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Abstract
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The collapse can result in toroidal or higher genus asymptotically AdS
black holes.
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1 Introduction

The process of gravitational collapse to a black hole in general relativity can
be modelled by the matching of two appropriate exact solutions. For a zero
cosmological constant Λ, there are several well-known examples in spherical
symmetry, one of the simplest being the Oppenheimer–Snyder model which
results from the matching of a Friedmann–Lemâıtre–Robertson–Walker
(FLRW) dust metric to a Schwarzschild exterior. For Λ �= 0 spherical cases,
the results may be less well-known: the matching of Λ-FLRW with Kottler
has been done by Balbinot et al. [1], Nakao [19] and Markovic and Shapiro
[18] and its Λ-Lemâıtre–Tolman counterpart by Lake [12]. The matching of
the dust Λ-Szekeres solution with Kottler was recently studied by Debnath
et al. [7] (following Bonnor [4] for Λ = 0), while the matching of a collapsing
fluid with tangential pressure and Λ �= 0 to Kottler has been investigated by
Madhav et al. [17]. The above examples give rise to spherical black hole
solutions with Λ �= 0.

The collapse to non-spherical black holes is less widely studied. Smith
and Mann [20] have shown that one can match a collapsing k = −1 FLRW
spacetime to an asymptotically anti-de Sitter (AdS) exterior, as a model of
gravitational collapse to higher genus asymptotically AdS black holes. In a
related work, Lemos [13] matched a flat FLRW metric to a radiating Vaidya
exterior. Since their introduction by Lemos [14], the physics of toroidal
and higher genus black holes has also been studied (see, e.g., [5, 15, 16, 22]).
Subsequently there has been considerable interest in toroidal and higher
genus models of black holes, shells and horizons (see e.g., [10]), partly due
to the existence of a “landscape” of vacua states in string theory with Λ
positive, negative and zero (see e.g., [8]).

In this paper, we shall investigate generalizations of some of the above
results by matching non-spherical inhomogeneous and anisotropic interiors
(mostly taken from the excellent book of Krasiński [11]) to the non-spherical
Kottler metric with Λ < 0, thus describing a wider class of examples of
inhomogeneous and anisotropic gravitational collapse to toroidal and higher
genus black holes.

The Kottler metric with Λ < 0 has initial and final curvature singulari-
ties and a time-like null infinity, I . Any radial time-like geodesic has an
endpoint at each singularity, crossing the future horizon of I on its way
to a maximum radius before falling back through the past horizon of I to
r = 0 (see figure 1). In a matching to a dust interior, such a geodesic is the
outer boundary of the matter. The interior is part of a cosmological solu-
tion which in turn typically has initial and final singularities. As we shall see
below, for the matching to FLRW, the initial and final singularities of the
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r = 0 (past singularity)

r = 0 (future singularity)
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Figure 1: Penrose diagram for the Kottler solution with Λ < 0, showing a
typical radial time-like geodesic at which the solution can be matched to an
FLRW interior. The horizon is the event horizon for the I at the right.

interior are matched to the initial and final singularities of the exterior, but
this is not necessarily true for all the matchings we find. However, we may
arrange that the initial singularities coincide and that the final singularity
of the interior is behind the event horizon.

In what follows, we use units such that the speed of light c and Newton’s
gravitational constant G satisfy c = 8πG = 1.

2 Matching theory in brief

Let (M±, g±) be spacetimes with non-null boundaries σ±. Matching them
requires an identification of the boundaries, i.e., a pair of embeddings Φ± :
σ −→ M± with Φ±(σ) = σ±, where σ is an abstract copy of either boundary.
Let ξi be a coordinate system on σ. Tangent vectors to σ± are obtained by
f±α

i = ∂Φα
±/∂ξi, and we shall usually work with orthonormal combinations

e±α
i of the f±α

i . There are also unique (up to orientation) unit normal vectors
nα

± to the boundaries. We choose them so that if nα
+ points into M+, then

nα
− points out of M− or viceversa. The first and second fundamental forms

are simply q±

ij = e±α
i e±β

j gαβ |
σ

±
, H±

ij = −n±
α e±β

i ∇±

β e±α
j . It is well known that

the matching conditions (in the absence of shells) require the equality of the
first and second fundamental forms on σ±, i.e.,

q+
ij = q−

ij , H+
ij = H−

ij . (2.1)
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These will be referred to as first and second matching conditions, respectively.
If symmetries are present, one chooses the e±α

i to reflect the symmetry and

then H±

ij simplifies, as we shall see.

It is a familiar fact that, in order to match a perfect fluid spacetime to a
vacuum solution, the fluid’s pressure has to vanish at the matching bound-
ary. When the matching conditions are satisfied, this necessarily follows
from the Hamiltonian constraint (on the time-like boundary). It is possible,
but perhaps rather artificial, to match a perfect fluid interior with cosmo-
logical constant to a vacuum exterior with a different cosmological constant
at a surface with non-zero pressure: the jump in the cosmological constant
is chosen to match the jump in the pressure. However, we shall mostly be
concerned with dust interiors with cosmological constant and vacuum exte-
riors with the same cosmological constant. The time-like boundary of the
interior must be ruled by matter world lines, which for dust are geodesics,
and the matching conditions require that the boundary is also ruled by time-
like geodesics of the exterior. This is part of condition (2.1) matching the
second fundamental forms: if we take the tangent to the fluid world lines as
e−α
1 , then the geodesic condition implies the vanishing of H−

11. If the interior
is not dust, as for example with the inhomogeneous p �= 0 perfect fluids of
Section 3.3.3, the matter world-lines ruling the boundary are accelerating
and now the accelerations must match.

3 Spacetimes and matching

3.1 The Kottler solution as the exterior

To begin with, let us recall the Kottler solution, which we shall always take
as the exterior in what follows. The metric is

ds2
+ = −V dT 2 + V −1dr2 + r2(dθ2 + Σ2(θ)dϕ2) (3.1)

with

V = b −
2m

r
−

Λ

3
r2 (3.2)

and Σ(θ) = θ, sin θ, sinh θ, according to b = 0, 1,−1, respectively. With Λ < 0
and m > 0, V has a unique positive zero and this solution describes a black
hole with planar, spherical or hyperbolic symmetry, respectively, on an
asymptotically AdS background. For b = 0 or −1, it is possible to make iden-
tifications of the 2-metric of constant T and r to obtain toroidal and higher
genus black holes. Notice that I will have the same topology (times R).



GRAVITATIONAL COLLAPSE 1167

Radial time-like geodesics of the metric (3.1) are characterized by the
system

V Ṫ = E,

ṙ2 = E2 − V,

where E is a constant which is strictly positive for a future-directed time-like
geodesic which is ever outside the black hole. Therefore, with Λ< 0, every
such geodesic has a maximum value of r, and so has two endpoints, past
and future, at r = 0 (cf. figure 1). For the dust interiors which follow, these
geodesics are the candidate outer boundaries.

(a) Toroidal Kottler

In the case b = 0, we introduce Cartesian coordinates (y, z) in place of (θ, φ).
To perform the matching preserving the symmetry, we shall take a 3-surface
σ+ in the exterior generated by the orthonormal tangent vectors

e+
1 = Ṫ ∂T + ṙ∂r, e+

2 = r−1∂y, e+
3 = r−1∂z

with e+
1 tangent to geodesics, and parametrized by

Φ+(λ, ỹ, z̃) = (T (λ), r(λ), ỹ, z̃).

An overdot will mean differentiation with respect to λ, which is proper time
along the geodesics ruling the boundary. Thus, in particular,

V Ṫ 2 − V −1ṙ2 = 1, (3.3)

which, together with the constancy of Ṫ V , is equivalent to the geodesic
equation. The induced metric on σ+ is

ds2
+|σ = −dλ2 + r2(dỹ2 + dz̃2). (3.4)

In all cases below, the normal from the exterior will be taken to be

n+ =
ṙ

V
∂T + V Ṫ∂r (3.5)

and the only non-zero terms of the second fundamental form are

H+
22 = H+

33 =
V Ṫ

r
. (3.6)
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(b) Higher genus Kottler

With b = −1, we can take the hyperbolic metric on the surfaces of constant
(T, r) in the upper-half-plane form, so that the spacetime metric is

ds2
+ = −V dt2 + V −1dr2 +

r2

y2
(dy2 + dz2).

The induced metric on the matching surface is

ds2
+|σ = −dλ2 +

r2

ỹ2
(dỹ2 + dz̃2). (3.7)

The normal to the matching surface can be written as in (3.5) and the
non-zero components of the second fundamental in this case are again given
by (3.6).

In the next sections, we shall describe the different families of collapsing
interior spacetimes to be considered, as well as their matching to the Kottler
exterior. We shall divide our analysis into two parts, corresponding to spa-
tially homogeneous and inhomogeneous collapsing spacetimes.

3.2 Spatially homogeneous collapsing spacetimes as interiors

3.2.1 FLRW spacetimes

It is convenient to write the FLRW solutions as

ds2
− = −dt2 + R2(t)(dρ2 + f2(ρ)(dθ2 + g2(θ)dϕ2)), (3.8)

with the functions f and g as given in Table 1, for the different values of the
curvature k. The cases with k = 1 all correspond to spherical symmetry. For
k = 0 or −1, cases (a) have planar symmetry, (b) have spherical symmetry
and (c) have hyperbolic symmetry.

As we noted in the introduction, the matching of a spherical form of the
FLRW metric to a spherical exterior is familiar. The possible matchings
of the non-spherical forms of FLRW metrics as interior to a non-spherical
exterior Kottler solution can be summarized as follows:

(i) k = 0 and b = 0: Cannot match. This fact was given in [20] and [13].
In the latter reference, this FLRW was matched to a b = 0 Vaidya
exterior instead.

(ii) k = −1 and b = −1: Matched in [20].
(iii) k = −1 and b = 0: Can match.
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Table 1: The f and g functions of FLRW metric (3.8) depending on the
curvature k.

k = 1 k = 0 k = −1
f = sin ρ, cos ρ; (a) f = 1 = g (a) f = e±ρ; g = 1
g = sin θ, cos θ (b) f = ρ; g = sin θ, cos θ (b) f = sinh ρ; g = sin θ, cos θ

(c) f = cosh ρ; g = sinh θ, cosh θ

The third possibility was mentioned but not carried out in [20]. To see how
it works, take the FLRW from the third column of Table 1 with f = eρ and
g = 1 and take σ− to be ρ = ρ0. The metric on the boundary is

ds2
−|σ = −dt2 + R2(t)e2ρ0(dθ2 + dϕ2), (3.9)

which must match to (3.4), so that (t, θ, φ) = (λ, ỹ, z̃) and

r
σ
= R(t)eρ0 , (3.10)

where we introduce the notation
σ
= for an equality holding at the match-

ing surface. The second fundamental form from the interior has non-zero
components just

H−

22 = H−

33 =
1

R(t)
,

which must match (3.6), so that

V Ṫ
σ
= eρ0 . (3.11)

The matching will be possible if the proper time dependence imposed on r
by (3.10) is consistent with it defining a geodesic. Since (3.11) holds, this is
equivalent to the normalization condition (3.3), which, with the aid of (3.10)
and (3.11), becomes

Ṙ2 = 1 +
2me−3ρ0

R
+

Λ

3
R2. (3.12)

This can be recognized as the Friedmann equation for the interior, with a
dust density µ satisfying

1

6
R3µ = me−3ρ0 . (3.13)

Thus (3.13) gives the mass m of the exterior in terms of the matter in the
interior. Every solution of (3.12) that expands from an initial singularity has
a maximum value of R and then recollapses, just as the time-like geodesics
in the exterior do. By (3.10), the matching runs all the way from bang to
crunch. Note that, even with the boundary identified as a torus, the interior
is not spatially compact, as the range of ρ goes to −∞.
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3.2.2 Anisotropic spacetimes as interiors

As an example of a homogeneous anisotropic interior, we consider the tilted
dust LRS Bianchi V metric given by the Farnsworth solution [9, 21], which
reduces to case (iii) of the previous section when the tilt vanishes. The
metric is

ds2
− = −dt2 + f2dρ2 + g2e2ρ(dy2 + dz2). (3.14)

Here f and g are functions of a single variable u = t + αρ, a and α are
constants and

f = a(αgu + g), (3.15)

while g satisfies

2gguu + g 2
u − Λg2 −

1

a2
= 0,

which has the first integral

gg 2
u =

Λ

3
g3 +

g

a2
+ c (3.16)

with c another constant (compare (3.16) with (3.12)). The fluid flows along
the vector field u = ∂/∂t but the surfaces of constant t are not the surfaces
of homogeneity: this is what it means for the fluid to be tilted. The energy
density is given by

µ =
6

(

1
3Λg − guu

)

αgu + g
,

which, with the aid of (3.16), simplifies to

µ =
3ac

fg2
. (3.17)

The signs of the constants need to be chosen so that f and µ are positive.
As we shall see below, we need c positive, so also a > 0. Solutions of (3.16)
expand from g = 0 at say u = 0, to a maximum value gmax and then con-
tract back to g = 0 at say u = uF . Near the beginning g ∼ u2/3 while near
the end g ∼ (uF − u)2/3. From (3.15), if we choose α > 0, then f ∼u−1/3

near u = 0, with a positive constant of proportionality, but then f would be
negative near u = uF , and so must vanish before u = uF . This will be a cur-
vature singularity (since µ will diverge). It must happen in the contracting
phase (so that gu < 0) and will occur when g is the unique positive root of
the cubic

G(g) :=

(

Λ

3
−

1

α2

)

g3 +
g

a2
+ c, (3.18)

obtained by equating f to zero and using (3.16). It will be important,
once we have matched this interior to the planar Kottler exterior, that this
singularity lies inside the event horizon.
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The Farnsworth solution generalizes the k = −1 FLRW solution which
can be recovered for a = 1 and α = 0. We shall now show that this solu-
tion can be matched to Kottler with b = 0. The matching surface σ− is
parametrized by

Φ−(λ, ỹ, z̃) = (λ, ρ0, ỹ, z̃).

The first fundamental form in this case is

ds2−|σ = −dλ2 + g2e2ρ0(dỹ2 + dz̃2),

so the first matching condition is

r
σ
= geρ0 . (3.19)

The unit normal to the matching surface is

n− =
1

f
∂ρ,

and the second fundamental form is found to have non-zero components

H−

22 = H−

33 =
1

f

(

α
gu

g
+ 1

)

,

so that the second matching condition is

V Ṫ

r

σ
=

1

f

(

α
gu

g
+ 1

)

which, with (3.19), implies

V Ṫ
σ
=

eρ0

a
,

a constant, as required. For (3.3) to hold, we need

g 2
u =

1

a2
+

Λ

3
g2 +

2me−3ρ0

g
,

which is the remaining field equation (3.16) if we make the identification

c
σ
= 2me−3ρ0 ,

so that indeed c > 0.

This completes the matching, which will hold from the initial singularity
until f vanishes. Then it fails and the exterior can no longer be the Kottler
solution. However, the vanishing of f can happen inside the event horizon,
when the exterior solution will be Kottler up to and beyond the event horizon
(see figure 2).
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past singularity

r = 0 (Kottler future singularity)

i−

f = 0 (Farnsworth future singularity)
i+

Cauchy horizon

horizon

matching surface

apparent horizon

r = −•

I

Figure 2: Penrose diagram for the matching of Farnsworth to Kottler with
Λ < 0. The matchings for Szekeres interiors are qualitatively similar.

The vanishing of f happens when g is a root of (3.18). This will be inside
the horizon if G(gH) < 0, where gH is the value of g corresponding to the

location of the horizon, r = rH = (−6m/Λ)1/3. The condition is

α < agH = a

(

−
3c

Λ

)1/3

, (3.20)

which is therefore a condition on the parameters of the interior solution. It
is easy to check that this condition delays the final singularity in the interior
until after the formation of a marginally outer-trapped surface (which occurs
when gu = −a−1, or, using (3.16), when g = gH).

3.3 Inhomogeneous collapsing spacetimes as interiors

3.3.1 A higher genus analogue of the Farnsworth solution

A dust solution (in the Szekeres family) which is a higher genus analogue
of the Farnsworth solution, but not itself homogeneous, may be constructed
as follows. The metric (compare (3.14)) is

ds2 = −dt2 + f2dρ2 + g2 cosh2 ρ
(dy2 + dz2)

y2
, (3.21)

where f and g are functions of a variable u = t + α log cosh ρ for constant
α. Then the Einstein equations are satisfied for dust with 4-velocity ∂/∂t
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and cosmological constant Λ if

f = αgu + g,

and g satisfies

gg 2
u =

Λ

3
g3 + g + c,

in terms of another (positive) constant c. The dust density is

µ =
3c

fg2
.

This solution is not homogeneous on the surfaces of constant u. It can be
matched to the hyperbolic Kottler solution at ρ = ρ0 if

r
σ
= g cosh ρ0,

V Ṫ
σ
= sinh ρ0,

when the normalization condition (3.3) reduces to

c
σ
= 2m cosh−3 ρ0.

Just as in the previous case, with a positive α, there exist solutions which
expand from a singularity at which g vanishes and f diverges, pass through
a maximum g, and recontract. In the contracting phase, f will vanish before
g and this will mark the final singularity. For this to lie inside the future
horizon, there is a condition analogous to (3.20), which this time is

α < gH coth ρ0.

The interpretation is as before: this condition ensures that a marginally
outer-trapped surface forms on the boundary before the interior becomes
singular. A difference from the previous case is that ρ0 appears explicitly
in the condition, and now, given the parameters (c, α,Λ) determining the
interior, there will always be a (small enough) ρ0 at which to make the
matching.

3.3.2 The Szekeres solutions

We next consider the Szekeres form of the metric

ds2 = −dt2 + e2αdρ2 + e2β(dy2 + dz2),

where α and β are two C2 arbitrary functions of t, ρ, y, z. This is compatible
with a perfect fluid source with 4-velocity ui = δi

0 and pressure p = p(t). We
only consider the case where ∂β/∂ρ �= 0, which is the Szekeres class that
generalizes the Lemâıtre–Tolman spherically symmetric dust solution. This
is because we need the 2-surface of constant (t, ρ) to have non-zero second
fundamental form in the 3-surface of constant t.
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The Einstein field equations for a perfect fluid imply

eβ = φ(t, ρ)eν ,

eα = h(ρ)e−ν∂ρe
β, (3.22)

e−ν = A(ρ)(y2 + z2) + 2B1(ρ)y + 2B2(ρ)z + C(ρ), (3.23)

where A, B1, B2, C and h are arbitrary C2 functions of ρ. The 2-surfaces of
constant (t, ρ) have a metric which is conformal to

e2ν(dy2 + dz2),

with a conformal factor independent of y and z. From the form (3.23) of
ν, this 2-surface has constant positive, zero or negative curvature according
as AC − B2

1 − B2
2 is positive, zero or negative and we can conveniently call

these the spherical, flat or hyperbolic cases, respectively.

To obtain a dust source with cosmological constant, we set p(t) = −Λ and
then from [3] or [11] we find

φ̇2 = −k(ρ) +
2M(ρ)

φ
+

1

3
Λφ2,

µ =
∂ρ(2Me3ν)

e2β∂ρ(eβ)
,

with

AC − B2
1 − B2

2 =
1

4
(h−2(ρ) + k(ρ)). (3.24)

Note the scaling freedom:

(Â, B̂i, Ĉ) = eζ(ρ)(A, Bi, C),

ν̂ = ν − ζ,

ĥ = e−ζh,

k̂ = e2ζk,

φ̂ = eζφ,

and the freedom to perform affine transformations and inversions in y
and z.

The spherical case has already been matched to the spherical Kottler
solution [12], so here we shall perform the matching of the flat (including
toroidal) and hyperbolic (including higher genus) Szekeres solutions to the
corresponding Kottler solutions. We shall match across ρ = ρ0, and use
affine transformations in y and z to simplify A, Bi and C at ρ0.
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It is worth noting that the matchings we obtain for the non-spherical Szek-
eres solutions specialize to give matchings of the non-spherical Lemâıtre–
Tolman solutions (for these solutions see [11]). It is also worth noting that
the Farnsworth solution of Section 3.2.2 and its analogue of Section 3.3.1
fall into the Szekeres class of solutions, respectively, planar and hyperbolic.
Consequently, one should expect that, as in those examples, there will be
restrictions on the range of time over which the matchings that we find will
hold, arising as conditions on the interior.

(a) Toroidal Szekeres

Without loss of generality, we use the freedoms noted above to choose
A = Bi = 0, C = 1 at ρ0. The first fundamental form on the matching
surface can be written as

ds2
−|σ = −dλ2 + φ2(dỹ2 + dz̃2) (3.25)

so that the first matching condition gives

φ(λ, ρ)
σ
= r. (3.26)

The normal to the matching surface is

n− = e−α∂ρ,

and the second fundamental form at σ has non-zero components

H−

22 = H−

33 =
1

φh
(3.27)

so that the second matching condition is

V Ṫ
σ
=

1

h
. (3.28)

From (3.3) we obtain the matching of the mass:

M(ρ0) = m.

This completes the matching. With M(ρ) and M,ρ(ρ) both positive (as is
physically natural), the density is singular where either of φ or β,ρ vanishes.
Vanishing φ is matched, via (3.26), to the singularity in the exterior, but
vanishing β,ρ entails vanishing of eα via (3.22). This is like the problem
of vanishing f in the previous two examples but, because of the extra func-
tional freedom in the general Szekeres solution, we cannot write down an
explicit condition like (3.20) to force this to happen behind the horizon.
Rather we simply insist, as a condition on the interior, that β,ρ be positive
for values of φ giving values of r outside the horizon.
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(b) Higher genus Szekeres

By suitable transformations of (y, z) and scaling, we may assume without
loss of generality that A = B2 = C = 0, B1 = 1/2 at ρ0. The induced metric
on the boundary can be written as

ds2
−|σ = −dλ2 +

φ2

ỹ2
(dỹ2 + dz̃2)

and the first matching condition is

φ
σ
= r. (3.29)

The unit normal to σ is

n− = e−α∂ρ

so that the second matching condition is

V Ṫ
σ
=

1

h
.

The normalization condition (3.3) reduces to

M(ρ0) = m,

which is continuity of the mass again.

The comments at the end of the previous section regarding the range over
which the matching holds apply in this case also.

3.3.3 Barnes solutions

The Barnes solutions [2] can be written in the form [11]

ds2 = −D2dt2 + W−2(dx2 + dy2 + dz2)

where W = W (t, x, y, z) is determined, in a way which varies from case to
case, by another function w = w(t, ρ), with ρ = ρ(x, y, z), satisfying

w,ρρ

w
= f(ρ) (3.30)

and

D = F
W,t

W
with F = F (t) an arbitrary function. These solutions, which include the
well-known McVittie class, may be characterized as the general solution
of the Einstein equations with the perfect fluid form of stress-tensor, with
a twist-free, shear-free but expanding 4-velocity. In general, they do not
have a barotropic equation of state (see the account in [11]). A solution is
determined by a choice of F (t) and f(ρ), with data w(t, ρ0) and wρ(t, ρ0)
for (3.30) at some value ρ0 of ρ.
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We require as before that the boundary be ruled by matter flow-lines,
and that the pressure vanishes at the boundary, but since these are not dust
solutions, we do not require that the matter flow-lines ruling the boundary
be geodesics.

Some examples of matching in the spherical case have been done already
(see e.g., [6] and other references in [11]), so we shall again consider only the
plane and hyperbolic cases.

(a) Toroidal Barnes

These solutions have

W = w(t, ρ), with ρ = x

and

µ + Λ =
3

F 2
+ 2fw2 − 3w2

,ρ, (3.31)

p − Λ = −
3

F 2
+ w2

,ρ − 2
F,t

F 2D
− 2

Fw,ρ

Dw
(ww,tρ − w,tw,ρ). (3.32)

We take the matching surface from the exterior to be given in terms of
proper time λ by (T (λ), r(λ)) and from the interior by (t(λ), ρ = ρ0). The
first matching conditions are

V Ṫ 2 − V −1ṙ2 σ
= D2ṫ2

σ
= 1 (3.33)

and

r
σ
=

1

w
. (3.34)

From (3.34) we obtain

ṙ = −
1

Fw
. (3.35)

The normal to the matching surface is

n− = w∂ρ

and the second fundamental form gives

H−

11 = −w
D,ρ

D
,

H−

22 = H−

33 = −Dw,ρṫ.

The second matching conditions are

−wρ
σ
=

V Ṫ

r
, (3.36)

−w
D,ρ

D

σ
= T̈ ṙ − r̈Ṫ −

1

2
V V,rṪ

3 +
3

2
V −1V,rṪ ṙ2, (3.37)
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where the extra complexity of (3.37) reflects the fact that the boundary is
not ruled by geodesics; the right-hand side in (3.37) is (minus) the inner
product of the acceleration in the exterior of the boundary curve with the
unit normal.

The normalization condition (3.3), with (3.35) and (3.36), leads to

V
σ
=

w2
,ρ

w2
−

1

F 2w2
, (3.38)

and then preservation of this in time implies, by (3.32),

p
σ
= 0, (3.39)

which also results from (3.37), given the rest of the matching. Thus, as
expected, the pressure must vanish at the matching surface.

One may ask, given a planar Barnes solution, where should the matching
surface be? We need a (necessarily comoving) surface of constant ρ, say
ρ = ρ0, at which p = 0. Then the quantity Q, defined by

Q =
1

2w3

(

1

F 2
− w2

ρ −
Λ

3

)

,

is necessarily constant on ρ = ρ0, by virtue of the field equations. We match
to an exterior planar Kottler solution according to (3.33) and (3.34) and
then we satisfy (3.38) provided the parameter m of the Kottler exterior
equals Q.

Not every Barnes solution will contain a constant-ρ surface at which p
vanishes. However it is possible to construct examples by using the match-
ing surface as the surface at which data for (3.30) is given. That is, we
choose F (t) and f(ρ), and, then given a choice of boundary ρ = ρ0, we
choose w(t, ρ0) (positive) and wρ(t, ρ0) so that the density µ(t, ρ0) from
(3.32) is positive, the pressure p(t, ρ0) from (3.32) is zero, and the quantity
Q(ρ0), which is now necessarily constant in time, is positive (we also want
D positive and, to be matching outside the black hole, w,ρ negative). Inte-
gration of (3.30) then gives a Barnes solution, at least in a neighbourhood
of the boundary, which has a boundary with the desired properties. In the
exterior, the boundary follows a curve given by (3.34) together with the

integration of (3.36), using ṫ
σ
= D−1.
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(b) Higher genus Barnes

In this case

W = yw(t, ρ) with ρ = x/y,

and therefore the metric can be written as

ds2 = −D2dt2 +
1

y2w2
(y2dρ2 + 2ρydρdy + (1 + ρ2)dy2 + dz2)

where we have changed variables to eliminate x, together with

µ + Λ =
3

F 2
+ 2(ρ2 + 1)fw3 + 6ρww,ρ − 3(ρ2 + 1)w2

,ρ − 3w2, (3.40)

p − Λ = −
3

F 2
− 2ρww,ρ + (ρ2 + 1)w2

,ρ + w2 − 2
F,t

F 2D

+ 2
F

D

(

ρ − (ρ2 + 1)
w,ρ

w

)

(ww,tρ − w,tw,ρ). (3.41)

We take the matching surface from the exterior to be given by (T (λ), r(λ))
and from the interior (t(λ), ρ = ρ0). The first matching conditions are

V Ṫ 2 − V −1ṙ2 σ
= D2ṫ2 = 1 (3.42)

and

r2 σ
=

1 + ρ2

w2
. (3.43)

The normal to the matching surface is

n− = w
√

1 + ρ2∂ρ −
wρy

√

1 + ρ2
∂y

and the second fundamental form is

H−

11 = −w
√

1 + ρ2
D,ρ

D
,

H−

22 = H−

33 =
wρ

√

1 + ρ2
−

√

1 + ρ2w,ρ

so that the second matching conditions are

ρ − (1 + ρ2)
w,ρ

w

σ
= V Ṫ , (3.44)

−w
√

1 + ρ2
D,ρ

D

σ
= T̈ ṙ − r̈Ṫ −

1

2
V V,rṪ

3 +
3

2
V −1V,rṪ ṙ2. (3.45)

It follows from (3.42) and (3.44) that

V
σ
=

(

ρ − (1 + ρ2)
w,ρ

w

)2
− (1 + ρ2)

1

F 2w2
,



1180 FILIPE C. MENA ET AL.

and then it is straightforward to confirm that

p
σ
= 0.

One argues as before for the existence of higher genus Barnes solutions with
a constant-ρ surface at which p vanishes: choose the free functions F (t),
f(ρ) and the data w(t, ρ0), w,ρ(t, ρ0) so that p(t, ρ0) = 0; propagate inwards
with (3.30) to obtain the interior; the quantity

Q =
(ρ2 + 1)1/2

2w3

(

−w2 −
Λ(ρ2 + 1)

3
+

(1 + ρ2)

F 2
− (ρw − (ρ2 + 1)w,ρ)

2

)

is then necessarily constant in time at ρ0 and under the matching equates to
m in the exterior. The data and free functions need to satisfy various open
conditions to ensure that m, V , Ṫ and so on are positive, but this is easily
done.

Acknowledgments

F. C. M. thanks Departamento de Matemática, Instituto Superior Técnico
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