem, we can introduce non-singular matrices

A and C , such that

Aγi A−1 = γ+
i C−1γi C = −γ T

i . (J.2)

Going now to the four-dimensional Minkowski space (d = 4, n = 4), we

define the γ5 matrix,

γ5 ≡ γ0γ1γ2γ3 {γ5, γi } = 0 γ 2
5 = −1 (J.3)

which anticommutes with all γi . The matrices A,C and γ5 allow us to transform

any two of these representations into each other. Thus, for instance,

D−1γi D = −γ ∗
i D ≡ C AT .

443
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Applying the Hermitian conjugation, transposition and complex conjugation to

the relations defining the action of A,C and D, respectively, we get

A = αA+ C = ηCT DD∗ = δ

where αα∗ = η2 = 1 and δ = δ+, for consistency.

By a redefinition A → ωA, with a suitable choice of phase and modulus

of a complex number ω, we can obtain α = |δ| = 1. The signs of δ and η

cannot be changed: they are determined by the dimension and the metric of the

space. In M4, the matrix C is necessarily antisymmetric, CT = −C , in order

for us to have ten symmetric (γi C, σi j C) and six antisymmetric (C, γ5C, γ5γi C),

linearly independent 4×4 matrices. Using any particular representation of gamma

matrices, we can show that δ = 1.

We summarize here the important properties of A,C and γ5 in M4:

A = A+ (Aγi )
+ = Aγi (Aσi j )

+ = −Aσi j

C = −CT (γi C)T = γi C (σi j C)T = σi j C

γ 2
5 = −1 Aγ5 A−1 = γ+

5 C−1γ5C = γ T
5

(J.4)

where σi j ≡ 1
4
[γi , γ j ]. Also,

γi C, σi j C are symmetric

C, γ5C, γ5γi C are antisymmetric.

The matrices A, Aγi , Aγ5γi are Hermitian, whereas Aγ5, Aσi j are anti-

Hermitian.

The commutation relations between σmn and γl are the same as those

between the Poincaré generators Mµν and Pλ:

[σmn, γl ] = ηnlγm − ηmlγn

[σmn, σlr ] = ηnlσmr − ηmlσnr + ηmrσnl − ηnrσml .

This is so because γi transforms according to the n-dimensional representation

( 1
2
, 1
2
) of SL(2,C), just as Pλ, and σmn are the Lorentz generators in that space.

The Dirac spinors. Dirac matrices act naturally on the space of complex four-

spinors ψα . Dirac spinors transform under the Lorentz transformations x ′ = �x

according to the rule

ψ ′(x ′) = S(�)ψ(x) S(�) ≡ exp( 1
2
ωmnσmn).

The space inversion is represented as ψ ′(x ′) = ηpγ
0ψ(x) (we choose ηp = i).

With the help of A, C and D, we can show that the representations S−1+, S−1T ,

S∗ and S are equivalent. We also verify that

γm = �m
n Sγ n S−1.
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The adjoint and charge-conjugate spinors are defined by

ψ̄ ≡ ψ+A ψc ≡ Cψ̄T = Dψ∗. (J.5)

The adjoint spinor ψ̄ transforms as ψ̄ ′(x ′) = ψ̄(x)S−1, whereas ψc transforms

in the same way as ψ . The matrix D in M4 can be chosen so that DD∗ = 1, i.e.

(ψc)c = ψ . The fields ψ and ψc have opposite charges.

For the anticommuting spinors we have the following identities:

(ψ̄Mχ)+ =
{
χ̄Mψ for M = 1, γ5, γi

−χ̄Mψ for M = γ5γi , σi j
(J.6)

as well as ψ̄cψc = ψ̄ψ and ψ̄cγiψc = −ψ̄γiψ . The Hermitian conjugation is

defined such that the order of spinor factors is reversed: (ψ̄χ)+ = χ+ψ̄+.

The Majorana spinors. In general, the four complex components of a Dirac

spinor are independent. The condition

ψc = ψ (J.7)

defines a Majorana spinor, which has only two independent complex components

and describes truly neutral field. The consistency of the definition (J.7) requires

(ψc)c = ψ , and the choice of the space inversion with z2
p = −1.

The Majorana condition is incompatible with the U(1) gauge symmetry,

ψ → ψ ′ = eiαψ . However, the chiral U(1) gauge symmetry may be consistently

defined:

ψ ′ = eαγ5ψ ψ̄ ′ = ψ̄eαγ5ψ ′
c = eαγ5ψc ψ̄ ′

c = ψ̄ceαγ5 .

We also note that the Majorana spinors satisfy the identities

ψ̄Mχ =
{
χ̄Mψ for M = 1, γ5, γ5γi

−χ̄Mψ for M = γi , σi j .
(J.8)

From this we obtain ψ̄γiψ = ψ̄σi jψ = 0, as well as the following reality

conditions:

(ψ̄Mχ)+ =
{
ψ̄Mχ for M = 1, γ5, σi j

−ψ̄Mχ for M = γi , γ5γi .
(J.9)

The chiral spinors. The chiral projections ψ∓ (left/right) are defined by

ψ∓ ≡ P∓ψ P∓ ≡ 1
2
(1 ± iγ5) (J.10)

where P∓ are chiral projectors that satisfy the conditions

PT
∓ = C−1 P∓C P+

± = AP∓A−1 P∓γi = γi P±.
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This implies ψ̄∓ = ψ̄P± and, consequently,

ψ̄Mχ =
{
ψ̄+Mχ− + ψ̄−Mχ+ for M = 1, γ5, σi j

ψ̄+Mχ+ + ψ̄−Mχ− for M = γi , γ5γi .
(J.11)

Every chiral spinor carries an IR of the Lorentz group: ψ− → S(�)ψ−,

ψ+ → S(�)ψ+. To realize the space inversion we need both ψ− and ψ+. Indeed,

the choice IP = iγ 0 yields IPψ∓ = iψ±.

Chiral spinors are used to describe massless fields of spin j = 1
2
, for which

the chirality and helicity stand in a 1–1 correspondence: ψ∓ have helicities

λ = ∓ 1
2

. Chiral spinors ψ∓ carry opposite chiral charges:

ψ ′
− = e−iαψ− ψ ′

+ = eiαψ+.

The Majorana condition ψ = ψc, expressed in terms of chiral spinors, reads

as (ψc)∓ = Cψ̄T
± .

The Fierz identities. Consider the complete set of complex 4 × 4 matrices

ŴA = {1, iγ 5, γm , γ 5γm , 2iσmn|m>n} γ 5 ≡ −γ5

as well as the set ŴA with lowered indices (m, n, 5). These matrices are

normalized according to

Tr(ŴA) = 0 (ŴA �= 1)

ŴAŴA = 1 Tr(ŴAŴB) = 4δA
B .

They are linearly independent and form a complete set: any complex 4×4 matrix

Ŵ can be decomposed in terms of ŴA as

Ŵ =
∑

cAŴ
A cA = 1

4
Tr(ŴŴA)

or, more explicitly,

Ŵmn = 1
4

∑
Ŵik (ŴA)ki (Ŵ

A)mn .

Since Ŵ is an arbitrary matrix, it follows that

1
4

∑
(ŴA)ki (Ŵ

A)mn = δimδkn .

Multiplying this equation with ψ̄1
k ψ

2
i ψ̄

3
mψ

4
n we obtain the following Fierz

rearrangement formula:

(ψ̄1ψ4)(ψ̄3ψ2) = − 1
4

∑
(ψ̄1ŴAψ

2)(ψ̄3ŴAψ4). (J.12)

Another form of this formula is obtained by the replacement ψ4 → ŴBψ4,

ψ2 → ŴCψ2.
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As an example, we display here several Fierz identities for Majorana spinors:

(ε̄2ψ)(χ̄ε1)+ (ε̄2γ5ψ)(χ̄γ5ε1)− (ε1 ↔ ε2) = −(ε̄2γµε1)(χ̄γ
µψ)

(ε̄γmψν)(ψ̄µγ5γm∂ρψλ)− (µ ↔ ν) = 0

εµνρλψ̄µγ
iψν ūγiψρ = 0

where ψµ = (ψµα) is a vector–spinor (Rarita–Schwinger field).

The two-component formalism. The Dirac spinor is a reducible representation

of the Lorentz group, which is most easily seen in the spinor representation of the

gamma matrices:

γm =
(

0 σm

σ̄m 0

)
γ5 = −i

(
1 0

0 −1

)

where σm ≡ (1, σ ), σ̄m ≡ (1,−σ ). In this representation, the matrices A, C and

D = C AT have the form

A = γ 0 C = iγ 2γ 0 =
(

iσ 2 0

0 −iσ 2

)
D = iγ 2 =

(
0 iσ 2

−iσ 2 0

)

and satisfy the conditions C+ = C−1 = −C , DD∗ = 1 (δ = 1).

Chiral spinors ψ−, ψ+ only have the two upper/lower components different

from zero, and are essentially two-component objects:

ψ− =
(
ξ

0

)
ψ+ =

(
0

η̄

)
ψ = ψ− + ψ+ =

(
ξ

η̄

)
.

Since the Lorentz generators are diagonal,

σ 0a = − 1
2

(
σ a 0

0 −σ a

)
σ ab = − 1

2
i

(
σ c 0

0 σ c

)
(a, b, c cyclic)

each spinor ψ−, ψ+ realizes a two-dimensional representation of the Lorentz

group with generators

(σmn)− = 1
4
(σm σ̄ n − σ nσ̄m) = [− 1

2
σ ,− 1

2
iσ ]

(σmn)+ = 1
4
(σ̄mσ n − σ̄ nσm) = [ 1

2
σ ,− 1

2
iσ ].

The transformation laws under infinitesimal transformations ωmn = [β, θ ] (a

rotation by angle θ and a boost with velocity β) are:

δ0ξ = (− 1
2
βσ − 1

2
iθσ )ξ δ0η̄ = ( 1

2
βσ − 1

2
iθσ )η̄.

The bar over η is to remind us that the η̄ have a different transformation law from

ξ . The finite Lorentz transformations are

S(�) =
(

M 0

0 M−1+

)

M = exp[ 1
2
ωmn(σmn)−] M−1+ = exp[ 1

2
ωmn(σmn)+]
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where det M = det M−1+ = 1 (this condition defines the group SL(2,C)). In the

two-component formalism, the quantities (σmn)− and (σmn)+ are usually denoted

as σmn and σ̄mn , respectively.

The charge conjugation operation is defined by

ψc ≡
(
ηc

ξ̄c

)
=
(

iσ 2η̄∗

−iσ 2ξ∗

)
.

It is usual to use different types of indices for ξ and η̄, ξ = (ξa), η̄ = (η̄ȧ); they

change under complex conjugation as ξ∗ = (ξ∗ȧ ) = (ξ̄ȧ), and η̄∗ = (η̄∗a) = (ηa).

Introducing the matrices

gab = i(σ 2)ab = εab (ḡ−1)ȧḃ ≡ ḡȧḃ = −i(σ 2)ȧḃ = −εȧḃ

we can write

(ηc)a = gab(η̄
∗)b ≡ (η̄∗)a (ξ̄c)

ȧ = ḡȧḃ(ξ∗)ḃ ≡ (ξ∗)ȧ

which shows that charge conjugation is realized as a complex conjugation

followed by raising or lowering of an index.

More details about the two-component formalism may be found in

appendix H.

The Weyl equations. If we set m = 0 in the Dirac equation, we obtain two

decoupled, Weyl equations:

(i∂0 − iσ a∂a)ξ = 0 (i∂0 + iσ a∂a)η̄ = 0. (J.13a)

The general solutions of these equations can be written as linear combinations of

plane waves. For the positive and negative frequency waves,

ξ±p = w±pe∓ip·x η̄±p = v±pe−ip·x

with p0 = | p|, the Weyl equations yield

(p0 + σ p)w±p = 0 (p0 − σ p)v±p = 0. (J.13b)

Hence, the spinors ξ±p , η̄±p are helicity eigenstates with λ = − 1
2
,+ 1

2
,

respectively.

The Weyl equations describe massless left-handed and right-handed fermion

fields, which transform into each other under space inversion. If only one of these

fields exists, space inversion is not a good symmetry.

The charge conjugate field ξ̄c = −iσ 2ξ∗ satisfies the same equation as

η̄. Charge conjugation transforms a left-handed particle to a right-handed

antiparticle. Note, however, that ξ̄c is a new right-handed field, different from η̄.

Choosing ξ̄c = η̄, we obtain a massless Majorana spinor (ξ, ξ̄c), which describes
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a truly neutral particle with two possible helicities (particles and antiparticles are

now identical).

The bilinear form jµ = w+σ̄µw = (w+w,−w+σw) is a Lorentz four-

vector (the current density). Multiplying the equation for w from left with w+,

we obtain the continuity equation: p · j = 0.

The spinor w may be normalized by the covariant condition

w+w = 2 p0.

Indeed, jµ = w+(1,−σ )w = 2(p0, p), as follows from the Weyl equations.

Let us introduce the projector on the states of helicity − 1
2
:

ρ−aḃ = waw
+
ḃ
.

From (p0 + σ p)ρ− = 0, ρ−(p0 + σ p) = 0 and the normalization condition, it

follows

ρ− = p0 − σ p = σ · p.

The projectors on the states with helicity + 1
2

are:

ρ ȧb
+ = vȧv+b ρ+ = (p0 + σ p) = σ̄ · p.

The complete four-dimensional projector is given by

ρ = ρ− ⊕ ρ+ = ww+ ⊕ vv+ =
(
σ · p 0

0 σ̄ · p

)
= p̂γ 0. (J.14a)

The expressions for ρ∓ may be represented as the chiral components of the

complete projector: ρ∓ = P∓ρP∓.

The quantities w and v can be easily rewritten as the equivalent four-spinors:

w → u− = (w, 0), v → u+ = (0, v). The complete projector expressed in terms

of u∓ has the form

u−u+− + u+u++ = p̂γ 0. (J.14b)

Exercises

1. (a) Show that the relation C−1γi C = −γ T
i implies C = ηCT .

(b) Prove that η = −1, demanding that the set of 16 matrices ŴAC in

M4 contains 10 symmetric and six antisymmetric linearly independent

matrices.

2. Prove the identities:

γ lγmγl = −2γm σmnσmn = −3

γ lγmγnγl = 4ηmn σmnγlσmn = 0

γ lσmnγl = 0 σ lrσmnσlr = σmn

σ i jσmnγ j = − 1
2
σmnγ i σ i jγmγ j = 1

2
γmγ i − 2ηim
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3. Prove the identities:

γmγnγl = −εmnlrγ5γ
r + ηmnγl − ηmlγn + ηnlγm

{γm, σnl } = −εmnlrγ5γ
r

2{σmn, σlr } = ηmrηnl − ηmlηnr − εmnlrγ5

2γ5σmn = −εmnlrσ
lr

εmnrlγ5σ
lk = −δk

mσnr + δk
nσmr − δk

r σmn .

4. (a) Verify the following relations:

C−1SC = S−1T AS A−1 = S−1+

D−1 SD = S∗ γm = �m
n Sγ n S−1.

(b) Find the transformation laws of the bilinear forms ψ̄ŴAψ under Lorentz

transformations and space inversion.

5. (a) Show that ψc = Cψ̄T is equivalent to ψ = Cψ̄T
c .

(b) Find the Lorentz transformation law of ψc.

6. Find the transformation laws for the bilinear forms ψ̄ŴAψ under chiral

transformations.

7. Show that Majorana spinors satisfy the relations:

ψ̄∓γiχ∓ = −χ̄±γiψ± ψ̄∓χ± = χ̄∓ψ±
ψ̄∓σi jχ± = −χ̄∓σi jψ±.

Then prove that ψ̄∓γ5γiχ∓ = χ̄±γ5γiψ± and ψ̄∓γ5χ± = χ̄∓γ5ψ±.

8. Show by explicit calculation that the matrices A = γ 0, C = iγ 2γ 0 and

D = C AT in the spinor representation obey the relations:

Aγm A−1 = γ+
m C−1γmC = −γ T

m

DD∗ = 1 C+ = C−1 = CT = −C.

Then prove that (ψc)c = ψ .

9. Prove the following relations in the spinor representation:

σm = �m
n Mσ n M+ σ̄m = �m

n M−1+σ̄ n M−1.



Appendix K

Symmetry groups and manifolds

In this appendix, we review some aspects of symmetries of Riemann spaces

that are important for constructing higher-dimensional Kaluza–Klein theories

(Weinberg 1972, Choquet-Bruhat et al 1977, Barut and Raczka 1977, Dubrovin

et al 1979, Zee 1981).

Isometries. Let X be an N-dimensional differentiable manifold. Consider

an infinitesimal transformation of the points in X described by the change of

coordinates

xα %→ x ′α = xα + t Eα(x) |t| ≪ 1 (K.1)

where t is an infinitesimal parameter, and Eα a tangent vector on the curve x ′(t)
at t = 0. Under this transformation, a tensor field T (x) becomes the transformed

tensor field T ′(x ′). The Lie derivative of T (x) characterizes the change of form

of T (x) under (K.1):

LET |x = lim
t→0

−1

t
[T ′(x)− T (x)]. (K.2)

The Lie derivative is closely related to the concept of form variation: δ0T (x) =
T ′(x)− T (x).

For a scalar field we have φ′(x ′) = φ(x), or φ′(x) = φ(x − t E); keeping

terms to order t , we obtain LEφ(x) = Eα∂αφ(x). The transformation law of a

vector field u(x) has the form

u′α(x ′) = ∂x ′α

∂xβ
uβ(x) ≈ (δαβ + t∂β Eα)uβ(x).

If we change the variables according to x ′ → x ′ − t E = x , x → x − t E , and

drop the second order terms in t , we find

LEuα(x) = Eβ∂βuα − uβ∂β Eα.

451



452 Symmetry groups and manifolds

In a space with the Christoffel connection, the ordinary derivatives in this equation

may be replaced by covariant derivatives. Going through similar manipulations

we can evaluate the Lie derivative of any tensor field.

Now we restrict our attention to a Riemann space V (X, g) and consider a

coordinate transformation that leaves the form of the metric invariant: g′αβ(y) =
gαβ(y). Any such transformation is called an isometry of V . An infinitesimal

isometry is determined by the condition

LEgαβ ≡ ∂αEγ gγβ + ∂β Eγ gαγ + Eγ ∂γ gαβ = 0.

Replacing ∂ here by ∇ and using ∇γ gαβ = 0, we deduce the relation

∇αEβ + ∇β Eα = 0 (K.3)

which is known as the Killing equation. Thus, the coordinate transformation (K.1)

is an isometry of V if the vector Eα satisfies the Killing equation. The problem

of determining all infinitesimal isometries of a given Riemann space V is now

reduced to the problem of determining all solutions Eα
a of the related Killing

equation. To each set of solutions {Eα
a , a = 1, 2, . . . , n} there corresponds an

isometry transformation with n parameters ta :

δxα = ta Eα
a (x) = ta ea xβ ea ≡ Eα

a ∂α (K.4)

where the differential operators ea are the generators of the isometry.

All Killing vectors Eα
a are the tangent vectors of V , but their number may

be higher than N , the dimension of V . We shall see that the maximal number of

independent Killing vectors is N(N + 1)/2.

In order to gain a deeper understanding of the isometries, it is useful to relate

their structure to the concept of a group. After giving a short recapitulation of

topological and Lie groups, we shall introduce the concept of a Lie group of

transformations on a manifold, and then return again to the isometries of Riemann

spaces.

Topological groups. One and the same set G may have the structure of both a

group and a topological space. Considered as a group, the set G is supplied with

a group multiplication law ∗. The same set may be equipped with a topological

structure by specifying a topology τ on G.

A set G is a group if there exists an internal binary operation ∗ on G (for any

g, h in G, the product g ∗ h belongs to G), such that

the group operation is associative: g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3;

there is an element I in G, called the identity, such that I ∗ g = g ∗ I = I, for

all g ∈ G;

for each g ∈ G there is an element g−1 in G, called the inverse of g, such

that g ∗ g−1 = g−1 ∗ g = I.
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We shall often omit the group multiplication sign ∗ for simplicity.

A mapping f from a group (G, ∗) to a group (H, ·) is said to be a

homomorphism if f (g1 ∗ g2) = f (g1) · f (g2). If f is a 1–1 correspondence,

it is called an isomorphism.

As far as the group properties are concerned, isomorphic groups may be

considered to be identical. Isomorphisms play the same role for groups as

homeomorphisms do for topological spaces.

Let {G, ∗} be a group, and {G, τ } a topological space. Then the triple

{G, ∗, τ } is said to be a topological group if the operations which define the group

structure are continuous, i.e. if

the inverse mapping g %→ g−1 is continuous; and

the multiplication mapping (g1, g2) %→ g1 ∗ g2 is continuous.

A set G may be both a group and a topological space without necessarily

being a topological group. Let us briefly mention some important properties of

topological groups.

(1) One of the most powerful notions in topology is that of compactness. Every

closed surface in E3 with a finite diameter, such as the sphere or the torus, may

be described as closed and bounded. The concept of the boundedness of closed

sets in E3 can be related to collections of open sets, known as open coverings,

using a generalization of the Heine–Borel theorem: X is a closed and bounded

subspace of En iff every open covering of X contains a finite subcovering. The

description in terms of open coverings has an advantage, as it avoids using the

non-topological concept of boundedness.

This result suggests the following definition: a topological space {X, τ }
is compact if every covering of X contains a finite subcovering. Thus, every

bounded and closed subset of En is compact. A topological group {G, ∗, τ } is

compact if {G, τ } is a compact topological space.

(2) There is an important property of topological spaces, which represents, as we

shall see, an embryo of the idea of symmetry in Riemann spaces. A topological

space {X, τ } is said to be homogeneous if for each x ∈ X and y ∈ X there exists

a homeomorphism f : X → X that maps x into y.

It follows that every topological group is necessarily homogeneous. Indeed,

for any two elements g1 and g2 in G, there is a mapping g1 %→ g2 = γ g1,

where γ ≡ g2g−1
1 , which is a homeomorphism of G onto G, as a consequence

of the uniqueness and continuity of group multiplication. The homogeneity

of a topological group G ensures that any local property determined in the

neighbourhood of one point is the same as in the neighbourhood of any other

point. For this reason, we usually study the local properties of G in the

neighbourhood of the identity element.

(3) The concept of connectedness is fairly clear intuitively: a topological space

X is connected if it cannot be expressed as a union of two disjoint non-empty

(open) sets. A topological space is said to be arcwise connected if, given any two
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points x and y in X , there is a path (continuous curve) from x to y. Any arcwise

connected topological space is connected.

The union of all connected subspaces of X containing a point x is called the

(connected) component of x . A component of identity G0 of topological group G

is a subgroup of G.

(4) The concept of homotopy plays an important role in further development of

the idea of connectedness. Let x and y be two points in X connected by a path

P(x, y). Two paths P0(x, y) and P1(x, y) are homotopic if there is a continuous

deformation transforming P0(x, y) to P1(x, y). A path is closed if its end and

origin coincide. A closed path at x is called a null-path at x if the whole path

coincides with x .

A topological space X is said to be simply connected if every closed path in

X is homotopic to a null-path. If there are m homotopy classes, the space is said

to be m-fold connected.

For any multiply connected space X we can define a covering space of X

which is simply connected—the universal covering space of X (a covering space

X̄ of X may be regarded as an m-fold wrapping of X̄ around X , defined by a

continuous mapping π : X̄ → X).

Example 1. Let us now illustrate the previous exposition by considering the

group of rotations of E3. A rotation of the Euclidean space E3 is the mapping

R : E3 → E3 which preserves the Euclidean norm of E3 and its orientation. An

arbitrary rotation of a point x = (x1, x2, x3) is described by an action of a 3 × 3

orthogonal matrix with unit determinant: xα %→ x ′α = Rα
βxβ . The set of these

matrices defines the group SO(3).

Each rotation can be represented as a rotation through an angle ω around a

unit vector n (n2 = 1):

x ′ ≡ R(n, ω)x = x cosω + n(nx)(1 − cosω)+ x ∧ n sinω (0 ≤ ω ≤ π)

where the orientation of n is given in terms of the spherical angles θ and ϕ:

n = (sin θ cosϕ, sin θ sin ϕ, cos θ) (0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π).

We choose ρ = ωn to be the set of parameters which identify elements of the

group. The set of all rotations is determined by the set of values of ρ belonging

to a three-dimensional Euclidean ball with radius π and its centre at ρ = 0.

However, since the rotations corresponding to ρ = πn and ρ = −πn are the

same, the end points of each diameter should be identified. Thus, the space of

parameters is a real, three-dimensional projective space RP3 (a space of lines in

E4 passing through the origin or a sphere S3 with antipodal points identified).

If a path intersects the boundary of the ball at some point, it is considered to

enter the ball at the related antipodal point. The parameter space can be equipped

with a natural topology, whereupon, by ‘translating’ that topology to SO(3), the
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group SO(3) becomes the topological group. Here are some of the topological

properties of SO(3).

(1) The group of rotations is compact since the space of parameters is a

compact topological space.

(2) It is also homogeneous as it is a topological group.

(3) The group of rotations is connected: given an arbitrary rotation, there is

always a path containing that rotation and the identity element ρ = 0.

(4) An arbitrary point ωn (ω ≥ 0) can be reached from the centre by using

two different paths:

(i) the first path l1 is a ‘direct’ one: ρ(t) = tn (0 ≤ t ≤ ω);

(ii) the second path l2 first goes ‘backwards’ from the centre to ρ = −πn,

ρ1(t
′) = −t ′n (0 ≤ t ′ ≤ π), then it ‘jumps’ to the antipodal point

ρ = πn, and then continues to follow the path ρ2(t
′′) = (π − t ′′)n

(0 ≤ t ′′ ≤ π − ω).

These two paths are not homotopic. In a similar manner, we can conclude

that there are two homotopy classes of closed paths, i.e. SO(3) is double

connected.

Lie groups. If we introduce local coordinates into a topological group, and then

the concept of differentiability, we come to a differentiable group manifold, or a

Lie group.

A group {G, ∗} is a Lie group if G is a differentiable manifold such that the

differentiable structure is compatible with the group structure, i.e.

the inverse mapping g %→ g−1 is differentiable; and

the multiplication mapping (g1, g2) %→ g1 ∗ g2 is differentiable.

Very often the differentiable structure is enlarged by introducing an analytic

structure which enables us to use the convergent Taylor expansion in the finite

neighbourhood of each point.

Let the parameters tα (α = 1, 2, . . . , n) be local coordinates of Lie group G

in the neighbourhood of the identity element, c(t) a continuous curve in the space

of parameters passing through the null point c(0) = (0, 0, . . . , 0), and ea = Eα
a eα

its tangent vector at c(0). With each curve c(t) we can associate the curve C(t) in

the group manifold, such that C(0) = I. The tangent vector to the curve C(t) at

t = 0 is given by the expression

Ta = Eα
a ∂αC(t)|t=0 ≡ eaC(t)|t=0

and is called the generator of the group. With each generator Ta we can associate

the operator ea = Eα
a ∂α—the tangent vector to c(t). If the curve c(t) is chosen so

as to coincide with the tα coordinate line, its tangent vector will be equal to the

coordinate tangent vector eα: ea = δαa eα. Then, for sufficiently small values of

the parameters, each element C(t) lying close to the identity may be represented
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as C(t) ≈ I + ta Ta , where ta = δa
αtα . We can show that the linearly independent

generators of G satisfy the Lie algebra,

[Ta, Tb] = fab
cTc fab

c = − fba
c (K.5)

where the structure constants fab
c obey the Jacobi identity.

The study of Lie algebras is of fundamental importance in the study of Lie

groups. For each Lie group G we can define its Lie algebra but the inverse

statement is not, in general, true. Different Lie groups may have the same Lie

algebra, but be very different in the large (such Lie groups are locally isomorphic).

However, with each Lie algebra we can associate a unique simply connected Lie

group, Ḡ. For any (multiply) connected Lie group G with the same Lie algebra,

the group Ḡ is the universal covering group of G. Each group G from this family

is locally isomorphic to Ḡ/Z , where Z is a discrete invariant subgroup of Ḡ. The

group Ḡ can be homomorphically mapped onto G. It has an important role in the

theory of group representations, since all of its IRs are single-valued.

Example 1 (continued). By introducing suitable local coordinates, the group

SO(3) becomes the Lie group of dimension three. The set of parameters ρ =
(ω, ϕ, θ) cannot be used as a global coordinate system on the group manifold,

since it is singular at R = I, where ω = 0 but ϕ and θ are not determined. A

similar problem also exists in the familiar Euler parametrization. Singular points

arise in any parametrization of the rotation matrices so that the coordinates have

to be introduced locally. The appearance of the singularity about R = I makes

the ρ parametrization particularly inappropriate for defining the group generators

as the tangent vectors at the identity element.

A more appropriate parametrization can be obtained by representing an

arbitrary rotation as a composition of the following three elements: a rotation

through an angle θ1 about x1, a rotation through θ2 about x2 and, finally, a rotation

through θ3 about x3. The first rotation matrix has the form

R1(θ
1) =

(
1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1

)

and similarly for R2(θ
2) and R3(θ

3). An arbitrary rotation is given as

R(θ1, θ2, θ3) = R3(θ
3)R2(θ

2)R1(θ
1)

where −π ≤ θ1 < π , −π ≤ θ2 < π and −π/2 ≤ θ3 ≤ π/2. The singular

point no longer occurs at R = I, but rather at θ3 = ±π/2. By differentiating the

rotation matrix along θa at the point θa = 0, we obtain the rotation generators as

the matrices (Ta)
b
c = εabc. Their Lie algebra has the form

[Ta, Tb] = −εabcTc.
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Example 2. The group SU(2) is a group of all unitary 2× 2 complex matrices A

with unit determinant. Every matrix A in SU(2) can be written in the form

A =
(

a b

−b∗ a∗

)
|a|2 + |b|2 = 1.

Setting a = u0+iu3 and b = u2+iu1, we find that the parameters (u0, u1, u2, u3)

satisfy the condition

u2
0 + u2

1 + u2
2 + u2

3 = 1.

Therefore, the group manifold of SU(2) is the unit sphere S3 (if we rewrite this

condition in the form u2
1 + u2

2 + u2
3 = 1 − u2

0, we see that the projection of the

‘upper’ half of this sphere, defined by u0 ≥ 0, can be looked upon as the unit ball

in E3). The manifold S3 is compact and simply connected.

Every SU(2) matrix can be expressed in terms of the Pauli matrices σ a :

A =
(

u0 + iu3 u2 + iu1

−u2 + iu1 u0 − iu3

)
= u0I + iu1σ

1 + iu2σ
2 + iu3σ

3.

The group generators Ta = iσ a/2 satisfy the Lie algebra [Ta, Tb] = −εabcTc,

which is isomorphic to the Lie algebra of SO(3). Thus, SU(2) and SO(3)

are locally isomorphic groups. Finite elements of SU(2) can be obtained by

integrating infinitesimal transformations A = I + iωnaσ a/2 (n2 = 1):

A = exp( 1
2
iωnσ ) = I cos(ω/2)+ inσ sin(ω/2) − 2π ≤ ω ≤ 2π.

Now we shall show that there exists a homomorphism R : SU(2) → SO(3).

With each point x in E3, we associate a traceless Hermitian matrix X , given by

X = ixaσ a ≡ i

(
x3 x1 − ix2

x1 + ix2 −x3

)
det X = x2.

For every A in SU(2), the mapping X %→ X ′ = AX A−1 defines an SO(3)

rotation of E3, x → x ′ = R(A)x. Indeed, (x)2 = (x ′)2 (det X = det X ′) and the

Jacobian is positive, as can be seen from the explicit formulae:

x ′a = Ra
bxb Ra

b(A) = 1
2

Tr(σ a Aσ b A−1).

The mapping A %→ R(A) is a homomorphism, since R(A1 A2) = R(A1)R(A2).

The homomorphism R is 2–1. This follows from the fact that the kernel of R

(the set of elements in SU(2) that are mapped into the identity element of SO(3))

is Z2 = (I,−I), the discrete invariant subgroup of SU(2). Therefore,

SO(3) = SU(2)/Z2.

The group SU(2) is simply connected and represents the universal covering group

of SO(3).
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We shall now define the adjoint representation of G and use it to construct

the Cartan metric on G. Let G be a Lie group, andAG the associated Lie algebra

at g = I. The isomorphic mapping of G into itself, given by

U! : g %→ g! = !g!−1

where ! is a fixed element of G, is known as an inner automorphism of G. The

inner automorphisms form a group. Each inner automorphism of G induces an

automorphism of the Lie algebraAG:

Ad! : Ta %→ (Ta)! = !Ta!
−1. (K.6a)

The automorphisms Ad! also form a group G A (Ad!1
Ad!2

= Ad!1!2
, etc.).

The (homomorphic) mapping ! %→ Ad! is called the adjoint representation of

the group G on its Lie algebraAG.

If a group element ! is close to the identity, ! = I + ω with ω = ωeTe, the

adjoint automorphism is given by

(Ta)! = Ta + [ω, Ta] = Ta + ωe fea
cTc for each ! ∈ G. (K.6b)

The generator of an element Ad! has the form (T ′
e)

c
a = fea

c = [Te, Ta]c. The

related mapping Te %→ T ′
e = [Te, Ta] defines the adjoint representation of the Lie

algebraAG on AG.

Let U = uaTa and V = vbTb be elements of a Lie algebra AG, and define

the following ‘scalar product’ on AG:

(U, V ) = − 1
2

Tr(U ′V ′). (K.7a)

This bilinear symmetric form on AG × AG is known as the Killing form. It

is invariant under the adjoint automorphisms G A, as follows from (K.6a) and

the standard properties of the trace operation. The coordinate expression for the

Killing form is given by (U, V ) = gabuavb , where

gab = − 1
2

Tr(T ′
a T ′

b) = − 1
2

fae
c fbc

e (K.7b)

is the Cartan metric. The Cartan metric is defined in AG—the tangent space of

G at g = I. If the elements U, V from AG are replaced with the related tangent

vectors u = uaea and v = va ea in the space of parameters, the scalar product of

u and v at t = 0 is naturally defined by the relation

(u, v) = (U, V ) = gabuavb. (K.7c)

We shall later define the metric in the tangent space at an arbitrary point of G,

which is important for the Riemannian structure of G.

The adjoint automorphisms describe an action of the group G on the tangent

space of G. Under the action of G, the tangent vector ea transforms in the

same way as Ta: δ′0ea = εe fea
cec. This defines the transformation rule of the
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contravariant vector ua , while the transformation of the covariant vector va is

determined by demanding the invariance of uava:

δ′0ua = −εe fec
auc δ′0va = εe fea

cvc.

Treating fab
c as a third rank tensor, we obtain δ′0 fab

c = 0, as a consequence

of the Jacobi identity. This implies that the Cartan tensor is invariant under the

action of G (appendix A).

Cartan has shown that a Lie group is semisimple iff det(gab) �= 0. This is

just a condition that the inverse metric gab exists, which enables the development

of the standard tensor algebra.

Lie groups of transformations. Lie groups appear in physics as groups of

continuous transformations of a manifold. To each element g in G there

corresponds a transformation Tg on a manifold X , such that gh is mapped

into TgTh (homomorphism). We should clearly distinguish between the group

manifold G and the manifold X on which the group acts.

A Lie group G is realized as a Lie group of transformations on a

differentiable manifold X , if to each element g in G there corresponds a mapping

Tg : X → X , such that

TI(x) = x for each x ∈ X ,

(Tg1
Tg2

)(x) = Tg1g2
(x) and

the mapping (g, x) %→ Tg(x) is differentiable.

It follows that Tg−1 = (Tg)
−1. The mapping Tg is called a transformation of

the manifold X , and the homomorphism g %→ Tg is said to be a realization of

G. When Tg are linear transformations of a vector space X , the homomorphism

g → Tg is called a representation of G.

A group G operates effectively on X if Tg(x) = x for every x ∈ X

implies g = I. This means that the mapping g %→ Tg is a 1–1 correspondence

(g �= h implies Tg �= Th), and therefore, an isomorphism. When g %→ Tg is an

isomorphic mapping, it defines a faithful realization of G.

A group G operates transitively on X if, for every x ∈ X and y ∈ X , there

exists a transformation Tg that moves x into y.

Under an infinitesimal transformation Tg = I + ta ea the points in X move

by an infinitesimal amount:

xα %→ x ′α(x, t) ≈ xα + ta ∂x ′α

∂ ta

∣∣∣∣
x

≡ xα + ta Eα
a (x).

If the group of transformations Tg is a faithful realization of G, the generators

ea = Eα
a ∂α satisfy the commutation relations

[ea, eb] = fab
cec (K.8a)
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characterizing the Lie algebra of G. The commutation relations can be written as

a condition on Ea
α:

Eα
a ∂αE

β

b − Eα
b ∂αEβ

a = fab
c Eβ

c (K.8b)

which is known as the Lie equation.

The Lie equation can be written very compactly in terms of the Lie

derivative:

Laeb = fab
cec or δ0eb = −ta fab

cec

where La ≡ Lea . Thus, the change of the tangent vector δ0eb with respect to

the coordinate transformations δxα = ta Eα
a on X amounts to the change δ′0eb,

produced by the action of the group in the tangent space of X . Similarly, we can

use the transformation laws of Eα
a and uα to find the change of ua = Eα

a uα.

On a group manifold G, we can consider transformations of points in G

produced by the action of the group G itself. Transformations of G onto G defined

by

Lg : h %→ gh (left translation) and

Dg : h %→ hg (right translation)

have particularly important roles in studying the structure of G as a manifold. We

shall limit our exposition to the left translations Lg , having in mind that the right

translations can be treated analogously.

We now introduce left invariant vector fields on G. The left translation

Lg moves a curve C(t), passing through the identity element, to the curve

Cg(t) = gC(t), passing through the point g = g(τ ). For small t we have

Cg(t
α) = g(τα + ta Eα

a (τ )), where Eα
a (τ ) depends on the group multiplication

rule, so that

Ta(τ ) = ∂a Cg(t)|t=0 = Eα
a (τ )∂αg(τ ) ≡ ea(g)

where ∂a = ∂/∂ ta . The transformation Lg induces the transformation L ′
g of the

tangent vector ea to the curve c(t) into the corresponding tangent vector ea(τ )

to the transformed curve cg(t). Thus, starting from an arbitrary tangent vector u

we can generate the vector field ug = L ′
g u. This vector field is left invariant by

construction: L ′
g uh = ugh .

The following two statements characterize this structure.

(i) Every left translation maps the tangent space at g = I into the tangent space

at the point g(τ ); this mapping is a 1–1 correspondence.

(ii) The commutator structure is left invariant: if [u, v] = w at g = I, then

[ug, vg] = wg , for any g in G.

The first statement implies that a left translation moves a basis ea at the identity

into the set of tangent vectors ea(τ ), which is a basis at the point g(τ ). The basis

ea(τ ) is related to the coordinate basis eα(τ ) = ∂α by the relation

ea(τ ) = Eα
a (τ )eα(τ )
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where the coefficients Eα
a depend on the point g(τ ); in particular, Eα

a = δαa at

g = I. The second statement implies that the basis ea(τ ) satisfies the same Lie

algebra as the basis ea:

[ea(τ ), eb(τ )] = fab
cec(τ ). (K.9)

This Lie algebra can also be transformed into the form of the Lie equation (K.8b).

Let us, furthermore, consider the quantity w = g−1dg, where dg is the

differential of g(t). This quantity is linear in dtα and represents a 1-form, which

is invariant under left translations g(t) %→ hg(t), where h is a fixed element in G.

Moreover, g−1dg produces infinitesimal transformations of points in G, which

implies that w can be expressed in terms of the group generators. Therefore, w is

a Lie algebra valued 1-form at the point g:

w ≡ g−1dg = θaTa θa ≡ dtαEa
α. (K.10a)

From the definition of w it follows that dg = gw, whereupon the application of

the exterior derivative d yields the relation

dw + w ∧ w = 0. (K.10b)

known as the Maurer–Cartan equation. This can be written in the following

equivalent forms:

dθa + 1
2

fbc
aθb ∧ θ c = 0

∂αEa
β − ∂β Ea

α + fbc
a Eb

αEc
β = 0.

(K.10c)

Now, we show that the Maurer–Cartan equation has a direct relation to

the Lie equation. Let us define the matrix H α
a which is ‘dual’ to Ea

α , in the

sense that Eb
αH α

a = δb
a and Ea

αH
β
a = δ

β
α . Multiplying the last equation in

(K.10c) by H α
m H

β
n H

γ
a we find that H

γ
a satisfies the Lie equation (K.8b). In

other words, the coefficients Eα
a and Ea

α , appearing in the Lie and Maurer–

Cartan equations, respectively, are ‘dual’ to each other. While the Lie equation

defines the commutation properties of the vector fields ea = Eα
a ∂α , the

Maurer–Cartan equation gives the equivalent information in terms of the 1-forms

θa = dtαEa
α. The basis of 1-forms θa is dual to the basis of the tangent

vectors ea . Equations (K.8) and (K.10) should be compared with the related

equations (B.7a, b).

Example 3. Let A be an arbitrary element of SU(2) which we parametrize in

terms of the Euler angles (θ, ψ, φ): A(ψ, θ, φ) = A3(ψ)A1(θ)A3(φ). Using

Aa(ω) = I cos(ω/2)+ iσ a sin(ω/2), we find that

A(ψ, θ, φ) =
(

cos(θ/2)ei(ψ+φ)/2 i sin(θ/2)ei(ψ−φ)/2

i sin(θ/2)e−i(ψ−φ)/2 cos(θ/2)e−i(ψ+φ)/2

)
.
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(0 ≤ ψ ≤ 4π , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π). Let A3(t) be a path in SU(2) passing

through the identity, A3(0) = I, and C3(t) a path obtained from A3(t) by a left

translation: C3(t) = AA3(t). The tangent vector to the curve C3(t) at t = 0 has

the form

T3A = (d/dt)C3(t)|t=0 ≡ e3(A)

where e3 = ∂/∂φ is a left invariant vector field on SU(2). In a similar way, we

define the tangent vectors to the curves C1(t) = AA1(t) and C2(t) = AA2(t),

respectively:

T1A = (d/dt)C1(t)|t=0 ≡ e1(A) T2A = (d/dt)C2(t)|t=0 ≡ e2(A).

The first equation implies the relation A(ψ, θ, φ)(iσ 1/2) = Eα
1 ∂α A(ψ, θ, φ),

which can be used to determine the components of the vector field e1 = Eα
1 ∂α .

Similar manipulations lead to the components of e2 = Eα
2 ∂α . The result can be

written in the form

e1 = cosφ
∂

∂θ
− sinφ

(
cot θ

∂

∂φ
− 1

sin θ

∂

∂ψ

)

e2 = sin φ
∂

∂θ
+ cosφ

(
cot θ

∂

∂φ
− 1

sin θ

∂

∂ψ

)

e3 =
∂

∂φ
.

The commutation rules of the generators ea have the form [ea, eb] = −εabcec.

Explicit evaluation of the left invariant 1-form w = A−1d A yields

w = (dψ sin θ sin φ + dθ cosφ)T1

+ (−dψ sin θ cosφ + dθ sin φ)T2 + (dψ cos θ + dφ)T3 ≡ dtαEa
αTa

where Ta = (i/2)σ a . Now we define the vector fields e′a = Eα
a ∂α as the duals of

θa = dtαEa
α , and find that the result coincides with ea: e′a = ea.

Riemannian structure on G. The Lie and Maurer–Cartan equation, together

with the Cartan metric at g = I, represent important characteristics of group

manifolds. By introducing the metric and a suitable connection at each point of

G, the group manifold becomes a Riemann space.

Consider two left invariant vector fields on G, ug = ua ea and vg = vbeb.

The scalar product of ug and vg at an arbitrary point g is, by definition, equal to

their scalar product at g = I:

(ug, vg) = (u, v). (K.11a)

Expressed in terms of the components, this condition yields

gαβ Eα
a E

β

b = gab gαβ ≡ (eα, eβ) (K.11b)
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where gαβ is the Killing metric on G; at the point g = I, where Ea
α = δa

α, this

reduces to gab.

The Killing metric can also be defined by using the Killing bilinear form

(w,w) of the 1-form w = g−1dg:

(w,w) = dtαdtαEa
αEb

βgab ≡ dtαdtβgαβ . (K.12)

The definition of (w,w) implies that the Killing metric is left invariant.

We define the connection on G by introducing the covariant derivative

(Dubrovin et al 1979):

∇uv = 1
2
Luv = 1

2
[u, v] (K.13a)

where u and v are left invariant vector fields on G. The connection coefficients

are determined by the change of basis,

∇ea ≡ θ e ⊗∇eea = ωc
a ⊗ ec ωc

a = 1
2

fea
cθ e. (K.13b)

We shall show that this connection is Riemannian, i.e. that the torsion vanishes

and ∇gab = 0.

Let w = θa ea be a vector valued 1-form, i.e. a (1,1) tensor. By acting on w

with the generalized exterior derivative (appendix B), we obtain

d̄w = dθaea − θa∇ea = (dθ c + ωc
aθa)ec ≡ T cec

where T c is the torsion. Assuming the connection (K.13), we see that the Maurer–

Cartan equation coincides with the condition T c = 0. On the other hand,

∇cgab = ∇c(ea, eb) = 1
2
( fca

egeb + fcb
egea) = 0

since fabc = fab
egec is completely antisymmetric.

The curvature tensor of G is calculated according to (B.10):

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w = − 1
4
[[u, v],w]. (K.14a)

Using R(ea, eb)ec = ee Re
cab, we obtain

Re
cab = − 1

4
fab

d fdc
e Rcb = 1

2
gcb. (K.14b)

The symmetries of Riemann spaces. The essential property of a symmetry

transformation of a given space is that it leaves some important properties of the

space unchanged. Thus, SO(3) is a symmetry of the Euclidean space E3, as it

leaves the distance and orientation of E3 invariant. This brings us back to the idea

of isometry transformations in Riemann spaces.

We have seen that the isometry transformations of a Riemann space V are

determined by the solutions of the Killing equation. If the Killing vectors satisfy

the Lie equation, the isometries have the structure of a Lie group. Each Killing

vector connects neighbouring points of V which are, as far as the form of the
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metric is concerned, equivalent. The number of linearly independent Killing

vectors depends on the form of the metric.

A Riemann space V is said to be homogeneous if, for every x ∈ V and

y ∈ V , there exists an isometry transformation Tg that moves x into y (the

isometry group operates transitively on V ). Stated differently, at any point x in

V , there exist Killing vectors that take all possible values. In an N-dimensional

homogeneous space V , the number of linearly independent Killing vectors at any

given point is N . For instance, we can choose a set of N Killing vectors defined

by Eα
a = δαa .

A Riemann space V is said to be isotropic about a point x if there is an

isometry group Hx such that it does not move the point x , TH x = x . As

a consequence, any Killing vector must vanish at x , Eα
a (x) = 0, but the first

derivatives E
α,β
a (x) at x may take all possible values, respecting, of course, the

antisymmetry condition (K.3b). In an N-dimensional isotropic space V , the

number of linearly independent Killing vectors is N(N−1)/2; they can be defined

by choosing a set of coefficients Eα
mn satisfying the following conditions:

Eα
mn(x) = 0 Eα

mn(x) = −Eα
nm(x)

Eα,β
mn (x) = δαmδ

β
n − δαn δ

β
m .

Using the general formula [∇γ ,∇β ]Eα = EδRδ
αβγ and the cyclic identity

for the curvature tensor Rδ
αβγ + Rδ

γ αβ + Rδ
βγ α = 0, we can show that any

Killing vector Eα satisfies the condition

∇α∇β Eγ = Eǫ Rǫ
αβγ .

By a repeated differentiation of this equation, we find that any derivative of Eα at

y can be expressed in terms of Eα(y) and ∇β Eα(y). Then, expressing a Killing

vector Eα at some point x , lying in a neighbourhood of y, as a Taylor series in

x− y, we find that Eα(x) is given as a linear combination of Eβ(y) and ∇γ Eβ(y):

Eα(x) = Aα
β(x, y)Eβ(y)+ Bα

γβ(x, y)∇γ Eβ(y)

where A and B do not depend on Eβ(y) or ∇γ Eβ(y), and Bα
γβ = −Bα

βγ . This

equation implies that there can be no more than N(N +1)/2 linearly independent

Killing vectors in N dimensions. Indeed, since there are N independent quantities

Eβ(y) and N(N −1)/2 independent quantities ∇γ Eβ(y), the maximal number of

linearly independent Killing vectors Eα(x) is equal to the sum N+N(N−1)/2 =
N(N + 1)/2.

A Riemann space V is said to be maximally symmetric if it admits the

maximal number of N(N + 1)/2 Killing vectors. In particular, a homogeneous

space that is isotropic about some point is maximally symmetric. Isotropy about a

given point implies, as a consequence of homogeneity, isotropy about every point;

then, summing the number of Killing vectors corresponding to homogeneity and
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isotropy, N + (N − 1)/2, we obtain the maximal number of N(N + 1)/2 linearly

independent Killing vectors.

Note that a space that is isotropic about every point is also homogeneous

and, consequently, maximally symmetric.

Maximally symmetric spaces have the following important properties (see,

e.g., Weinberg 1972):

If a Riemann space V is maximally symmetric, its curvature tensor must be

of the form

Rαβγ δ = �(gαγ gβδ − gαδgβγ ) � = constant. (K.15)

A space of this type is called a space of constant curvature.

Any two constant curvature spaces with the same signature which have

the same value of � are locally isometric, i.e. there is a coordinate

transformation that maps one metric into the other.

Thus, maximally symmetric spaces (of a given signature) are essentially unique

and can be determined by constructing particular representatives of constant

curvature spaces with all values of �.

Example 4. The unit sphere S2 is a Riemann space with a metric, in local

coordinates (θ, ϕ), θ �= 0, π , given by

dss = dθ2 + sin2 θ dϕ2.

The Killing equations have the form

Eϕ,ϕ + sin θ cos θ Eθ = 0

Eθ,θ = 0

Eθ,ϕ + Eϕ,θ − 2 cot θ Eϕ = 0.

The first two equations yield Eθ = f (ϕ), Eϕ = −F(ϕ) sin θ cos θ + g(θ), where

F(ϕ) =
∫

f (ϕ) dϕ, and f, g are arbitrary functions. The functions f and g

are determined from the third equation: f = a sinϕ + b cosϕ, g = c sin2 θ ,

where a, b, c are arbitrary constants. After that, the solution for the Killing vector

(Eθ , Eϕ) takes the form

Eθ = a sinϕ + b cosϕ = Eθ

Eϕ = (a cosϕ − b sinϕ) sin θ cos θ + c sin2 θ = sin2 θEϕ .

The presence of three arbitrary parameters a, b, c means that there exist three

linearly independent solutions. Introducing the notation e = Eθ∂θ + Eϕ∂ϕ
and separating the terms multiplying a, b and c we obtain three independent
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generators:

e1 = sin ϕ∂θ + cot θ cosϕ∂ϕ

e2 = cosϕ∂θ − cot θ sinϕ∂ϕ

e3 = ∂ϕ.

These generators satisfy the commutation rules [ea, eb] = −εabcec. Therefore,

the isometry group of the sphere S2 is the rotation group SO(3). Note that the

number of generators is higher than the dimension of the space.

The rotation group operates transitively on S2. Take, for instance, the point

P ∈ S2 with Cartesian coordinates xa
P = (1, 0, 0) in E3. Then, we see that an

arbitrary point (x1, x2, x3) on the sphere can be obtained by a suitably chosen

rotation of the point P: xa = Ra
bxb

P = Ra
1. Similar arguments lead to the same

conclusion for any other point P ′. Consequently, S2 is a homogeneous space.

Observe that the choice of the rotation that moves P into (x1, x2, x3) is not

unique, since there exists a subgroup HP = SO(2) of the group SO(3) that leaves

the point P fixed: (
1 0 0

0 R2
2 R2

3

0 R3
2 R3

3

)(
1

0

0

)
=
(

1

0

0

)
.

The subgroup HP is the isotropy group of P . If a transformation R moves the

point P into (x1, x2, x3), so does the transformation RRH , RH ∈ HP. Isotropy

of S2 about P implies its isotropy about every point.

The sphere S2 is homogeneous and isotropic, hence it is maximally

symmetric. The same conclusion can also be drawn from the existence of three

Killing vectors on S2.

The construction of maximally symmetric spaces. We describe here one

specific construction of a three-dimensional maximally symmetric space with

the metric signature (+,+,+), having in mind that the procedure can be easily

generalized to higher dimensions and different signatures. Consider a four-

dimensional Euclidean space E4 with metric

ds2 = δab dxa dxb + dz2. (K.16a)

A three-dimensional sphere S3 embedded in E4 is described by the equation

S3 : δabxaxb + z2 = κ2. (K.16b)

The interval ds2 on S3 is calculated using the relation δabxa dxb + z dz = 0, valid

on S3, to eliminate dz in (K.16a):

ds2|S3
= δab dxa dxb + (δabxa dxb)2

κ2 − δcd xcxd
≡ gab dxa dxb. (K.17)
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The metric gab is the metric on S3.

It is obvious that the interval (K.16a) of E4 and the condition (K.16b) that

defines S3 are both invariant under the SO(4) rotations of E4, which have the

following form:

x ′a = Ra
bxb + Ra

4z z′ = R4
bxb + R4

4z

where the Rs are 4 × 4 orthogonal matrices with unit determinant. The group

SO(4) has six generators (this is the number of traceless antisymmetric 4 × 4

matrices). Thus, the sphere S3 has the maximal number of six Killing vectors and

is, therefore, maximally symmetric.

Since S3 is maximally symmetric, it is enough to calculate its curvature

in the vicinity of xa = 0. A direct calculation yields gab ≈ δab + xa xb/κ
2,

Ŵa
bc ≈ xaδbc/κ

2, so that

Rabcd = 1

κ2
(gacgbd − gad gbc) R = 6

κ2
.

Hence, the constant κ2 introduced in (K.16b) is proportional to the inverse scalar

curvature of S3.

Going over to the spherical coordinates (r, θ, ϕ), the metric of S3 takes the

form

ds2 = dr2

1 − r2/κ2
+ r2(sin2 θ dϕ2 + dθ2)

which shows some geometric characteristics of this space more clearly.

In the previous analysis we constructed the maximally symmetric space of

SO(4). According to the value of � = 1/2κ2 we can distinguish the following

three cases:

(a) � > 0, the space of constant positive curvature,

(b) � < 0, the space of constant negative curvature and

(c) � = 0, the flat space.

This construction can be easily generalized to other symmetry groups (in

appendix C we give the related construction for the anti de Sitter group SO(2, 3)).

For a given signature and a given symmetry group G, the only freedom we have

is described by the curvature constant �.

Coset spaces. Although the structure of maximally symmetric spaces is now

clear by itself, their relation to the corresponding symmetry groups remains

somewhat obscure. For instance, what is the relation between S2 and the structure

of SO(3)? In order to answer these questions, we discuss here the coset spaces.

Let {G, ∗} be a group. A subset H of G is a subgroup of G if h1, h2 ∈ H

implies: (a) h1h2 ∈ H and (b) h−1
1 ∈ H , i.e. if {H, ∗} is also a group. The group

of rotations about the x-axis, SO(2), is the subgroup of all rotations SO(3) of the

Euclidean space E3.
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Let H be a subgroup of G. The set of elements gH = {gh|h ∈ H }, for a

given g ∈ G, is called a left coset of H in G. Taking all possible elements gi ∈ G,

we obtain a collection of left cosets gi H . Now we define an equivalence relation

in G: g1 ∼ g2 if g1 ∈ g2 H . It is obvious that the related equivalence classes

coincide with the left cosets in G.

In a similar way, every set Hg = {hg|h ∈ H } is called a right coset of H

in G. All transformations from SO(3) which have the form RRx , where Rx is a

given rotation about the x-axis and R an arbitrary rotation from SO(3), define the

right coset of Rx in SO(3) (see example 4).

A subgroup H of G is invariant (or normal) if gHg−1 = H , for every

g ∈ G. The left coset gH and the right coset Hg of an invariant subgroup H are

identical.

The collection of all cosets of an invariant subgroup H is a new group G/H ,

known as the factor group (or the quotient group) of G by H . The group operation

in G/H is given in terms of the products of cosets:

[g1][g2] = [g1g2].

The coset [h], h ∈ H , plays the role of the identity element in G/H . If there

exists a homomorphism G → G/H defined by g %→ [g], it is called the natural

or canonical homomorphism.

If G is a topological group, the group G/H can be topologized by

introducing a natural topology (the quotient topology) and become a topological

space, called the coset space (the quotient space). We shall retain the same name

when G is a Lie group.

In accordance with the division G/H , all the generators of G will be divided

into two sets: the generators of H , denoted by ŴH = {Hā}, and the remaining

generators,ŴM = {Ma′}; then, symbolically,Ŵ = ŴH +ŴM. The set of generators

ŴH constitutes the Lie algebra of H , while the set ŴM is not a Lie algebra. If the

group G is semisimple, its Lie algebra has the form

[Hā, Hb̄] = fāb̄
c̄ Hc̄

[Hā, Mb′ ] = fāb′
c′ Mc′

[Ma′ , Mb′ ] = fa′b′
c̄ Hc̄ + fa′b′

c′ Mc′ .

(K.18)

Indeed, for semisimple groups the structure constants fabc = fab
egec are

completely antisymmetric, so that the existence of the subalgebra AH implies

fāb̄
c′ = 0 and fāb′

c̄ = 0.

Let the group G be parametrized by ta = (t ā, ta′). Since [h] is the identity

element in G/H , and it contains the whole H , we see that the factor group can

be described by the set of parameters ta′ (ignoring the parameters t ā that describe

H ). After introducing the quotient topology, the factor group becomes the coset

space of the dimension dim(G/H ) = dim(G)− dim(H ).
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Example 5. In this example, we prove the relation S2 = SO(3)/SO(2). First,

we note that (a) the sphere S2 is a homogeneous space of the group SO(3) and

(b) the group SO(3) contains the invariant subgroup H = SO(2)3, defined by the

rotations about the z-axis, which is the isotropy group of the point x0 = (0, 0, 1)

in S2: TH x0 = x0. Then, with each fixed element Rn(ω) of SO(3) (the rotation

about n through an angle ω) we associate the coset [Rn(ω)] = Rn(ω)H .

Now, with each coset [Rn(ω)] we associate the point x ′0 = Tn(ω)x0 in S2.

This mapping is a 1–1 correspondence, since it does not depend on the choice

of the representative element of the coset (x ′0 is the same for all elements of the

coset). Therefore, the sphere S2 coincides with the coset space SO(3)/SO(2).

This result is a special case of the following general theorem (Dubrovin et al

1979).

There is a 1–1 correspondence between a homogeneous space V of the

group G and the coset space G/H , where H is the isotropy group of V .

The Riemannian structure of coset spaces. Let V be the maximally

symmetric space of the group G, H = Hx0
the subgroup of isotropy about

x0 ∈ V , and ea = Eα
a ∂α the generators of G on V . Since V is essentially identical

to the coset space G/H , the problem of constructing its metric can be understood

as that of introducing Riemannian structure onto the coset space G/H (see, e.g.,

Zee 1981).

The metric of V must be such that the transformations of G are isometries

of V . We shall show that the quantity

gαβ = Eα
a E

β

b gab (K.19)

where gab is the Cartan metric of G, satisfies this demand. The condition that the

Eα
a are Killing vectors of the metric (K.19) has the form

Lcgαβ = gαε∂εEβ
c + gεβ∂εEα

c − Eε
c∂εgαβ = 0.

Using the Lie equation, this relation becomes

Eα
a E

β

b ( fec
bgae + fec

ageb − Eε
c∂εgab) = 0.

This condition is fulfilled since gab is the Cartan metric. Therefore, the metric

(K.19) is form-invariant under the transformations generated by the Killing

vectors Eα
a .

Let us now find the curvature of the Riemann space V with metric (K.19). It

is useful to introduce the quantity

hab = Eα
a E

β

b gαβ (K.20)
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which satisfies the relations habhbc = hc
a and hb

a Eα
b = Eα

a . Thus, h is a projector

and acts as the identity on the Killing vectors. If the subgroup H of G is trivial,

then hab is the Cartan metric, otherwise it is a restriction of gab on the coset space.

The group indices (a, α) are raised and lowered with the Cartan metric gab and

the Killing metric gαβ , respectively.

To calculate the curvature we use the Lie equation and the Killing equation,

written in the covariant form:

Eα
a ∇αE

β

b − Eα
b∇αEβ

a = fab
c Eβ

c

∇αEbβ +∇β Ebα = 0.

Multiplying the Lie equation by Ebγ , using the Killing equation and the condition

∇γ gαβ = 0, we obtain the relation hb
a∇β E

γ

b − ∇γ E
β
a = fa

bc E
γ

b E
β
c , which

implies

∇β Eaγ = fe
bc(δe

a − 1
2

he
a)Ebγ Ecβ .

A repeated use of this equation yields

∇α∇β Eaγ = ( fa
bc − 1

2
fe

bche
a)(∇αEbγ )Ecβ − (β ↔ γ )

= ( fa
bc − 1

2
fe

bche
a)( fb

pq − 1
2

fm
pqhm

b )E pγ EqαEcβ − (β ↔ γ ).

We now use the maximal symmetry of V to simplify further calculations by

going over to the isotropy point x0. At this point we have (Eα
ā , Eα

a′) = (0, δα
a′),

so that hab = δa′
a δb′

b ga′b′ is the restriction of the Cartan metric on the coset space.

As a consequence,

(∇α∇β Eaγ )0 = 1
2

fabβ f b
γ α − 1

4
fab′β f b′

γ α − (β ↔ γ )

so that, after antisymmetrizing in α and β and replacing a → ε, we obtain

(Rεγβα)0 = 1
2

fεγ b fβα
b − 1

2
fεγ b′ fβα

b′ + 1
4
( fεβb′ fγ α

b′ − fεαb′ fγβ
b′). (K.21)

This expression further simplifies in those cases in which fa′b′
c′ = 0 (involutive

algebras), which implies fa′ce fb′
ce = 2 fa′c′e fb′

c′e. Then,

(Rαγ )0 = 1
2

gαγ R = 1
2

dim(G/H )

so that the scalar curvature of the coset space G/H is completely determined by

its dimension.

Exercises

1. Show that in Riemann spaces the Lie derivatives of uα, gαβ , and the Lie

equation can be written in the covariant form:

LEuα(x) = Eβ∇βuα − uβ∇β Eα

LEgαβ = ∇αEβ +∇β Eα

Eα
a ∇αE

β

b − Eα
b ∇αEβ

a = fab
c Eβ

c .
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2. Prove the following statements:

(a) The rotation group SO(2) is compact and infinitely connected, while

the group of one-dimensional translations T1 is non-compact and simply

connected.

(b) These groups are locally isomorphic and SO(2) = T1/N , where N is

the discrete invariant subgroup of T1 equal to the additive group of all

integers.

3. The generators of SU(2) and SO(3) are given by the expressions τa = iσ a/2

and (Ta)
b

c = εabc, respectively.

(a) Find the matrix form of the following finite transformations: A1 =
exp(θτ1) and R1 = exp(θT1).

(b) Show that the mapping A1(θ) %→ R1(θ) is a 2–1 homomorphism of two

one-parameter subgroups.

(c) Repeat the same analysis for A3 and R3.

4. A matrix R of the rotation group SO(3) is given in terms of the Euler angles

as R = R3(ψ)R1(θ)R3(φ).

(a) Define the vector e3 at the point R as the tangent vector to the continuous

curve C3(t) = RR3(t); show that e3 = ∂/∂φ.

(b) Find the tangent vectors e1 and e2 to the curves C1(t) = RR1(t) and

C2(t) = RR2(t), respectively.

(c) Prove the commutation relations [ea, eb] = −εabcec.

5. (a) Show that the Maurer–Cartan equation is invariant under the local

transformations δλw = dλ+ [w,λ], where λ = λa Ta is a 1-form.

(b) Introducing the variable εα by λa = εαEa
α, prove the equations:

δεEa
α = εγ ∂γ Ea

α + Ea
γ ∂αε

γ

δεgαβ = ∂αε
γ gγβ + ∂βε

γ gγ α + εγ ∂γ gαβ .

6. Use the Cartan’s second equation of structure to calculate the curvature

tensor of the Lie group.

7. Let V be the homogeneous space of a group G, and H0 the isotropy group

of a point x0 in V . Show that:

(a) V is isotropic about every point; and

(b) isotropy groups Hx of different points x in V are homomorphic to each

other.

8. Show that the sphere S2 is a space of constant curvature (by calculating its

curvature tensor).

9. (a) Calculate the quantity hab, equation (K.20), on the unit sphere S2.

Compare hab at the point θ = 0 with the Cartan metric gab for SO(3).

(b) Calculate the Killing metric (K.19) on the unit sphere S2.

10. (a) Find the metric of the sphere S3, equation (K.17), in the usual spherical

coordinates (r, θ, ϕ).
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(b) For κ2 > 0, find the length of the circumference of the ‘circle’ r, θ =
constant, and the length of the ‘radius’ θ, ϕ = constant. Compare their

ratio to the Euclidean value 2π .

(c) Calculate the volume of the sphere S3.

11. An arbitrary element A of SU(2), given in example 2, can be expressed in

terms of the Euler-like coordinates (θ, ψ, φ):

u0 + iu3 = cos θei(ψ+φ) u2 + iu1 = i sin θei(ψ−φ).

(a) Calculate the Killing bilinear form (w,w), where w = A−1d A.

(b) Find the interval ds2 on S3 in the same coordinate system using (K.17),

and compare the result with (w,w).

12. Let G/H be a factor group, with the multiplication rule defined in the usual

way. Show that the identity element of G/H is the coset [h] which contains

the invariant subgroup H .

13. The projective space RP3 can be considered as a set of lines in E4 passing

through the origin. Prove the following statements:

(a) RP3 is a homogeneous space of the group O(4).

(b) Consider the line x0 in RP3 determined by the vector (1, 0, 0, 0). Prove

that the isotropy group of x0 is O(1)× O(3), and RP3 = O(4)/O(1)×
O(3).



Appendix L

Chern–Simons gravity in three dimensions

In four dimensions, gravity is similar but not equivalent to the standard gauge

theory (Regge 1986, Bañados et al 1996). In three dimensions, there is

an equivalence between gravity and an ordinary gauge theory with a specific

interaction of the Chern–Simons type (Witten 1988). This equivalence is helpful

for understanding the structure of the classical solutions, which is crucial for the

formulation of a quantum theory (Bañados 1999a, b).

Three-dimensional PGT. In three dimensions, PGT can be constructed in a

complete analogy with the four-dimensional case. The Poincaré group P(1, 2)

is the isometry group of the three-dimensional Minkowski space M3 with metric

η = (+,−,−). Its generators Mi j and Pi satisfy the Lie algebra (2.6). For

D = 3, it is convenient to replace Mi j with Ji = − 1
2
εi j k M j k , whereupon the Lie

algebra of P(1, 2) takes the form

[Ji , J j ] = εi j k J k [Ji , Pj ] = εi j k Pk [Pi , Pj ] = 0. (L.1)

The fact that this is P(1, 2), and not P(3), can be seen from the property that the

indices are raised and lowered with the Lorentz metric.

For arbitrary dimension D, an invariant bilinear expression in the Poincaré

generators is expected to have the general form W = x Mi j M i j + y Pi P i .

However, it does not commute with Pk unless we set x = 0. Hence, the bilinear

form on the Poincaré Lie algebra is, in general, degenerate. A special feature of

D = 3 is that in that case there exists a non-degenerate bilinear form

W1 = − 1
2
εi j k P i M j k = P i J kηik (L.2a)

which can be used to define the metric on the Lie algebra of P(1, 2):

γ (Pi , J j ) = ηi j γ (Pi , Pj ) = γ (Ji , J j ) = 0. (L.2b)

The basic gravitational variables in the three-dimensional PGT are the triad

field bi
µ and the Lorentz connection Ai j

µ. Their transformation laws are given

473
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by

δ0bk
µ = θ k

sbs
µ − ξρ ,µbk

ρ − ξρ∂ρbk
µ

δ0 Ai j
µ = −∇µθ

i j − ξρ ,µAi j
ρ − ξρ∂ρ Ai j

µ.

The related field strengths T i
µν and Ri j

µν are geometrically identified with the

torsion and the curvature. The geometric content of the three-dimensional PGT is

described by the Riemann–Cartan space U3.

Following the replacement of Mi j by Ji , we now introduce

ωiµ = − 1
2
εi j k A j k

µ τi = − 1
2
εi j kθ

j k

Riµν = − 1
2
εi j k R j k

µν .
(L.3)

Then the transformation laws of the gauge fields take the form

δ0bi
µ = −εi j kb jµτk − ξρ ,µbi

ρ − ξ · ∂bi
µ

δ0ωiµ = −∇µτi − ξρ ,µωiρ − ξ · ∂ωiµ
(L.4)

where ∇µτi = ∂µτi + εi j kω
j
µτ

k , and the field strengths are given by the

expressions

Riµν = ∂µωiν − ∂νωiµ + εi j kω
j
µω

k
ν

T i
µν = ∂µbi

ν − ∂νbi
µ + εi j k(ω jµbkν + b jµωkν).

(L.5)

GR in three dimensions. In a three-dimensional spacetime manifoldM3, we

can use the identity

bR = 1
2
ε
µνρ

i j k bi
µR j k

νρ = −εµνρbi
µRiµν (L.6a)

to rewrite the Einstein–Hilbert action in the form

I0 = −
∫

d3x bR =
∫

d3x εµνρbi
µRiµν . (L.6b)

The related equations of motion are

Fi
µ ≡ εµνρ Riνρ = 0 Gi

µ ≡ εµνρT i
νρ = 0.

Since both the curvature and the torsion vanish, the spacetime is the flat,

Minkowski space M3.

Since the isometry group of M3 is P(1, 2), we shall now try to discover

whether this theory can be described as an ordinary gauge theory of P(1, 2). We

begin by introducing the gauge field as a Lie algebra valued 1-form:

Aµ = bi
µPi + ωi

µ Ji . (L.7)
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The gauge transformation of Aµ is given by

δ0 Aµ = −∇µu = −∂µu − [Aµ, u]
where u = ξ i Pi + τ i Ji is an infinitesimal gauge parameter. Upon calculating the

previous expression in components, we find

δ0bi
µ = −∇µξ

i − εi j kb jµτk

δ0ω
i
µ = −∇µτ

i .
(L.8)

Next we calculate the field strength:

Fµν = ∂µAν − ∂ν Aµ + [Aµ, Aν] = Pi T i
µν + Ji Ri

µν . (L.9)

While the form of the field strength coincides with PGT expressions (L.5),

the transformation laws (L.8), at first sight, do not have much in common with the

usual transformations (L.4). The terms proportional to τ k , describing the local

Lorentz rotations, have the correct form but there seems to be a problem with the

terms proportional to ξ k , which should describe local translations. However, if

we introduce the new parameters εi and ξρ ,

εi = τ i − ξρωi
ρ ξ i = bi

ρξ
ρ (L.10a)

then these gauge transformations can be written in the form

δ0bi
µ = −εi j kb jµεk − ξρ ,µbi

ρ − ξ · ∂bi
µ − ξρT i

µρ

δ0ω
i
µ = −∇µε

i − ξρ ,µω
i
ρ − ξ · ∂ωi

µ − ξρ Ri
µρ

(L.10b)

Thus, we see that the gauge transformations (L.8) are equivalent to the usual

PGT transformations (L.4) on shell. This property is of basic importance for the

simplicity of the three-dimensional gravity.

GR as Chern–Simons theory. We now wish to show that three-dimensional

GR, as described by action (L.6), is equivalent to the Chern–Simons gauge theory

for P(1, 2). If the gauge group is G = P(1, 2), we start by constructing the

Pontyagin topological invariant on a four-dimensional manifoldM4, with the

metric defined by the invariant non-degenerate quadratic form (L.2):

I 0
P =

∫
T i R jηi j = 1

4

∫

M4

d4x εµνλρT i
µν R j

λρηi j .

The integrand in this equation is a total derivative of the Chern–Simons three-

form L0
CS = 2θ i Ri , with θ i = bi

µ dxµ. This form defines the Chern–Simons

action on a three-dimensional manifoldM:

I 0
CS =

∫

M

L0
CS =

∫

M

d3x ενλρbi
ν Riλρ . (L.11)

A direct comparison with equation (L.6) shows that this is precisely the GR action.

Thus, we have shown that three-dimensional GR can be interpreted as Chern–

Simons gauge theory.
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Adding a cosmological constant. We now wish to generalize the previous

discussion of three-dimensional GR by including a cosmological constant. The

generalized theory, GR�, is defined by the action (in units 16πG = 1)

I1 = −
∫

d3x b(R + 2�)

=
∫

d3x εµνρ(bi
µRiνρ − 1

3
�εi j kbi

µb j
νbk

ρ).

(L.12)

The action is invariant under Poincaré gauge transformations (L.4), and the field

equations of the theory are:

Fi
µ ≡ εµνρ(Riνρ −�εi j kbi

νbk
ρ) = 0 Gi

µ ≡ εµνρT i
νρ = 0.

The second equation tells us that the torsion vanishes, so that ω is the Levi-Civita

connection. Rewriting the first equation in the form

Fi
µ = − 1

2
ε
µνρ

i j k (Rkl
νρ + 2�bk

νbl
ρ) = 0

we see that the spacetime is not flat but has a constant curvature: R = −6�.

Depending on whether the sign of � is negative or positive, we have either an

anti de Sitter or a de Sitter spacetime, respectively. The isometry groups of these

spaces are SO(2, 2) and SO(1, 3).

If three-dimensional GR without a cosmological constant is related to the

gauge theory of P(1, 2), we could naturally expect that GR� might be described

as the gauge theory of SO(2, 2) or SO(1, 3). Let us investigate this assumption

for the anti de Sitter group. We begin by noting that the Lie algebra of SO(2, 2)

can be written as a generalization of the P(1, 2) algebra (L .1):

[Ji , J j ] = εi j k J k [Ji , Pj ] = εi j k Pk [Pi , Pj ] = λεi j k J k (L.13)

where λ ≡ 1/ l2 > 0. This form is obtained from the usual SO(2, 2) algebra

by making the replacements: Ji = − 1
2
εi j k M j k , Pi = Mi4/ l (see appendix C).

After introducing the gauge field as in equation (L.7), we find the generalized

transformation laws,

δ0bi
µ = −∇µξ

i − εi j kb jµτk

δ0ω
i
µ = −∇µτ

i − λεi j kb jµξk

(L.14)

and the following formula for the field strength:

Fµν = Pi T i
µν + Ji (Ri

µν + λεi j kb jµbkν). (L.15)

Expression (L.2a) is an invariant quadratic form on the generalized Lie

algebra (L.13), which can be used to construct the related Chern–Simons action.

Starting from the Pontryagin topological invariant,

I 1
P = 1

4

∫

M4

d4x εµνλρT i
µν(Riλρ + λεimnbm

λbn
ρ)
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we find that the related Chern–Simons action I 1
CS is precisely the action (L.12),

which includes the cosmological constant, � = −λ. Thus, GR� with a negative

cosmological constant can be interpreted as the Chern–Simons gauge theory of

anti de Sitter group SO(2, 2). The field equations of theory (L.12) assert that

both components of the generalized field strength Fµν vanish.

More on the Chern–Simons formulation. It should be pointed out that, in

addition to (L.2a), a second invariant bilinear form exists on the SO(2, 2) Lie

algebra:

W2 = J i J jηi j + λP i P jηi j (L.16a)

which defines the metric

γ (Ji , J j ) = ηi j γ (Ji , Pj ) = 0 γ (Pi , Pj ) = ληi j . (L.16b)

This form exists for general D. For λ = 0 it becomes degenerate, which is

the reason why we discarded it when we considered quadratic bilinear forms on

P(1, 2). The existence of two non-degenerate quadratic forms for D = 3 is a

consequence of the isomorphism SO(2, 2) ≃ SO(1, 2) × SO(1, 2) (note that

SO(1, 2) ≃ SL(2, R)).

Now, we can use the quadratic form (L.16) to construct the Pontryagin

topological invariant, and derive the form of the new Chern–Simons action:

I2 =
∫

d3x ενλρ[ωi
ν(∂λωiρ − ∂ρωiλ + 2

3
εimnω

m
λω

n
ρ)

+ 2λbi
ν(∂λbiρ + λεimnω

m
λbn

ρ)]. (L.17)

This action is also invariant under gauge transformations (L.14); hence, we can

consider I1+α I2 as the general SO(2, 2) gauge theory. It is interesting to observe

that, for generic values of α, the classical field equations remain the same as for

the original action I1.

The existence of two actions for SO(2, 2) gauge theory can be clarified by

introducing the new basis of generators,

G±i =
1

2

(
Ji ±

1√
λ

Pi

)
(L.18a)

in terms of which the Lie algebra (L.13) takes the simple form:

[G±i ,G± j ] = εi j k Gk
± [G±i ,G∓ j ] = 0. (L.18b)

For λ > 0, this is the Lie algebra of SO(1, 2)×SO(1, 2). Then, we can introduce

the related gauge fields,

Aµ = A+i
µ G+i + A−i

µ G−i A±
iµ ≡ ωiµ ±

√
λbiµ (L.19a)
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and find their transformation laws:

δ0 A±
iµ = −∂µτi − εi

j k A±
jµτk − ξρ ,µA±

iρ − ξ · ∂A±
iµ. (L.19b)

Two Chern–Simons actions, corresponding to the two commuting SO(1, 2) Lie

algebras in (L.18), take the simple forms:

ICS[A] = k

∫
(Ai d A j + 1

3
εmn

i Am An A j )ηi j A = A+, A−. (L.20)

In order to clarify the relation between ICS[A+], ICS[A−] and the actions I1,

I2 constructed earlier, we introduce the fields

Ai = ωi + xθ i Āi = ωi − xθ i

where x is a complex number. Then, we can prove the following identity:

2θ i Ri +
x2

3
εi j kθ

iθ jθ k = 1

2x
[LCS(A)− LCS( Ā)] + d� (L.21)

where LCS(A) = Ai dAi + 1
3
εi j k Ai A j Ak , and d� is a total derivative term. This

relation is true for both positive and negative x2, and does not depend on the

signature of the spacetime metric. For real x we can take x = 1/ l, so that the left-

hand side coincides with action (L.12), which is the generalized Einstein action

in units 16πG = 1. Returning to the standard normalization, and continuing to

use the notation (A, Ā) instead of (A+, A−), we can write

I� ≡ 1

16πG
I1 = ICS[A] − ICS[ Ā] (L.22a)

where the Chern–Simons coupling constant is given by

4πk = l

8G
. (L.22b)

The relations (L.22) are of crucial importance for the Chern–Simons

interpretation of GR�. The other ‘exotic’ action (L.17) has the form k I2 =
ICS[A] + ICS[ Ā].

The anti de Sitter space. Three-dimensional GR with a cosmological constant

is described by action (L.12). The field equations in vacuum,

Rkl
νρ +�(bk

νbl
ρ − bk

ρbl
ν) = 0

describe a symmetric space of constant curvature R = −6�. The space of

constant curvature with R > 0 (� < 0) is called the anti de Sitter space (or de



Chern–Simons gravity in three dimensions 479

Sitter space of the second kind). In three dimensions, it has the topology S1 × R2,

and can be represented as a hypersurface:

H3 : ηµν yµyν + z2 = l2 l2 > 0 (µ, ν = 0, 1, 2)

in a four-dimensional flat space M4 with the metric η = (+,−,−,+). The

anti de Sitter space has the signature (+,−,−), and R = 6/ l2 is positive. By

construction, the isometry group of the anti de Sitter space is SO(2, 2) and the

Killing vectors are Kab = ya∂b − yb∂a , where ya = (yµ, z).

The metric of H3 can be written as ds2 = ηµν dyµ dyν + dz2, where (yµ, z)

lies on H3. Introducing the pseudo-spherical coordinates (τ, χ, φ) by

y0 = l sin τ y1 = l cos τ sinhχ cosφ

z = l cos τ coshχ y2 = l cos τ sinhχ sin φ

with −π ≤ τ < π , 0 ≤ χ < ∞, 0 ≤ φ < 2π , the metric of H3 takes the form

ds2 = l2[dτ 2 − cos2 τ (dχ2 + sin2 χ dφ2)].

These coordinates do not cover the whole space and the metric has coordinate

singularities at τ = ±π/2. Leaving the metric unchanged, we can replace the S1

time τ ∈ [−π, π] by a new, R1 time τ ∈ (−∞,+∞), thus changing the topology

from S1 × R2 to R3. The space obtained in this way is the universal covering of

anti de Sitter space. Following the common terminology, this universal covering

space will be called the anti de Sitter space, and denoted by Ad S3 (Hawking and

Ellis 1973).

The whole Ad S3 can be covered by coordinates (t, ρ, ϕ),

y0 = l coshρ cos t y1 = l sinhρ cosϕ

z = l coshρ sin t y2 = l sinhρ sin ϕ

(−∞ < t < ∞, 0 ≤ ρ < ∞, 0 ≤ ϕ < 2π) in which the metric takes the form

ds2 = l2[dt2 cosh2 ρ − (dρ2 + sinh2 ρ dϕ2)]. (L.23a)

Introducing r = l sinhρ and t → t/ l, we obtain

ds2 = (1 + r2/ l2) dt2 − dr2

1 + r2/ l2
− r2 dϕ2 (L.23b)

which is the standard static form of the Ad S3 metric. Another change of

coordinates, defined by

θ = 2 Arctan(eρ)− π/2 0 ≤ θ < π/2

is suitable for studying the structure of Ad S3 at infinity. It leads to coshρ =
1/ cos θ , sinh ρ = tan θ , and

ds2 = 1

sin2 θ
[dt2 − l2(dθ2 + sin2 θ dϕ2)].
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Thus, the whole Ad S3 space is conformal to the region 0 ≤ θ < π/2 of the static

‘cylinder’.

Since Ad S3 is a maximally symmetric space, it must be locally isometric

to any other solution having the same curvature and signature. As a simple

illustration, consider the metric

ds2 = f 2 dt2 − dr2

f 2
− r2 dϕ2 f 2 = −8MG + r2

l2
(L.24)

which describes a spherically symmetric black hole, with an event horizon at

r = r0, where r2
0 = 8MGl2. For r > r0, we can introduce a coordinate

transformation

y0 =
√

A(r) cosh(r0ϕ/ l) y2 =
√

B(r) cosh(r0t/ l2)

y1 =
√

A(r) sinh(r0ϕ/ l) z =
√

B(r) sinh(r0t/ l2)

where A = (l2/r2
0 )r

2, B = (l2/r2
0 )(r

2 − r2
0 ), which transforms the Ad S3 metric

into the black hole metric. Note, however, that the periodicity in ϕ requires us to

identify points in Ad S3 obtained by ϕ → ϕ + 2π . Thus, although Ad S3 and the

black hole are isometric solutions, they are topologically distinct: the black hole

is obtained from Ad S3 by a process of identification, which does not influence the

local properties of the solutions. By identifying two points on a curve in Ad S3,

we define new closed curves in the quotient space, that should not be timelike or

null. Similar considerations also hold for axially symmetric black holes (Bañados

et al 1993).

Example 1. To see how the geometric structure of the three-dimensional gravity

can be related to the Chern–Simons picture, consider the Ad S3 interval (L.23a).

A natural choice for the triads is

θ0 = l coshρ dt θ1 = l dρ θ2 = l sinhρ dϕ.

The vanishing of torsion, dθ i + εi j kω j θk = 0, yields the connection components:

ω0 = − coshρ dϕ ω1 = 0 ω2 = − sinhρ dt .

The Chern–Simons gauge field Ai = ωi + θ i/ l is given by

A = 1

2
b−1

(
dρ dx−

−dx− −dρ

)
b b = eρT1 =

(
eρ/2 0

0 e−ρ/2

)
.

Thus, we have A+ = 0, α = b−1∂ρb = T1 and α2 = ηi jα
iα j = −1.

Similarly, Āi = ωi − θ i/ l has the form

Ā = 1

2
b̄−1

(
dρ −dx+

dx+ −dρ

)
b̄ b̄ = e−ρT1
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hence, Ā− = 0, ᾱ = −T1, and ᾱ2 = −1.

Example 2. Consider now the black hole metric (L.24) for M = 0 (the black hole

vacuum). After introducing the new radial coordinate r = eρ , and rescaling the

time by t → t/ l, the interval takes the form

ds2 = e2ρ(dt2 − dϕ2)− l2 dρ2.

The triad field and the related connection are given by

θ0 = eρ dt θ1 = l dρ θ2 = eρ dϕ

ω0 = −1

l
eρ dϕ ω1 = 0 ω2 = −1

l
eρ dt .

The Chern–Simons gauge fields are:

A = 1

2

(
dρ 0

−(2/ l)eρ dx− −dρ

)
Ā = 1

2

(
−dρ −(2/ l)eρ dx+

0 dρ

)

hence, b = eρT1 , b̄ = e−ρT1 , as in the previous example.

Asymptotic symmetry. In D = 3, GR� has no local dynamical degrees of

freedom, so that the spacetime outside localized matter sources is described by

the vacuum solutions of the field equations. Matter has no influence on the local

geometry in the source-free regions, it can only change the global properties of

spacetime.

For � < 0, the spacetime is locally described as Ad S3, but its global

properties may be different. Brown and Henneaux (1986b) considered a large

class of metrics that have the same leading asymptotic terms as Ad S3:

ds2 ∼ r2

l2
dt2 − l2

r2
dr2 − r2 dϕ2 (for large r).

It seems natural to say that such solutions are asymptotically anti de Sitter. More

precisely, a metric gµν is said to be asymptotically anti de Sitter if

(a) gµν approaches the Ad S3 metric for r → ∞; and

(b) it is invariant under the action of the anti de Sitter group SO(2, 2).

The second condition determines the precise way in which ds2 approaches this

asymptotic form, and ensures that we have at least SO(2, 2) as an asymptotic

symmetry group. Acting with all possible SO(2, 2) transformations on this

metric, we generate the following boundary conditions:

gt t =
r2

l2
+O0 gtr = O3 gtϕ = O0

grr = − l2

r2
+O4 grϕ = O3 gϕϕ = −r2 +O0.

(L.25)
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These are the most general boundary conditions compatible with the asymptotic

anti de Sitter symmetry.

Having chosen the boundary conditions, we now wish to find the form of the

related asymptotic symmetry transformations, i.e. to construct the infinitesimal

diffeomorphisms which leave the boundary conditions invariant. In the process,

we discover that the natural asymptotic symmetry is not only SO(2, 2), as we

could have expected, but the whole group of conformal symmetries in two

dimensions. The allowed diffeomorphisms are generated by vector fields ξµ =
(ξ t , ξ r , ξϕ) which preserve (L.25). They are found to have the form (Brown and

Henneaux 1986)

ξ t = T (t, ϕ)+ 1

r2
T̄ (t, ϕ)+O4

ξϕ = $(t, ϕ)+ 1

r2
$̄(t, ϕ)+O4

ξ r = r R(t, ϕ)+O1

(L.26a)

where
∂t T = ∂ϕ$ = −R ∂t$ = ∂ϕT

2T̄ = −∂t R 2$̄ = ∂ϕ R.
(L.26b)

The asymptotic symmetry defined by these vector fields is isomorphic to the

conformal group in two dimensions. This follows from the fact that the functions

(T,$) satisfy the conformal Killing equations in D = 2 (∂t T = ∂ϕ$, ∂t$ =
∂ϕT ), and once these functions are known we can easily calculate R, T̄ , and

$̄. The asymptotic symmetry is infinite dimensional and contains SO(2, 2) as

a subgroup.

The conformal symmetry at the boundary can also be recognized by

analysing the spatial infinity. A surface at r → ∞ has the induced metric

ds2
∞ = lim

r→∞
1

r2
ds2 = dt2/ l2 − dϕ2.

The isometry of this surface is the conformal group in D = 2.

This conformal structure becomes clearer when we express it in the light-

cone coordinates x± = t/ l ± ϕ. Including the first subleading terms γµν in the

asymptotic expansion (L.25) of the metric, we can write

g+− = r2

2
+ γ+− +O1 grr = − l2

r2
+ γrr

r4
+O5

g±± = γ±± +O1 g±r =
γ±r

r3
+O4.

(L.27a)

The field equations Rµν = (2/ l2)gµν imply

γ±r = (1/4l2)γrr ∂−γ++ = 0 ∂+γ−− = 0.
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After fixing the residual gauge symmetry by γrr = γ±r = 0, the interval takes the

form (Navaro-Salas and Navaro 1998)

ds2 = r2 dx+dx− − l2

r2
dr2 + γ++(dx+)2 + γ−−(dx−)2 +O1. (L.27b)

The vector fields ξ± = ξ t/ l ± ξϕ are given by (Strominger 1998)

ξ± = T± + l2

r2
T̄± +O4

where the functions T± = T/ l ±$, T̄± = T̄ / l ± $̄ satisfy the relations

∂∓T± = 0 ∂2
±T± = 2T̄∓.

Hence,

ξ+ = T+ + l2

2r2
∂2
−T− +O4

ξ− = T− + l2

2r2
∂2
+T+ +O4

ξ r = −r

2
(∂+T+ + ∂−T−)+O1.

(L.28)

The subleading terms in the metric can be identified with the appropriate

conformal structures at the boundary. By studying the conformal transformation

properties of γ±±, we can show that these fields are proportional to the energy–

momentum tensor of the underlying conformal field theory with central charge

c = 3l/2G (Navaro-Salas and Navaro 1998).

The asymptotic conformal symmetry is best analysed by studying the PB

algebra of the canonical generators. This can be done directly by performing

the canonical analysis of action (L.12) but the simpler approach is to represent

the action in terms of two Chern–Simons terms, and then to use the results of

section 6.4. The classical PB algebra of the canonical generators at the boundary

is given by the Virasoro algebra with the classical central charge c = 3l/2G

(Brown and Henneaux 1986).

Comments. Two particularly interesting aspects of the three-dimensional

gravity are (a) that it can be formulated as a Chern–Simons gauge theory;

and (b) that the general solution of the equations of motion, satisfying anti de

Sitter boundary conditions, is known. Here, we wish to make some additional

comments on these subjects.

(i) General solutions for Chern–Simons gauge fields which are compatible

with conformal symmetry at the boundary have the form

A+ = 0 A− = b−1

(
0 L(x−)
−1 0

)
b Ar = T1
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and

A− = 0 Ā+ = b̄−1

(
0 −1

L̄(x+) 0

)
b̄ Ār = −T1.

Here, (b, b̄) = (e−ρT1 , eρT1), L and L̄ are arbitrary functions of x− and x+,

respectively. Using these solutions, we can construct first the triad and then the

metric:

bi
µ = (l/2)(Ai

µ − Āi
µ) gµν = ηi j bi

µb j
ν .

The interval ds2 = gµν dxµ dxν represents the most general solution to the

three-dimensional GR�, which is asymptotically anti de Sitter. It contains two

arbitrary functions, L and L̄, so that, effectively, it describes an infinite number

of solutions.

(ii) Different values of L and L̄ correspond to physically different

configurations. When L and L̄ are constants, L = L0, L̄ = L̄0, the general

metric reduces to the axially symmetric black hole:

ds2 = l2 N2 dt2 − N−2 dr2 − r2(dϕ + Nϕ dt)2

where

N2 = −8MG + r2

l2
+ 16G2 J 2

r2
Nϕ = 4G J

r2
.

The black hole parameters M and J are defined by

L0 + L̄0 = Ml L0 − L̄0 = J.

For Ml > |J | this metric has two horizons, defined as the solutions of the equation

N2(r) = 0: r2
+ + r2

− = 8MGl2, r−r+ = 4G Jl. For J = 0 and M = 0, this

metric reduces to the black hole vacuum, while for M = −1/8G, it goes into

Ad S3 (locally). The Ad S3 solution cannot be deformed continuously into the

black hole vacuum, because between M = 0 and M = −1/8G there are naked

singularities, which are excluded from the physical spectrum. The specific role

played by the Ad S3 state has been clearly explained by Coussaert and Henneaux

(1994).

(iii) The general solution has asymptotic conformal symmetry with central

charge c = 3l/2G. The conformal symmetry is not an exact symmetry of any

background metric—it maps one solution into the other. The associated Virasoro

generators can be regarded as the symmetry generators, related to the underlying

conformal field theory. (At the same time, the Virasoro algebra can be thought

of as the basic PB algebra of the gauge fixed variables.) The identification of

this conformal field theory is of basic importance for three-dimensional quantum

gravity. In the classical domain, this theory seems to coincide with Liouville

theory (Coussaert et al 1995).

(iv) The classical properties of three-dimensional gravity are not only

interesting by themselves—understanding them is crucial for the formulation of

a quantum gravity (Carlip 1995). In quantum theory, functions L and L̄ are
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promoted to operators. By counting the number of quantum states that induce

the classical metric of a black hole of mass M and the angular momentum J ,

we can obtain the formula for black hole entropy, which is closely related to the

quantum properties of gravity (Strominger 1998).

Exercises

1. Prove the following formulae in M3:

εµνρbi
µb j

νbk
λ = εi j kb ε

µνρ

i j k bi
µ = 2bh[ j

νhk]ρ .

2. Construct the Chern–Simons action I 0
CS for the group P(1, 2), using the Lie

algebra metric (L.2b).

3. Construct the Chern–Simons action I 1
CS for the group SO(2, 2), using the

Lie algebra metric (L.2a).

4. Construct the Chern–Simons action I 2
CS for the group SO(2, 2), using the

Lie algebra metric (L.16b). Write down the corresponding field equations.

5. Find the transformation law for Chern–Simons Lagrangians LCS[A] in

equation (L.20), under gauge transformations (L.19b).

6. Prove the identity (L.21).

7. Show that the change of coordinates

y0 = 1

2Z
(Z2 + X2 − T 2 + l2) y2 = l X

Z

y1 = − 1

2Z
(Z2 + X2 − T 2 − l2) z = lT

Z

transforms the Ad S3 metric into the Poincaré form:

ds2 = l2

Z2
(dT 2 − dX2 − dZ2) Z > 0.

8. Einstein’s equations for GR� have the form Rµν = −2�gµν.

(a) Write down the explicit form of these equations for a static, spherically

symmetric metric:

ds2 = A(r) dt2 − B(r) dr2 − r2 dϕ2.

(b) Derive the relation Rt t/A + Rrr/B = 0 and show that it leads to

(AB)′ = 0.

(c) Use the equation Rϕϕ = −2�gϕϕ to conclude that ∂r A = −2�r(AB).

(d) For � = −1/ l2, show that the Ad S3 metric (L.23b) is a solution of the

field equations. Repeat the arguments for the black hole metric (L.24).
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9. Consider the Chern–Simons gauge fields:

A = 1

2

(
dρ 2e−ρL(x−) dx−

−2eρ dx− −dρ

)

Ā = 1

2

(
−dρ −2eρ dx+

0 dρ

)
.

Find the related triad field θ = (l/2)(A− Ā), then calculate the metric tensor

gµν = −2 Tr(θµθν), and write the interval ds2 = gµν dxµ dxν.

10. Calculate the Chern–Simons fields A and Ā for the metric

ds2 = r2 dx+dx− − l2

r2
dr2 + γ (x+)(dx+)2 x± = t/ l ± ϕ

after introducing r = eρ .



Appendix M

Fourier expansion

In this appendix, we give a short review of the basic relations from the theory of

Fourier series, which are often used in string theory.

Interval [−π, π]. Let f (x) be a function defined on the basic interval [−π, π],
and periodic with period T = 2π . Then, its Fourier expansion (when it exists) is

defined by

f (x) = a0

2
+
∑

n≥1

(an cos nx + bn sin nx)

an = 1

π

∫ π

−π

dx f (x) cos nx bn = 1

π

∫ π

−π

dx f (x) sin nx .

(M.1)

This result can be easily transformed into a complex form

f (x) = C0 +
∑

n≥1

(Cneinx + C∗
n e−inx)

Cn = 1
2
(an − ibn) =

1

2π

∫ π

−π

dx f (x)e−inx

which can be simplified by introducing C−n = C∗
n :

f (x) =
∑

n

Cneinx (M.2)

where the sum over n goes from −∞ to +∞.

If the function f (x) is symmetric on the basic interval, f (−x) = f (x), then

bn = 0 and we have

f (x) =
∑

n

Cneinx = C0 + 2
∑

n≥1

Cn cos nx (M.3)

since Cn = C−n .
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Interval [0, π]. Analogous relations are valid for a function f (x) defined on

the basic interval [0, π], with the period T = π .

(a) Real form:

f (x) = a0

2
+
∑

n≥1

(an cos 2nx + bn sin 2nx)

an = 1

π/2

∫ π

0

dx f (x) cos 2nx bn = 1

π/2

∫ π

0

dx f (x) sin 2nx .

(M.4)

(b) Complex form:

f (x) =
∑

n

Cne2inx

Cn = 1
2
(an − ibn) =

1

π

∫ π

0

dx f (x)e−2inx .

(M.5)

Periodic delta function. A periodic delta function can be formally defined from

the relation of completeness.

Consider, first, the case of the interval [−π, π], where

f (x) =
∑

n

Cn fn(x) fn(x) ≡ einx .

Now replacing the expression for Cn we obtain

f (x) =
∑

n

1

2π

∫
dx ′ f (x ′) f ∗n (x

′) fn(x).

Then after formally exchanging the order of integration and summation, we obtain

an expression for the periodic delta function:

δ(x − x ′) = 1

2π

∑

n

f ∗n (x
′) fn(x)

= 1

2π

∑

n

ein(x−x ′) = 1

2π
+ 1

π

∑

n≥1

cos n(x − x ′).
(M.6)

For symmetric functions we have Cn = C−n , hence

δS(x, x ′) = 1
2
[δ(x − x ′)+ δ(x + x ′)]

= 1

4π

∑
[ein(x−x ′) + ein(x+x ′)] = 1

2π
+ 1

π

∑

n≥1

cos nx cos nx ′.

(M.7)

An analogous result for the interval [0, π] has the form:

δ(x − x ′) = 1

π

∑

n

e2in(x−x ′) = 1

π
+ 2

π

∑

n≥1

cos 2n(x − x ′). (M.8)
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Nikolić I 1981 Hamiltonian formulation of Einstein–Cartan theory of gravity MSc Thesis

University of Belgrade (in Serbian)
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without gauge fixing Phys. Rev. D 30 2508
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——1984 Local symmetries in Poincaré gauge theory PhD Thesis University of Belgrade

(in Serbian)

Witten E 1988 2 + 1 gravity as an exactly soluable system Nucl. Phys. B 311 46

York J W Jr 1980 Energy and momentum of the gravitational field Essays in General

Relativity: a festschrift for Abraham Taub ed F J Tipler (New York: Academic) p 39

Zanelli J 2000 Chern–Simons Gravity: From 2+1 to 2n+1 Dimensions, Lecture presented

at the XX Encontro de Fisica de Particulas e Campos, Brazil, October 1988, and at



Bibliography 501

the Fifth La Hechicera School, Venezuela, November 1999 Braz. J. Phys. 30 251

(hep-th/0010049)

Chapters VII and VIII

Berestetskii V B, Lifshitz E M and Pitaevskii L P 1982 Quantum Electrodynamics

2nd edition, translated by J B Sykes and J S Bell (Oxford: Pergamon)

Bjorken J D and Drell S 1964 Relativistic Quantum Mechanics (New York: McGraw-Hill)

——1965 Relativistic Quantum Fields (New York: McGraw-Hill)

Boulware D and Deser S 1972 Can gravitation have a finite range? Phys. Rev. D 6 3368

Deser S 1970 Self–interaction and gauge invariance Gen. Rel. Grav. 1 9

• Duff M J 1973 A particle physicist’s approach to the theory of gravity Trieste Preprint

IC/73/70

• Feynman R P, Morinigo F B and Wagner W G 1995 Feynman Lectures on Gravitation

(Reading, MA: Addison-Wesley)

Fierz M and Pauli W 1939 Relativistic wave equation for particles of arbitrary spin in an

electromagnetic field Proc. R. Soc. A 173 211

• Kibble T W B 1965 The quantum theory of gravitation High Energy Physics and

Elementary Particles, Proc. Trieste Symposium (Trieste, 1965) ed G Fronsdal and

A Salam (Vienna: IAEA) p 885

Landau L D and Lifshitz E M 1975 The Classical Theory of Fields 4th revised English edn,

translated by Morton Hamermesh (Oxford: Pergamon)

Logunov A A and Mestvirishvili M A 1985 Relativistic theory of gravity Institute for High

Energy Physics Preprint IFVE 85-162

Misner C H, Thorne K S and Wheeler J A 1970 Gravitation (San Francisco, CA: Freeman)

Nordström G 1913 Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips

Ann. Phys., Germany 42 533

• Okubo S 1978 Introduction to general relativity, lecture notes Preprint UR-687, the

University of Rochester

Peskin M and Schroeder P 1995 An Introduction to Quantum Field Theory (Reading, MA:

Addison-Wesley)

Roman P 1969 Introduction to Quantum Field Theory (New York: Wiley)

Scherk J 1979 A short review of supergravity Preprint LPTENS 79/23

Schwinger J 1970 Particles, Sources and Fields vol 1 (Reading, MA: Addison-Wesley)

Takahashi Y 1969 An Introduction to Field Quantization (Oxford: Pergamon)

• Van Dam H 1974 Theory of Gravity (Nijmegen: ITP—University of Nijmegen)

Van Dam H and Veltman M 1970 Massive and massless Yang–Mills and gravitational fields

Nucl. Phys. B 22 397

Van Nieuwenhuizen P 1973 Radiation of massive gravitation Phys. Rev. D 7 2300

Veltman M 1976 Quantum theory of gravitation Methods in Field Theory ed R Balian and

J Zinn-Justin (Amsterdam: North-Holland) p 265

Weinberg S 1964 Photons and gravitons in S-matrix theory: Derivation of charge

conservation and equality of gravitational and inertial mass Phys. Rev. B 135 1049

——1972 Gravitation and Cosmology (New York: Wiley)

——1995 The Quantum Theory of Fields (Cambridge: Cambridge University Press)



502 Bibliography

Chapter IX

• Bailin D and Love A 1994 Supersymmetric Gauge Field Theory and String Theory

(Bristol: IOP Publishing)

Barut A O and Raczka R 1977 Theory of Group Representations and Applications

(Warsaw: PWN—Polish Scientific)

Berestetskii V B, Lifshitz E M and Pitaevskii L P 1982 Quantum Electrodynamics 2nd edn,

translated by J B Sykes and J S Bell (Oxford: Pergamon)

Carruthers A 1971 Spin and Isospin in Particle Physics (New York: Gordon and Breach)

Coleman S and Mandula J 1967 All possible symmetries of the S matrix Phys. Rev. 159

1251

Deser S 1979 Supergravity: a post Einstein unification On the Path of Albert Einstein,

Proc. Coral Gables Conf. (Miami, 1979) ed A Perlmutter et al (New York: Plenum)

p 39

——1980 Supergravities: Successes and problems, Invited lecture given at the

Europhysics Conference on Unification of Fundamental Interactions, Erice, 1980

Preprint Print-80-0388

Deser S and Zumino B 1976 Consistent supergravity Phys. Lett. B 62 335

Fayet P and Ferrara S 1977 Supersymmetry Phys. Rep. C 32 250

Ferrara S and Taylor J G (ed) 1982 Supergravity ’81, School on Supergravity (Trieste,

1981) (Cambridge: Cambridge University Press)

Ferrara S, Taylor J G and van Nieuwenhuizen P (ed) 1983 Supersymmetry and Supergravity

’82, School on Supersymmetry and Supergravity (Trieste, 1982) (Singapore: World

Scientific)

Ferrara S and van Nieuwenhuizen P 1978 The auxiliary fields of supergravity Phys. Lett.

B 74 333

Freedman D Z and van Nieuwenhuizen P (ed) 1979 Supergravity, Stony Brook Workshop,

1979 (Amsterdam: North-Holland)

Freedman D Z, van Nieuwenhuizen P and Ferrara S 1976 Progress towards a theory of

supergravity Phys. Rev. D 13 3214

Freund P G 1986 Introduction to Supersymmetry (Cambridge: Cambridge University

Press)
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Notations and conventions

Notations and conventions are defined in the text, at the places where they first

appear. The following list contains a set of often used abbreviations, symbols and

conventions.

Abbreviations

ADM Arnowitt–Deser–Misner PGT Poincaré gauge theory

EC Einstein–Cartan PR Principle of relativity

FC First class SCT Special conformal

GR General relativity transformations

KK Kaluza–Klein SR Special relativity

PB Poisson bracket SS Supersymmetry

PE Principle of equivalence WGT Weyl gauge theory

Xd d-dimensional differentiable manifold, d = 4 + D.

Md d-dimensional Minkowski space with metric

η = (+1,−1, . . . ,−1).

Indices

Repeated indices are summed.

i, j, k, . . . Local Lorentz indices in X4, run over 0, 1, 2, 3;

the related coordinates are x i .

µ, ν, λ, . . . Coordinate indices in X4, run over 0, 1, 2, 3;

the coordinates are xµ.

a, b, c, . . . Spatial local Lorentz indices in X4, run over 1, 2, 3.

α, β, γ, . . . Spatial coordinate indices in X4, run over 1, 2, 3.

I, J, K, . . . Local Lorentz indices in X5, run over 0, 1, 2, 3, 5;

the coordinates are zI.

M, N, L, . . . Coordinate indices in X5, run over 0, 1, 2, 3, 5;

the coordinates are zM = (xµ, y) (for d > 5, y → yα).
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514 Notations and conventions

α, β, γ, . . . Coordinate indices in X2 (string), run over 0, 1;

the coordinates are ξα = (τ, σ ).

a, b, c, . . . Non-coordinate indices of internal groups, run over 1, 2, . . . , n.

a, ȧ, . . . Two-dimensional spinor indices, run over 1, 2; 1̇, 2̇.

α, β, γ, . . . Coordinate indices of internal groups, run over 1, 2, . . . , n.

Symmetrization and antisymmetrization:

X(i j ) = 1
2
(X i j + X j i ), X[i j ] = 1

2
(X i j − X j i).

Tensor and spinor fields

ϕ, φ Scalar fields.

ϕµ, Aµ Vector fields.

ϕµν, hµν Symmetric tensor fields.

bµν Antisymmetric tensor, field strength: Hµνλ = ∂µbνλ+ cyclic.

ψ,& Dirac field, spin = 1
2

.

ψµ Rarita–Schwinger field, spin = 3
2

.

σµ, σ̄µ Pauli spin matrices, σµ = (1, σ ), σ̄µ = (1,−σ ).

γ µ, γ M Dirac matrices in d = 4 and d > 4.

εµ, εµν Polarization vector and tensor.

Completely antisymmetric symbols

εi j kl ε0123 = +1, but ε0123 = −1 (in M4).

εabc εabc ≡ ε0abc, εabc ≡ ε0abc, hence ε123 = +1, ε123 = −1

(in M4).

ǫabc ǫ123 = ǫ123 = +1 (in E3).

Geometric objects in X4

eµ, ei The coordinate and Lorentz basis of the tangent space,

eµ = ei
µei , ei = ei

µeµ (alternatively: ei
µ → bi

µ, ei
µ → hi

µ).

g Metric tensor, gµν = eµ · eν ,

gi j ≡ ηi j = ei · e j = (+1,−1,−1,−1).

u · v The scalar product of two vectors, u · v = ηi j uiv j = gµνuµvν .

ωi j
µ Spin connection, alternative notation: Ai j

µ.

∇µ(ω) ω-covariant derivative, ∇µ(ω)u
i = ∂µui + ωi

sµus ,

alternative notation: Dµ(ω).

∇k(ω) ∇k(ω) = ek
µ∇µ(ω), alternative notation: Dk(ω).

Ŵλ
ρµ Connection in the coordinate basis.

∇µ(Ŵ) Ŵ-covariant derivative, ∇µ(Ŵ)u
λ = ∂µuλ + Ŵλ

ρµuρ ,

alternative notation: Dµ(Ŵ).{
λ
ρµ

}
Christoffel symbol.
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Qµνλ Non-metricity, Qµνλ = −∇µ(Ŵ)gνλ.

ϕµ Weyl vector, ∇µ(Ŵ)gνλ = ϕµgνλ.

Ri j
µν(ω) Curvature, Ri j

µν(ω) = ∂µω
i j
ν + ωi

sµω
s j
ν − (µ ↔ ν).

T i
µν(e) Torsion, T i

µν(e) = ∇µ(ω)e
i
ν −∇ν(ω)e

i
µ.

Fµν(ϕ) Weyl curvature, Fµν(ϕ) = ∂µϕν − ∂νϕµ.

Gauge objects in X4

Aa
µ Non-Abelian gauge potential.

Fa
µν Non-Abelian field strength,

Fa
µν = ∂µAa

ν − ∂ν Aa
µ + fbc

a Ab
µAc

ν .

Ai j
µ, bi

µ Compensating fields in PGT.

F i j
µν(A) Lorentz field strength.

F i
µν(b) Translation field strength.

Ai j
µ, bi

µ, Bµ Compensating fields in WGT.

Fµν(B) Dilatation field strength.

Geometric objects in Xd (d > 4 or d = 2)

êM, êI The coordinate and Lorentz basis of the tangent space,

êM = bI
M êI, êI = hI

M êM.

ĝ Metric tensor, ĝMN = êM · êN,

ĝIJ ≡ ηIJ = êI · êJ = (+1,−1, . . . ,−1).

ÂIJ
M Spin connection.

Ŵ̂L
RM Connection in the coordinate basis.

R̂IJ
MN Curvature.

T̂ I
MN Torsion.

γ Induced metric on X2 (string), γαβ .

Spaces over X4

L4 linearly connected space, L4 = (X4, Ŵ) = (X4, ω).

Y4 Weyl–Cartan space.

W4 Weyl space.

U4 Riemann–Cartan space.

V4 Riemann space.

T4 Weitzenböck (teleparallel) space.

M4 Minkowski space.

Constants

c the speed of light, c = 3.00 × 1010 cm s−1.
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G Newton’s constant, G = 6.67 × 10−8 cm3 g−1 s−2.

κ κ = 8πG/c2 ≈ 1.86 × 10−27 cm g−1.

~ the Planck constant, ~ = 1.05 × 10−27 erg s.

lP the Planck length, lP =
√
~G/c3 ≈ 1.61 × 10−33 cm.

EP the Planck energy, EP = c2
√
~c/G ≈ 1.22 × 1019 GeV.



Index

Action (Lagrangian) of

Ashtekar’s formulation, 405

Brans–Dicke theory, 397

Chern–Simons theory, 180

de Sitter gauge theory, 394

Einstein–Cartan theory, 65, 136

electrodynamics, 123

supersymmetric, 259

general relativity

tetrad form, 402

Hilbert–Palatini form, 136

in three dimensions, 474

general PGT, 65

Kaluza–Klein theory, 294, 304,

321

relativistic particle, 339

string, 342, 361

supergravity, 278, 284

teleparallel theory, 68

Wess–Zumino model, 248, 255,

271–2

Weyl gauge theory, 95

Weyl theory, 95

Yang–Mills theory, 376

Action, invariance of, 24

Angular momentum, 26–7, 49

Ashtekar’s form of GR, 405

Asymptotic (boundary) symmetry

in

anti de Sitter space, 481

Chern–Simons theory, 182

Einstein–Cartan theory, 159

teleparallel theory, 172

Autoparallel curve, 58, 387

Auxiliary fields in

super-electrodynamics, 259

supergravity, 283

Wess–Zumino model, 255, 272

Basis of the tangent space

ADM, 130

coordinate, 43, 58, 303

Lorentz, 43, 58, 303

Bianchi identity, 47, 388

Boundary conditions, see:

asymptotic

symmetry

Brans–Dicke theory, 396

Chern–Simons theory, 179

action, 180

(for) anti de Sitter group, 477

boundary symmetries

affine (Kac–Moody), 187

Virasoro, 189

(and) general relativity, 475

Hamiltonian, 184

(for) Poincaré group, 475

Compactification, 305, 329

Compactness, 380, 453

Connection, 54, 59, 386

metric-compatible, 57

Christoffel symbol, 57

Weyl (symmetric), 90

Weyl–Cartan, 93

Conservation laws (of)

angular momentum, 26–7, 49

(and) asymptotic symmetry, 163,

176
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518 Index

comparison with GR, 166, 178

dilatation current, 33, 84

(in) Einstein–Cartan theory, 66

energy–momentum, 26, 49

special conformal current, 33

(in) teleparallel theory, 71

Constraint algebra, 153, 410

Coordinate system, 52, 380

Coupling constant in

Chern–Simons theory, 478

Kaluza–Klein theory, 328

Covariant derivative (in)

defined, 54, 59, 386

Poincaré gauge theory, 44

Riemann–Cartan theory, 59

Weyl gauge theory, 80

Weyl theory, 90

Weyl–Cartan theory, 93

Yang–Mills theory, 374

De Sitter gauge theory, 390

Differential forms, 385

Dilatation (scale) current, 33, 84

Dilaton, 317

Dimension, 30, 31, 33

Dimensional reduction, 297

Effective theory, 310, 325

Einstein–Cartan theory,

action, 65, 136

conservation laws, 66, 164

field equations, 65

Hamiltonian, 136

tetrad formulation, 402

Energy–momentum tensor, 26,

48–9

Belinfante’s, 27, 67

improved, 34, 96

Rosenfeld procedure, 68

Extremal curve, 58

Field equations of

Brans–Dicke theory, 397

Chern–Simons theory, 182

Einstein–Cartan theory, 65

Poincaré gauge theory, 49, 50

teleparallel theory, 69

Yang–Mills theory, 376

Field strength

de Sitter, 393

dilatational, 82

Lorentz, 47

translational, 47

Yang–Mills, 375

Fourier expansion, 487

Frame, reference (basis), 21

accelerated, 9

coordinate, 43, 58, 303

inertial, 4, 21

Lorentz, 43, 58, 303

orthonormal, teleparallel, 71

Gauge conditions, 117, 134

Gauge (compensating) field of

de Sitter gauge theory, 393

Poincaré gauge theory, 44

Weyl gauge theory, 80

Yang–Mills theory, 374

Gauge symmetry, see: symmetry

Generators (of)

gauge symmetries, 119, 154, 170

improved, 160, 173

Geodesic line, 58

Geometric interpretation of

Poincaré gauge theory, 61

Weyl gauge theory, 94

Geometry and physics, 11

Goldstone

boson, 39

as a compensator, 100

pseudo-Goldstone, 317

theorem, 38

Gravitational energy, 162, 174, 302

Gravitational field (graviton)

scalar, 207, 228

spin of the graviton, 195, 207,

417

symmetric tensor
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consistency problem, 219

massive, 214

massless, 210

Gravity (in d = 3), 473–4

anti de Sitter solution, 478

asymptotic symmetry, 481

black hole, 480

Chern–Simons formulation, 475,

477

general relativity, 474

(with) cosmological constant,

476

Gravity (in d = 5), 294, 303

cylinder condition, 295

ground state, 298, 305

harmonic expansion, 305

layered structure, 307

massless sector, 310

effective action, 311

matter dynamics, 312

metric, 295, 307

pentad, 308

Gravity (in d > 5), 320

compactification, 329

ground state, 321

harmonic expansion, 325

layered structure, 322

massless sector, 325

effective action, 327

metric, 326

metric, 322

Ground state (vacuum), 37, 298

classical, 298

in d = 5, 305

in d > 5, 321

semiclassical effects, 301

Group, (anti) de Sitter, 391, 476

contraction, 392

Group, Lie, 373, 455

algebra, 373, 456

Cartan metric, 377, 458

Lie equation, 460

Maurer Cartan equation, 461

Riemannian structure, 462

transformations, 459

Group, Lorentz, 421

covering group, 423

Lie algebra, 422

representations, 422

Group, Poincaré, 433

covering group, 434

fields and states, 440

gauge transformations, 439

Lie algebra, 433

little group, 435

representations (m2 = 0), 437

Group, topological, 452

Group, Weyl, 29

Hamiltonian

Ashtekar’s formulation, 408

canonical, 110

Chern–Simons theory, 184

Einstein–Cartan theory, 136

electrodynamics, 123

extended, 115

general PGT, 129, 133

general relativity, 136, 403

matter, 131

teleparallel theory, 142

total, 111

Hamiltonian dynamics, 108

brackets

Dirac, 116

Poisson, 111

consistency, 112, 134

constraints

algebra, 153, 410

first class, 113

primary, 108, 128

secondary, 112, 129

second class, 113

covariance, 125

equality, weak and strong, 109

equations of motion, 110

gauge condition, 117, 134

Harmonic expansion, 305, 325

Higgs mechanism, 319
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Invariance, see: symmetry

Isometry, 21, 323, 451

Kaluza–Klein theory, see: gravity

in d = 5 and d > 5

Kaluza–Klein theory, symmetry

Higgs mechanism, 319

Kac–Moody, 317

massless sector

in d = 5, 315

non-Abelian, 326

particle spectrum, 315

residual (restricted), 309, 323

spontaneously broken, 318

Killing equation, 21, 324, 452

conformal, 28

Lagrangian, see: action

Leyered structure, 307, 322

Lie algebra

affine (Kac–Moody), 189, 318

conformal, 29

de Sitter, 392

Poincaré, 22

Virasoro

central charge, 191, 356

classical, 36, 191, 350

quantum, 355

Weyl, 29

Local orthogonality, 308, 322

Manifold, see: space

differentiable, 52, 380

connection, 54, 59, 386

covariant derivative, 54, 59, 386

curvature, 55, 387

differential forms, 385

metric, 56, 384

parallel transport, 54, 386

tangent space, 53, 382

torsion, 55, 387

Matter dynamics in

non-Abelian gauge theory, 374

Poincaré gauge theory, 49

Weyl gauge theory, 84

five-dimensional theory, 312

higher-dimensional theory, 329

Metric, 13, 56, 384

in d = 5, 295, 308

in d > 5, 322

metricity, 57, 60

semi-metricity, 90, 93

signature, 63

Noether’s theorem, 26

Nonlinear effects, first order form

matter and interaction, 242

pure gravity, 240

tensor theory of gravity, 239

Yang–Mills theory, 237

Nonlinear effects, second order

form

scalar electrodynamics, 226

scalar theory of gravity, 228

tensor theory of gravity, 231

pure gravity, 234

consistency requirements, 232

matter and interaction, 235

Yang–Mills theory, 222

Observable, 113

Parallel transport, 13, 54, 386

Particle, relativistic, 339

Principle (of)

general covariance, 14

equivalence, 9, 62

Mach’s, 16

relativity, 4, 6, 14

Quantization of

point particle, 340

strings, 353

Fock space, 356

Rarita–Schwinger field, 273

Ricci rotation coefficients, 61

Riemann curvature, 56, 387
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Scalar–tensor theory, 396

Singularity, gravitational, 18, 75

Space

coset, 467

(anti) de Sitter, 391, 478

homogeneous, 324, 464

isotropic, 324, 464

linearly connected, 13, 54

max. symmetric, 324, 464

(with) metric, 13, 384

Minkowski, 8, 21, 57

Riemann, 14, 57, 388

Riemann–Cartan, 14, 57, 388

tangent, 53, 382

topological, 52, 379

Weintzenböck (teleparallel), 57,

68

Weyl (without torsion), 89

Weyl–Cartan, 92

Spacetime, 8, 51

Spinors, 425

chiral, 445

Dirac, 428, 444

Fierz identities, 446

Majorana, 430, 445

Weyl, 430

Spin tensor (current), 26, 48

String, classical mechanics

action, 342

equations of motion, 344

Hamiltonian formalism, 344

oscillator formalism, 346

symmetries, 344

Virasoro algebra, 351

String, classical field theory

free field action, 361

gauge symmetries, 358

massless sector

electrodynamics, 362

gravity, 364

String, quantization

critical dimension, 355

Fock space, 356

Virasoro algebra, 355

Virasoro conditions, 354

the meaning of, 358

Structure equations,

Cartan, 388

Lie, 460

Maurer–Cartan, 461

Super-electrodynamics, 257

Supergravity, complete theory

action, 278, 284

auxiliary fields, 284

field equations, 279

local supersymmetry, 280

algebra of, 281

Supergravity, linearized theory

action, 278

auxiliary fields, 283

SS invariance, 278

Super-Poincaré algebra

boson–fermion balance, 254

extended (N > 1), 253

invariants, 259

mass degeneracy, 253

positivity of energy, 253

representations on fields, 267

invariants, 271

reducibility, 269

tensor calculus, 269

representations on states

m
2 = 0, 261

m
2 > 0, 264

simple (N = 1), 250

Supersymmetry, 246

Symmetry

(and) covariance, 16

isometry, 21, 323, 451

manifest, 38

residual, 309, 323

spontaneously broken, 38, 318

chiral, 253, 257

Symmetry, gauge (local)

(and) constraint algebra, 410

de Sitter, 393

Galilean, 15

Poincaré, 10, 43
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Weyl, 79

conformal, 85

Weyl rescaling, 87

Yang–Mills, 374

Symmetry, global

asymptotic, 158, 171, 481

conservation laws, 164, 176

conformal, 32

de Sitter, 392

Poincaré, 25

Weyl, 29, 79

Yang–Mills, 373

Tangent space, 53, 382

Teleparallel theory

action, 68

conservation laws, 71, 176

field equations, 69

(and) general relativity, 72

Hamiltonian, 142

lambda symmetry, 70, 146

OT frames, 71

Torsion, 55, 387

contortion, 57

tordions, 74

Transformations

conformal, two-dimensional, 35

conformal, four-dimensional

in M4, 27, 88

dilatations (scale), 28, 30

inversion, 31

special conformal, 28

in Riemann space, 86

de Sitter, 392

Lorentz, 7

Poincaré, 10, 21, 43

Weyl rescaling, 28, 87

Vacuum, see: ground state

Variation (of the form, total), 21

Virasoro algebra,

central charge, 191, 356

classical, 36, 191, 350

quantum, 355

Wess–Zumino model

free, 248, 255

interacting, 271

Weyl, see: space, group

charge, 80

vector, 90

weight, 83

Yang–Mills theory, 373
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