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It is known that the gravitational analog of the Faraday rotation arises in the rotating spacetime
due to the nonzero gravitomagnetic field. In this paper, we show that it also arises in the “nonro-
tating” Reissner-Nordström spacetime, if it is immersed in a uniform magnetic field. The non-zero
angular momentum (due to the presence of electric charge and magnetic field) of the electromagnetic
field acts as the twist potential to raise the gravitational Faraday rotation as well as the gravita-
tional Stern-Gerlach effect in the said spacetimes. The twisting can still exist even if the mass of
the spacetime vanishes. In other words, the massless charged particle(s) immersed in a uniform
magnetic field are able to twist the spacetime in principle, and responsible for the rotation of the
plane of polarization of light. This, in fact, could have applications in the basic physics and the
analog models of gravity. Here, we also study the effect of magnetic fields in the Kerr and Reissner-
Nordström spacetimes, and we derive the exact expressions for the gravitational Faraday rotation
and the gravitational Stern-Gerlach effect in the magnetized Kerr and Reissner-Nordström space-
times. Calculating the lowest order of the gravitational Faraday effect arisen due to the presence of
a magnetic field, we show that the logarithm correction of the distance of the source and observer
in the gravitational Faraday rotation and gravitational Stern-Gerlach effect for the said spacetimes
is an important consequence of the presence of the magnetic field. From the astrophysical point of
view, our result could be helpful to study the effects of (gravito)magnetic fields on the propagation
of polarized photons in the strong gravity regime of the collapsed object.

I. INTRODUCTION

Faraday effect is a magneto-optical phenomenon discovered by Michael Faraday in 1845. It arises due to the
interaction between the light and magnetic field of the medium. If a beam of plane polarized light is passed
through a magnetic field, the plane of polarization is rotated by an angle proportional to the field intensity,
which is known as the Faraday effect or Faraday rotation. Einstein’s General Relativity predicts that the light
rays passing a massive object bend towards it, i.e., the light is affected by the gravitational field. Not only
that, it has also been shown [1, 2] that the plane of polarization of the light rays is rotated by some finite angle
depending on the angular momentum of the black hole, even if there is no magnetic field. This means that one
can see the gravitational analog of the Faraday rotation in a rotating spacetime, and the gravitomagnetic field
(gravitational analog of the magnetic field) is responsible for this phenomenon. The plane of polarization of the
light rays are rotated due to this gravitomagnetc field. Therefore, this new Faraday rotation is called as the
gravitational analog of the Faraday rotation or the so-called gravitational Faraday rotation [1–4]. Note that,
the gravitational Faraday rotation is not related to the magnetic field. It is only related to the gravitomagnetic
field, i.e, the rotation of the spacetime. One cannot see the gravitational Faraday rotation in a non-rotating
spacetime like the Schwarzschild spacetime. Thus, as of now, one can expect the graitational Faraday rotation in
the Kerr spacetime. The Taub-NUT spacetime has no intrinsic rotation [5] but it has a sense of rotation due to
the presence of NUT charge. However, it has been shown [4] that no gravitational Faraday rotation is occurred
in the Taub-NUT spacetime.
In a stark contrast, we show in this paper that the gravitational Faraday rotation can occur in the non-

rotating Reissner-Nordström (RN) spacetime, if it is immersed in a uniform magnetic field. The RN spacetime is
the electrovacuum solution of the Einstein-Maxwell equation with mass and electric charge only. If it is immersed
in the magnetic field, its electric field and magnetic field together constitutes a non-zero electromagnetic angular
momentum, i.e., it gives a rotational sense to the magnetized RN spacetime. This electromagnetic angular
momentum acts as the gravitomagnetic field, and, therefore, it shows the gravitational Faraday rotation, i.e., if
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the light passes through this spacetime, the plane of polarization of the light or the electromagnetic wave rotates.
Note that in a very recent paper, the exact solution of the magnetized Reissner-Nordström (mRN) solution was
investigated by [6].
The magnetic field plays an important role in the many astrophysical phenomena, e.g., the MHD simulation

for the accretion mechanism [7], imaging of the black hole shadow [8–10], magnetic Penrose process [11, 12] etc.
Although the magnetic Penrose process was proposed assuming the magnetic field to be asymptotically uniform
[11], the Blandford-Znajek (BZ) mechanism [13] is generally considered for the MHD simulation and to deduce the
polarization of the photon ring [8]. However, the exact electrovacuum solution of the Einstein-Maxwell equation
for the Kerr metric placed in a uniform magnetic field was first found by Wald [14]. In the next year, Ernst [15]
presented a general procedure for transforming an asymptotically flat axially symmetric electrovacuum solution
to an exact magnetized solution of the same. Later, the effect of a plasma in the force-free approximation was
considered by Blandford and Znajek [13]. For the lacking of the direct measurements of the exact shapes of the
magnetic field configurations around a realistic collapsed objects, many other numerical techniques are used to
show the strong connections between the shape of magnetosphere and the characteristics of accretion mechanism
[16, 17]. In this paper, we consider the Wald [14] and/or Ernst [15] solution as this is the exact electrovacuum
solution of the Einstein-Maxwell equation. Secondly, the uniform magnetic field configuration assumed in the
magnetic Penrose process [11, 12] seems more efficient than the magnetic field configuration of the BZ mechanism
for the electromagnetic extraction of the rotational energy from a rotating black hole.
There was a draw back of the Ernst solution: it produces the conical singularities at the polar axis [18], which

was removed by the Ernst-Wild (see [19]) solution in order to obtain a physically meaningful solution [20]. Later,
Aliev and Galt’sov [21] applied this solution to observe the magnetic precession (see also [22, 23]) in black hole
systems with magnetized accretion disks. It is known that the gravitational energy is much greater than the
electromagnetic energy, but those are comparable if the strength of the magnetic field (B) surrounding a collapsed
object with mass M is the order of [20, 24]

B ≃ Bmax ∼ 2.4× 1019
M⊙

M
(1)

where M⊙ is the solar mass. The strength of the magnetic field surrounding black holes is considered much
smaller than the value of Bmax (i.e., B << Bmax) but the investigations suggest that the surrounding spacetimes
around a black hole could be highly distorted for B ∼ Bmax. Thus, this magnetic field is very important as a
background field testing of the geometry around a collapsed object [25].
In this paper, we have chosen the magnetized Kerr and magnetized RN spacetimes to study the effect of

magnetic field on the gravitational Faraday effect. In general, the Kerr black hole is considered as the most
relevant from the astrophysical point of view, and it is supposed to immerse in a non-zero magnetic field. On
the other hand, although the ordinary RN spacetime is spherically symmetric, the magnetized RN is very special
in this sense that it becomes axisymmetric due to the presence of magnetic field (as discussed in the second
paragraph of this section). These are basically the main reasons why we are interested to study the gravitational
Faraday effect in these spacetimes. We also carry out the similar study for the massless charged-RN solution,
which is devoted only for the theoretical purpose. The scheme of the paper is as follows. In Sec. II, we revisit the
formalism of the gravitational analog of the Faraday rotation, and derive the relation of it with the gravitational
anlogue of the Stern-Gerlach effect and the so-called spin precession of a test gyroscope. In Sec. III, we study
the effect of magnetic field on the gravitational Faraday rotation and the gravitational Stern-Gerlach effect in
the magnetized Kerr spacetime. Sec. IV and Sec. V are devoted to study the effect of magnetic field on the
gravitational Faraday and Stern-Gerlach effects in the mRN spacetime and the massless mRN-like spacetime,
respectively. Finally, we conclude in Sec. VI.

II. GRAVITATIONAL FARADAY ROTATION IN THE STATIONARY SPACETIME

The general metric of a stationary spacetime can be written as

ds2 = gµνdx
µdxν = g00(dx

0)2 + 2g0idx
0dxi + gijdx

idxj (2)

= h(dx0 − gidx
i)2 − γijdx

idxj (3)

where

h = g00, gi = −g0i
h
, γij = −gij +

g0ig0j
g00

. (4)
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The Greek indices represent the time and space components, i.e., xµ = (x0 ≡ t, xi) and the Latin indices represent
only the space components, i.e., i = 1, 2, 3. We denote

g ≡ det(gµν), γ ≡ det(γij) (5)

and, hence, −g = hγ. In a static spacetime (gi = 0), the metric γij reduces to the so-called optical metric [3, 26].
Spatial trajectories of light rays are geodesics of the optical metric. Landau and Lifshitz [27] also showed that
γij can be regarded as a metric of space, as opposed to spacetime. This is similar to the (3+1) decomposition of
the metric (Eq. 3). They showed that the test bodies following geodesics of spacetime depart from the geodesic
of space as if acted on by the gravitational force F which can be expressed as [28] 1.

F =
m0√
1− v2

(

Eg + v ×
√
hBg

)

(6)

where

Eg = −∇ ln
√
h = −1

2

∇h
h

(7)

and

Bg = curl A ≡ curl g (8)

are the gravitoelectric (Eg) and gravitomagnetic (Bg) fields respectively. It is needless to say here that gi is
equivalent to Ai, i.e., gi ≡ Ai, the gravtational analog of the vector potential (of electromagnetism). Now, one
can rewrite the Landau and Lifshitz’s form of Einstein’s equations as [4]

div Bg = 0, (9)

curl Eg = 0, (10)

div Eg = −
[

1

2
(
√
hBg)

2 + Eg
2

]

, (11)

curl (
√
hBg) = 2Eg × (

√
hBg). (12)

It would be interesting to notice that
√
hBg also appears in the expression of force (Eq. 6), and, the right

hand side of Eq. (12) could be considered as an energy current corresponding to the Poynting vector flux of
gravitational field energy. Note, all the operations in Eqs. (9-12) are defined in the 3D space with the metric
γij . However, one can also define the above gravitomagnetic fields in the following covariant forms by using the
timelike Killing vector of the spacetime as [4],

Eςg = −1

2

(ζσζσ)
;ς

|ζ|2 , (13)

Bςg = −1

2
|ζ|ζσǫσςιρ

[

(

ζρ
|ζ|2

)

;ι

−
(

ζι
|ζ|2

)

;ρ

]

, (14)

where ǫσ
ςιρ is the four dimensional antisymmetric tensor, |ζ| =

√
h and the semicolon denotes the covariant

differentiation.
Now, using the analogy with the flat spacetime, we consider the plane of polarization of an electromagnetic

wave consisting two 3-vectors: the wave vector k and the polarization vector f . The 4-vectors corresponding to
these 3-vectors are related as

kσkσ = 0, kσfσ = 0, fσfσ = 1, (with σ = 0, 1, 2, 3) (15)

1 We use the geometrized unit (G = c = 1) in this whole paper except Eq. (96).
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and, both of them (kσ and fσ) are parallelly-trnasported along the null geodesic [27]. It should be useful to note
here that the covariant counterparts of these 3-vectors (k and f) are not the spatial components of the covariant
4-vetors kσ and fσ, rather

(3)kj = γ
(3)
ij k

i =(4) kj + k0gj (16)

and

(3)fj = γ
(3)
ij f

i =(4) fj + f0gj. (17)

There is a gauge freedom which enables us to put f0 = 0 without the loss of generality [4]. Now, applying the
above decomposition with the gauge condition and using the equations of parallel transport for kσ and fσ, the
evolution equations of k and f along the ray were derived as [1],[4]

3∇kk = L× k+ (Eg.k)k (18)
3∇kf = L× f (19)

where

L = −1

2
k0

[

Bg − 1

2
(Bg.f)f +

1

|f |Eg.(k× f )f

]

. (20)

If only the second term exists on the RHS of Eq. (18), it would mean, by comparison with the 4D definition of
the parallel transport, that the 3-vector k is parallely transported along the projection of the null geodesic,but
the presence of the first term indicates that k is rotated by the angular velocity L. The same rotation also
appears for the polarization vector f (see Eq. 19). Thus, both of the equations together leads to this important
fact that the polarization plane rotates with the angular velocity L along the projected null geodesic. However,
Ref. [4] derived the angle of rotation (χ) around the tangent vector k̂ along the path between the source and the
observer as [4]:

χ =

∫ observer

source

L.k̂ dλ (21)

= −1

2

∫ observer

source

k0Bg.k̂ dλ (22)

where λ is the affine parameter along the ray. If one considers a small line element dl along the path of the ray,
one can write (see Eq. 19 of [4])

k20
h

=

(

dl

dλ

)2

. (23)

Now, substituting Eq. (23) in Eq. (22) with k̂dl = dl, one obtains from Eq. (22)

χ = −1

2

∫ observer

source

√
h Bg.dl (24)

= −1

2

∫ observer

source

curl(
√
h curl g).dS (25)

[4] where dS represents the surface enclosed by the path of the light ray (i.e., a null geodesic) which passes close
to a collapsed object like the black hole. 2 Here, we use the Stokes theorem and Eq. (8) to obtain Eq. (25)

2 Note, Eq. (24) was directly applied to deduce the gravitational Faraday rotation in the ‘spherically symmetric’ Taub-NUT spacetime
considering a closed path around the Taub-NUT hole (see Sec. IV of [4]), whereas Eq. (25) was applied for the ‘axisymmetric’
Kerr spacetime (see Sec. V of [4]). For the latter, the integration was performed over the orbital plane which was enclosed by the
orbit of null geodesic.
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from Eq. (24). Eq. (24) indicates that a light ray propagates along the line of sight starting from the source at
infinity and ending at the observer. The light rays reaching the observer along the two different lines of sight
[29] traverses two different paths and the rotation angles for their planes of polarization is given by Eq. (24).
Actually, the surface enclosed (as shown in Eq. 25) by the two referred paths [29] could be physically referred to
a spherical corona between the source and the observer location.
It was pointed out in [3, 30] that the spin-optical interaction described by the effective force is proportional to

‘curl curl g’ (see Eq. 71 and Eq. (81) of [30]), if one use the definition of γ metric as of Eqs. (2) and (6) of [3].

In our case, the effective force should be proportional to ‘h curl(
√
h curl g)’. This effective force increases when

a photon approaches the collapsed object and reaches its maximum near its radial turning point. Note, if one
use the definition of the γ metric of [3], one obtains the angle of rotation (χ̄) as 3

χ̄ = −1

2

∫ observer

source

curl (curl g) .dS. (26)

One can take the example of the Kerr spacetime. From the atsrophysical point of view, the most relevant
spacetime is the Kerr spacetime to describe the astrophysical collapsed objects. The Kerr metric in the Boyer-
Lindquist coordinates xµ ≡ (t, r, θ, φ) can be written in the form of Eq. (4) with

g00 = h =

(

1− 2Mr

Σ

)

, g ≡ gφ = −2aMr sin2 θ

Σ− 2Mr
(27)

and

γijdx
idxj =

Σ

∆
dr2 +Σdθ2 +

∆

h
sin2 θdφ2 (28)

where, a is the Kerr parameter, defined as a = J
M , the angular momentum (J) per unit mass (M) and

Σ = r2 + a2 cos2 θ, ∆ = r2 − 2Mr + a2. (29)

Considering Eqs. (127-131) in the notation of [3] one can obtain from Eq. (26)

χ̄Kerr = −1

2

∫ observer

source

4aM2

Σ3
.
Σ sin θ

h2
drdθ (30)

= −2aM2

∫ observer

source

sin θ

(Σ− 2Mr)2
drdθ (31)

which is the same as of Eq. (23) of [4]. In the weak-field regime (r >> M), one can obtain from Eq. (31):
χ̄Kerr ∼ aM2/R3, where R is the distance between the source and the observer. In our case, the effective force
for the gravitational Faraday effect changes as

∣

∣

∣h curl(
√
h curl g)

∣

∣

∣ =

∣

∣

∣

∣

∣

h
4aM2

√
hΣ2(Σ− 2Mr)

.

√
∆sin θ√
h

∣

∣

∣

∣

∣

=
4aM2

√
∆sin θ

Σ2(Σ− 2Mr)
(32)

≈ 4aM2

r5
sin θ (33)

where Eq. (33) is valid far away (M/r << 1) from a slowly-rotating (a/M << 1) Kerr black hole as showed
earlier in [30].

3 We follow the definition of χ mentioned in Eq. (25) (not of Eq. 26) in the whole paper.
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A. Relation between the gravitational Faraday rotation and the so-called spin precession

Considering Eq. (8), and using the relation (ep̂ = ep/
√
γpp [31]) between the orthonormal basis vectors (ep̂)

and the coordinate basis vectors (ep), one obtains the gravitomagnetic field for the Kerr spacetime as

(curl g)p̂ ep̂ = −2aM

[

2r
√
∆cos θ

Σ(Σ− 2Mr)3/2
er̂ +

(r2 − a2 cos2 θ) sin θ

Σ(Σ− 2Mr)3/2
eθ̂

]

. (34)

Interestingly, if one multiplies Eq. (34) with ‘−
√
h/2’, one obtains the same expression (Eq. (42) of [5]) which was

obtained as the spin precession frequency (Ωs), or, so-called the Lense-Thirring (LT) precession [32] frequency of
a test gyroscope or a test spin (for the detailed spin precession formalism, see [33–35]. So, technically, Eq. (25)
leads to the angle of

χ =

∫ observer

source

(curl Ωs).dS. (35)

Although the general expression for the LT precession frequency of a test spin in terms of the coordinate basis
vectors was obtained in [36] as

Ω = − g00
2
√−g ǫijpgi,j (ep + gpe0) (36)

for a general stationary spacetime, we should only consider

Ωs = −1

2

√

h

γ
ǫijp gi,j ep ≡ −1

2

√
h (curl g) (37)

as we deal here only with the γij metric. ǫijp is the Levi-Civita symbol.
Note, in case of the Taub-NUT spacetime [37, 38], (curl g) comes as non-zero [4, 5], and, hence the spin of

a test gyro can precess [5] in this spacetime. On the other hand,
(

curl (
√
h curl g)

)

vanishes, and, therefore,

no gravitational Faraday rotation is induced in the Taub-NUT spacetime [4]. This example could be helpful to
differentiate between the spin precession and the gravitational Faraday rotation.

B. Angular separation (Θ) of the right and left circularly polarized beams due to the gravitational

Faraday rotation: Gravitational Stern-Gerlach effect

There exists a gravitational analog of the Stern-Gerlach effect [30], i.e., in the spacetime of a rotating collapsed
object, the trajectories of the circularly polarized photons depend on their polarization. Using this analogy,
Mashhoon [39, 40] showed that the photons of the opposite (right and left) circular polarization emitted by a
distant source deflects to the directions with the separation angle (Θ)

Θ ∼ aM

ωD3
(38)

after scattering, where ω is the photon frequency andD is the distance from the photon to the body at the moment
of their minimal separation. As the gravitomagnetic field depends upon position, there exists a gravitomagnetic
Stern-Gerlach force −∇(Ωs.N) on a spinning particle with ‘intrinsic’ spin vector N. This force naturally leads
to a differential deflection of the polarized beams [41].
In a recent paper, [3] has studied in detail how the polarization of photons affects their motion in a gravitational

field created by a rotating massive collapsed object, and shown that the angular separation (Θ) of the right and
left circularly polarized beams is deduced using the dimensionless parameter: ε = ±(Mω)−1 [30] (with |ε| << 1).
Thus, we obtain the relation between Θ, χ and Ωs as

Θ = ± 1

Mω
χ = ∓ 1

2Mω

∫ observer

source

curl(
√
h curl g).dS (39)

= ± 1

Mω

∫ observer

source

(curl Ωs).dS (40)
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where and + and − correspond to the right and left circular polarizations, respectively. Eq. (39) depends on
ω, and this, in fact, can be used as the final expression to obtain the angular separation of the right and left
circularly polarized beams due to the gravitational Faraday effect in a stationary spacetime. In the next two
sections, we study the effects of the gravitational analog of Faraday rotation and Stern-Gerlach effect in the
magnetized Kerr and Reissner-Nordström spacetimes.

III. GRAVITATIONAL FARADAY ROTATION IN THE MAGNETIZED KERR SPACETIME

A. Brief discussion on the Kerr spacetime immersed in the uniform magnetic field

The exact electrovacuum solution of the Einstein-Maxwell equation for the magnetized Kerr spacetime is
written as [18, 20]

ds2 =

(

∆

A
dt2 − dr2

∆
− dθ2

)

Σ|Λ|2 − A sin2 θ

Σ|Λ|2
(

|Λ0|2dφ −̟dt
)2

(41)

where

∆ = r2 + a2 − 2Mr , Σ = r2 + a2 cos2 θ, (42)

A = (r2 + a2)2 −∆a2 sin2 θ , ̟ =
v − w∆

r2 + a2
. (43)

Λ(r, θ) is a complex quantity and it has two parts, the real part of Λ: Re Λ and the imaginary part of Λ: Im Λ.
So, one can express it as:

Λ ≡ Λ(r, θ) = ReΛ + i ImΛ

= 1 +
B2 sin2 θ

4

[

(

r2 + a2
)

+
2a2Mr sin2 θ

Σ

]

− i.
aB2M cos θ

2

(

3− cos2 θ +
a2 sin4 θ

Σ

)

(44)

where i (≡
√
−1) represents the imaginary unit. In the expression of ̟ (Eq. 43),

v = a(1 − a2M2B4) (45)

and,

w =
aΣ

A
+
aMB4

16

(

−8r cos2 θ(3 − cos2 θ)− 6r sin4 θ +
2a2 sin6 θ

A
[2Ma2 + r(a2 + r2)]

+
4Ma2 cos2 θ

A

[

(r2 + a2)(3 − cos2 θ)2 − 4a2 sin2 θ
]

)

(46)

It was first pointed out in [42] that ‘magnetic’ transformation of the Kerr spacetime is only locally valid, as
it produces the conical singularities at the polar axis. This conical singularities on the polar axis generate some
singular stress energy tensor on the right hand side of the Einstein equation in addition to the Maxwellian term.
This deficiency can be removed by changing the interval of variation of the azimuthal angle φ from 2π to 2π|Λ0|2
[18, 20], where

|Λ0|2 = |Λ(r, 0)|2 = 1 + a2M2B4 (47)

is the Harrison-Ernst function Λ(r, θ) at the polar axis θ = 0. That is the reason, |Λ0|2 appears just before
dφ in Eq. (41). Without the factor |Λ0|2 before dφ, the magnetized Kerr metric is not really a solution of the
Einstein-Maxwell equations elsewhere, as it produces the Ricci tensor singular at the polar axis [18, 20]. Such a
singularity is similar to that of the cosmic string [43], which has positive energy density and negative tension by
analogy with the physical string. Note, the horizon radii

r± =M ±
√

M2 − a2 (48)

are same for the ordinary Kerr metric and the magnetized Kerr metric, as it do not depend on the value of
B. On the other hand, the ergoradii in the magnetized Kerr metric depend on the value of B. Therefore, the
expressions of ergoradii for the magnetized Kerr metric cannot be same with the ordinary Kerr metric.
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B. Effective force for the gravitational Faraday rotation in the magnetized Kerr spacetime

For the magnetized Kerr spacetime, one can deduce

g00 = h =

(

∆Σ|Λ|2
A

− A̟2 sin2 θ

Σ|Λ|2
)

, g ≡ gφ = − ̟A2|Λ0|2 sin2 θ
∆Σ2|Λ|4 −A2̟2 sin2 θ

(49)

and

γijdx
idxj =

Σ|Λ|2
∆

dr2 +Σ|Λ|2dθ2 + ∆|Λ0|4
h

sin2 θdφ2 (50)

from Eq. (41). Now, using Eq. (50), we obtain 4

(curl g)p = − 4aMr∆cos θ

Σ3/2(Σ− 2Mr)3/2
.

(

1− B2 sin2 θ

32Σ(Σ− 2Mr)
C1(r, θ)

)

δpr

− 2aM sin θ

Σ3/2(Σ− 2Mr)3/2

(

(r2 − a2 cos2 θ) +
B2 sin2 θ

128Σ(Σ− 2Mr)
C2(r, θ)

)

δpθ +O(B3)

(51)

and,

(

curl (
√
h curl g)

)p

=

[

4aM2

Σ3/2(Σ− 2Mr)3/2
− 3aMB2

64Σ5/2(Σ− 2Mr)5/2
C3(r, θ) +O(B3)

]

δpφ

(52)

where C1(r, θ), C2(r, θ) and C3(r, θ) are the functions of r and θ. 5

Now, one can calculate the effective force for the gravitational Faraday rotation that varies as

∣

∣

∣h curl(
√
h curl g)

∣

∣

∣ =
4aM2

√
∆sin θ

Σ2(Σ− 2Mr)
− aMB2

√
∆sin θ C4(r, θ)

64Σ3(Σ− 2Mr)2
+O(B3) (53)

where C4(r, θ) is the function of r and θ.
The second term in the right hand side of Eq. (53) appears as the correction term due to the presence of

magnetic field. Far away (M/r << 1) from a slowly rotating Kerr black hole (a/M << 1), Eq. (53) falls down
as

∣

∣

∣h curl(
√
h curl g)

∣

∣

∣

(a/M<<1,M/r<<1)
≈ sin θ

[

4aM2

r5
− 3aMB2

r2
(1 + 3 cos 2θ)

]

. (54)

Eq. (54) shows that although the effective force for the gravitational Faraday effect decreases as ∼ r−5 for the
ordinary Kerr spacetime (see Eq. 81 of [30]), the same due to the presence of non-zero magnetic field decreases
as ∼ r−2 in the magnetized Kerr spacetime. Interestingly, one cannot see the effect of magnetic field in Eq. (54)
for θ = π

2 − 1
2 cos

−1 1
3 ≈ 54.74◦, as the second term in the square bracket of Eq. (54) vanishes for that value.

4 Although we have calculated the exact expressions for
(

curl (
√
h curl g)

)

and (curl g), we do not show it here as those expressions

are very big in size and useless for the current purpose of this paper. Those expressions could be important for the numerical
calculations which we suppose to report in future. As the magnetic energy is much less than the gravitational energy for a massive
magnetized collapsed object (see Sec. I), considering the order of magnetic field upto B2 should suffice for the current purpose of
this paper. Hence, we show all the required expressions upto the order of B2.

5 As the exact expressions of C1−5(r, θ) are not very relevant for this paper, we do not mention it here. However, the exact
expressions of the same can be available upon request.
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C. Logarithm correction in the gravitational Faraday rotation and Stern-Gerlach effect for the

slowly-rotating magnetized Kerr black hole

The gravitational Faraday effect in the Kerr spacetime was studied earlier [4, 44]. It was shown that when
a light ray passes through the outside of a rotating matter, its polarization plane rotates [2]. In this section,
we consider a general orbit (following [4]) around a magnetized Kerr black hole, which intersects the equatorial
plane (θ = π/2) and is symmetric about it (see Appendix A). Using Eq. (35) we obtain that the polarization
plane is rotated by an angle

χ = −
∫ ro

rorb(θ)

∫ θo

θs

[

2aM2

(Σ− 2Mr)2
− aMB2

32(Σ− 2Mr)3
C5(r, θ)

]

sin θdrdθ (55)

where, C5(r, θ) is the function of r and θ. In Eq. (55), ro is the location of the distant observer and rorb(θ) is
the equation of the projection (see Eq. A9) of the orbit in the (r, θ) plane. θs and θo are the position angles of
the source and the observer, respectively. Note, Eq. (55) reduces to Eq. (23) of [4] for B = 0.
To find the lowest order of gravitational Faraday effect, we calculate the above integral (Eq. 55) considering

the weak-field and slow-rotation approximation, i.e., neglecting (M/r)1 and (a/M)2 [4], and rewrite it as

χ = −
∫ ro

rorb(θ)

∫ θo

θs

[

2aM2

r4
− 3aMB2

2r
(1 + 3 cos 2θ)

]

sin θdrdθ

=

∫ ro

rorb(ψ)

∫ ψ0

−ψ0

[

2aM2

r4
− 3aMB2

r
(3ψ2 − 1)

]

drdψ (56)

where we substitute ψ = cos θ in the last expression, and hence, the integration limit is changed. See Appendix
A for the discussion on the integration limit. Performing the integration over r, we obtain from Eq. (56)

χ =

∫ ψ0

−ψ0

[

2aM2

3

(

1

(rorb(ψ))3
− 1

r3o

)

− 3aMB2(3ψ2 − 1)ln

(

ro
rorb(ψ)

)]

dψ (57)

where (see Eq. A9),

rorb(ψ) =
rmin

√

1− (r2min/η)ψ
2
. (58)

Finally, we obtain from Eq. (57)

χ = aM2 cos θ0

(

π

4r3min

− 4

3r3o

)

− 6aMB2 cos θ0

[

1− 4

3
cos2 θ0 − sin2 θ0 ln

(

2ro
rmin

)]

,

(59)

substituting ψ0 =
√
η/rmin = cos θ0. Eq. (59) reduces to the expression obtained earlier [4] for B → 0 and

ro → ∞. We do not consider ro → ∞ unlike [4], as the value of ro gives a finite correction for the logarithm term
obtained in Eq. (59) due to the presence of a non-zero B. One can notice that Eq. (59) vanishes for the orbits
in the equatorial plane (θ0 = π/2), which commensurate to Sec. A of [4]. Therefore, no gravitational Faraday
effect can be seen for the equatorial orbits, even in the presence of a non-zero magnetic field. In addition, the
effect of magnetic field on the gravitational Faraday rotation is absent for

θ0 = sin−1









1
√

4− 3ln
(

2ro
rmin

)









, (60)

as the terms inside the square bracket of Eq. (59) vanish. In case of the slowly rotating black hole (a/M << 1)
and for a distant observer (M/r << 1), one can obtain (using Eq. 39 or Eq. 59) the separation angle (Θ) of the
right and left circularly polarized beams arisen due to the gravitational Faraday rotation as

Θ|(a/M<<1,M/r<<1) = ± a

ω

{

M cos θ0

(

π

4r3min

− 4

3r3o

)

− 6B2 cos θ0

[

1− 4

3
cos2 θ0 − sin2 θ0 ln

(

2ro
rmin

)]}

.

(61)
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Eq. (61) reveals, although the gravitational Stern-Gerlach effect arises due to the inhomogeneous gravitomagnetic
field (as it depends on the position), it is also affected by the constant magnetic field B. The first term (∝ r−3)
is already reported in several papers [1–4, 30, 39, 40, 45] but the second term, i.e., the logarithmic correction in
the gravitational Faraday rotation and Stern-Gerlach effect due to the presence of magnetic field is completely
new.
Note that Eq. (51) reduces to the combinations of the expressions of Brg and Bθg of Sec. V.B of Ref. [4] for

B → 0. There is no discrepancy between Eq. (52) of this paper and Eq. (131) of [3] for B → 0. If one multiplies
Eq. (52) with h3/2, it reduces to Eq. (131) of [3]. The apparent discrepancy between these two expressions arises
due to the different definition of the γij metric (see Eq. 4 of this paper and Eq. 6 of [3]). Moreover, Eq. (131)

of [3] derived (curl curl g) whereas we derive
(

curl (
√
h curl g)

)

. Eventually, the term inside the square bracket

of Eq. (55) reduces to Eq. (23) of [4] for B → 0, as the final expression (scalar quantity) for calculating the
separation angle (Θ) due to the gravitational Stern-Gerlach effect.

IV. GRAVITATIONAL FARADAY ROTATION IN THE MAGNETIZED REISSNER-NORDSTRÖM

SPACETIME

A. Brief discussion on the Reissner-Nordström spacetime immersed in the uniform magnetic field

If the Reissner-Nordström (RN) spacetime is immersed in a uniform magnetic field B, the transformed metric
can be expressed as [15]

ds2 = |Λ|2
[

∆

r2
dt2 − dr2

∆
r2

− r2dθ2

]

− |Λ|−2r2 sin2 θ
(

|Λ0|2dφ−̟dt
)2

(62)

where

∆ = r2 − 2Mr +Q2 , Λ = 1 +
1

4
B2

(

r2 sin2 θ +Q2 cos2 θ
)

− iBQ cos θ (63)

and

̟ =
BQ

2r

[

−4 + 2B2r2 +B2Q2 −B2∆sin2 θ
]

. (64)

Here, M and Q are the mass and charge of the spacetime which is immersed in a uniform magnetic field B. The
mRN spacetime will reduce to the ordinary RN spacetime (oRN) for B = 0. One should note here that the mRN
metric (Eq. 62) is the exact electrovacuum solution of the Einstein-Maxwell equation (with a non-zero magnetic
field), similar to the oRN. Another similarity between oRN and mRN is that the locations of the horizons (r±)
occur at the same distance, i.e.,

r± =M ±
√

M2 −Q2 (65)

where r+ and r− indicate the locations of the event horizon and Cauchy horizon, respectively. Eq. (65) shows
that both of the horizons exist only for 0 < Q ≤ M , whereas the horizons vanish for the overcharged (Q > M)
RN spacetime. The reason to add

|Λ0|2 = |Λ(r, 0)|2 =

(

1 +
B2Q2

4

)2

+B2Q2 (66)

before dφ of Eq. (62) is same as discussed in Sec. III A. Thus, we do not repeat it here. Now, the Cartan
components of the electric (E) and magnetic fields (H) in the mRN spacetime are given by (see Eq. 4.5 and Eq.
4.6 of [15]):

Hr + iEr = Λ−2{iQ/r2
[

1− 1

4
B2

(

r2 sin2 θ +Q2 cos2 θ
)

]

+ B(1 − 1/2iBQ cosθ)(1 −Q2/r2) cos θ}, (67)

Hθ + iEθ = −BΛ−2(1− 1/2iBQ cosθ)

√
∆

r
sin θ. (68)
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Thus, E×H serves as the source of twist potential in the mRN spacetime as

|E×H| = |ErHθ − EθHr| = −BQ
√
∆sin θ

16r3Λ4

[

1− 1

4
B2

(

r2 sin2 θ +Q2 cos2 θ
)

]

. (69)

If B and/or Q vanishes, the twist potential becomes zero. The stark contrast between an oRN and a mRN is that
the mRN is an stationary and axisymmetric spacetime whereas the oRN is a static and spherically symmetric
spacetime. Which makes this important difference between these two? Of course, the presence of magnetic field.
If the magnetic field vanishes, ̟ becomes zero. One can see the non-zero gravitational Faraday rotation or the
so-called spin precession only because of the presence of ̟ or gi or B. It is interesting to see that ̟ or gi can
vanish at

r0 = r|̟=0 =

√

8− 2B2Q2 + (3B2Q2 − 4) sin2 θ +B2(M2 −Q2) sin4 θ −MB sin2 θ

B
(

2− sin2 θ
) (70)

for a particular radius r = r0 even if B 6= 0. So, one cannot see the gravitational Faraday rotation at this
particular orbit whereas the ordinary Faraday rotation can be seen. Note that to obtain a physically realistic r0,
it must be positive, which satisfies

sin2 θ ≥
(

1− 4

B2Q2

)

, i.e, BQ ≤ 2 sec θ. (71)

B. Gravitational Faraday rotation and Stern-Gerlach effect in the magnetized Reissner-Nordström

spacetime

For the mRN spacetime, one can deduce

g00 = h =

(

∆|Λ|2
r2

− r2̟2 sin2 θ

|Λ|2
)

, g ≡ gφ = − ̟r4|Λ0|2 sin2 θ
∆|Λ|4 − r4̟2 sin2 θ

(72)

and

γijdx
idxj =

r2|Λ|2
∆

dr2 + r2|Λ|2dθ2 + ∆|Λ0|4
h

sin2 θdφ2 (73)

from Eq. (62). Now, using Eq. (73), we obtain

(curl g)p =

[

4Q cos θ

r1/2(r − 2M)1/2
δpr −

2Q sin θ(r − 4M)

r3/2(r − 2M)3/2
δpθ +O(Q3)

]

B +O(B3) (74)

and

(

curl (
√
h curl g)

)p

=

[

4Q(r − 3M)

r5/2(r − 2M)3/2
δpφ +O(Q3)

]

B +O(B3). (75)

Now, one can calculate the effective force for the gravitational Faraday rotation that varies as

∣

∣

∣h curl(
√
h curl g)

∣

∣

∣ =

[

4Q(r − 3M) sin θ

r5/2(r − 2M)1/2
+O(Q3)

]

B +O(B3) (76)

≈ 4BQ sin θ

r2
(77)

where Eq. (77) is valid far away (M/r << 1) from the mRN spacetime. This indicates that the effective force is
proportional to r−2, as the magnetic field is non-zero here. This is similar to the ‘magnetic’ correction term of
the magnetized Kerr case.



12

Now, one has to integrate the following expression

χ = −2BQ

∫ ro

rs

∫ θo

θs

(r − 3M) sin θ

(r − 2M)2
drdθ (78)

≈ −2BQ

∫ ro

rs

∫ θo

θs

sin θ

r
drdθ (79)

to find the lowest order (i.e., neglecting (M/r)1 and (Q/r)2) of gravitational Faraday effect for the magnetized
RN spacetime. Here we follow exactly the same procedure what we followed in Sec. III C to calculate Eq. (55),
and obtain from Eq. (79),

χ = 2BQ

∫ ψ0

−ψ0

ln

(

ro
rorb(ψ)

)

dψ

= 4BQ cos θ0

[

1− ln

(

2ro
rmin

)]

. (80)

Eq. (80) reveals that one cannot see the gravitational Faraday effect for the equatorial orbits in the mRN space-
time. However, the angular separation of the right and left circularly polarized beams due to the gravitational
Faraday rotation is obtained using Eq. (39) or Eq. (80) as

Θ = ±4BQ

Mω
cos θ0

[

1− ln

(

2ro
rmin

)]

. (81)

The separation angle (Θ) depends on the logarithm of the observer’s distance in this case too. This is similar to
the magnetized Kerr case. It seems that the presence of a uniform magnetic field in a spacetime is responsible for
Θ to depend on the logarithm of the distance of the observer. Interestingly, Eq. (81) shows that Θ is inversely
proportional to M unlike the magnetized Kerr case.
Note that an unmangnetized Reissner-Nordström spacetime cannot show the gravitational Faraday rotation and

Stern-Gerlach effect, which leads to Θ = 0. On the other hand, a mRN spacetime shows the gravitational Faraday
rotation, the gravitational Stern-Gerlach effect, the spin precession of a test gyro and the frame-dragging effect.
In conclusion, the mRN spacetime acts as a perfectly rotating charged collapsed object, although its spin/Kerr
parameter is zero. The source of its angular momentum is the Poynting vector or the non-zero twist potential
(E×H). Recently, Ref. [46] has discussed the possibility of Faraday rotation even in Schwarzschild spacetime,
due to the possibility of curvature-dependent interactions.

V. GRAVITATIONAL FARADAY ROTATION AND STERN-GERLACH EFFECT IN THE

MASSLESS CHARGED REISSNER-NORDSTRÖM-LIKE SPACETIME IMMERSED IN A

UNIFORM MAGNETIC FIELD

If the mass term vanishes (M → 0) in Eq. (62), it implies a massless charged RN-like spacetime [47]. Now, if
the massless charged RN-like spacetime is immersed in a uniform magnetic field B, the transformed metric can
be expressed as (setting M → 0 in Eq. 62)

ds2 = |Λ|2
[

−
(

1 +
Q2

r2

)

dt2 +
dr2

1 + Q2

r2

+ r2dθ2

]

+ |Λ|−2r2 sin2 θ
(

|Λ0|2dφ −̟dt
)2

(82)

where [18, 20]

Λ = 1 +
1

4
B2

(

r2 sin2 θ +Q2 cos2 θ
)

− iBQ cos θ, (83)

|Λ0|2 = |Λ(r, 0)|2 =

(

1 +
1

4
B2Q2

)2

+B2Q2 (84)

and

̟ =
BQ

2r

[

−4 + 2B2r2 +B2Q2 −B2r2 sin2 θ

(

1 +
Q2

r2

)]

. (85)
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As the horizons do not exist for the metric presented in Eq. (82), it represents a naked singularity, in principle.
Now, one can obtain

(curl g)p =

[

4Q cos θ

r
δpr −

2Q sin θ

r2
δpθ +O(Q3)

]

B +O(B3) (86)

and

(

curl (
√
h curl g)

)p

=

[

4Q

r3
δpφ +O(Q3)

]

B +O(B3). (87)

The effective force for the gravitational Faraday rotation varies as

∣

∣

∣
h curl(

√
h curl g)

∣

∣

∣
=

[

4Q sin θ

r2
+O(Q3)

]

B +O(B3). (88)

Thus, the separation angle of the right and left circularly polarized beams arisen due to the gravitational Faraday
rotation is obtained using Eq. (39) as

Θ = −ε
∫ observer

source

2BQ

(

sin θ

r

)

drdθ (89)

Although we have, so far, used ε = ±(Mω)−1 (see Sec. II B), the same cannot be used in Eq. (89), as M = 0 in
this particular case. However, by solving the wave equation with the magnetic potential (see Eq. 118 of Ch. 8 of
[48]), one obtains a modified plane wave equation due to the presence of magnetic field [49]. From that, one may
conclude: ε = ±(ω2/B2)−1, where |ε| << 1. As the magnetic energy (∼ B2) is much less than the gravitational
energy, the contribution of (ω2/B2)−1 is negligible compare to (Mω)−1, and, therefore it does not appear in case
of the magnetized Kerr and mRN spacetimes. On the other hand, M vanishes in the massless RN spacetime, and
this particular term ε = ±(ω2/B2)−1 becomes important for this case. Note, without solving the wave equation,
one may also deduce the term (ω2/B2)−1 from the dimension analysis. However, eventually, we obtain from Eq.
(89):

Θ = ∓2B3Q

ω2

∫ ro

rs

∫ θo

θs

(

sin θ

r

)

drdθ (90)

= ±4B3Q

ω2
cos θ0

[

1− ln

(

2ro
rmin

)]

, (91)

which looks very similar to Eq. (81). Eq. (91) also depends on the logarithmic term, which is expected.

A. Spin precession in the massless magnetized Reissner-Nordström-like spacetime

Using Eq. (37), one can obtain the exact expression for the spin precession in the massless RN spacetime as,

Ωs ≈ BQ

r

[

−2 cos θ r̂ + sin θ θ̂
]

+O(B3)Q+O(Q3) (92)

= r |E| |B|
[

2 cos(π − θ) r̂ + sin(π − θ) θ̂
]

(93)

where |E| ∼ Q/r2 is the modulus of the electric field. Although we have calculated the exact expression of the
above expression (Eq. 92), here we write it upto the the order of B2 and Q2. To draw an analogy with the spin
(LT) precession (ΩKerr

s ) for a slowly rotating Kerr black hole [5, 31]

ΩKerr
s =

1

r3
[3(J.r̂)r̂− J] =

J

r3

[

2 cos θ r̂ + sin θ θ̂
]

(94)

(J = |J| is the angular momentum of the Kerr spacetime), we can rewrite Eq. (92) or Eq. (93) as

Ωs = j
[

2 cos(π − θ) r̂ + sin(π − θ) θ̂
]

(95)
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where j = |j| ∼ r |E| |B| (i.e., E is orthogonal to B as well as E × B is orthogonal to r 6) is the modulus of
the angular momentum density (j) of the electromagnetic field. It is clear from Eq. (95) that the spin precession
frequency for the EM field does not follow the inverse cube law of distance. Although |Ωs| ∝ j, the angle is
differed by (π − θ). This means that if the direction of angular momentum (j) of the electromagnetic field is
separated by an angle θ with the radial direction r̂, the direction of spin precession is occurred separated by an
angle (π − θ) with r̂.
As the massless charged particles have not been observed yet [50, 51] in nature, Sec. V is devoted only for

the theoretical purpose. Another problem is that the massless charged RN-like spacetime describes a naked
singularity. Thus, as of now, this particular spacetime is completely unrealistic. However, one can notice the sole
importance of the magnetic fields and electric charges for the gravitational Faraday rotation and Stern-Gerlach
effect without the presence of mass and rotation parameter. Specifically, as all the derivations of Sec. VA is
independent of mass, those might be important for the very small massive charged particles, like, electrons,
protons etc. The possible applications of this special spin precession derived in this section as well as the
gravitational analog of Faraday rotation and Stern-Gerlach effect may be studied in the laboratory applying it to
the analog models of gravity [52–54]. For example, one may proceed with the same arrangement as mentioned in
[55] with some modifications (i.e., submerging the whole system in a uniform magnetic field and adding charges
of a ‘very low mass’ at the center of the radial vortex) to visualize the above-mentioned effect.

VI. CONCLUSION AND DISCUSSION

Our calculation has revealed a precise relation between the gravitational Faraday rotation, gravitational Stern-
Gerlach effect and the spin precession of a test spin in a general stationary spacetime. We have applied this
to derive the exact expressions of the above mentioned effects for the magnetized Kerr, magnetized Reissner-
Nordström and magnetized massless Reissner-Nordström-like spacetimes, and shown that the logarithm correction
of the distance of the source and observer in the gravitational Faraday rotation and Stern-Gerlach effect for the
said spacetimes is an important consequence of the presence of magnetic field. Interestingly, we have shown that
the spin precession frequency in the magnetized massless Reissner-Nordström-like spacetime, is proportional to
the angular momentum density (j) of an ordinary electromagnetic field, and it does not follow the inverse cube
law of distance like the slowly-rotating Kerr black hole.
In the original Faraday effect at the flat spacetime, a plane polarized electromagnetic wave rotates by an angle

(δθF ) [4]:

δθF =
2πe3

m2
ec

2ω2

∫ D

0

ne(s)B||(s)ds (96)

where ne(s) is the density of electrons at each point s along the path, D is the length of the path where the
light and magnetic field interact, B||(s) is the component of the interstellar magnetic field in the direction of
propagation at each point s along the path, e is the charge of an electron; c is the speed of light in the vacuum;
me is the mass of an electron and ω is the frequency of light. In contrast, the gravitational Faraday effect for
an ordinary slowly-rotating Kerr black hole, is proportional to aM2 and inversely proportional to r3. In the
presence of magnetic field, the modified term is proportional to aMB2 and ln r. Note that the gravitational
analog of Faraday effect occurs only when a light ray passes through the vacuum region outside a rotating strongly
gravitating object like rotating black hole, rotating neutron star etc. It cannot be seen in our laboratory located
in the non-rotating flat spacetime where we observe the ordinary Faraday effect. Comparing Eq. (59) and Eq.
(80) with Eq. (96), one can find that the ordinary Faraday effect does not have any mathematical relation with
the gravitational Faraday effect.
In case of the gravitational Stern-Gerlach effect for an ordinary slowly-rotating Kerr black hole, it is proportional

to aM and inversely proportional to ωr3 for a distant observer, whereas, in the presence of magnetic field, the

6 The angular momentum density (j) of an electromagnetic (EM) field is written as

j ∼ r× (E ×B).
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modified term is proportional to aB2 and ln r, and is inversely proportional to ω. We have shown that the
gravitational Faraday rotation and the gravitational Stern-Gerlach effect become non-zero if the RN spacetime is
immersed in a magnetic field. In a stark contrast with the magnetized Kerr spacetime, the gravitational Stern-
Gerlach effect in the magnetized RN spacetime is proportional to BQ, ln r and inversely proportional to Mω
for a distant observer. In case of the massless charged RN spacetime, it depends on ∼ B3Q ln r/ω2. Overall,
we have shown that the magnetic field has a non-negligible effect on the gravitational Faraday rotation and the
gravitational Stern-Gerlach effect. Although the massless charge(s) cannot be found in nature, our result could
be applicable for a very light mass (M → 0) charged particle. Note, as the exact expressions of the gravitational
Faraday rotation and Stern-Gerlach effect derived from our result are applicable to the strong gravity regime,
it could be helpful to study the effects of magnetic field on the propagation of polarized photons of the rapidly
rotating collapsed object. Another important point which emerges, is that the general spin precession formulation
(see Sec. 1.10.1 of [36] and [34]) is applicable to any spin (with a little modification, as mentioned in Sec. II A),
i.e., the polarization vector of a particle whether it is massive (gyroscope) or massless (photon, graviton etc.).
The EHT collaboration has recently studied the polarization of the ring [8] and the magnetic field structure

near M87* [9]. They have found that a part of the ring is significantly polarized [8], and the polarization is
attributed to the Faraday rotation [9]. They also estimated that the magnetic field strength is B ∼ 1− 30 G. As
a Kerr black hole [56], it is not very unlikely that this resulting polarization of M87* could be a mixture of both
of the usual Faraday rotation and the gravitational Faraday rotation with the additional contribution from the
non-zero magnetic field, which we presented in Eq. (59). Therefore, one may try to extract those contributions
from the data and image released by the EHT collaboration for M87* in 2021 [8, 9]. Note, although the estimated
magnetic field strength is not so high for M87*, a magnetic field of several hundred Gauss could be present near
Sgr A* [57]. Therefore, the gravitational Faraday effect due to the contribution from the magnetic field could
also be higher in Sgr A* compared to M87*. This was also one of our motivations to study the gravitational
Faraday effect in the magnetized Kerr spacetime.
In this paper, we have applied the modified geometric optics developed in [3]. The trajectories of the polarized

photons are the null curves, which coincide with the null geodesic for ω → 0. A deviation of the null rays from the
null geodesic is controlled by the small parameter ε. The formalism presented in this paper has been developed
from the point of view of the static observer, and it is well applicable for a light ray passes through the vacuum
region outside the rotating matter [4], i.e., a null geodesic passes close to the black holes. Therefore, we have
applied this formalism for the equatorial orbits and the symmetric orbits about it (following [4]), to find the
lowest order of gravitational Faraday effect (arisen due to the presence of magnetic field) for those orbits. From
the astrophysical point of view, our result provided in this paper is well applicable for the null geodesics which
occur outside the ergoregion, i.e., our result covers a large space from ergoregion to infinity, in principle. For
example, one can calculate the rotation (χ) of the plane of polarization of a light ray (from Eq. 59), which passes
close to a Kerr black hole immersed in a magnetic field.
Our formalism is not applicable inside the ergoregion, as it diverges there. This is at least clear from Eq. (55)

for the Kerr spacetime. Therefore, we need to modify the current formalism of the gravitational Faraday rotation
and the gravitational Stern-Gerlach effect following the formalism developed in [34], which we plan to report
soon in a different article. One has to modify this present formalism by attaching the photons to stationary
observers that move with a nonzero angular velocity [34], which helps to avoid the divergence at the ergosurface.
This approach would allow us to study the polarization-dependent effects for photons which closely approach a
(non-)magnetized collapsed object.
It could be interesting to study how the polarization of light due to the gravitational Faraday rotation and/or

the gravitational Stern-Gerlach effect modifies the black hole shadow of M87* [8, 9] in the presence of magnetic
field. If the ‘bright’ radiation behind the rotating collapsed object (such as, M87*) is non-monochromatic, the po-
sition of the shadow should depend on the frequency (ω) of the radiation, i.e, one may observe a peculiar ‘rainbow
effect’ [3] for the shadow of a collapsed object. The polarization splitting might also be detectable in future by
the astrophysical observations. Finally, it would be worth to study the possible applications of the gravitational
Faraday rotation and/or the gravitational Stern-Gerlach effect in the realistic astrophysical problems like [58, 59].
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Appendix A: Projection of the orbit in the (r, θ) plane for the slowly-rotating Kerr spacetime

The projection of the orbit in the (r, θ) plane for Kerr metric is governed by the following equation (see Eqs.
178, 190, 191 of Chapter 7 of [48])

∫

r

dr
√

r4 + (a2 − ξ2 − η)r2 + 2M [η + (ξ − a)2]r − a2η
=

∫

θ

dθ
√

η + a2 cos2 θ − ξ2 cot2 θ
(A1)

where η and ξ are constants of motion with η > 0 which corresponds to the null geodesics which intersect
the equatorial plane and are symmetric about it [4, 48]. This equation determines the family of null geodesics
reaching the observer from an emitting ring. The above integration is performed for the weak deflections only,
i.e., to find the lowest order of gravitational Faraday effect, we calculate the above integration for a/r << 1,
M/r << 1 (following [4]) with the weakly magnetized collapsed objects. Therefore, Eq. (A1) reduces to

∫

r

dr
√

r4 − (ξ2 + η)r2
=

∫

θ

dθ
√

η − ξ2 cot2 θ
. (A2)

Note, Eq. (A2) does not include any term related to any of the so-called black hole hairs (see Appendix of [4]),
i.e., a and/orM , as long as the weak deflection (i.e., the lowest order of gravitational Faraday effect) is concerned.
In a similar manner, Eq. (A2) does not depend on B and/or Q, and, hence the said equation is also applicable
to the magnetized Kerr as well as magnetized Reissner-Nordström black holes which we consider in this paper.
Eq. (A2) mainly depends on two parameters, η and ξ which are in fact related to the ‘celestial coordinates’ α
and β [48] of the image as seen by a distant observer who receives the light ray. One can readily verify that [48]

α = ξ cosec θ0 (A3)

β = (η − ξ2 cot2 θ0)
1/2 (A4)

or, conversely,

ξ = α sin θ0 (A5)

η = β2 + α2 cos2 θ0, (A6)

where θ0 is the angular coordinate of the distant observer, α is the apparent perpendicular distance of the image
from the axis of symmetry and β is the apparent perpendicular distance of the image from its projection on the
equatorial plane [48].
Now, performing the integration of the left hand side (LHS) in Eq. (A2), one obtains

∫

dr

r2
√

1− r2min/r
2
=

1

rmin
cos−1

(rmin

r

)

(A7)

where rmin =
√

ξ2 + η ≡
√

α2 + β2 is the leading term of the largest root of the denominator of LHS of Eq.
(A1) for the small deflection. Substituting ψ = cos θ, one can obtain from the right hand side (RHS) of Eq. (A2)

−
∫

dψ
√

η − ψ2r2min

= − 1

rmin
sin−1



ψ

√

r2min

η



 . (A8)

Now, equating Eq. (A7) and Eq. (A8) we obtain

rorb =
rmin

√

1− (r2min/η) cos
2 θ
, (A9)

which is the projection of the orbit in the (r, θ) plane for small deflections. In fact, no deflection is seen in this
case [4], as Eq. (A9) does not depend on M , a, Q and B. It is noticed that one obtains cos θ = ±√

η/rmin for a
very large r, i.e., r → ∞. Here, the plus and minus signs correspond to the position angles θo (i.e., ψ0 =

√
η/rmin)

and θs (i.e., ψs = −√
η/rmin = −ψ0) of the observer and source respectively.
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