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Abstract. One of the possible sources of gamma-ray bursts (s) are merging, compact neutronstar binaries. More than 90%
of the binding energy of such a binary is released in the form of gravitational waves (s) in the last few seconds of the
spiral-in phase before the formation of a black hole. In this article we investigate whether a fraction of this energy is
transferred to magnetohydrodynamic waves in the magnetized plasma wind around the binary. Using the 3+ 1 orthonormal
tedrad formalism, we study the propagation of a monochromatic, plane fronted, linearly polarized perpendicular to the
ambient magnetic field in an ultra-relativistic wind, first in the comoving and then in the observer frame. A closed set of
general relativistic magnetohydrodynamic () equations is derived in the form of conservation laws for electric charge,
matter energy, momentum and magnetic energy densities. We linearize the equations under the action of a monochromatic
, which acts as a driver and find that fast magneto-acoustic waves grow, with amplitudes proportional to the amplitude
and frequency and the strength of the background magnetic field.

Key words. gravitational waves – plasmas – gamma ray: bursts – stars: pulsars: general –
magnetohydrodynamics ()

1. Introduction

The coupling between gravitational waves and electromagnetic
waves (s) in a magnetized vacuum has been investigated
extensively over the past 40 years by a number of authors
(Gertsenshtein 1961; Lupanov 1967; Boccaletti et al. 1970;
Zel’dovich 1973; Gerlach 1974). These studies demonstrate the
coherent excitation ofs by a monochromatic propa-
gating perpendicularly to a background magnetic field.

The first calculations including the presence of a plasma
were done by Macedo & Nelson (1983), who found a cou-
pling of s to ordinary and extraordinarys, whereas
Brodin & Marklund (1999) derived the parametric excitation
of Langmuir waves by a propagating through unmagne-
tized plasma. In Marklund et al. (2000); Brodin et al. (2001a),
the authors adopt the 3+1 tedrad formalism (Thorne et al.
1986; Ellis & van Elst 1999) and show that the dispersion re-
lation in a tenuous plasma differs only from the vacuum solu-
tion by a small wavenumber shift. In a plasma, however, sub-
sequent non-linear conversions such as harmonic generation,
might allow the energy to escape as radiation with fre-
quencies high enough to overcome the interstellar plasma fre-
quency (Brodin et al. 2001b). A numerical estimate for the case
of a merging- binary shows that the amplitude of the
s can be significant. Longitudinal waves are excited by
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higher-order- interactions (Brodin et al. 2000) and
magnetosonic waves (s) by s propagating in a low-β
plasma (Papadopoulos et al. 2001).

In this article we consider- mergers as a source for
s and apply the 3+1 formalism to the interaction of thes
emitted by the merger with theultra-relativistic windof mag-
netized plasma around the binary. In the last seconds before
the collapse to a black hole, a considerable fraction ofM�c2

is released into this plasma in the form ofs (see Janka
et al. 2002, Table 1). We show that these waves distort the
extremely strong magnetic field, frozen into the plasma, and
excite growing magnetosonic waves in the wind. Already be-
fore the merger, the binary is embedded in a relativistically ex-
panding magnetized wind of (mainly) leptons from the orbiting
neutronstars, so even a small transfer of energy to the wind
may provide an interestingcentral enginemechanism to fuel a
 fireball.

The outline of this article is as follows. In Sect. 2, the co-
variant expressions for the electromagnetic fields, the energy-
momentum densities and the orthonormal tedrad for a linearly
polarized are recapitulated. A closed set of linearized
equations in the metric of a is derived in Sect. 3 and solved,
first in the comoving frame of the plasma (Sect. 4) and then
in the frame of an observer at rest with respect to the merger
(Sect. 5). A numerical example and the interpretation of our re-
sults are given in Sects. 6 and 7, respectively. Sect. 8 comprises
our conclusions.
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Throughout Sects. 2–5, Gaussian geometrized units are
adopted (c = 1) and Latin indices stand for 0, 1, 2, 3. In Sect. 6,
however, the numerical results are given in units.

2. Covariant fluid equations

2.1. Electromagnetic field equations

Maxwell’s equations in terms of the electromagnetic field ten-
sors and the 4-current densityjbm = (τ, j) are:

∇bFab = 4π jam and ∇bF ab = 0, (1)

where the covariant Faraday tensorFab and its dualF ab, can be
decomposed into 4-vectors that, in therest frameof an observer
with 4-velocity ua, reduce to the electric and magnetic field
strengths,Ea = (0, E) andBa = (0, B) (Lichnerowicz 1967):

Fab = uaEb−ubEa+εabcdBcud , F ab ≡ 1
2ε

abcdFcd,

Ea ≡ Fabub , Ba ≡ F abub.
(2)

In ideal, the electric field vanishes in the rest frame of the
plasma:E = 0. ThereforeEa ≡ Fabub = 0 in any frame and
Faraday’s tensor reduces to:Fab = εabcdBcud.

2.2. Energy and momentum conservation

Energy and momentum conservation follow from the 4-
derivative of the energy-momentum tensor. For a magnetized
ideal plasma this can be expressed in terms of the proper mat-
ter energy densityµ, the pressurep and the metricgab, as
(Weinberg 1972; Hawking & Ellis 1973):

Tab = (µ + p)uaub + pgab+
1
4π

(
Fa

cF
bc− 1

4
gabFcdFcd

)

∇bTab = ∇b

[
(µ + p)uaub + pgab

]
− Fab jmb = 0, (3)

where the current density satisfies Eq. (1).

2.3. Tedrad system for a gravitational wave

In the linearized theory of gravity one usually splits the met-
ric: gab = ηab + hab, where ηab = diag(−1, 1, 1, 1) is the
Minkowski metric, andhab is the space-time perturbation
caused by the. For a transverse-traceless, linearly (+) po-
larized, monochromatic with frequencyωg = kg propagat-
ing in thez-direction, this field satisfies:hab = diag(0, h,−h, 0),
with h(z−t) = heiωg(z−t) (Misner et al. 1973).

Theproper(observer)reference frame, however, comoving
with freely moving bodies is defined with respect to the natural
orthonormal tedrad (Marklund et al. 2000):

e(0)
a = (∂t, 0, 0, 0) , e(1)

a = (0, (1− h
2)∂x, 0, 0),

e(2)
a = (0, 0, (1+ h

2)∂y, 0) , e(3)
a = (0, 0, 0, ∂z).

Decomposed with respect to this tedrad, the metric reduces to
that of flat space:g(ab) = ηab and the equations closely
resemble their Newtonian equivalents.

3. Magnetohydrodynamics in the comoving frame

The physical situation we want to consider is that of a perfectly
conducting, ideal plasma in the presence of a background mag-
netic field along thex-axis, perpendicular to the direction of
 propagation (Fig. 1). First we study the plasma rest-frame
where:B(0) = B0ex, µ(0) = ρ andu(0)=τ(0)= p(0)= j(0)

m =E(0)=0.
The effect of the is to induce small perturbations in

all these quantities. Therefore, all equations will be linearized
around the unperturbed state.

3.1. Maxwell’s equations

The relevant, linearized Maxwell equations in the specified
tedrad are (Marklund et al. 2000):

∇ × B(1) − ∂E
∂t

(1)

= 4π j(1)
m + j(1)

E , (4)

∇ × E(1) +
∂B
∂t

(1)

= − j(1)
B , (5)

where thegravitationally induced current densitiesare just the
collected Ricci rotation coefficients or-terms:

j(1)
E ≡ −

B0

2
∂h
∂z

(1)

ey and j(1)
B ≡ −

B0

2
∂h
∂t

(1)

ex. (6)

The electric field can be eliminated by assuming the ideal
 approximation of a collisionless plasma (zero resistivity),
where the electric field vanishes in the comoving frame and
Ohm’s law reduces to:

E(1) = −u(1) × B(0). (7)

3.2. Conservation equations

Charge continuityfollows readily from the antisymmetry
of Fab and Eq. (1):∇a(∇bFab) = 4π∇a jam = 0.

The evolution of themagnetic energy Wand thePoynting
fluxSare just projections of Eqs. (4), (5) ontoB(0):

∂W
∂t

(1)

+ ∇ · S(1) = −W(0)∂h
∂t

(1)

, (8)

∂S
∂t

(1)

+ ∇W(1) =W(0)∂h
∂z

(1)

ez − F(1)
L , (9)

with FL = j × B the Lorentz force,W(0) = B2
0/8π and:

W(1) =
B(0) · B(1)

4π
, S(1) =

E(1) × B(0)

4π
, F(1)

L = j(1)
m × B(0).

Equation (3) results inparticle andmomentumconservation in
terms of the momentum,π(1) = µ(0)u(1) and the spatial stress
tensorT(1):

∂µ

∂t

(1)

+ ∇ · π(1) = 0 ,
∂π

∂t

(1)

+ ∇ · T(1) = 0, (10)

or, equivalently, as a linearized equation of motion ():

µ(0)∂u

∂t

(1)

+ c2
s∇µ(1) = F(1)

L , (11)
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in terms of the sound velocityc2
s ≡ Γ(p(1)/µ(1)), whereΓ is the

polytropic index. To first order, the does not contain any
 terms and the coupling of the to the plasma occurs only
through the Lorentz force as can be seen from Eqs. (9), (11)
(or equivalently, through the current density which couples the
 to Maxwell’s Eqs. (4), (5)).

4. Wave solutions in the comoving frame

4.1. Laplace transforms

The proper way to handle the unstable response of a plasma
to a disturbance is to make use ofLaplace transforms(Landau
& Lifshitz 1975; Melrose 1986). By giving the frequency or
wavenumber a small positive imaginary part, one allows for
damping or growth and a way to deal with singularities due
to resonance. In an initial value problem it is customary to
Laplace transform with respect to time, whereas in a boundary
value problem, as we are considering here, a Laplace transform
with respect to space is more suitable. These are defined by:

F(s) ≡ ∫ ∞
0

e−szf (z)dz , f (z) ≡ ∫ i∞+η
−i∞+ηe

szF(s)ds, (12)

whereη is an arbitrary positive constant chosen so that the
contour of integration lies to the right side of all singularities
in F(s). Below, we will transform with respect tos≡ ik, where
<[k] ≈ kg = ωg, so the contour of integration follows the real
axis except for the poles atk = ±ωg/uA andk = ωg, where it
deviates infinitesimally into theupperhalf imaginary plane.

For the time dependence we use Fourier transforms, which
implies that the perturbations oscillate at the frequency of the
driving : ∝exp (−iωgt).

4.2. Dispersion relations and wave solutions

We will assume that the tenuous, strongly magnetized leptoid
surrounding the binary has a low plasma-betaβpl = (cs/vA)2 =

4πp/B2
0 � 1, where the gas pressure is negligible with re-

spect to the magnetic pressure. The classical Alfv´en speed
v2A ≡ B2

0/(4πρ) � 1 so the displacement current is important.
Perturbations propagate in the relativistic plasma with thegen-
eralized Alfvén speed, 1/u2

A ≡ 1+ 1/v2A.

In Laplace and Fourier space the 13 equations derived
in Sect. 3.2 reduce to an algebraic system with 5 non-trivial
solutions1:

vz(ω, k) =
ω

k
µ(ω, k)
ρ

=
B0 jy(ω, k)

iωρ
=

(ω + k)u2
A

ω + ku2
A

Bx(ω, k)
B0

= −Ey(ω, k)

B0
=

ihω
2

u2
A

ω2 − k2u2
A

ω + k
ω − k

δ(ω − ωg). (13)

1 Since the only zeroth order quantities areB0 and ρ, the super-
scripts indicating the perturbations will be omitted.

The inverse transformations lead to:

Ey(z, t)

uA B0
=

− vz(z, t)
uA

= ζ<
[
eik(z−uA t)

{
1−ζ1e−i∆kz−ζ2e−2ikz

}]
B0 jy(z, t)

uAρωg
= ζ=

[
eik(z−uA t)

{
1−ζ1e−i∆kz−ζ2e−2ikz

}]

−Bx(z, t)
B0

= ζ<
[
eik(z−uA t)

{
1−ζ3e−i∆kz+ζ2e−2ikz

}]

−µ(z, t)
ρ

= ζ<
[
eik(z−uA t)

{
1−ζ4e−i∆kz+ζ2e−2ikz

}]

(14)

with kuA = ωg, ∆k = k−ωg, ξ ≡ uA/(1+uA)2 and:

ζ =
h
4
ζ
− 1

2
2 , ζ1 = 4ξ � ζ2 = uAξ

(
∆k
ωg

)2

,

ζ3 = 4uAξ , ζ4 = 2ξ
1+u2

A

uA
� ζ2.

(15)

Since∆k is very small (see Sect. 6.3), we can expand the solu-
tions around∆k=0, or equivalentlyuA =1, to find the dominant
terms:

Bx(z, t)
B0

=
vz(z, t)

uA
=
µ(z, t)
ρ
= −Ey(z, t)

uA B0

' h
2

kz=
[
eik(z−uA t)

]
, (16)

B0 jy(z, t)

uAρωg
' h

2
kz<

[
eik(z−uA t)

]
.

These arefast magneto-acoustic waves, propagating at the
Alfv én speed in the same direction as the and growing lin-
early with distance.

5. Observer frame

For a plasma flowing out relativistically in thez-direction with
Lorentz factorγtot = 1/

√
1−(β+vz)2 ' γ + γ3βvz (γ ≡ γβ)

corresponding to a constant velocityβ ≈ 1, the full set of lin-
earized equations is:{
∂

∂t
+ β
∂

∂z

}
µ = −γ2ρ

{
β
∂

∂t
+
∂

∂z

}
vz 

γ3ρ

{
∂

∂t
+ β
∂

∂z

}
vz = − jyB0 

∂Ey
∂t
− ∂Bz

∂z
+ 4π jy =

iωgh

2
(B0+E0)eiωg(z−t)



∂Ey
∂z
− ∂Bz

∂t
=

iωgh

2
(B0+E0)eiωg(z−t)



Ey + vzB0 + βBx = 0 , E0 = −βB0 

(17)

where all quantities are now defined in theobserver frameat
rest with respect to the binary (primes are used to indicate co-
moving quantities only where there is the risk of confusion).
Explicitly: ρ, β, B0 andE0 = E(0)

y are the zeroth order quan-
tities andµ, vz, Bx, Ey, jy, h are the perturbations. The most
important difference with respect to the comoving frame is the
factor (1−β)B0 in the terms, due to the background electric
field seen by the observer.
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The solutions to the equilibrium system without the-
terms, are again∝eiωg(z/uA−t) with uA =

β+u′A
1+βu′A

the Lorentz
boosted, generalized Alfv´en speed. The full system can be
solved along the same lines as in Sect. 4.2 by straightforward
calculation using Laplace and Fourier transformations. The
physical differences between the comoving and the observer
frames are clear from Eqs. (17).

A different approach – leading to the same result – is to
Lorentz transform Eqs. (14). Since Lorentz transformations are
linear transformations and furthermore the phase of a plane
wave is an invariant, the general solutions have the same form
as Eqs. (14), but with different amplitudes.

The  components excited by a propagating
through a relativistically flowing plasma are given in terms of
observer quantities by:

Ey(z, t)

uAB0
= Λ<

[
eik(z−uA t)

{
1−Λ1e−i∆kz−Λ2e−2iκz

}]

−Bx(z, t)
B0

= Λ<
[
eik(z−uA t)

{
1−Λ3e−i∆kz−Λ4e−2iκz

}]

− vz(z, t)
uA − β = Λ<

[
eik(z−uA t)

{
1−Λ5e−i∆kz−Λ6e−2iκz

}]
B0 jy(z, t)

uAρωg
= Λ<

[
eik(z−uA t)

{
1−Λ7e−i∆kz−Λ8e−2iκz

}]

−µ(z, t)
ρ
= λ<

[
eik(z−uA t)

{
1−Λ9e−i∆kz−Λ6e−2iκz

}]

(18)

where the constantsΛ–Λ9, λ are defined in Appendix A. As in
Sect. 4.2, the dominant terms are found by expanding around
∆k = 0 (justified in Sect. 6.3):

Bx(z, t)
B0

= −Ey(z, t)

uA B0
=
vz(z, t)
uA−β =

µ(z, t)
ρ
=

(1−β)h
2

kz=
[
eik(z−uA t)

]
' h

4
kz
γ2
=

[
eik(z−uA t)

]
,

B0 jy(z, t)

ρ̂ωguA
' h

4
kz
γ2
<

[
eik(z−uA t)

]
.

(19)

where:ρ̂ ≡ B2
0

4π
1−u2

A

u2
A

. Apparently, the interaction is less efficient

when the plasma is escaping relativistically, than when it is at
rest with respect to the source ofs.

As a final remark: Eq. (19) is equivalent to the result of
an initial value approach, where the Laplace transformations
are performed with respect tot instead ofz. The amplitudes
in Eq. (19) become proportional toωt instead ofkz, but the
characteristic timescaleT is related to the size of the interaction
regionR by:ωT ∼ ω(R/uA) = kR.

6. Numerical estimates

In this section the results obtained in the previous sections are
applied to the environs of a- binary close to merging.
Both stars will have an electron-positron wind filling the sur-
rounding space with plasma up to large distances (whether the
plasma ise± or baryon loaded is not important as long as it
satisfies the ideal condition). The extent of the interac-
tion region is determined by the distanceRmax from the source
where either the force-free or thez� 1/∆k assumption brakes

down. Within this scale height, we estimate the magnitude of
the excited amplitudes, including the decrease of the-
amplitude, the density and the magnetic field with distance.
A short numerical analysis is made for the magnetic fields,
plasma densities, Lorentz factors and Alfv´en velocities in the
relativistic plasma wind, summarized in Table 1.

Note: In this section proper dimensions inc are restored and
the numerical results are converted to units.

6.1. Magnetic field configuration

For pulsar-like neutronstars, the magnetic field close to the sur-
face falls of as a dipole:B(r) = B? (R?/r)3. In the ap-
proximation the plasma is “glued” to the field lines and forced
to corotate up to thelightcylinderwhere corotation requires su-
perluminal velocities. Here, we consider a-merger where
each has its own magnetic field. The key element in the
electromagnetic description of rotating magnetized stars is the
deviation from inertial motion. In our case this is not the usual
stellar rotation but the orbital motion combined with the in-
dividual stellar rotations. As the binary coalesces the orbital
frequency increases and dominates over any other (rotational)
motion. Therefore, we assume that at the end of the spiral-in
phase theorbital rotation of the binary (withΩb ∼ 103 rad/s)
determines the light-cylinder radius:Rlc = c/Ωb ' 300 km.
Here the field lines, anchored on the stellar polar caps, open up
and the plasma is free to flow out along the field in aforce-free
wind in which the toroidal component of the field dominates
the poloidal component (Kuijpers 2001):

Bt(r>Rlc) = Blc

(Rlc

r

)
, Bp(r>Rlc) = Blc

(Rlc

r

)2

,

Blc = B?

(
ΩbR?

c

)3

' 4× 105T(B?,9)(Ωb,3)3(R?,4)3.

(20)

6.2. Nature of the wind

Above the polar caps of a pulsar the field lines are open, par-
ticles flow outwards and a steady charge density cannot be
maintained at theGoldreich-Julian densityeverywherenGJ =

Ωb·B/(2πec) (Beskin et al. 1993; Lyubarsky 1995). As a result,
a strong electric field develops along the magnetic field above
the polar cap and charged “primary” particles are extracted
from the surface with a densitynp ' nGJ? and accelerated to
high Lorentz factors (a typical number isγp ∼ 107). Note that
the available potential jump is proportional to∆Ψ ∝ ΩbB? in
our case and can be much larger than for single pulsars.

Processes such as curvature radiation and inverse Compton
emission then result in a cascade of “secondary”e± pairs with a
particle number densityns = Mnp, whereM is called themulti-
plicity. Due to energy conservationnpγp = nsγs, so the Lorentz
factor of the secondary particles isγs = γp/M ∼ 100 for
M ∼ 105. The secondary plasma flows out as a relativistic wind
along the open magnetic field lines which have a dipole-like ra-
dial dependence up toRlc, and develop into a spiral (Eq. (20))
further out. The charge density in the wind is adjusted to the
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Table 1.Formulas and numerical values in the frames at rest with respect to an observer and the plasma, respectively. In the numerical examples
of this table we have taken:B? = 109 T, γ = γs = 100,M = 105,Ωb/2π = 160 Hz.

Lab/Observer frame Plasma/Comoving frame

ωg = kgc kg ∼ 2× 10−5 m−1 ω′g ≈ ωg/(2γ) = k′gc k′g ∼ 10−7 m−1

ωMSW = ωg = kMSWuA ωg ∼ 2π × 103 rad s−1 ω′MSW = ω
′
g = k′MSWu′A ω′g ∼ 30 rad s−1

ρ? =
Mme

e

(
ΩbB?
2πc

)
ρlc ∼ 4× 10−10 kg m−3 v′2A

c2 =
B′2

4πρ′c2 =
B2

lc
4πγρlcc2

ρlc = ρ?
(

Blc
B?

)
Ωe =

eBlc
mec ∼ 7× 1015 rad s−1 =

Ωe
2γpΩb

v′A ∼ 570c

uA =
u′A+βc

1+βu′A/c
u′2A
c2 =

v′2A
c2+v′2A

γuA ≈ 2γγu′A γuA ∼ 105 γ2
u′A
≈ Ωe

2γpΩb
γu′A ∼ 570

∆k =
ωg

c

(
c

uA
−1

)
∆k′ ≡ k′−k′g =

ω′g
c

(
c

u′A
−1

)

= ∆k′
2γ ∆k ∼ 8× 10−16 m−1 ≈ ωgM

2c
Ωb
Ωe

∆k′ ∼ 1.6× 10−13 m−1

R∆k � 1 Rmax ∼ 0.075
∆k ∼ 1014 m

local Goldreich-Julian density everywhere and the wind re-
mains force-free up to a large distance.

At the lightcylinder the density is:

nlc=n?
Blc

B?
=

MΩbBlc

2πec
∼ 4× 1020 m−3. (21)

6.3. Alfvén speeds and Interaction lengthscale

The classical Alfvén speedvA is proportional toB0/
√

n. In the
force free wind we haveB0 ∝ 1/r andn ∝ 1/r2, sovA(r>Rlc) =
const. Therefore, we can evaluate the Alfv´en velocities at the
light-cylinder in thecomoving frame(using Eqs. (21)):

B′lc =
Blc

γs
and n′lc =

nlc

γs
,

v′2A
c2
=

B′2lc
4πn′lcmec2

=
B2

lc

4πγsnlcmec2
=
Ωe

2γpΩb
� 1,

(22)

in terms of the electron cyclotron frequencyΩe =
eBlc
mec

. For the
generalizedAlfv én speed and the wavenumber difference∆k′,
one finds (see also Table 1):

u′2A
c2
=

v′2A
c2 + v′2A

' 1 or γ2
u′A
≈ Ωe

2γpΩb
� 1,

∆k′ ≡ k′ − k′g =
ω′g
c

(
c

u′A
− 1

)
� 1.

(23)

The equivalent quantities in theobserver frameare derived
from Lorentz transformations and can be found in Table 1.
The important conclusion from these estimates is that the max-
imum distance over which the amplitudes can grow is:
z� 1/∆k ' 1015m (see Eq. (19)), which is comparable to the
limits on the approximation as calculated by Spruit et al.
(2001).

6.4. Magnitude of excited magnetosonic waves

The frequency ofs emitted by a merging binary is related
to the angular frequency of the last orbits by:ωg=2Ωb∼4π ×
103 rad/s (Shibata & Uryu 2002), soRlc ∼ 50 km andBlc ∼
107 T. We assume that forRin ∼10Rlc we are in the far field of
the merger and estimate the amplitude ofB(1)

x (z, t) in Eq. (19)
at the start of the interaction region. Taking into account the
(approximate) 1/r decrease ofh andB0,

h ∼ 10−3
(Rin

r

)
, B0 ∼ Blc

(
Rlc

Rin

) (Rin

r

)
,

we find:

B(1)(r>Rin) ∼ 0.5T
(Rin

r

)
×

[
h−3

(γ2)2
kg,−5Blc,7Rin,5

]
. (24)

The volume integrated energy of the grows linearly with
distance sinceB(1) ∝ B0 ∝ 1/r andV ∝ r3. For an interaction
region ofRmax∼ 0.03 pc we find for the magnetic component
of the excited wave a total energy of:

T(1)
B = V

B0B(1)

4π
∼ 1037 J, (25)

which amounts to a fraction 10−6 of the magnetic energyT(0)
B =

VB2
0

8π ∼ 1043 J of the Poynting flux dominated wind in the same
volume.

7. Discussion

It is known that, to first order inh, s propagatingalong a
uniform magnetic field do not couple to the field, neither in
vacuum (Boccaletti et al. 1970), nor in a plasma (Brodin et al.
2000; Papadopoulos et al. 2001) so we studied-propagation
perpendicularto the magnetic field frozen into a plasma. An in-
tuitive illustration of the process is given in Fig. 1, where a
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Fig. 1.A  propagating in the positivez-direction across an ambient
magnetic field (in thex-direction) excites a. The orientations of
the components are indicated in the inset.

traveling in the positivez-direction, deforms (imaginary) rings
of plasma-particles in thex–y plane into ellipses with long axes
alternating periodically along the magnetic field direction (x-
axis) and they-axis. Consequently, the uniform field is period-
ically compressed and stretched leading to amodulated mag-
netic field strengtheven though the is divergence-free. The
resulting magnetic pressure gradients in thez-direction try to
re-establish a uniform field configuration and excite the com-
pressionalmatter partof the. Since the plasma is glued
to the field lines it is dragged along with the field. The velocity
in thez-direction generates anelectric field(−u×B) with a cor-
respondingE×B drift-velocity, whereas the magnetic gradient
induces aB × ∇B current densityandLorentz force.

The problem of propagation in a plasma at rest was
also studied by Papadopoulos et al. (2001) who found that the
excitation ofs by a is only possible when there is a
wavenumber mismatch:B(1)

x ∝ ∆k. This does not agree with our
results (as presented in Sect. 4.2), nor with those of Marklund
et al. (2000) who show that the growth rate in a tenuous plasma
smoothly matches that in a vacuum (Boccaletti et al. 1970).
Both from the equations (Eqs. (8)–(11) or (17)) and from
their solutions (Eqs. (16) or (19)) it is clear that in the vacuum
limit µ(1) ∝ j(1)

y ∝ ρ ↓ 0 vanish as doesv(1)
z . Thes excite

s that propagate with the speed of light (∆k↓ 0) and with
amplitudes that can be obtained from Eq. (16) or Eq. (19) by
taking the limituA → c andk→ kg (andγ = 1). This result is
not surprising as we have taken into account both the material
current and the vacuum displacement current.

8. Conclusion

The results presented in this paper are a first attempt to study
the interaction of the relatively strongs emitted by a
with an ultra-relativistic plasma wind. The space surrounding a
merging- binary is already filled with such a wind up to
large distances (∼0.1 pc). Moreover, in the merger almost all of
the binding energy is released in the form ofs.

We derive a closed set of equations both in the natural
orthonormal measurement frame (the 3+1 split) of the plasma

and for an observer at rest with respect to the binary. These non-
coordinate equations strongly resemble their Newtonian equiv-
alents but have extra source terms due to the. These gravity
terms act as a driver forfast magnetosonic waveswith ampli-
tudes that grow linearly with distance and are proportional to
the-frequency and amplitude and to the ambient magnetic
field strength. It is the extended force-free wind in which the
magnetic field only falls of as 1/r that provides the long inter-
action lengthscale.

The total amount of energy that is transferred from thes
to the plasma, as given in Eq. (25), is substantial but for this
case still much smaller than the average observed energy.
Note that formagnetarsone can haveB? ∼ 1012 T andωg ∼
15 kHz, so that (B0B(1))/4π could be as much as a factor 107

larger. However, for magnetars it is not obvious what to assume
for the surrounding plasma.

In future work we will investigate what the observable ef-
fects of the- interaction are on the emitted radiation
and its polarization and how a-chirp alters the results.
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Appendix A: Constants in Eq. (18)

Λ =
h
4

1+ uA

1− uA

(1− β)2

1− uAβ
' h

4

ωg

γ2∆k

Λ1=2
1− uAβ

(1− β)3

β(1− 4uA + β) + u2
A(2− β(1− β))

uA(1+ uA)2
= 1+O[∆k]2

Λ2 = γ
2

(
1− uA

1+ uA

1+ β
1− β

)2 uA − 2β + uAβ
2

uA
= O[∆k]2

Λ3=2
1− uAβ

(1− β)3

(1+ u2
A + 2β2 − (1+ (4− uA)uA)β

(1+ uA)2
= 1+O[∆k]2

Λ4 = −γ2

(
1− uA

1+ uA

1+ β
1− β

)2

(β2 − 2uAβ + 1) = O[∆k]2

Λ5 = 4
uA − β

(1+ uA)2

1− uAβ

(1− β)2
= 1− O[∆k]2

Λ6 =

(
1− uA

1+ uA

1+ β
1− β

)2

= O[∆k]2

Λ7 =
4uA

(1+ uA)2

1+ uAβ

1− β = 1+ O[∆k]

Λ8 =

(
1+ uA

1− uA

)2
γ2uA(1+ β)4

uA − 2β + uAβ2
= O[∆k]2

Λ9 = 4γ2

(
uA − β
1+ uA

)2

= 1+ O[∆k]
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λ =
h
4

1+ uA

1− uA

1− β
1+ β

= γ2(1− uAβ)Λ

κ = −ωg

uA

uA(1+ β2) − β(1+ u2
A)

uA(1+ β2) − 2β
' ωg

uA
(1+ O[∆k]) .
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