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GRAVITATIONAL BOUNCE IN GENERAL RELATIVITY
H. Bondi
(Received 1968 July 19)

Summary

The radial motion of uniform spheres is studied in general relativity, in close
analogy with the Newtonian treatment. Attention is concentrated on an
equation of the energy conservation type. Conditions are found for an
initially inward motion to reverse (‘ bounce *) for various assumed relations
between density and central pressure.

1. Introduction. In a number of recent papers (x)—-(5) the structure and
stability of spherically symmetric systems in general relativity has been discussed.
The present paper gives a full analysis (briefly reported earlier (6)) of the motions
of uniform systems of this type when a relation is imposed linking the central
pressure with the density.

We first consider the Newtonian case, then use a method discussed by Thomp-
son & Whitrow (4) to derive a kind of energy equation, and finally we use this
to examine the motion of relativistic models, paying particular attention to the
question of whether an initially inward motion later reverses direction (‘bounces’)
or leads to total collapse through the Schwarzschild limit.

2. Newtonian models. 'The physical situation can be clarified by examining the
Newtonian case of a spherical self-gravitating mass first discussed by Homer
Lane (7) and Emden (8), applied to the special case of uniform density. Using
as a label moving with the matter and R(¢, 7) for the distance at time ¢ of the
matter so labelled from the centre of our spherically symmetric distribution, we
have for the mass m within the sphere labelled 7

m = m(r) = 4mRp)3 (x)
where p(t) is the (uniform) density.
The relation m = m(r) applies since we make the assumption that there is no

overtaking of matter by matter in the motion.
By equation (1)

R(t,7) = oft) s(r). (")
Since 7 is purely a label, we can relabel so that s(r) = r and m = 47r3/3, implying
p(t) = a3(2). (2)

Taking units so that the constant of gravitation G = 1, the equation of motion
of a particle in Lagrangian form is

R= —2 — oty (3)

where p = p(t, 7) is the pressure and, as throughout this paper, dots and dashes
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denote differentiation with respect to ¢, r. It is immediately seen from equation (3)
that

, 4
—p = r(az 3 064) (4‘)
Thus

pe7) = X (et (G427, )

304/’

suffix s denoting surface values, and assuming, as always, that p; = o. This equation
may also be written as

pt7) _ 1RA-R? ( ' ms) /
o@ 2z R Rotps) (5
or, specializing to the centre,
pto) _ 1 ( ) ,
oD —ZRs R+Rs (5")

Note that if the right hand bracket is positive, then the pressure is positive
and the pressure gradient is negative throughout the interior. (A negative bracket
would imply the surface being accelerated inward faster than by gravity alone,
presumably through suction. We do not consider this possibility further.) Also
note that p(¢, r)/p(t, o) is time independent.

We now develop the well-known theory in a manner suitable for comparison

with the relativistic work later in the paper. Define the surface potential 2 = m;/R;.
Then

3" 3 a3, (6)

p= 47TR3 47Tms 2

Next we make the physical assumption that there is a functional relation
between density and central pressure. This allows us to define a quantity x by

using equation (6) in
2 dx Pc(P)

= P(t
Sa=tR (=200) 7)
Clearly there will be an arbitrary additive constant in log x. Then equation (5”)
becomes
E@—@E(I)_{_Ez (_ERR‘+Iz) (5"
xdz 23 \3) 2 T2 TR 5

which may be integrated to give the energy type of equation

52
IRz Emszgl_z 2 log x, (8)
the constant of integration having been absorbed into the definition of log «x,
which thus contains both the variable pressure energy of the model and the constant
total energy.

We may now use equations (6)—(8) to study the question of the bounce. For
any assumed relationship* between p, and p equation (7) yields a family of curves

* Only the relationship between p and p. may be chosen at will. Once this has been
done the relation between p(t, r) and p follows from the constancy of p(z, r)/pec.
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in the (x, 2) plane. Whether a model initially moving inward bounces or not
depends entirely on whether the (x, 2) curve, as defined by the p—p relation and
the initial conditions, does or does not intersect the curve (to be called S)
2z = 2 log x. The representative point of the model must, by equation (8), never
move below S, and will be on S if the model is instantaneously at rest (see
Fig. 1).

o6 -
e
Contracting isothermal (G=1/6 g “I
5 P 7~
e
/
Q-4
z
0-2 Oscillating »=5/3
0 L L J
0-8 l -2 -4

Fic. 1. The Newtonian case, with some typical representative curves.

We now investigate a simple case to demonstrate the method. Suppose that
the model is ‘ isothermal ’ (p; = 6p), with the  temperature’ 6 a known constant.
We also take the initial potential 2y and the initial velocity v (= (Rs)o) to be known.
By equation (7)

¥ = Ax10, (9)

A being a constant of integration readily defined by equation (8) since

2 log xp = 2o— 102
so that
6 log (2/20) = log x— }=zo+ 102 9")

It is immediately obvious that equation (9’) intersects .S at most twice and is
‘never above S between the two intersections, proving that no such model can
oscillate. An initially inward moving model will bounce if equation (') intersects
S for 2> zp. This will certainly not be the case if 92 is too large. In the limit equa-
tion (9’) touches S. It is thus readily seen that the conditions for a bounce are

0 < 20,

v 2 [ 20 ] : (x0)
— < 1+ |log=——1 :

20 20 20

If the temperature is not known, a further initial datum is required. We take this
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to be the initial acceleration and use the convenient quantity g = (Rj)o(Rs)o.
Note that we may always assume that ¢+ 2o > o, for otherwise the inward accelera-
tion of the surface would at least equal that of free fall. By equation (5”)

20 = g+ 2.

The criteria for a bounce thus become

g>o,

9 . (10")
K (1 +_9__) log (1 +i)—l
230 20 20/ 30

Thus a bounce can only occur for models with initial outward acceleration and
then only if the initial velocity is not too large (see Fig. 1).
In the case that the pressure—density law is of the form

pe = Ap?

the multiplicative 4 constant is generally unknown. We thus need 2o, v, g. We
have from equations (6), (7) and (5”) that

Integrating and using equation (8)

= gtz [(#)307D ] L
log x = 67— 1) [(20) I +2zo 4'0 . (11)
Consider first the case y = 4/3. Then
20 I
= 1 —_— — 2 .
2 z0+q+zo [2 og x zo+2 ? ] (12)

It is immediately evident that for ¢>o this curve must intersect .S for some
2> 2o, while for ¢ <o it cannot do so. Thus an initial outward acceleration is the
necessary and sufficient condition for a bounce.

If y = 5/3 we have

2z 2 2 1
= —_ 1 — + 2].
( 0) 1+ " [2 og x—20+-v (13)

This is bound to intersect S for sufficiently large = so that all such models bounce.
If 29> g+ v? there will also be an intersection for sufficiently small z so that such
a model will oscillate. More generally, an examination of the curvature of equation
(11) compared with that of S readily shows that such a double intersection with
S can occur only if y > 4/3. Only such models can oscillate and only such models
can therefore be in stable equilibrium. Moreover whenever y > 4/3, there is bounc
to be an intersection for sufficiently large 2, so that these models can never contrac
to zero radius, which is the fate of all models with y <4/3 if initial conditions d«
not ensure a bounce (see Fig. 1).

All these results are well known and have been long established, but th
particular form of presentation here adopted will make easier the comparisol
with the relativistic results. ' :
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3. The metric. We now turn to the relativistic case, where the metric of (4)
ds?2 = edt2—erdr?— erdQ2,
(dQ2 = df2+sin2 0 dp?).

It is assumed in (4) that A = p—a(r); we follow this assumption as it fits the
case of uniform density, but there is no advantage in keeping a(r) general, since
a re-labelling giving a(r) = 2 log r may always be carried out. It is shown in
(4) that if the coordinates are co-moving then

is

exp v = p2F(2).
We write exp p = R2(t, r) so that the metric becomes
ds? = 4F R2R-2 dt2— R2(r—2 dr2+dQ2), (14)

which cannot be admissible at the centre (R = o), unless 7R’/R tends to one
there. Then, as was shown in (4), the field equations yield a perfect fluid energy
tensor with

r2 R" R2 R 1
and
I RFEY | r2 R'R" R? 1
w0 = ~ o |3k Y [k &R ) (x0)
provided (since, in a perfect fluid, Th1 = T2 = T33) that
», R R _R'2
R+t 5-2 05 = 3—2 S(r), (17)
where S(7) is an arbitrary function of 7, and
S'(r) = —‘i31’ R3p. (18)

The energy tensor leading to these results is diagonal, so that there is no
radial energy flow. Hence we are dealing with the adiabatic case as described

in (3).

4. Uniform models. We now concentrate on the case of a sphere of uniform
density surrounded by empty space. Thus

{ p(®) (r<7s)
p =

0 (r>r7s)

, sothat p’ = — p(t) 8(r 1) (19)

and equation (18) is satisfied if p(¢)Rs® is independent of the time. This is indeed
the case since the quantity ms = 4mp R;3/3 is conserved, provided the surface
pressure always vanishes, as we shall assume.* Integration of equation (18) gives

merel
il A (r<ry)
S(r) = { (20)

A+ms (r>ry)

* For a sphere moving in a surrounding medium of non-zero density and pressure the
conclusion would not hold.

Y
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where A is an as yet arbitrary constant of integration. If now equation (17) is
integrated for r <7; we obtain

2R'2 24
—_— = 2 [
5 = o) R¥+1-%, (21)

where o is a function of integration. The regularity condition at the centre*
(R = o) stated immediately after equation (14) ensures that A = o. It follows
that at R = o also 7 = o.

Integrating equation (21) again we find

GO
=) (2)
where a2 = 4f/o0, and B is an arbitrary function of ¢.
Then, since 3ms = 47p Rs3, by equation (11)
8mp }__i.@ _ 2ms (I~TSZB)3
E A )
which establishes the connection between F(t), «(f) and B(2).
Finally
p__,_1PR__  RR )
P 3pR Rs R (24)

It is also interesting to note that the definition of m(%, r) given in equation (11)
of (4),T which is there shown to imply

m' = 4mp R2R/,
because of equation (22) and equation (23) implies also
m _ (r)\3 I—Br82)3_R3 ,
w0 () - s 4

This shows how the work done by the pressure changes m, and indeed accounts
for the occurrence of B in equation (22) as compared with equation (1”).

Thus 75, ms, oft) and B(f) may be chosen freely and determine p(¢) and p(, 7).
Note however, that certain inequalities must be satisfied.

In order that R may be bounded, positive, vanishing at the centre, and mono-
tonically increasing] with r we must have

a>0, = —1<rs2B(f)<1. (25)

These conditions will also insure that p>o, but the signature of the metric
will be correct only if F>o. This implies, by equation (23)

207538 +ms(1—7528)3> 0. (26)

* Spheres without centre are examined in (5). We do not consider this possibility
here. ‘

+ To translate from our symbols to those of (4) replace r~1 by f(r), « by 1/B, B by
—-C/B. S

1 'This last condition (yielding — 1 <752 B(£)) is not required from any strong physical
argument and will be assumed only for convenience at present. Conditions in which it
may be discarded will be discussed later.
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By equation (24) the pressure will automatically vanish at the surface. Further-
more, it can easily be shown that the pressure in the interior will be positive and
bounded only if &, B are bounded and have the same sign. This will ensure also
that p’ <o, since

_p 2raf >o.
p+p 2 (1 —72B)[&+r%(af — aB)]
Next
R & r2B
R~ &+I-r-fzﬁ (1)

so that contraction occurs if &<o, f<o.

The occurrence of R in the first term of metric (14) indicates that this metric
is primarily only useful when the system is in motion. Indeed, in general the time
span measured for a period of motion by a co-moving observer will be finite
if the fractional change in R during the period of motion is finite. An exception
however, occurs if F—oo, that is if equation (26) tends to equality. This may
lead to asymptotic behaviour, a case apparently of no more importance for relati-
vistic than for Newtonian models.

The question of the pressure gradient deserves discussion. If we consider a
general (non-uniform) body then although the pressure gradient must be every-
where negative in the static condition, this need not hold during contraction. If for
example we imagine that, at some stage during the contraction of a non-uniform
gaseous sphere, a phase change (say dissociation) occurs in a particular layer so
that this layer heats up much less than the layer above it, then there may well
be a positive pressure gradient for a time. Thus there is nothing unphysical about
a positive gradient, but, as has been shown above, it cannot occur in uniform
relativistic models any more than in uniform Newtonian models.

Finally in this section we link the present model with that of a slowly con-
tracting uniform sphere discussed in (3). Slow contraction occurs in our case if
F->c0. By equation (23) this implies

) (1+0)3

— 7,28 =
2. b where —7,28 = b. (28)

Applying this to equation (22) for r = r; we obtain

_ mg(1+5)2 ( _%)1/2_ 1—b ,
Rs—Tsothat I jo =175 (28")
Resubstituting equations (28) and (28’) into equation (22) we obtain
R = Rs(r/rs)

" == ) - [1— 2 R

which is identical with equation (29) of Ref. (3) when corresponding symbols
are used.

5. The external metric. By equation (20) we must take S(r) = ms outside the
body. Then from equation (21) ’

log 7 = f z dR[(RY/4F)+ R2— 2m,R]-1/2 +1log ¥(?) - o (29)
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where y(2) is a function of integration, the function o(f) has been identified with
1/4F from the condition p = o by equation (23) and the limits of integration have
been chosen to make y well defined. Continuity of 7 then implies that y(f) = 7s.
Next equations (17) and (20) guarantee the continuity of R’, so that

log () = | " R{(R4F)+ R2 = 2m R]-V2 (20')

is the correct continuation of equation (22), though unfortunately we now have
to deal with an elliptic integral. Note that as R—>o0, 7 approaches a finite limit.
Of course this metric must be the Schwarzschild metric

ds2=( ZzS)d 2 (I—Egs) dR?— R2dQ? (30)

in disguise. Indeed, appropriate substitution shows readily that

[ Redt (1 [Rs2 2ms|)\~1/2
'T(t, R) = Rs {ZF [F"I‘I Rs]} +R+2ms IOg (.R'—st)

® RdR 4F ams\ | ~1/2

e ([ (R o0
Note that R; = R(t, 75) = R(t) since 75 is a constant of the system, so that the
first integrand is a function of ¢ only. In the second integral F(t) is to be treated
as a constant.* It will be appreciated that, by equation (31), = is almost a null
coordinate for large R. Thus the imaginary matter with which the coordinate
system is comoving is for large R moving at very high speed. The particular
motion of the coordinates outside the body is dependent on the motion inside
the body only through Rs(¢) and F(¢) and the constants ms and 7;. The space
itself is fully specified by ms; different 7, R,, F only specify different disguises of
equation (30).

6. Flat space. For m; = o the Schwarzschild metric gives flat space, and so
must our metric. In this case equation (29") integrates to give

o« = 2(4FB)1/2. (32)

ot
1= B@)?
Of course this is the same as the internal metric (22) with p = o, p = o. The
dependence of R; and 7, turns out to be tautologous. Thus for arbitrary «of(z),
)
afr? |2
. tz
2 [ 2]
is flat. The best known example of this class of representation is Milne’s universe

B=%ta=1

ds? = (dr2+7r2dQ2) (33)

ds? = dt?— G_"‘TZ)E (dr2+72dQ2), (33)

but evidently equation (33) represents a much larger class. Note that for >0
the metric (33) represents all space, with r taking S~1/2 as upper limit,
but B<o gives metric (33) the wrong signature and so must be rejected. For a

* As in equation (29).
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purely internal model with curvature, negative 8 seems to be admissible, provided
— B is sufficiently small to imply positive F' through equation (23).

7. The energy equation. For a comoving observer the metric implies
ds? = 4FR2 d2|R?
so that, using equation (23),
b (@)2 _ R Re [3§+M]
2 \ ds 8F a2 odrg3

_ 2B ms py

(1—froe " Ryd
Hence, by equation (24),

1 (dR\2 m _ 2Br?
@) R G4

This is very much of the form of a Newtonian energy equation, provided the
Newtonian radius is interpreted as R (i.e. defined by the surface area) and the
Newtonian time variable 1s interpreted as proper time, the right hand side repre-
senting the changes in pressure energy. Indeed substituting equation (22) in
equation (24) we find
ors2—12)

(1—752B)[&+72(cf — B)]

so that in any moving model B = o is equivalent to » = o which implies that
in the pressure-free case the right hand side of equation (34) (the ‘ total mechanical
energy ’) remains constant.
We now define
ms _ msx

x=1—Prs? z=_"="2 (N.B. o<x<2, 0o<2<3) (36)
.Rg 7‘,304

(35)

1_)_.
= b

Applying equation (35) at the centre

p _ x& _  x&  dloga dlog (z/x)
E—aﬁrsz__ﬁ_mdlogx_ d log x
giving
T _ by, (37)
xdx P

Using equation (34) at the surface we have

! (é&)z _ g 2=1) (38)

2 \ ds x2

Differentiating equation (38) with respect to s, using equation (36) and rearranging
we obtain
I, d2R;s Iz_z—xzdx
2T (9)
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Note that the relativistic equations (37)—(39) are very similar to the Newtonian
equations (77), (8) and (5”). The few differences are readily enumerated:

(a) The Newtonian p in equation (7) is replaced by p+p. in the relativistic
equation (37). In the Newtonian limit p. is negligible compared with p, but the
difference becomes appreciable in highly relativistic cases. If for example p. = p/3
we have 2~ x3 by equation (7) but 2~ x* by equation (37).

(b) The Newtonian time derivative on the left hand side of equation (8) and
(5") 1s interpreted as a proper time derivative in equations (38) and (39).

(c) The log x of equation (8) is replaced by (x— 1)/x2 in equation (38). Note
that the two functions have the same value and gradient for small velocities and
potentials (x close to unity).

(d) A factor (2—x)/x2 distinguishes equation (39) from equation (5”), but
again this factor equals unity for x = 1.

Thus the methods used in the Newtonian analysis of Section 2 can be used
for a relativistic discussion with minor modifications. Differences (b) and (d)
relate only to the interpretation of the initial conditions, but (a) tends to make
representative curves climb faster, while the curve (to be called Q)

X—1
x2

(40)

Z =2
always lies below curve S

z=2logx
except at ¥ = 1 where .S and Q touch.

Schwarzschild limit

05 T
Normal area
0-4 I
|2 _ z>3v }nOCCeSSIUE
0-3 SVE kinetic energy Forbidden rom normal area
exceeds
Z ~ area
0-2 Z = potential energy
O-lr- Curve @
| I | 1 J
0 0-5 | -5 2 2-5 3

Fic. 2. The x, = diagram.

Hence relativistic conditions for a bounce will be more severe than Newtonian
ones. If no bounce occurs, the passage of a model through the Schwarzschild
limit (2 = %) is now a significant instant in the contraction to a point (g—>0)
since it takes infinite time in the view of an outside observer. Note that since
O never exceeds 4, no bounce can occur after passage through the Schwarzschild
limit. Indeed Q attains 2 = { only at x = 2. Moreover by equation (37) all models
with non-negative densities and pressures have representative curves with positive
gradient. Thus the area x>2, 2<% is inaccessible from x<2. Hence no model
can evolve to a state with 2 below the Schwarzschild limit but with x> 2 unless this is
initially the case. But x>2 is equivalent to Br;2< —1, that is a model in which
R does not monotonically increase with 7. Such models therefore form a com-
pletely separate class which we will not consider further. Our area of interest is
therefore confined to the strip o <z <%, o<x <2, 2>2(x—1)/x2 (see Fig. 2).

Equation (37) allows us to restrict the condition for a bounce further. With
any finite pressure it implies that z/x is a non-decreasing function of x. Thus no

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny |z uo 1senb Aq 91 /2092/SEE/E/Z Y L/RI0IHE/SEIUW/ WO dNO DIWSPEoE//:SARY WO} POPEOjUMOQ


http://adsabs.harvard.edu/abs/1969MNRAS.142..333B

FT9BIWVNRAS, 1427 ~333B!

No. 3, 1969 Gravitational bounce in general relativity 343

representative curve can meet Q unless z/x is non-decreasing along O, which
holds only for x<3/2 and hence < 4/9. Once a model attains the potential 4/9
(long known to be a critical value) no bounce can possibly occur.

More stringent restrictions on p/p lead to more severe limits. In general if
p < 0p, no bounce can occur once the model has passed

_ 20(20+1)
= Go+1)? (41)

which for 0 = 4, 1 gives 2 = % (= 0-27), # (= 0-375) respectively. The cor-
responding x values are 6/5 and 4/3.

8. The isothermal case. We now develop the case p, = 0p in strict analogy to
the Newtonian case, using again the notation v = (dRs/ds)o, ¢ = (Rsd2Rs/ds?)o
though of course R; and ds now have somewhat different meanings.

From equation (37), 2~x* where k& = (0+1)/6. Thus xp is determined by
equation (38):

= 2o—1 02
20— V% (42)

To avoid the awkwardness of quadratic equations we do not explicitly evaluate
xo in terms of zp and v. Next

(=0 = (x[x0)® (43)

is the representative curve. If 6 (and hence k) is known, the model will bounce
if the initial point lies below the critical curve of type (43) which touches Q.
This is given by

4

. k+1 [x k+ I]k _ 20(20+1) [x20+ 1] @+1)/6.
(R+2)2 | k+2 (30+1)2 3041

Equations (41) and (44) may be put in the form of the conditions for a bounce:

(44)

1+20
20<20 1307
) ) ) (45)
20 1+2
log xo>m [log 0 (1+30)+ 7 log (I+ I+20)]'
These may be compared with the Newtonian equation (10) (see Fig. 3)
< 29,
(45"

log x> H[Iog z—%—l- 1],

where the second of these equations has been written in terms of xo rather than
v to facilitate comparison. It is immediately evident that equation (45) approaches
(45") as 8—o0. The first of the pairs of equations is clearly a more stringent condi-
tion in the relativistic than in the Newtonian case and, with a little trouble, it
may be shown that this also holds for the second equation.

In the important case 6 = %, equation (44) becomes

2 = wxt, w1l = 3(1-2)5, w=0"13396 ... . (44")
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If 0 is not known, we use, as in the Newtonian case, the quantity ¢. By
equation (39)

1 %02
Py 52_x0(9+30) (46)

now serves to determine 6.

/ / // Schwarzschild

limit

0-4

0-2

|
l 1-2 -4

X

Fic. 3. Newtonian (- ——-) and relativistic ( ) curves for p. = p3 with three sets
of identical starting conditions. In the lowest pair both bounce, in the middle one only the
Newtonian solution, in the top pair neither bounces.

It is now convenient to write equation (45) in the form

1420
5”
7 (. 120\ 4000 (45
o< (x() I+39) .

If xo(x+260)/(1+30) <1, the second condition is the more demanding and other-
wise the first condition cannot be met because of the shape of Q. Thus, given
xp and 2o, 0 has to be large enough which by equation (46) implies that ¢ has to
be large enough.

The results of the computations are displayed in Fig. 5 in which values of 7
are displayed as function of 29 and y = v2/22¢ (Fig. 4), while 52 is the least
value of g leading to a bounce The diagram is restricted toy <1 (upper edge) and
0 <1 (right hand curve). On the left hand edge (20 = o) the connection between
y and 7 is given by the Newtonian limit (see equation (10'))

y = (t+m7) log (1+7)=7
leading to 7 = e—1 at y = 1. Along the bottom edge 7 = o, along the top 7
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rises slowly from e—1 at the left to 1-5 (1-2)5—1 = 2-732 ... at the right.
An even clearer picture is given by plotting values of 7y~1/2 instead of %. This
quantity varies along y = o only between 21/2 at the left and  151/2 = 1-9365 ...
at the right. With the top edge as before, this quantity varies thus by less than a
factor 2 over the whole diagram.

Static models are represented by points on Q(y = o) with their representative
curves tangent to Q (R = o). It is evident that they are all unstable.

y=1 y=075 y=05 y=025 y =0
04
z .
02 y- ~‘,_2= kmetlc' energy
2z potential energy
v2 | x—I
Z - 5 =2 X2
! 1 1 ] 1
0-8 1 -2 -4
X
FiG. 4. x, y, 2.
1-718 2:732
l
y
]
0 0-2778

Zy

F1G. 5. Relation between m = q/=0, =0, ¥ for least q to give bounce in the isothermal case.

9. The case y = 4/3. For general y
Pe~ p¥ ~ 23
so that, with some positive constant C,

g% = 1+ Cz30-D (47)

giving on integration
230-1) = By30-1_C with p/p = z3%-1)/C, (48)

where B is a constant of integration.
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For y = 4/3 these equations taken the simple form

2= Bx—C,  pe/p = z/C, (49)

so that straight lines result. Again the curvature of Q shows that all equilibrium
configurations are unstable. Since now normally neither B nor C are given, we
need the relation
2—X0 R0 2—Xo0
= (397

g+ =0 x02 C+2p 0 Bxy3

together with equation (38) applied at (xo, 2o) to determine B and C.

I

081

0-61—-

0-4f

o)

FiG. 6. y = 4/3. Diagram of H = gzo™1'5 y05 against z0 and y. The right hand edge
represents models with infinite central pressure, the middle curve models with maximum
Pelp = 1/3. The dashed lines give H values.

The smallest g and hence the largest B (for a given xo, 2¢) leading to a bounce
will give a curve (49) tangential to Q. Supposing this to touch Q at (x1, 21),
we have

- - - 3
B =2 legcl, 21— = 2 le‘:l (%1 —x0), z—q(-) = —1+z_j§f (jz—(l)) . (50)
The results are most conveniently expressed by considering H = (g/203/2y1/2) as
a function of 29 and y, and are shown in Fig. 6. Along the left hand edge (20 = o)
H = 2, and increases with increasing 2 values, more rapidly for large than for
small y. The right hand edge of the diagram is given by C = o, i.e. pc = oo.
No bounce can occur from xg, 2o if there is no straight line with positive C through
it that touches Q. Thus bounces can only occur from initial positions below the
highest line with C = o that touches Q, namely & = 0-2963x. The highest value
of H occurs at the top right hand corner and equals 10-556. Along the bottom
(y = o), representative points lie on Q, and in the limit

H = x[2(3 ~x1)]Y/2/(2 — x1).

In Newtonian theory amy outward acceleration will lead to a bounce, i.e.
g>o is the condition there. This agrees with our work in the limit 2—o, as it
must.
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Next we impose the limitation p, <1 p, so that we stick to the validity of equation
(49) only for 2<C/3, and then go on to equation (43) with 2 = 4. Thus if we
consider a particular initial point xg, 29, then the lowest value of B now permitted
is the one giving C = 32, not, as previously, the one giving C = o, and hence
pe = co. Along any straight line (49) the ratio p¢/p will increase and
reach the value % at some point (x2, 22). If the straight line intersects O before the
point is reached we have a direct bounce. If this is not the case we must continue
from (x2, 29) along a curve (43) with & = 4 (to which our line will neces-
sarily be tangential at (x2, 22)). If this curve intersects Q, then we have an indirect
bounce. Otherwise no bounce at all will occur.

The locus of points x2, 22 is readily found for any (xo, 20) from equation (49)
with 2o = C[3, and is

20  4x0—3X2

If (x0, =0) is such that curve (51) intersects (O, then direct bounces
can occur but not otherwise. The limit of this zone is given by the locus of points
(%0, 20) such that their equation (51) touches Q. Expressed in terms of the para-
meter x; (x co-ordinate of point of contact with Q) this boundary is given by

_ —1\2
4 3—2x1 3—2x1 X1

Direct bounces can only occur from points below equation (52) which passes
through (1, 0-10993) and ends at (1-2, 0-27778). For such points there will be
a range of B values and hence ¢ values giving a direct bounce. This range will
always be bordered by a range of indirect bounces for lower B values (i.e. higher
g values). The lowest of these indirect bounce curves will be the one where from
the start p, = p/3 so that 2x—% = 29xp~4 all the way. Whether there are indirect
bounces above (higher B’s) the range of direct ones depends on whether the
upper intersection of equation (51) and Q occurs above or below the point of
O from which the tangent passes through (xp, 2¢). It can easily be worked out
that for points below the tangent to Q at 1-2 there will be no such upper (but
certainly lower) indirect bounces whereas for the thin region above this tangent
and below curve (52) there are both upper and lower indirect bounces. Finally
above curve (52) there are no direct bounces, but there will be indirect ones
provided that from the relevant (x2, 22) of equation (49) we can reach Q by a
curve 3~x% This will be the case if (xp, 20) is below the limiting such curve,
namely equation (44 ).

Perhaps it may help to specify the zones numerically for xo = 1, 1.e. 3992 = 2.
Then (see Fig. %)

(1) 20<1/10°8 = 0-09260 (i.e. below the tangent from x; = 1-2 on Q). With
B too large there is no bounce. A smaller B gives a direct bounce, a still smaller
one an indirect one and yet smaller ones are not admitted since they would imply
Pe> p/3 initially.

(if) 1/10-8<2p<0-10993. As (i), except that a range of B values giving indirect
bounces is now interposed between those leading to no bounce and those giving
direct ones.

(i) 0-10993 <2g<0-13396. A range of B values leads to indirect bounces.
Higher ones lead to no bounce, lower ones are inadmissible.
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(iv) 0-13396 < 2. No bounces are possible at all with the restriction p. < p/3.

In the situation previously considered where no such restriction on the central
pressure was imposed, bounces could occur for sufficiently low B values for all
20<0°2963.

025
Curve (44")
0-20
Curve (52)
v 7
Zone {iV)
(no bounces) Zone (iii)
0-15

Ny I
W 24
o 10‘\% y
Tangent Zone (ii)

N to @at x=1-2

\
5 @
o-i0}- Y
Zone (i)
Zone (i) A

Arrangement of starting tangents in different zones.
The steeper the gradient, the smaller is g. The lowest
line always represents p. = p/3. V=no bounce,
Z=indirect bounce, 2 = direct bounce,

005

{ L ! |
0
| 1-05 I-1 1-15 -2

FiG. 7. Direct and indirect bounces for y = 4/3.

10. The case y = 5/3. We next consider the case y = 5/3. In Newtonian
theory this invariably leads to a bounce, but it is well known that this need not be
the case in relativity. Equally, equilibrium is always stable in Newtonian theory,
but not so in relativity for sufficiently high potentials.

The relation between p. and p integrates to give, by equation (48),

22+ C = Bx? with pclp = 22/C. (53)
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To obtain physically meaningful solutions we must therefore have C>o. Hence
the representative curves in the (¥, 2) plane are hyperbolae having the x-axis as
their real axis, and thus their curvature is in the same sense as that of curve Q.
We therefore see the possibility of stable equilibrium in the shape of a repre-
sentative curve touching Q from below, so that even after a small perturbation
the model will only execute small oscillation about the position of equilibrium.
It is readily seen that if curve (53) touches Q at (x1, 21) then

_ (r—1)(2—x1) _(m—1)(3—2%1)
B = s C=4 x14

(54)

and by second differentiation it is immediately established that the curvature of
the representative curve exceeds that of Q if and only if

. x1<[15—(33)1/?]/8 = 1-15693 ...,
1.€.
21<[17—-(33)1%]/48 = 0-23449 ... . (55)

Thus a model of this type is stable if and only if its surface potential does not
exceed this limit (see Fig. 8).

0-4}-

Unstable equilibrium

021

o Stable equilibrium

| | I 1
I Il -2 x -3 -4
F1c. 8. Stable and unstable relativistic models with y = 5/3.
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Now consider a model initially in a general state of motion. Its mass, radius
and surface velocity will define the starting value (xo, 20) and through this point
there will pass a single-parameter family of hyperbolae (53). We may choose
as this parameter the quantity B, which determines the starting gradient and is
connected with the initial acceleration parameter g by

2—X 2—~x9 2o
02,02 — 0 0

I
5(‘.‘1"‘30)— Bagh %02 20+C : (56)

The resulting calculations are rather tedious and the outcome could be shown
on a diagram rather like Fig. 6 displaying the minimum value of ¢ leading to a
bounce on a (=g, ) diagram. The right hand edge is given by C = o and therefore
pe = 0. On the left hand edge (20 = 0) ¢ = 0. As we move towards the right,
at every level g first diminishes through negative values and then rises, becoming
again zero on a curve leading from 2o = [17—(33)1/2]/48 = 0°23449 ... on
y=0 to g = 0-152 ... on y = I. Further to the right, ¢ remains zero on
y = o, but rises through positive values to the right hand edge, attaining its
highest value (46/27) in the top right corner.

Note that equation (56) gives an upper limit of ¢ since by equation (53) C
must be positive. On y = 1 (xp = 1) this is 2—2p while on

¥ = o, that is 29 = 2(x9— I)/x0?

this limit is 2(3—2x0)/x92, diminishing rather more slowly from 2 at 29 = o
towards the right. The available interval of ¢ always vanishes on the right hand
edge.

In Newtonian theory (12) the only condition for y = 5/3 is the general one
that the inward acceleration of the surface must not exceed that caused by gravity,
that is ¢+2¢>o0. This fits in with our left hand edge and the diminution of ¢
towards the right. Indeed it is readily shown from equations (54) and (56) that
the least ¢ for a bounce is for small 29 given by

g = —20+n0%+ ...,

=2 [y = X prgn)) = BXIT 4349 _ (..
n B(xl 4(17 +1)) 61 10°929 ... .

After a bounce a model will expand but its representative hyperbola, after
passing the starting point, may have a second intersection with Q, in which case
the model oscillates. One such model was found by Bonnor & Faulkner (2).

The limiting hyperbola of this type passes through (1, o), which is on Q, and
touches Q for higher 2 values. The unique such hyperbola has

B = C = [85x171/2—349]/8 = 0-183000 .
and touches Q at

x1 = 2[17Y2+1] = 128078 ..., =1 = i3x17Y2—11] = 0-34234 ... .
The region of oscillating models is confined to the segment between this hyperbola
and Q. In particular, no model bouncing at 2>0-34234 ... can oscillate.

Next we consider the somewhat more realistic case in which the limit of the
law p.~ p5/3 is attained when p, = p/3, and for higher densities this last relation
is taken to be valid. This will introduce modifications and limitations into the
previous work.
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First the range of continued validity of the previous conclusions has to be
found. Starting from a point (xo, 2p) consider the ratio p./p = 22/C along each
hyperbola of the single-parameter family passing through this point. There will
be a locus of points where this ratio equals 4, namely

F\% _ _ (%]x0)?
(zo) 4= 3(x/x0)* 7
‘This locus starts at (xo, ) with gradient d log x/d log x = 4 and runs to the
right with increasing steepness, becoming asymptotic to x/xp = (4/3)1/2. According
to the location of (xo, 2o), this curve may or may not intersect Q. If it intersects
O, it invariably does so twice. The segment of O between these two intersections
can thus be reached from (xo, 20) following the 5/3 power law without the pressure
ever attaining a value equal to one third of the density. Again we call this a direct
bounce. Evidently this is a sub-class of the general bounces discussed above, with
a larger minimum acceleration, viz. that giving the hyperbola leading to the
higher intersection of curve (57) and Q, and a lower maximum acceleration,
resulting in the hyperbola leading to the lower intersection of equation (57) and
Q. (It will be remembered that in the general case the maximum acceleration
corresponded to the straight line C = o and therefore to infinite central
pressure.)

The limiting locus of point (x, 2¢) from which a direct bounce is just possible
is the locus such that equation (57) touches Q. This is given in terms of the co-
ordinates (x3, 23) of the point of contact by

o _ 3%3% 2—u3 e 12(x3—1)3 (s8)

X , = .
T4 3o T ap¥(3—am)

‘This locus is the nearly straight curve to be called T reaching O at x3 = 1-2:

X0 1 11 12
20 0-0868 o0-1857 0-2778

Direct bounces can occur only from initial positions below this locus (see
Fig. 9).

Consider any starting point between T and Q. The representative point will
move along one of the hyperbolae (53). The greater the initial outward acceleration,
the greater will be the initial central pressure, the smaller C and B, and the gentler
the initial slope of the hyperbola. Consider now curve (57) through our starting
point. By hypothesis it will intersect Q in two points,Qg and Qp. It is readily seen
that always x, < 12, while x; may, according to the location of the starting point,
exceed 1-2 or not. We shall first assume that xp<1-2.

The gentlest permissible initial slope of hyperbola (53) corresponds to p. = p/3.
Thus we start on an isothermal solution (43) and are bound to continue along it.
With a slightly larger initial slope we will have a hyperbola intersecting equation
(57) for x<x4. Thus such a model will contract adiabatically to this point, then
1sothermally and reverse motion on reaching  so that we have an indirect bounce.
For larger initial slopes, hyperbola (53) will intersect Q between Q, and Oy giving
a direct bounce, for still larger ones the hyperbola will meet equation (57) between
Oy and the point D where equation (57) intersects the limiting bouncing isothermal
model equation (44"), and so we have again an indirect bounce. For yet larger
slopes the hyperbola will meet curve (57) above D and so no bounce will occur
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but the model will contract through the Schwarzschild limit, isothermally if the
intersection of the hyperbola and equation (57) occurs below 2 = %, otherwise
adiabatically.

025

Curve (59)

(i)

0-20- (1v) {no bounce)

Curve (44")

015
N /T
z D
-
(ii)
0-10
N sD
%
(i)
Arrangement of sfarting tangents in different zones.
0-05 The steeper the gradient, the smaller is g. The lowest

line always represents p. = p/3. /= no bounce,
ZI'= indirect bounce, 0= direct bounce.

] I L ]

1 -05 I-1 I-15 -2
X

FiG. 9. Direct and indirect bounces for y = 5/3.

If Qp > 1 -2, no upper indirect bounce can occur. It is readily seen that Op = 1-2

if, by equation (57)
2 1/2
36 20 = [4 (Ix—"z) —3] : (59)

The narrow sliver between this curve and Q is the area of initial points of
this type. Note that this curve has a lower intersection with Q at 2 = 0144 ... .
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Between T and equation (44 ') indirect bounces will occur with initial accelera-
tions between the maximum (p, = p/3) and that leading to the hyperbola meeting
equations (64) and (44") at the same point. For smaller accelerations no bounce
occurs.

Finally for initial points above equation (44') no bounce can occur whatever
the initial acceleration.

European Space Research Organisation,
Parsis.
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Note added in proof. A recent paper by Thompson & Whitrow (1968), Mon.
Not. R. astr. Soc., 139, 499, also uses an equation corresponding to my equation
(38) to examine the motion of uniform spheres. The aims and treatments of the
papers are very different and their mutual independence is demonstrated by the
fact that although Thompson & Whitrow’s paper appeared shortly before this one
was submitted my note (6) appeared just before their paper was submitted.
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