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Gravitational bar detectors set limits to
Planck-scale physics on macroscopic variables
Francesco Marin1,2,3*, Francesco Marino3,4, Michele Bonaldi5,6, Massimo Cerdonio7, Livia Conti7,
Paolo Falferi6,8, Renato Mezzena6,9, Antonello Ortolan10, Giovanni A. Prodi6,9, Luca Taffarello7,
Gabriele Vedovato7, Andrea Vinante8,11 and Jean-Pierre Zendri7

Different approaches to quantum gravity, such as string
theory1,2 and loop quantum gravity, as well as doubly special
relativity3 and gedanken experiments in black-hole physics4–6,
all indicate the existence of a minimal measurable length7,8 of
the order of the Planck length, Lp =

√
h̄G/c3 = 1.6× 10−35 m.

This observation has motivated the proposal of generalized
uncertainty relations, which imply changes in the energy
spectrum of quantum systems. As a consequence, quantum
gravitational effects could be revealed by experiments able
to test deviations from standard quantum mechanics9–11,
such as those recently proposed on macroscopic mechanical
oscillators12. Here we exploit the sub-millikelvin cooling
of the normal modes of the ton-scale gravitational wave
detector AURIGA, to place an upper limit for possible
Planck-scale modifications on the ground-state energy of
an oscillator. Our analysis calls for the development of
a satisfactory treatment of multi-particle states in the
framework of quantum gravity models.

General relativity and quantum physics are expected to
merge at the Planck scale, defined by distances of the or-
der of ∼ Lp and/or extremely high energies of the order of
∼ Ep= ch̄/Lp= 1.2×1019 GeV. Therefore, present approaches to
test quantum gravitational effects are mainly focused on high-
energy astronomical events13–15, which allowed stringent limits
to the predicted breaking of Lorentz invariance at the Planck
scale to be put in place16. On the other hand, the emergence of
a minimal length scale can result in relevant consequences also
for low-energy quantum mechanics experiments. The Heisenberg
relation states that the uncertainties in the measurements of a
position 1x and its conjugate momentum 1p are related by
1x1p ≥ h̄/2; that is, the position and the momentum of a par-
ticle cannot be determined simultaneously with arbitrarily high
accuracy. However, an arbitrarily precise measurement of only one
of the two observables, say position, is still possible at the cost
of our knowledge about the other (momentum), a fact that is
obviously incompatible with the existence of a minimal observable
distance. This consideration motivates the introduction of gener-
alized Heisenberg uncertainty principles1–7. As a consequence, an
alternative way to check quantum gravitational effects would be to
perform high-sensitivity measurements of the uncertainty relation,
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to reveal any possible deviation from predictions of standard
quantum mechanics9–11.

In this framework, an optical experiment has recently been
proposed to test quantum gravitational modifications of the
canonical commutator for the variables associated with the centre
of mass of a macroscopic object12. The generalization from the
position/momentum of a single particle to that defining a collective
motion is well described in standard quantum mechanics. The
canonical commutator [x,p]= ih̄ remains valid for any Lagrangian
coordinate x and its conjugate momentum p, including the
coordinates describing the centre of mass or a normal vibrational
mode of a macroscopic object. Recent experiments have indeed
cooled down mechanical modes of micro-oscillators to their
quantum ground state17–19, and in this condition the oscillators
indeed exhibited peculiar quantum properties17,20. This clearly
proves that a mechanical normal mode can be described by
quantum-mechanical observables. On the other hand, if a modified
commutator is considered, a self-consistent description in terms
of macroscopic coordinates is not straightforward. Some recent
works have tackled the problem, proposing solutions that imply
a strong suppression of the expected effect of Planck-scale physics
when probed by multi-particle objects21,22. However, none of such
approaches is fully satisfactory. An experimental analysis is there-
fore highly desirable, in particular if performed on macroscopic
variables that exhibit quantum properties.

A direct consequence of a modified commutator, when applied
to the position and momentum of an harmonic oscillator, is a
change in the oscillator ground-state energy Emin with respect to the
usual h̄ω0/2. The commutators commonly proposed in quantum
gravity theories23,24, giving origin to a position indetermination
larger than in standard quantum mechanics (gravitational induced
uncertainty), translate into a larger minimal energy. Therefore, an
experiment measuring a low energy level Eexp for a normal mode
of a macroscopic system puts a straightforward upper limit to the
corresponding Emin:

Emin< Eexp (1)

Experimental systems particularly suitable for exploiting this
relation are the cryogenic Weber bars, originally conceived and still
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Figure 1 |Upper limits to the parameter β0 that quantifies the
deformation of the standard uncertainty relation in equation (2). The star
corresponds to the AURIGA experiment discussed in the main text, and
filled circles refer to several experiments on mechanical oscillators that are
summarized in the Supplementary Information. The experimental energy
Eexp is reported on the vertical axis in terms of oscillator occupation number
nt, according to Eexp= h̄ω0 (1/2+nt). The dashed lines are levels of

√
β0,

which can be interpreted as the upper limit for the length scale (normalized
to the Planck length) where some new physics could come into play. Solid
lines report the upper limit to β0 that are given by: the lack of observed
deviations from standard theory at the electroweak scale (blue line); the
measurement of the Lamb shift in hydrogen (green line); the measurement
of the 1S–2S level energy difference, again in hydrogen (red line).

working as detectors for gravitational waves25. They consist of large
metallic bars, weighing several tons and having a main longitudinal
mechanical mode oscillating around ω0/2π ' 1 kHz. For our
purpose, their favourable characteristics are their very large mass
(M ∼ 1013 times the Planck mass Mp= Ep/c2= 2.2×10−8 kg);
the large size of the ground-state momentum wave packet
√
h̄Meff ω0 associated with their main modes (where, with respect

to, for example, micro-oscillators, the relatively low frequency is
compensated by the large effective mass Meff); and the low level of
thermal energy that is reached experimentally.

Some Weber bars have been operated at ultracryogenic
temperature26. However, for our purpose we focus on the AURIGA
detector, whose first longitudinalmode, starting from a background
bar temperature of 4.2 K, has been further cooled using a cold
damping technique down to the millikelvin regime27, a level that
could be reached owing to its high mechanical quality factor. We
remark that modal cooling techniques have been exploited to bring
mechanical modes of micro-oscillators to their quantum ground
state and that these experiments have proved that quantum be-
haviour ofmacroscopic coordinates can be obtained in this way17–20.
Therefore cold damping is a valid technique for our purpose of
reaching and measuring the lowest oscillator modal energy, even
if such modal cooling cannot be exploited to increase the sensitivity
of the oscillating system as a detector of external excitation.

In AURIGA, the modal motion is measured by coupling the
bar to two further oscillators: the first is a mechanical one, having
the same frequency but a lower mass, and working as a resonant
mechanical amplifier read by a capacitive transducer; the second
one is a nearly resonant electrical LC circuit coupled to a d.c.
superconducting quantum interference device amplifier28,29. All of
the three oscillators have been cooled down by cold damping, to
roughly the same temperature. A detailed analysis of the system
shows that a minimal energy of 1.3× 10−26 J can be attributed to
the first longitudinal mode of the bar, whose resonance frequency

isω0/2π=900Hz (ref. 27). Themotion of thismode is symmetrical
with respect to the plane, perpendicular to the bar axis, that bisects
the bar, and implies an oscillation of the centre-of-mass of each
half-bar. The reduced mass of this couple of centre-of-masses is
Mred=M/2= 1.1×103 kg (whereM is the bar physical mass), and
the energy associated with the oscillation of the centre-of-masses is
∼80% of the total modal energy. The measured modal energy Eexp
is therefore an upper limit also for the minimal energy Emin of the
oscillation of the centre-of-masses and it can be used in equation (1)
and in the relations that follow from it (a detailed description
of the AURIGA detector, of the minimal measured energy and a
discussion on the appropriate value of the mass to be used in this
analysis are reported in the Supplementary Information).

We start our analysis from the uncertainty relation1,2,7

1x1p≥
h̄
2

(
1+β0

(
1p
Mpc

)2
)

(2)

where β0 is a dimensionless parameter that should be around unity
if the modification is efficient at the Planck scale. If β0 is larger
than unity, it defines a new length scale

√
β0Lp where some new

physics should come into play9. Normalizing the coordinate and
momentum to their ground-state wave-packet size according to
x =
√
(h̄/mω0)X and p=

√
h̄mω0 P , the Hamiltonian operator for

a harmonic oscillator is written as

H =
h̄ω0

2
(
X 2
+P2) (3)

and the uncertainty relation given in equation (2) becomes

1X1P ≥
1
2
(
1+β(1P)2

)
(4)

where β=β0 (h̄mω0/M 2
p c

2). Theminimal oscillator energy is found
for 〈X〉= 〈P〉= 0 using the equality in equation (4). Extracting1X
from equation (4) and inserting it in equation (3) we obtain

E >
h̄ω0

2

[(
1+

β2

4

)
(1P)2+

1
4(1P)2

+
β

2

]
andminimizingwith respect to1P we find theminimal energy

Emin=
h̄ω0

2

[√
1+

β2

4
+
β

2

]
'

h̄ω0

2
β

where the last approximation (which simplifies the form but is not
indeed necessary) is valid for β � 1. Comparing this expression
of Emin with the measured Eexp, according to equation (1),
we obtain β < (2Eexp/h̄ω0), which for β0 can be written in
the meaningful form

β0< 2
Eexp

h̄ω0

Mp

m
Mp c2

h̄ω0

We now come back to the first longitudinal mode of AURIGA
with cold damping, and consider the oscillation of the couple
of centre-of-masses of the half-bars. Using the mode resonance
frequency, the reduced mass Mred and the measured modal energy
Eexp = 1.3× 10−26 J, we obtain β < 4.4× 104 and β0 < 3× 1033.
Our upper limit for β0 is still far from forbidding new physics at
the Planck scale. It can be compared to similar limits of β0 < 1034,
imposed by the lack of observed deviations from standard theory
at the electroweak scale; β0 < 1036, calculated from the accurate
measurement of the Lamb shift in hydrogen9; and β0 < 4× 1034
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from the 1S–2S level energy difference, again in hydrogen22. These
limits are summarized in Fig. 1, together with those obtainable with
the same method from other experiments with cold macroscopic
oscillators (listed in the Supplementary Information).

In analysing the consequence of generalized Heisenberg uncer-
tainty principles on the foreseen behaviour of a macroscopic object,
the preliminary assumption that the modified rules can be applied
to macroscopic coordinates must be carefully taken into account.
With this consideration in mind, our experimental analysis has
a double interpretation. On one side, it sets interesting limits to
the Planck-scale physics, and helps to compare the consequences
of various approaches to quantum gravity. On the other side,
it strongly calls for an effort in developing theories that offer a
reasonable path from basic properties of spacetime geometry and
of the measurement process (that is, main issues of the theories
that should merge into quantum gravity) to multi-particle and
macroscopic reality. This research field, which suffers from poor
experimental feedback, is likely to benefit from precise metrological
systems, including for example interferometric gravitational wave
detectors25,30,31, whose data are already the subject of analyses
focused on quantum gravity effects32,33, and ultracryogenic devices
that could in the near future include, owing to dedicated exper-
iments, oscillators with mass of the order of, or larger than, Mp
operating in their fundamental quantum state27.
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