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ABSTRACT

Cold dark matter haloes are populated by high-density structures with sharply peaked profiles

known as caustics, which have not yet been resolved by three-dimensional numerical simula-

tions. Here, we derive semi-analytic expressions for the density profiles near caustics in haloes

that form by self-similar accretions of dark matter with infinitesimal velocity dispersion. A

simple rescaling shows that, similarly to the case of absolutely cold medium, these profiles are

universal: they are valid for all caustics irrespective of the physical parameters of the halo. We

derive the maximum density of the caustics and show that it depends on the velocity dispersion

and the caustic location. We show that both the absolute and relative thickness of the caustic

decrease monotonically towards the centre of the halo while the maximum density grows. This

indicates that the radial component of the thermal velocities decreases in the inner streams,

i.e. the collisionless medium cools down in the radial direction descending to the centre of

the halo. Finally, we demonstrate that there can be a significant contribution to the emission

measure from dark matter particle annihilation in the caustics.
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1 I N T RO D U C T I O N

Dark matter particles, if collisionless and cold, would focus un-

der gravitational instability into caustics, which are formally two-

dimensional manifolds of infinite density. In three-dimensional

space, caustics are determined by tangent hyperplanes r = con-

stant to the phase surface in the six-dimensional phase space

(r , v) and bound the regions of multistream flow where velocity

has multiple values. Once formed, caustics of a given phase vol-

ume neither disappear nor overlap; a requirement of the Liouville

theorem. However, they can interact and merge with caustics of a

different phase volume, and consequently the nature of their singu-

larity could change and they could undergo genericmetamorphoses.

In the case of potential flows, e.g. of light rays or cold dark matter on

large scales, the singularities of the caustics and their metamorphosis

have been classified up to three spatial dimensions (Arnol’d 1986,

1990). This classification remains intact in the presence of external

or internal forces (e.g. in a self-gravitating system) for as long as

the force is potential and smooth and the dark matter can be approx-

imated as a collisionless fluid. The first and most common caustic

has a density with an inverse square root singularity (as occurs in

the Zel’dovich approximation). This singularity has been rigorously

proven to be robust in the case of a one-dimensional Vlasov–Poisson

system (Roytvarf 1994), and is the only singularity that is of rele-
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vance to the present work. The other generic singularities can lie on

one-dimensional manifolds (lines) or be isolated points. Generally,

one-dimensional are stronger than two-dimensional singularities,

and zero-dimensional are stronger than one-dimensional singular-

ities. None of these singularities requires any particular symmetry

for its formation (Arnol’d, Shandarin & Zel’dovich 1982; Arnol’d,

Gusein-Zade & Varchenko 1985; Shandarin & Zel’dovich 1989).

In cosmology, the study of the formation and evolution of dark

matter caustics has been historically and scientifically two-fold:

caustics related to large-scale structure; and caustics on galaxy or

smaller scales. On large scales, the pioneering works by Zel’dovich

and his collaborators (Zel’dovich 1970; Arnol’d et al. 1982;

Shandarin & Zel’dovich 1989) showed that, in suitably defined

time and space coordinates, elements of a collisionless and self-

gravitating fluid move on inertial trajectories, i.e. with their initial

velocities. Thus, as in ray optics, when the paths of the free-moving

particles cross, density diverges, velocity becomes multivalued and

caustics form. Caustics exist only as idealizations in models assum-

ing that the medium is collisionless, continuous and cold, i.e. the

thermal velocity dispersion equals zero. It was shown that, in the

case of finite thermal velocity dispersion, the density in the caustic

regions becomes finite (Zel’dovich & Shandarin 1982). Although

the real thermal velocity dispersion is never zero, in many cases

it is extremely small, and the cold medium represents an excellent

first approximation to reality. Thus, caustics of various types rep-

resent a very useful idealization for the study of complex density

fields. Needless to say, both discreteness and collisionality eliminate
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caustics. Caustics can bound regions with the morphology of fila-

ments, sheets or clumps, together forming a supercluster–void net-

work, which is remarkably similar to the mass distribution in the

Universe on large scales (above 4–5 Mpc), as shown in numerical

simulations (e.g. Sahni & Shandarin 1996) and redshift galaxy cata-

logues (e.g. Bharadwaj et al. 2000). However, at small scales, within

collapse structures, the inertial approximation of Zel’dovich breaks

down.

The question arises whether caustics are relevant to the physics of

dark matter at small scales, for example at the scale of a dark matter

halo. Dark matter haloes can form, for instance, from the triaxial

collapse of spherical perturbations or accretion of matter into over-

densities at the junctions of filaments. In a cold dark matter universe

(with or without cosmological constant), they grow in a hierarchical

manner by merging with other haloes and by accreting mass, and

are hosts to the formation of galaxies. In numerical simulations,

they are bound overdense regions that are identified by various

percolation algorithms. High-resolution simulations, surprisingly,

have found that the spherically averaged equilibrium density pro-

files of cold dark matter haloes can be described by a power law

(Dubinski & Carlberg 1991) and universal two-parameter function

(Navarro, Frenk & White 1996, 1997). Although recent simula-

tions have clearly established that many of the supposedly ‘relaxed’

haloes still contain a large number of smaller subhaloes (Klypin

et al. 1999; Moore et al. 1999), they do not show the presence of

discrete flows and caustics (Moore 2001; Helmi, White & Springel

2003). We believe that they have not yet achieved enough mass

resolution to observe the small-scale caustics in three dimensions

and also probably suffer from spurious collisional effects (Melott

et al. 1997; Splinter et al. 1998; Binney 2004), which wash out the

caustics.

It is worth remarking at this point that recent high-resolution

N -body simulations of a neutralino-dominated universe have shown

that a considerable number of the smallest haloes with masses as

small as 10−6 M� survive until the present epoch (Diemand, Moore

& Stadel 2005). These simulations suggest that there must be about

1015 such haloes in our galaxy. These haloes are expected to have

very smooth caustics because there were no smaller-scale fluctua-

tions in the initial spectrum. The results of our work are most directly

applicable to this type of structure.

Analytic evaluation of the halo density profile, and the prediction

of the existence of caustics inside these structures, started with the

works of Gott (1975) and Gunn (1977), who used the spherically

symmetric model. With the main objective of explaining the flatten-

ing of the rotation curves of galaxies, they considered the formation

of a dark matter halo from the secondary infall of matter on to an

already formed galaxy (or in later works on to a spherical overdense

region). In an Einstein–de Sitter universe, a spherical overdensity

expands and then turns around to collapse. After collapse and at

late times, the fluid motion becomes self-similar: its form remains

unchanged when lengths are rescaled in terms of the radius of the

shell that is currently turning around and falling on to the galaxy.

Physically, self-similarity arises because gravity is scale-free and be-

cause mass shells outside the initial overdensity are also bound and

turn around at successively later times. Self-similar solutions give

power-law density profiles whose exact scaling properties depend

on the central boundary conditions and on whether the fluid is col-

lisionless or collisional (Fillmore & Goldreich 1984; Bertschinger

1985a,b). The density profile obeys a power law on the scale of the

halo, which provides an explanation of the flattening of the rotation

curves of the galaxies. However, on smaller scales the density pro-

file contains many spikes (i.e. caustics) of infinite density (with an

artificial cut-off due to finite numerical resolution). The position and

the time of formation of these caustics are among many properties

that have been studied in the secondary infall model (Bertschinger

1985b).1

The aforementioned studies have proved valuable not only for

the prediction and description of large-scale structure, of the dy-

namics and distribution of mass inside dark matter haloes and of

galaxy formation, but also recently for the detection of dark matter

particles. Owing to their significantly high density over their often

already dense background, and their large number density, caustics

are clearly of importance for dark matter search experiments.

In the past few years, major experiments have got under way

for the directand indirectdetection of dark matter particles. Direct

detection experiments, such as DAMA and EDELWEISS, often use

the annual modulation of the signal due to the orbital motion of the

Earth around the Sun. Since the flux of dark matter in direct searches

dependslinearlyon the local dark matter density, the search strategy

and data analysis depend strongly on the spatial distribution of dark

matter and its dynamics in the galactic halo.

Indirect detection experiments, such as ANTARES, HESS and

GLAST, search for the products of annihilation of dark matter can-

didates (e.g. neutralinos), such as energetic neutrinos and γ -rays.

In indirect searches, the flux of the annihilation products depends

quadraticallyon the local dark matter density. Thus the degree of

clumpiness, the density profile of a dark matter halo, the presence

or absence of a central supermassive black hole and finally the pres-

ence of caustics, could all influence the annihilation rate and boost

the γ -ray flux significantly. It has been shown that this boost is sig-

nificant if there is a cusp at the centre of the halo (Stoehr et al. 2003;

Salati 2004). The accretion of dark matter into a central black hole,

if present in the halo, could also boost the γ -ray flux by a few orders

of magnitude, but again only if the dark matter profile develops a

cusp at the centre (Gondolo & Silk 1999). Thus, a central core profile

would not in general lead to a significant boost of the flux. However,

although ‘dark matter only’ simulations seem to show a cuspy profile

in the centre of the haloes, some of the observations seem to contra-

dict these predictions (e.g. see McGaugh, Barker & de Blok 2003).

In addition, whether the cusp observed in the ‘dark matter only’

simulations would survive in the presence of gas, would become

less steep, or else would disappear due to reaction with the baryonic

gas, or whether it is simply a numerical artefact (Binney 2004), is

unclear. Caustics, on the other hand, would inevitably be present,

as a direct consequence of the Jeans–Vlasov–Poisson equation [e.g.

see Alard & Colombi (2005) for a recent numerical simulation in

one dimension]. Therefore, it is worth while to study density en-

hancement in caustics and its possible implications for dark matter

search experiments. Many properties of dark matter haloes related to

the detection of dark matter signatures have already been discussed

in early work. For example, the velocity magnitudes of the peaks

in velocity space and the large-scale properties of galactic haloes

have been studied (Sikivie, Tkachev & Wang 1997), and the geom-

etry of caustics in galaxy haloes has been discussed (Sikivie 1999;

Sikivie & Ipser 1992). A simple estimation of maximum density

in caustics due to small thermal velocity dispersion has also been

carried out (Bergström, Edsjö & Gunnarsson 2001). The formation

and role of micropancakes in haloes has been discussed (Hogan

1 Although various elaborations have since been made on secondary infall,

in order to accommodate the bi-scaling of the halo density profile observed

in simulations (e.g. see Henriksen 2004), here we concentrate on the original

secondary infall model, which yields a pure power-law density profile.
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2001). The more general question of the expected dimensionality of

phase-space patterns in observations of galaxy structures has been

studied, and it has been suggested that the most prominent features

will be stable singularities (Tremaine 1999).

The presence of a small velocity dispersion, e.g. for neutrali-

nos, which are presently the most plausible dark matter candidates,

smoothes the matter density at the caustic and gives it a finite max-

imum value. The principal problem addressed in this work is the

precise derivation of the value of this quantity and its implications

for dark matter search experiments.

In view of the fact that almost all dark matter candidates have

non-negligible velocity dispersion, we consider the secondary in-

fall of dark matter with a very small but finite velocity dispersion.

In this case the density profile in the very vicinity of the caustic

would be affected, and in addition caustics would have a physical

cut-off to their density. Here, we evaluate analytic expressions for

the density profile in the vicinity of caustics and also determine

the maximum density at the caustic positions. The analytic expres-

sion for the density profile of caustics is given as a function of the

initial velocity dispersion. The γ -ray emission measure from the

annihilation of neutralinos in the caustics is then evaluated. Using

our results, we evaluate the position, thickness, density and γ -ray

emission measure for the first caustic of M31.

This paper is organized as follows. In Section 2, we review the

basics of the secondary infall model. In Section 3, we derive analytic

expressions for the density profiles near caustics in the presence of

small velocity dispersion. In Section 4, we use our density profile

and evaluate a general analytic expression for the emission measure

from a typical caustic. In Section 5 we evaluate the γ -ray emission

measure from dark matter annihilation in the first caustic (nearest

to us) of M31. In Section 6 we conclude our main results.

2 S E L F - S I M I L A R M O D E L

We consider a spherical overdensity of collisionless fluid in an

Einstein–de Sitter universe which eventually ceases expansion and

turns around to collapse. The trajectory of a fluid element in radial

motion obeys Newton’s law

d2r

dt2
= −G m (r,t)

r2
, (1)

where the mass m (r, t) inside a radius r is not constant due to

shell crossing. At first the only way to tackle this problem seems

to be via an N -body simulation. However, a major simplification

arises once it is realized that the problem has a similarity solution

[Fillmore & Goldreich (1984) and Bertschinger (1985b), and we use

the notations of Bertschinger (1985b) throughout]. The turnaround

radius rta (t), which is the only length-scale in the problem, is used

to introduce the non-dimensional variables

λ = r(t)

rta(t)
, ξ = ln

(
t

tta

)
, M (λ) = 3

4π

m (r,t)

ρHr3
ta

, (2)

where

rta(t) = rita

(
t

tita

)8/9

, (3)

rita is the initial turnaround radius, tita is the initial turnaround time,

ρH is the Einstein–de Sitter density (ρH = 1/6πG t2) and tta is the

turnaround time for a given particle (i.e. when the particle is at

its largest radius). In terms of the non-dimensional variables (2),

Newton’s equation (1) becomes

d2λ

dξ 2
+ 7

9

dλ

dξ
− 8

81
λ = − 2

9λ2
M (λ), (4)

which has no explicit dependence on non-dimensional time ξ . The

equation should be solved with the initial condition (at ξ = 0 cor-

responding to t= tta)

λ = 1,
dλ

dξ
= −8

9
, (5)

and a prior knowledge of the mass M (λ). In the case of the Hubble

flow, there is a simple solution to equation (4), before shell crossing,

which is given by

M (λ) = λ3 = M ta e−2ξ/3.

However, after shell crossing has occurred there are many particles

having the same value of λ. This can be taken into account simply

by the summation

M (λ) = M ta

∑
i

(−1)i−1 e−2ξi/3, (6)

which adds (for iodd) the mass of the particles interior to λ and

subtracts (for even i) the mass exterior to λ, accounting correctly for

shell crossing. Equations (4) and (6) can be solved numerically by

iteration (see Appendix A for a more detailed account). Here, we

take a simpler approach. At small values of λ (λ� 1), mass becomes

a power law M (λ) ≈ 11.2λ3/4 (Bertschinger 1985b). We take this

fact into account and, instead of solving (4) and (6) iteratively, use

a simple approximation for M (λ),

M (λ) ≈ 11.2λ3/4

1 + λ3/4
, (7)

and then solve (4) numerically at the given gravitational potential

generated by the mass distribution (7).

As shown in Appendix A by Fig. A1, the approximation (7) gen-

erates relatively small errors. A notable discrepancy between the

approximation (7) and expression (6) appears only at relatively large

values of λ ∼ 1. However, for all the caustics under consideration,

the value of λ is far less than one [the largest value of λ for the first

caustic is at λ ≈ 0.36 (see the table in Fig. A1)].

Solutions to equations (4) and (6) give a power-law density pro-

file convolved with many sharp spikes (the caustics). As a particle

expands to its turnaround radius, it collapses and re-expands again

to its new maximum radius, which gives the time and position of

the first caustics. It then re-collapses and re-expands to the position

of the second caustic and so on (see Fig. A2). The calculation of the

halo density profile itself is not the subject of this work. Here we are

primarily concerned with the calculation of the density profile near

the caustics and the maximum density at the caustics in the case of

dark matter with finite velocity dispersion.

3 M A X I M U M D E N S I T Y I N C O S M O L O G I C A L

C AU S T I C S

3.1 Cold medium

First, we derive the equations of motion in terms of physical time t
and radius r. From the definitions (2) one can easily obtain

t= tita(Rta/rita)
9/8 eξ , (8)

r= Rta exp
(

8
9
ξ
)
λ(ξ ), (9)

where

Rta ≡ rta(tta) = rita(tta/tita)
8/9 (10)
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is the turnaround radius reached by a particle at its turnaround time

[which is equivalent to r′
ta in Bertschinger (1985b)]. Solving equa-

tion (8) for ξ one can obtain in terms of the physical coordinates

and function λ = λ(ξ ) the explicit solution

r(Rta,t) = rita

(
t

tita

)8/9

λ

{
ln

[
t

tita

(
Rta

rita

)−9/8
]}

. (11)

Introducing dimensionless time τ and dimensionless coordinates x
and q,

τ = t

tita
, x= r

rita

and q = Rta

rita

, (12)

one can further simplify equation (11) to

x= τ 8/9λ[ln(τq−9/8)]. (13)

Equations (11) and (13) represent the mapping from Lagrangian

space to Eulerian space parametrized by time.

The density can be obtained from the conservation of mass,

ρ(x) = ρ(q)
q2

x2

∣∣∣∣dx

dq

∣∣∣∣−1

, (14)

where the ratio dx/dqmust be taken at the time of formation of the

caustic, τk. The condition of caustic formation, dx/dq= 0, requires

λ′(ξk) = 0, (15)

where λ′ = dλ/dξ and ξ k = τ kq−9/8 denotes the position of a max-

imum of the function λ(ξ ). The derivative dx/dq at the Lagrangian

distance �q from the caustic is

dx

dq
=

(
∂2x

∂q2

)
τk

�q = 81

64

τ
8/9
k

q2
λ′′
k�q, (16)

where λ′′
k = λ′′(ξ k). The relation between �x and �q can be easily

found by expanding x(τ , q) (equation 13) into a Taylor series at the

time τ k and using the condition λ = max (given by equation 15),

�x=
(

∂x

∂q

)
τk

�q+ 1

2

(
∂2x

∂q2

)
τk

�q2 = 1

2

81

64

τ
8/9
k

q2
λ′′
k�q

2. (17)

Thus, the inverse derivative (dx/dq)−1 becomes∣∣∣∣dx

dq

∣∣∣∣−1

= 1

2

8

9

q

τ
4/9
k

(
−λ′′

k

2

)−1/2

(−�x)−1/2, (18)

where the signs in the above equation reflect the signs of λ′′
k < 0

and �x< 0 in the vicinity of the caustic. Substituting the deriva-

tive (dx/dq)−1, obtained above, into equation (14), one derives the

density in the vicinity of a caustic (an additional factor of 2 must be

added due to two stream flows at �x< 0)

ρ(�x) = Ak(−�x)−1/2, (19)

with

Ak = 2

9
ρH

M ta

λ2
k

exp

(
−2

3
ξk

)(
−λ′′

k

2

)−1/2

x1/2
ta , (20)

where ρH = 1/6πG t2 is the mean density of the Universe, M ta =
(3π/4)2, λk = λ(ξ k) and xta = rta(t)/rita is the present dimension-

less turnaround radius. [Equation (19) corresponds to equation (4.7)

in Bertschinger (1985b).] Substituting rfor x(equation 12), one can

obtain the density in terms of dimensional physical parameters. The

parameters of the self-similar solution [ξ k, λ(ξ k) and λ′′ (ξ k)] that

determine the density in the vicinity of every caustic must be ob-

tained from numerical integration of equation (4) and equation (6)

[or equation (4) and the approximate equation (7)].

3.2 Medium with thermal velocity dispersion

In this section, we derive semi-analytic expressions for the density

profile in the vicinity of the caustics for non-zero velocity disper-

sion following the method used in Zel’dovich & Shandarin (1982)

and Kotok & Shandarin (1987). Although in rigorous mathematical

terms caustics, defined as manifolds of infinite density, would not

form in the presence of a finite velocity dispersion, the density at

the caustic ‘positions’ would still be extremely high if the velocity

dispersion was very small, as is the case for most dark matter can-

didates, and hence we still refer to these sharply dense structures as

caustics.

The motion of a medium with small thermal velocity dispersion

can be approximated as a simultaneous evolution of many streams

with different initial velocities v at τ = τta. The formation of the

caustic in every stream occurs at different radius xv . We denote the

distance from the caustic as δxv = x − xv . We assume a linear

relation between the relative position of the caustic and the initial

velocity of the stream v,

xv − x0 = αkv, (21)

where v is the dimensionless velocity, related to physical velocity

u as u= (rita/tita)v and αk is a negative constant to be determined

numerically for every caustic. We will express the density as a func-

tion of the distance �x= x− x0 from the caustic in the stream with

zero initial velocity,

δxv = �x− αkv. (22)

The major effect to consider in determining the maximum density

in the ‘caustic’ in the medium with small thermal velocities is the

shift in the position of the caustic in every stream with respect to

the stream with v = 0. As a result the 1/
√−�x factor in equation

(19) must be modified as in the following integral:

ρ(�x) =
∫

Ak f(v) dv√−�x+ αkv
, (23)

where f(v) is the velocity distribution function at the turnaround ra-

dius qand the turnaround time τta corresponding to a chosen caustic

and f(v) is normalized to unity:
∫
f(v) dv = 1. The above integral

is simply the sum of densities in all streams at a distance �x from

the true caustic in a cold medium.

In the simplest case of the one-dimensional top-hat (TH) velocity

distribution,

fTH(v) =

⎧⎨⎩
1

2σv

, if |v| < σv,

0, otherwise,

(24)

we obtain

ρ(�x) = Ak√|αkσv|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
1 − �x

|αkσv| −
√

−1 − �x

|αkσv| ,

for �x� −|αkσv|,√
1 − �x

|αkσv| ,

for −|αkσv| � �x� |αkσv|,

0, for �x� |αkσv|,

(25)

for the density profile near caustics, where Ak is given by equa-

tion (20). One recovers equation (19) from equation (25) in the

limit of σ v = 0.
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In order to find the constant αk we solve the equation numeri-

cally for λ(ξ ) in the presence of the initial non-dimensional velocity

perturbation δλ′0 in the initial conditions at ξ = 0 so that

λ(0) = 1, λ′(0) = − 8
9

+ δλ′
0. (26)

The change of the maximum of λ(ξk) = max = λk −→ λk + δλk
in this case is found to be well approximated by a linear expression

δλk = �kδλ
′
0, (27)

where the coefficient �k depends on the caustic k, and will be de-

termined numerically. Differentiating equation (13), one finds the

relation

dx/dτ = τ−1/9
[

8
9
λ(ξ ) + λ′(ξ )

]
(28)

between the dimensionless velocity dx/dτ and non-dimensional

functions. Therefore, at the turnaround time, τta, the dimensionless

velocity v, given by equation (21), is

v = τ
−1/9
ta δλ′

0. (29)

Taking the variation of equation (13) at τk and using equation (27),

one obtains the distance between the caustic in the stream with

velocity v and the caustic in the stream with v = 0,

xv − x0 = τ
8/9
k �kδλ

′
0. (30)

Finally, recalling that xv − x0 = αkv (equation 21), one obtains the

expression for αk in terms of �k,

αk = τta exp
(

8
9
ξk

)
�k, (31)

noting that �k < 0 and αk < 0. Combining equations (20), (25)

and (31) gives the full expression for the density in the vicinity of

-5 -4 -3 -2 -1 0 1 2 3 4 5
ε
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For all caustics

Approximate
[eq. (32)]

Figure 1. The rescaled density η = ρA−1
k (αkσ v)1/2 versus the rescaled distance ε = �xα−1

k σ−1
v from the caustic. The dashed line shows the case of cold

matter (σ v = 0); the small circles show the top-hat velocity distribution; the dash-dotted and solid lines show the cases of the exponential and the Gaussian

initial velocity distributions, respectively; and the dotted curve is a simple approximation given by equation (32), which is used in the evaluation of the emission

measure in Section 4 and used also in Fig. 3. The density profile is evidently universal: it is independent of halo parameters and is valid for all of the caustics.

caustics for the top-hat velocity distribution function. We derive the

density profile in the vicinity of a caustic for the exponential and

Gaussian velocity distribution functions in Appendix B.

A much simpler and approximate expression for the density can

be written as

ρ(�x) = Ak

⎧⎪⎨⎪⎩
(−�x)−1/2, for �x� �xck,

(−�xck)
−1/2, for �xck � �x� 0,

0, for �x> 0,

(32)

where

�xck = αkσv = σvτta exp
(

8
9
ξk

)
�k; (33)

note that �xck is negative. The above expression approximates the

maximum density for the exponential and Gaussian velocity distri-

bution functions quite well (see Fig. 1). Physically, this approxima-

tion means that the highest density in caustics is reduced by thermal

velocities, but since the amount of mass having the highest densities

is small, ∝ (−�xck)
1/2 ∝ σ 1/2

v , it does not significantly affect the

rest of the density distribution. Although a similar idea was used

in the estimate by Bergström et al. (2001), they did not derive the

thickness of the caustic (equations 33 and 37) and did not show the

accuracy of their approximation.

In order to evaluate the density profile in the vicinity of a caus-

tic, we solve equation (4) numerically with the mass distribution

approximated by equation (7) and the initial conditions given by

equation (26). We summarize the caustic parameters (including �k)

in Table 1.

Rearranging (32), we arrive at the following full expression for

the maximum density (which occurs at �x= �xck):
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1222 R.MohayaeeandS.F.Shandarin

Table 1. The non-dimensional parameters of the first 10 caustics obtained

from the numerical fits to the curves in phase space (similar to those shown

in Fig. A3).

k ξ k λk = λ(ξ k) λ′′
k = λ′′ (ξ k) �k

1 0.985 0.368 −5.68 −0.070

2 1.46 0.237 −11.2 −0.025

3 1.76 0.179 −16.7 −0.014

4 1.98 0.146 −22.3 −0.0085

5 2.16 0.124 −28.0 −0.0059

6 2.31 0.108 −33.9 −0.0043

7 2.43 0.0960 −39.8 −0.0034

8 2.55 0.0866 −45.7 −0.0027

9 2.64 0.0790 −51.7 −0.0022

10 2.73 0.0728 −58.8 −0.0018

ρmax =
√

2 π2

8

e−11ξk/18√
λ′′
k�k

1

λ2
k

(
t

tita

)−1/18
ρH√
σv

, (34)

where tis the present time. The factor (t/tita)
−1/18 σ−1/2

v can be ex-

pressed in terms of the radial component of the physical thermal ve-

locity dispersion, σ ph, at the turnaround radius R ta at the turnaround

time tta. First, we note that σ v = σ ph (rita/tita)
−1, and then we use

equation (3) to obtain rita/tita = (rta/t)(t/tita)
1/9. Combining the

two factors one obtains(
t

tita

)−1/18

σ−1/2
v = σ

−1/2
ph

(
rta

t

)1/2

. (35)

We wish to stress that both tand rta are present time and present

turnaround radius, while σph is the physical velocity dispersion at

the turnaround radius at the turnaround time. The thermal veloc-

ity dispersion at the turnaround radius at the turnaround time can

be estimated from the conservation of phase-space volume. The

density at the turnaround radius is D (1) = (3π/8)2 ≈ 1.39 times

greater than ρH(tta) and therefore σ ph is approximately D (1)1/3 ≈
1.24 times greater than the thermal velocity dispersion in the ho-

mogeneous Universe at that time. Thus, the maximum density only

depends on the caustic, the velocity dispersion and the background

Einstein–de Sitter density, ρH. The ratio of the maximum density

to the background density (Einstein–de Sitter density, which should

not be confused with the local halo density) is thus almost inde-
pendentofanyphysicalparameters. Using the caustic parameters

given in the previous table, we can evaluate the maximum density at

caustic positions. In Table 2, we summarize the value of ρ/ρH/
√

σv

and also of the local halo density for the first 10 caustics.

Thus, for a given velocity dispersion, we can evaluate the posi-

tions when the maximum caustic density becomes equivalent to the

background density. Clearly for small values of σ v this would occur

only at small radii for inner caustics and vice versa. The values of

velocity dispersion for cold dark matter are very small and would

be expected to be much smaller than unity. Thus, it is clear from

Table 2. The maximum caustic density evaluated using (32) at the first 10

caustics and also the halo density evaluated using the approximate expression

(7) at the position of the caustics. Both of these densities are given as a

ratio to the background Einstein de–Sitter density, ρH. The non-dimensional

velocity dispersion, σ v , is given by expression (35).

k 1 2 3 4 5 6 7 8 9 10

ρmax/ρH/
√

σv 11 24 39 56 74 95 117 139 165 190

ρhalo/ρH 12 40 83 139 210 297 397 506 641 777

Table 2 that the enhancement factor can be extremely high, for low

values of the velocity dispersion σv .

To summarize this section, we also write the approximate maxi-

mum density of the caustics (see the ‘Approximate’ profile of Fig. 1)

and their thickness obtained by our method. We have for the maxi-

mum density of caustics

ρmax =
(

π5/3

2
√

2 31/3

e−17ξk/18√
�kλ

′′
k

1

λ2
k

)√
rta(t)

tσ̄ph(t)
ρ̄H(t). (36)

The radius of the caustic shell and its thickness in physical units are

rk = λkrta(t), �rk = 1
4
(3π)2/3 e5ξk/9�ktσ̄ph(t). (37)

It is remarkable that the thickness of the caustics is universal and

depends only on the present-day dark matter velocity dispersion and

not on the mass of the dark matter halo.

Both the absolute and relative thickness (�rk and �rk/rk) of the

caustic decrease monotonically towards the centre of the halo. This

indicates that the radial component of the thermal velocity decreases

towards the centre. We do not consider the evolution of the angu-

lar components of the thermal velocity in this paper. However, we

would like to speculate that they grow towards the centre, making

the velocity distribution function anisotropic (oblate ellipsoid). The

decrease of the radial temperature can also be viewed as a conse-

quence of the Liouville theorem that forbids the overlapping of the

streams in phase space.

Fig. 2 shows the logarithm of the separation of the caustics, λk −
λk+1, and thicknesses, 2δλk (see equation 27), and the ratio of these

two quantities (plotted in the inset) as a function of the logarithm

of the radius, λk. Both the separation and thickness are scaled as

a power law ∝ λ2.1
k : the formal fit to the separation of caustics is

λk − λk+1 = 1.24λ2.1
k , and for the two examples in the main plot

(corresponding to the initial velocity perturbations δλ′
0 = ±0.01

and ±0.001) this fit is readjusted by factors of 0.066 and 0.007,

respectively (see the inset). This is a remarkable result, which shows

that in the course of gravitational evolution the streams remain well

isolated from each other in spite of the fact that their separations

diminish.

4 E M I S S I O N M E A S U R E (EM) F RO M DA R K

M AT T E R PA RT I C L E A N N I H I L AT I O N

I N T H E C AU S T I C S

The annihilation flux (in photon cm−2 s−1) can be written as

�γ (ψ) = Nγ 〈σv〉
4πm 2

χ

1

��

∫
��

d� × (EM), (38)

where the emission measure,

(EM) =
∫

line of sight

ρ2(s) ds, (39)

is found by integrating the square of the density along the line of sight

and over the solid angle ��,m γ is the mass of the candidate particle

(e.g. neutralino), and N γ is the number of photons produced per an-

nihilation. To compute the first part of the integral N γ 〈σv〉/(4πm 2
χ ),

a supersymmetric model needs to be selected. We shall not discuss

this aspect here, which has already been discussed extensively in

the relevant literature (e.g. see Jungman, Kamionkowski & Griest

1996, and references therein). In this paper, we obtain an analytic

expression for the emission measure (39), using our approximate

expression for the density (32).
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Figure 2. Main panel: The top line (filled circles) shows the separation of caustics, λk − λk+1, as a function of the distance, λk, from the centre. The bottom

two lines show the distance between caustics in the streams with negative and positive perturbations of the initial velocity (δλ′
0 in equation 26). Note the

logarithmic axes. The two lower lines correspond to δλ′
0 = ±0.001 (crosses) and δλ′

0 = ±0.01 (open squares). All three lines can be well fitted by a power law

∝ λ2.1
k shown by the dashed line. Inset: The ratio of the thicknesses of the caustics to their separations, 2δλk/(λk − λk+1), is shown as a function of their radii.

The vertical axis is linear. The ratios converge to approximately 0.0007 and 0.0066 for the two different values of velocity dispersions as marked on the plots,

which shows its linear dependence on the initial velocity perturbation.

Here we are interested in calculating the (EM) from regions close

to the caustic surfaces formed in cold matter. Clearly, (EM) is con-

siderably higher when the line of sight is close to the tangent to the

caustic surface. We estimate (EM) in a small vicinity of this tan-

gent. Although, in principle, in order to obtain the emission measure

(39) one can integrate expressions (B6) or (B7) or (B8) numerically,

here we use our simple approximation (32) for the density profile in

the vicinity of the caustic and make analytic estimates for the boost

factor (39).

We assume that the density in the vicinity of the caustic can be

approximated by equation (32). Fig. 3 illustrates the geometry of the

system. The figure shows the plane passing through the observer, O,

the centre of the galaxy, C, and point D where the line of sight OP

is tangential to the caustic sphere. The external and internal caustic

spheres have radius Rex and R in = R ex + �xck respectively [note

that �xck is negative, see equation (33), and also Fig. 3]. The density

in the shell between two spheres is constant ρ = Ak (−�xck)
−1/2,

while inside it falls as ρ = Ak(−�x)−1/2, where �x is the radial

coordinate measured from point D on the external sphere (�x< 0).

We evaluate (EM) as a function of the angle θ measured from the

line OP upwards. First, we calculate the contribution to the emission

measure along the line of sight, which runs inside the angle POQ.

In this case, no integral needs to be evaluated since the density is

constant and the integral of density along the line of sight is the

density times the length of the chord between two points where the

line of sight crosses the external circle (e.g. tT).

The contribution to the emission measure (39) from the lines

crossing inside POQ is

(EM)(θ ) =
∫

ρ2 ds= ρ2
c Lch(θ ), (40)

where Lch(θ ) is the length of the chord. The equation of the circle

in the vicinity of the tangential point D is, to the lowest order,

�x= − y2

2Rex

or y= ±
√

−2Rex�x, (41)

where y is the coordinate along DP measured from point D. For

example, the length of the chord tT is

LtT =
√

(yT + yt)2 + (�xT − �xt)2 ≈ yT + yt, (42)

because �xis of the higher order inyand thus the second term can be

neglected (yT > 0 and yt < 0). Neglecting the difference between

�xt and �xt allows them to be approximated as �xt ≈ �xT ≈
−LODθ = −YDθ (where YD =

√
Y2

C − R2
ex is the distance from the

observer to the caustic and YC is the distance from the observer O

to the centre C) assuming θ is small. Combining this approximation

with the second equation (41), the length of the chord can be written

in a simple form as

Lch = 2
√

2RexYD

√
θ, (43)

and thus

(EM)(θ ) = 2ρ2
c

√
2RexYD

√
θ (44)
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Figure 3. An approximation is used in which the caustic is the outer shell (larger circle) outside which the density is zero. Inside a layer of thickness �xck

the density is constant taken to be ρ c = Ak�x
−1/2
ck . In the interior of this shell the density falls as 1/

√−�xwhere �x is the radial coordinate measured from

the tangent point D (�x< 0).
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Figure 4. Contribution to the emission measure (39) along different lines of sights as marked on Fig. 3. All values are in non-dimensional coordinates.

for

θ < θc = � POQ ≈ −�xck

YD

.

Next, we suppose that the line of sight is along OS, in which case it

crosses the region where the density falls as (−�x)−1/2. The integral

(39) is now the sum of three parts:

(EM)hH = (EM)hb + (EM)BH + (EM)bB

= (EM)bB + ρ2
c (Lhb + LBH). (45)

The length Lhb + LBH = LhH − LbB can be easily evaluated in a

similar manner as before. The length of the chord hH is given by
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equation (43), while for the chord bB one needs to substitute R in =
R ex + �xck for Rex,

√
Y2

C − R2
in for YD, and the angle φ = � QOS

for θ . For small angles θ and small �xck, the change in the radius

and distance to the caustic result in higher-order corrections and can

be neglected, yielding

LbB = 2

√
2(Rex + �xck)

√
Y2

C − R2
in

√
φ

≈ 2
√

2RexYD

√
θ − θc, (46)

where θ c = −�xck/YD = A2
k/(ρ2

cYD) and all distances are given

in units of equation (13). Thus, (EM) from the parts of the line of

sight with constant density becomes

(EM)hb + (EM)BH = 2ρ2
c

√
2RexYD(

√
θ −

√
θ − θc) (47)

for

θ > θc = −�xck

YD

.

The complicated part of the contribution to the integral (39) comes

from the line of sight bB. Here, we actually need to calculate the

integral (39) where the density is no longer constant but falls as

(−�x)−1/2. First of all we need to express the distance |�x| =
LeF in terms of the line-of-sight distance z = LhF. This can be

easily done by solving the intersecting chords relation LhF × LFH =
LeF × LFE for �x (LFE = 2R ex − |�x| and LFH = L − z, where L
= LhH), which yield

(EM)bB = ρ2
c

∫ zB

zb

ρ(z)2 dz

= ρ2
c

∫ zB

zb

dz

Rex −
√
R2

ex − LbBz+ z2
, (48)

where zb and zB correspond to points b and B, respectively. The

integral (48) can be written in closed form as

I= Rex

L

{
arctanh

[
2RexL(L − 2z)

√
R2

ex − Lz+ z2

z(L − z)(4R2
ex + L2) − 2R2

exL
2

]

− ln

(
L − z

z

)}
− ln

(
2
√
R2

ex − Lz+ z2 − L + 2z
)
.

(49)

The limits in the integral are to linear order

zb = √
2RexYD(

√
θ − √

θ − θc),

zB = √
2RexYD(

√
θ + √

θ − θc). (50)

Substituting the limits into equation (49) is straightforward but the

results can be lengthy and complex. In addition, despite the ex-

act form of the integral (49), we use the accurate limits only to

the lowest order. Thus, we simplify the equation for (EM) by

taking the lowest-order terms in the series expansion for small θ

and θ c:

(EM)(θ ) = ρ2
c

√
2Rex

YD

1√
θ

ln

(√
θ + √

θ − θc√
θ − √

θ − θc

)
. (51)

Thus, collecting various expressions for the emission measure to-

gether (see Fig. 4 for a corresponding plot), we arrive at

(EM) = ρ2
c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, for θ < 0,

2
√

2RexYD

√
θ, for 0 < θ < θc,

2
√

2RexYD

(√
θ − √

θ − θc

)
+√

2Rex/YD θ−1/2 ln

(√
θ + √

θ − θc√
θ − √

θ − θc

)
,

for θ > θc,

(52)

where once again we mention that Rex is the radius of the caustic

sphere, YD is the distance to the caustic surface, θ c = −�xck/YD =
A2
k/(ρ2

cYD) and all distances are given in units of equation (13).

5 E M I S S I O N F RO M A C H A R AC T E R I S T I C

M 3 1 - T Y P E DA R K M AT T E R H A L O

Detailed application of our results to haloes, especially mini-haloes

(Diemand et al. 2005), will be presented in a forthcoming work.

Here, as an exercise, we apply the results of the previous sections

to a very simple model of M31. Emission from the dark matter

halo of M31 has already been studied, largely in the context of the

dark matter search experiment CELEST (e.g. see Nuss et al. 2002;

Falvard et al. 2004). M31 is situated at a distance of 780 kpc from the

centre of the Milky Way (MW) with a present turnaround radius that

is taken to be at about 800 kpc (Sandage 1986; Karachentsev et al.

2002). In fact, M31 and MW can be considered to be embedded in a

common halo. However, here in our very simple model we consider

M31 to have its own halo. The first caustic, which is the closest to

us, cuts the radius joining the centre of MW to the centre of M31

at a distance of about 500 kpc from us. The tangent point to this

caustic lies at about 700 kpc from the centre of MW. This caustic

has a thickness of about 0.115 kpc and subtends an angle (θ c) of

about 0.006◦ at the centre of MW. The maximum emission measure

from this caustic, using expressions (52) for a velocity dispersion

of σ v = 0.001, is given in Table 3. We assume a field of view of 1◦,

which is at the lowest end for most detectors.

The emission measure from the first caustic of M31 is at least of

the same order2 as that for example from the centre of the Milky

Way. Here, we have used a moderate value of σ v = 0.001; a lower

value would sharply increase the maximum density as is evident

from expressions (32) and (38), although it would also reduce the

thickness of the caustic. The simple exercise in this section also

demonstrates that the emission measure from caustics can serve as

a means to put a bound on the mass of the dark matter particle

candidates.

6 D I S C U S S I O N

In this work, we have evaluated the density profile near caustics

which arise in the self-similar scenario of the formation of dark

matter haloes. We have obtained a universal analytic expression for

this density profile and its maximum value in the presence of a small

2 Different values for the emission measure from the Galactic Centre have

been evaluated, ranging from 1021 to 1031 depending on various physical

assumptions such as the presence or absence of a central core, a central

cusp, or a central supermassive black hole (see for example Stoehr et al.

2003; Evans, Ferrer & Sarkar 2004).
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Table 3. The approximatevalues for various caustic parameters and also the emission measure for the first outer caustic

of M31, which is the nearest to the Milky Way. We take the non-dimensional velocity dispersion to be σ v ∼ 0.001, which

would give only a very modest estimate of the maximum density. For a neutralino, this parameter is smaller by a few

orders of magnitude, leading to a significantly higher density maximum but at the same time smaller angle, θ c. Expression

(35) can be used to transform between the physical velocity dispersion, σ ph, and the non-dimensional velocity dispersion,

σ v .

k r δr θ c ρmax

∫ θc

0
(EM) dθ

∫ 1◦

θc
(EM) dθ Total (EM)

(kpc) (kpc) (degree) (GeV2 cm−5 c−4)

1 300 0.115 0.006 350ρH 260ρ2
Hrta 5 × 105ρ2

Hrta 4 × 1024

velocity dispersion. We have shown that the maximum density at the

caustics depends primarily on the velocity dispersion and is signifi-

cantly higher than the halo density at the position of the caustic for

outer caustics. The radius at which the caustic density approaches

the background halo density depends on the value of the velocity

dispersion and is expected to arise only for the innermost caustics.

We have then evaluated the emission measure from the caustics

and applied it to the concrete example of M31-type halo outermost

caustic, which is closest to us. This example demonstrates that caus-

tics can be promising sources for dark matter search experiments.

Application of our results to other haloes, in particular to small

haloes, which have not had significant mergers, to specific search

experiments such as HESS and also to direct detection experiments

remains to be done.

Although we have considered an Einstein–de Sitter universe, we

expect our results to give reasonable approximation for a �CDM

universe as well. The role of dark energy becomes significant at

rather small redshifts (∼0.3), which we expect to be well after the

formation of the typical dark matter haloes we consider here. Fur-

thermore, once a particle turns around and collapses, it separates

from the background expansion and its subsequent motion should

not be affected by the � term. However, one ought to use the real

density of dark matter halo and not the critical values. The second

caveat in our consideration is the assumption of spherical symmetry

of haloes and their cold accretion, which does not hold in the gen-

eral case. However, even in real three-dimensional collapses, parts

of the caustic surface can be well approximated by spheres. Finally,

the third and probably most serious problem is associated with the

smooth pre-collapse conditions on the galactic scale, which con-

tradicts the hierarchical clustering scenario. The cold dark matter

models predict a relatively high level of small-scale perturbations

that result in the formation of small gravitationally bound haloes

that are assembled into more massive haloes at later times. Thus,

the dark matter accretes on to haloes of galactic size in the form

of smaller haloes that may significantly affect the density in the

vicinity of caustics. However, there is a possibility that in cold dark

matter models the smallest haloes can survive tidal destruction in

more massive haloes (Diemand et al. 2005). In this case our results

can be applied directly. This issue will be studied in detail in the

following work.

We show that both the separation of neighbouring caustics and

their effective thicknesses scale as a power law of the radius ∝ λ2.1
k .

This scaling demonstrates that the streams in phase space corre-

sponding to different macroscopic velocities remain well isolated

despite the fact that the velocities of the inner streams vanish at the

centre of the halo. The radial component of the microscopic ther-

mal velocities also vanishes as the stream descends to the centre. We

call this effect gravitationalcoolingof the radial temperature. Our

method can be generalized for the case of non-radial components of

the thermal velocity, and we address this question in the following

work.

We believe that the current results represent a step towards build-

ing a more comprehensive theoretical model of gravitational col-

lapse. A more elaborate study of caustic distributions and density

profiles, in broader settings, without the assumptions of spherical

symmetry, inertial trajectories or smooth initial conditions, remains

a challenging task.
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A P P E N D I X A : N U M E R I C A L S I M U L AT I O N S

There is a computational difficulty in solving equation (4), which is

singular at λ = 0 where the velocity becomes infinite and changes

discontinuously from negative to positive. In order to avoid this

problem, a small amount of angular momentum, of the form J2/λ3,

is added to the right-hand side of equation (4), where hereafter the

value of J= 10−9 is adopted (Bertschinger 1985b).

Further computational issues arise in solving (4) and (6). The

outline of the numerical procedure is as follows: A guess is first

made for the mass distribution, e.g. M (λ) = M ta λ3/4 for λ � 1. Then

equation (4) is integrated to obtain λ(ξ ). This is used to obtain a new

0.02 0.06 0.25 1.00
λ

0.5

1.0

2.0

4.0

M
(λ

)

numerical data points
analytic fit

d
2λ/d ξ2λξk

1       0.985 (0.988)     0.368 (0.364)     -5.86 (-6.35)    

2       1.46 (1.46)         0.237 (0.236)     -11.2 (-11.6)

3       1.76 (1.76)         0.179 (0.179)     -16.7 (-16.9)

4       1.98 (1.98)         0.146 (0.145)     -22.3 (-22.4)        

5       2.16 (2.15)         0.124 (0.123)     -28.0 (-28.1)

6       2.31 (2.30)         0.108 (0.108)     -33.9 (-33.8)

7       2.43 (2.43)         0.096 (0.096)     -39.8 (-39.6)

8       2.55 (2.54)         0.087 (0.086)     -45.7 (-45.6)

9       2.64 (2.64)         0.079 (0.079)     -51.7 (-51.5)

10     2.73 (2.73)         0.073 (0.073)     -57.8 (-57.6)

Figure A1. The fit (solid line) M (λ) = 11.2λ3/4/(1 + λ0.75) to the data points (open circles) taken from table 4 of Bertschinger (1985b). The table shows our

values and the Bertschinger (1985b) values (given in brackets) for λ, ξ and d2λ/dξ2 for the first 10 caustics.

approximation to M (λ) and so on until a self-consistent solution is

found (see Bertschinger 1985b for full details). In this paper we

have chosen the fitting formula (7) instead of (6), which as shown

in Fig. A1 works well for small values of λ.

The solutions to equations (4) and (7) are plotted in Fig. A2,

which can be viewed as the trajectory and phase diagram of one

particle during the course of evolution of the halo, or as a snap-

shot of the positions of many particles in the halo. The change

in real and phase space for finite velocity dispersion is clear: ve-

locity dispersion leads to the broadening of caustics. The density

at caustics no longer diverges but has a maximum cut-off deter-

mined by the velocity dispersion, which is the main result of this

work.

The small velocity dispersion effects are primarily related to de-

focusing of trajectories of particles with different thermal velocities

in the vicinity of caustics. Imagine the evolution of a large number of

streams each corresponding to a particular value of thermal velocity;

then these streams will produce a caustic at a slightly different radii.

The resulting density field becomes the sum of densities in every

stream. We assume that each stream evolves in the same gravita-

tional field generated by the mass distribution of the cold medium

(equation 7).

We consider the process in the non-dimensional coordinates ξ , λ,

λ′ dλ/dξ . As we have mentioned in Section 3.2, the effects of thermal

velocity dispersion can be considered by adding small velocities

δλ′
0 = δλ′ (0) to the initial velocity. Thus, the initial conditions

become

λ0 ≡ λ(0) = 1, λ′
0 ≡ λ′(0) = − 8

9
+ δλ′

0. (A1)

The result of the integration is shown in Fig. A3 for the first caustic.

For small values of δλ′
0, the major effect on the caustic is the change

of the maximum value λk, which can be well approximated by a

linear function

δλk = �kδλ
′
0, (A2)

as is evident from Fig. A4. We find �k by fitting the numerical

results for every caustic k= 1, . . . , 10.
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Figure A2. The left plot is the non-dimensional trajectory λ(τ ) for a collisionless fluid, with minute velocity dispersion, given by similarity solution to

equations (4) and (7). The particles reach their maximum radius at λ = 1. The non-dimensional coordinate λ and the non-dimensional time ξ at the maxima

depend almost linearly on the initial velocity of the particle. The right plot is a small portion of the phase diagram given by the similarity solution. Each particle

travels along the entire curve and at a given time there is a particle at each point on the curve. As we go to smaller and smaller radii, the strips become narrower

and more closely packed and finally resemblea smooth distribution. To demonstrate the thickening of the caustics we have taken an unrealistically large range

of velocity dispersion, which is causing the shift, seen in the left panel of this figure, in the formation times of the caustics.
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Figure A3. A flipped plot of the phase space around the first caustic for three values of the initial velocity perturbation, ∼δλ0. Phase plots are used to evaluate

the density at the caustics in the presence of a small velocity dispersion.
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Figure A4. The left plot shows the variation of the non-dimensional position of the first caustic with the initial velocity perturbation, δλ′(0). The middle and

right panels show the variations of the second derivative and the time of formation of the first caustic with velocity dispersion, respectively. The quadratic

fits (solid line) are also shown. The dashed straight lines demonstrate that, for very small velocity dispersion, a linear function would be equally appropriate.

Similar fits were obtained for the first 10 caustics.

A P P E N D I X B : T H E D E N S I T Y P RO F I L E S

F O R T H E TO P - H AT, E X P O N E N T I A L

A N D G AU S S I A N V E L O C I T Y D I S T R I BU T I O N S

We evaluated the density profile in the vicinity of a caustic for the

top-hat initial thermal velocity distribution

fTH(v) =

⎧⎨⎩
1

2σv

, |v| < σv,

0, otherwise,

(B1)

in Section 3.2 (equation 24). Using a similar approach one can also

derive the density profiles for the exponential and Gaussian velocity

distributions

fE(v) = 1

2σv

exp

(
−|v|

σv

)
, (B2)

fG(v) = 1√
2π σv

exp

(
− v2

2σ 2
v

)
. (B3)

Thus, deriving the density profile in the vicinity of a caustic in

both cases consists of straightforward evaluations of a few integrals.

However, one can simplify the calculations by introducing the scaled

distance from the caustic ε and the scaled density η,

ε = �x

|αkσv| , η = ρ

Ak|αkσv|−1/2
. (B4)

In terms of these variables the density of cold dark matter with zero

velocity dispersion has the simple form

ησv=0 =
{

(−ε)−1/2, for ε < 0,

0, for ε > 0,
(B5)

which can be obtained as a limit at σv → 0 of any of three expressions

below.

For the top-hat velocity distribution function, with non-vanishing

σv , we have

ηTH =

⎧⎨⎩
√

1 − ε − √−1 − ε, for ε � −1,√
1 − ε, for − 1 � ε � 1,

0, for ε � 1.

(B6)

For the exponential velocity distribution function one obtains

ηE =

⎧⎨⎩
(
√

π/2){e−ε[1 − erf(
√−ε)] − i. eε erf(i

√−ε)},
for ε < 0,

(
√

π/2) e−ε, for ε > 0.

(B7)

Finally for the Gaussian velocity distribution function the density is

as follows:

ηG =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

√∣∣∣ ε

8π

∣∣∣ e−ε2/4

[
2π Bessel I

(
−1

4
,
ε2

4

)
−

√
2 Bessel K

(
1

4
,
ε2

4

)]
, for ε � 0,√∣∣∣ ε

4π

∣∣∣ e−ε2/4 Bessel K

(
1

4
,
ε2

4

)
, for ε � 0.

(B8)

The density profiles η = η(ε) are shown in Fig. 1.

We also show a simple approximation used in further calculations:

ηA =

⎧⎨⎩
(−ε)−1/2, for ε � −1,

1, for − 1 � ε � 0,

0, for ε > 0.

(B9)
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