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We compare the expected effects of so-called gravitationally enhanced depolarization of ultracold
neutrons to measurements carried out in a spin-precession chamber exposed to a variety of vertical
magnetic-field gradients. In particular, we have investigated the dependence upon these field gradients
of spin-depolarization rates and also of shifts in the measured neutron Larmor precession frequency. We
find excellent qualitative agreement, with gravitationally enhanced depolarization accounting for several
previously unexplained features in the data.
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I. INTRODUCTION

Ultracold neutrons (UCN) are neutrons of extremely low
energy, typically ∼200 neV or less, which can be stored in
material bottles and which are routinely used in experiments

such as the ongoing search for the neutron electric dipole
moment (nEDM). Collisions with the containing walls are
elastic, so the UCN never thermalize. Being of such low
energy, they “sag” under gravity, and rather than being
distributed uniformly throughout their storage vessel their
density decreases with increasing height, with each specific
energy group having its own center of mass. In the presence
of a vertical magnetic-field gradient, the average magnetic
field sampled by the neutronswill therefore depend upon the
neutron energy. The implications of this stratification have
been discussed in earlier work [1–3], but, in summary, it
results in a relative dephasing of the neutrons in different
energy bins, which then alters the measured Larmor spin-
precession frequency. This phenomenon is referred to as
gravitationally enhanced depolarization, in contrast to the
intrinsic depolarization that takes place within each energy
bin as a result of the neutrons sampling different fields as
they move around the storage volume. A key distinction is
the asymmetric nature of the gravitationally induced dephas-
ing, as shown in Fig. 3 of [1], with the lowest-energy
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neutrons playing a particularly crucial role. The resulting
nonlinearities in frequency response as a function of applied
magnetic-field gradients represent potential sources of
systematic uncertainty in precision experiments such as
nEDM searches [4–7]. Since such experiments provide tight
constraints on physics beyond the Standard Model, with
consequent implications for particle theory and cosmology,
a full understanding of the phenomenon is essential.
In this paper, we compare our experimentally measured

results, both in terms of frequency shifts and of depolari-
zation rates, with those anticipated from theoretical calcu-
lations. We begin in Sec. II with a discussion of the
spectrum of UCN within our storage cell; this underlies
the subsequent calculations of the gravitationally enhanced
depolarization. We give an overview of the calculations
themselves in Sec. III. In Sec. IV we discuss the basic
intrinsic-depolarization mechanisms, which are revealed to
make only a minor contribution to the frequency shifts.
We then present, in Sec. V, a direct comparison of the
anticipated and measured polarization α remaining after
180 s of storage in a range of applied B-field gradients.
In Secs. VI and VII, we consider the frequency shifts that
arise from this phenomenon, before finally discussing in
Sec. VIII the possible implications for nEDM experiments,
including the current world limit in particular.
The measurements described in this paper form part of a

program of work [7] aimed at an accurate determination
of the nEDM, currently being carried out at the new high-
intensity UCN source [8] based at the Paul Scherrer
Institute (PSI). The experimental apparatus and procedures
are described in substantial detail in [9]. The apparatus is
based upon that used [10] in an earlier nEDMmeasurement
at the Institut Laue-Langevin (ILL) [5], but substantially
upgraded with the incorporation, in particular, of an array
of Cs magnetometers [11], a system for the simultaneous
detection of both neutron spin states [12], and a set of active
compensation coils that provide dynamic shielding of
external magnetic fields [13].
The 1 μT magnetic holding field B0 within the EDM

spectrometer is primarily vertical, so B0 ≈ Bz, although
there are small transverse components Bx; By present at the
∼few nT level. We define

B0 ¼ Bz þ
1

2

B2
t

Bz
; ð1Þ

where B2
t ¼ B2

x þ B2
y.

In order to compensate for changes in B0, a cohabiting
atomic-mercury magnetometer [14] is used to make precise
real-time measurements of the volume-averaged field
within the UCN storage cell. Under an applied vertical
magnetic-field gradient ∂Bz=∂z, the measured ratio R of
neutron to mercury precession frequencies undergoes a
relative change of, to first order,

δR
R

¼ 1

B0

∂B0

∂z Δh; ð2Þ

where Δh is the difference between the centers of mass of
the populations of (thermal) mercury atoms and (ultracold)
neutrons. Precise measurements of this frequency-ratio
dependence are the subject of [9]. As we shall see,
gravitationally enhanced depolarization can impose a sub-
stantial nonlinearity in this relationship: indeed, we are
unaware of any other mechanism that can do so to the
extent required to match our observations.

II. INPUT SPECTRA

The extent of gravitational depolarization clearly
depends heavily upon the spectrum of stored UCN. We
have recently carried out a series of measurements using a
spin-echo technique [15], from which we were able to
derive the distribution of energies of UCN remaining after
220 s of storage in our apparatus. The resulting fitted
spectrum is parametrized by

pðEÞ ¼ A · E1=2 ·
1

1þ e
E0−E
ΔE0

·
1

1þ e
E−E1
ΔE1

; ð3Þ

where A is an arbitrary normalization, E0 ¼ 7.7 neV,
ΔE0 ¼ 1 neV, E1 ¼ 28.7 neV, and ΔE1 ¼ 6.25 neV.
The form of this parametrization is based on a very general
distribution nðEÞdE ∝ E1=2dE from the low-energy tail of
a Maxwell-Boltzmann distribution, allowing for low- and
high-energy cutoffs.
The spin-echo technique is particularly sensitive to the

presence of low-energy UCN, but once the neutrons start to
populate the bottle more or less uniformly it becomes
increasingly difficult to distinguish between different ener-
gies. This is clear from Figs. 2(a) and 2(b) in [15], where
the low-energy tails are fitted well but the high-energy
region produces less reliable results. Furthermore, the spin-
echo measurements were carried out at a storage time
of 220 s, whereas the polarization and frequency-ratio
measurements used in the current analysis were carried out
at a storage time of 180 s. On both counts, therefore, we
should not be surprised if the actual spectrum were to be
somewhat firmer than that arising from the spin-echo
measurement.
We have also used the package MCUCN [16] to carry

out a detailed simulation of the UCN within our apparatus,
which yields an alternative estimate of the spectrum
after 180 s of storage. The simulation is based upon very
detailed modeling of the PSI UCN source, beam line, and
guides, as well as of the nEDM storage vessel. The latter
consists of aluminum electrodes coated with diamond-like
carbon, which form the floor and roof, and between them
an insulating cylindrical polystyrene ring coated with
deuterated polystyrene to provide radial containment.
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The simulation accounts for losses during storage both
from β decay and as a result of wall collisions [17], with the
“loss-per-bounce” factor f ¼ W=V (where W, V are the
imaginary and real parts, respectively, of the Fermi poten-
tial) set to a common value of 3 × 10−4 for the electrodes
and for the insulator walls. In fact, although V is well
known, W is difficult to determine. Losses are likely to be
dominated by hydrogen that has diffused into the contain-
ing surfaces, and can—because it has an extremely high
incoherent-scattering cross section—substantially influ-
ence loss rates without significantly altering the surface
potential V. Using an average value of f for all of the
containing walls appears a reasonable approach, and the
number here arises from earlier simulation-based studies
[18] that were tuned to match the observed numbers of
neutrons stored as a function of time.
Any damage to the coatings on either the electrodes or

the insulating walls would result in an area of reduced
Fermi potential that would preferentially deplete the
higher-energy neutrons. The same is true of small gaps,
which may not be completely accurately modeled in the
simulation. The actual spectrum, therefore, is likely to be
somewhat softer than the simulation would suggest.
The spectra resulting from the Monte Carlo (MC)

simulation and spin-echo (SE) studies are shown in
Fig. 1. It is useful to refer to UCN energies E in terms
of the maximum height ϵ ¼ E=ðmgÞ attainable under
gravity in a trap with no vertical confinement, and to this
end the abscissa is in units of cm.
We note here for clarity that the energies are defined to

be the kinetic energies that the UCN would have at the floor
of the storage vessel, i.e. at the bottom electrode.

III. CALCULATIONS

Calculations of the gravitationally enhanced depolariza-
tion effect are relatively straightforward to carry out. Phase-
space arguments [19] show that the variation of density ρ
with height z of UCN of height-equivalent energy ϵ is (for
z < ϵ) given by

ρðz; ϵÞ ¼ ρð0; ϵÞ
�
1 −

z
ϵ

�
1=2

; ð4Þ

assuming sufficiently diffuse reflections for the phase space
to be approximately uniformly populated on a time scale
short compared to the storage time. (Our Monte Carlo
simulations confirm that this typically takes place within 5 s
of closing the UCN shutter if more than 10% of reflections
are diffuse, and more quickly still with higher diffusivity
and also for the more energetic of the neutrons in our
spectrum.) The height distribution of Eq. (4) will then be
reflected in the distribution of average magnetic fields to
which UCN of any particular energy will be exposed, from
which the distribution (appropriate to that UCN energy) of
integrated phases acquired after 180 s of free Larmor
precession can be calculated. This procedure is carried
out for all UCN energies across the spectrum, accounting
for the relative populations of each energy bin. The
resulting total array of integrated phases ϕi is then subject
to a Ramsey-type analysis, where, as discussed in [1], the
net frequency is determined by the reference phase

ϕ̂ ¼ 2nπ þ tan−1
�hsinϕii
hcosϕii

�
; ð5Þ

divided by the Ramsey coherence time (180 s in this case).
Note that the 2nπ term, which arises because the Ramsey
technique measures phases modulo 2π, is relatively easily
accounted for by, for example, monitoring the discrepancy
between the reference phase and the mean of the array of
time-integrated phases, and adding (or subtracting) multi-
ples of 2π as appropriate to compensate. The nonlinearities
in response referred to earlier primarily arise when the
lowest-energy UCN, which do not reach the roof of the
storage trap, have an integrated phase that differs by more
than π radians from the reference phase: they then “wrap
around” and appear to enhance the high-energy tail of the
distribution. We will refer to this phenomenon as “Ramsey
wrapping.”
Effects due to intrinsic depolarization, arising from both

vertical and horizontal field gradients, can also be included
by appropriate weighting of the distribution of phases. We
discuss this in some detail in the following section.

IV. INTRINSIC DEPOLARIZATIONMECHANISMS

Detailed calculations of intrinsic depolarization
within magnetic-field gradients have been carried out
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FIG. 1 (color online). Estimated energy spectrum of stored
UCN from spin-echo measurement (blue solid line) and from
simulation (green dashed line). Each is normalized to give unit
total area under the curve.
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elsewhere [20–27]. There are four relevant scenarios to
consider: vertical gradients ∂Bz=∂z; horizontal gradients of
the form ∂Bz=∂x; transverse fields Bt and their gradients;
and wall collisions involving small magnetic impurities.
We present here some simple and rather intuitive models of
the depolarization mechanisms, and we discuss possible
implications for the polarization and frequency-ratio mea-
surements. Throughout this section, where calculations are
dependent upon an input spectrum we use that derived from
the SE measurement.

A. Vertical gradients: ∂Bz=∂z
Here we consider UCN confined within a vertical

magnetic-field gradient ∂Bz=∂z. Let the confining trap
be a cylinder of height H and radius r. Following [19], we
replace H with an “effective height” HðϵÞ which is simply
defined as the lesser of H; ϵ; this accommodates UCN with
energies too low to reach the roof of the trap.
The following method is based upon that outlined in the

derivation of Eq. (68) in [28]. We shall consider our trap to
be divided by a horizontal plane into two halves, with
average field strengths that each differ from the field at the
center plane by ΔBz ¼ ð∂Bz=∂zÞH=4. Let the average
dwell time for UCN in each half of the trap be tw. Using the
standard kinetic-theory result (due to Clausius [29]) that the
rate of wall collisions per particle is Av=ð4VÞ, where A is
here the area of the dividing plane, V is half of the
containing volume and v is the speed of the particles,
we can calculate the rate of passage between the two
halves. From this we find

tw ¼ 2H
v

: ð6Þ

Consider now a single UCN. Effectively, a coin is tossed
once every tw to determine which side of the trap the
neutron is in. Over a storage time t, this decision is
therefore made N ¼ t=tw times. The number of times n
for which the UCN is on the side with the stronger field
is binomially distributed with mean N=2 and variance
N=4. The additional

R
B · dt experienced by this UCN is

∼2ðn − N=2ÞtwΔBz (where the factor 2 accounts for the
fact that when it is not in the stronger-field region it is in
the weaker-field region). Multiplying this by the neutron
gyromagnetic ratio γn gives the extra precession angle θt
away from the mean. The polarization is the average
projection upon the mean precession vector, and using

e−t=T2 ∼ 1 −
t
T2

þ � � � ; ð7Þ

where T2 is the transverse spin-relaxation time, together
with cos θ ∼ 1 − θ2=2þ � � �, we find that

t
T2;vgi

∼
hθ2t i
2

¼ 2

�
N
4

�
γ2nΔB2

zt2w; ð8Þ

where the subscript “vgi” stands for “vertical gradient,
intrinsic.” This yields

T2;vgi ∼
2

γ2nΔB2
ztw

¼ 16v
H3γ2nð∂Bz=∂zÞ2 : ð9Þ

The upper solid blue line in Fig. 2 shows the prediction
of Eq. (9), and despite the rather crude nature of its
derivation it is seen to lie nicely between the results of
our simulations for completely diffuse reflections (green
circles) and for the case where the probability of specular
reflections is 80% (green squares). We therefore use Eq. (9)
in our calculations going forward, bearing in mind none-
theless that there is some uncertainty in the size of its
contribution. The simulated results also appear in Fig. 2 of
[1], where it is shown that the expected dependence upon
ð∂Bz=∂zÞ2 holds true over a wide range of gradients.
After a measurement time t, the polarization α is reduced

by a factor

e−t=T2;vgi ∼
�
1 −

tH3γ2n
16v

�∂Bz

∂z
�

2

þ � � �
�
; ð10Þ
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FIG. 2 (color online). Intrinsic depolarization times T2 for UCN
in 10 pT=cm magnetic-field gradients. The upper set is for
vertical gradients ∂Bz=∂z with the results of simulations for
completely diffuse (green circles) and 80% specular (green
squares) reflections; the solid blue line is the analytical approxi-
mation of Eq. (9). The lower set is for transverse gradients in
the vertical field, of the form ∂Bz=∂x. Red upwards-pointing
(downwards-pointing) triangles are for diffuse (80% specular)
reflections, and the solid blue line represents the analytical
approximation of Eq. (14). T2 scales as the inverse square of
the applied gradient.
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which implies a parabolic profile to the dependence of α
upon the vertical magnetic-field gradient. We see this in
Fig. 3, which shows (dotted black line) the spectrum-
weighted average α as a function of the applied vertical
gradient.
We can now proceed to make a rough estimate of the

extent to which this intrinsic depolarization may result in a
shift in the measured neutron frequency. Intuitively, for
example, it might seem that if low-energy UCN depolarize
more quickly than their high-energy counterparts, they
would have less of a role to play in determining the
frequency (since the uncertainty on the frequency meas-
urement is inversely proportional to the polarization α). In
consequence, the frequency measurement may appear to
arise from a somewhat stiffer spectrum than is actually the
case, thereby raising the effective center of mass of the
neutrons and reducing the factor Δh in Eq. (2). In order
to consider this, let us for the time being imagine that we
can make absolute frequency measurements without the
complication of the modulo 2π arising from the Ramsey
measurement, thus ignoring the Ramsey wrapping that
is characteristic of the behavior of the lowest-energy
UCN [1].
By definition, the height difference Δh between the

centers of mass of mercury and UCN [Eq. (2)] is

Δh ¼ ẑHg −
RR

zρðz; ϵÞdzdϵRR
ρðz; ϵÞdzdϵ ; ð11Þ

where ẑHg is the center of mass of the mercury atoms.
We note in passing the standard result that, for ϵ ≫ H,
Δh ¼ H2=ð24ϵÞ. When ϵ < H, Δh ¼ H=2 − 0.4ϵ instead;

in intermediate regimes, Δh may be derived from a more
precise expression for the center of mass [1,15].
We now define an effective height difference

Δheff ¼ ẑHg −
RR

zαðϵÞ2ρðz; ϵÞdzdϵRR
αðϵÞ2ρðz; ϵÞdzdϵ ; ð12Þ

which takes into account the relative contribution of each
energy bin to the frequency measurement. The intrinsic-
depolarization induced fractional decrease in the frequency
ratio, away from that anticipated by Eq. (2), is then
ΔðδRÞ=δR ¼ ðΔh − ΔheffÞ=Δh. This function is shown
(solid blue line) in Fig. 3. We see that the effect stays at
the 2% level or below until quite large vertical gradients, in
excess of 500 pT=cm, by which time (as we shall see in
Sec. VII below) the Ramsey wrapping will in any case long
since have taken hold.

B. Horizontal gradients: ∂Bz=∂x
We now carry out exactly the same calculations for the

case of horizontal changes ∂Bz=∂x in the vertical magnetic
field. The cylindrical trap is in this case to be bisected by a
vertical rather than a horizontal plane, giving

tw ¼ πr
v
: ð13Þ

This then yields

T2;hgi ∼
9πv

8r3γ2nð∂Bz=∂xÞ2 ; ð14Þ

where the subscript “hgi” indicates that this contribution
arises from intrinsic depolarization due to the horizontal
gradient.
Once again, this result (lower solid blue line in Fig. 2)

provides a very reasonable approximation to our simula-
tions (red triangles—upwards pointing, diffuse; down-
wards pointing, 80% specular). The ∼1.5 orders of
magnitude difference in response between the vertical
and horizontal gradients arises principally because the
bottle is 4 times wider than it is tall, and the respective
dimensions enter to the third power. Figure 3 shows (green
dot-dashed line) α as a function of the applied horizontal
gradient.
Within our apparatus, it is difficult to tune the horizontal

gradient in B0 to better than about 30 pT=cm, correspond-
ing to 1 nT (one part per thousand) difference from one side
of the bottle to the other. We note that 50 pT=cm would
yield a T2 of 700 s, perfectly consistent with that typically
observed in the actual experiment and able to explain the
reduction from an initial polarization of α ¼ 0.86 when
the trap is first filled to α ¼ 0.67 at 220 s storage time in the
absence of a vertical gradient.
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FIG. 3 (color online). Polarization α, and fractional decrease in
the shift δR in frequency ratio, arising from intrinsic depolari-
zation only, after 180 s of storage. Black dotted (green dot
dashed): α from ∂Bz=∂z (∂Bz=∂x). Blue solid (red dashed):
relative decrease in δR, i.e. in the slope of R vs ∂Bz=∂z, for
vertical (horizontal) gradients in Bz. Typically, ∂Bz=∂x may be
30−50 pT=cm.
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We can also calculate, just as we did for the vertical
gradient, the fractional decrease in the frequency ratio R
that we might expect to see as a result of the spectral
dependence of the intrinsic depolarization in this horizontal
magnetic-field gradient. This is shown as a red dashed line
in Fig. 3. We see that at horizontal gradients of around
50 pT=cm, the slope of R vs ∂Bz=∂z [Eq. (2)] decreases by
about 10%. This factor would be a constant, independent
of the applied vertical gradient—it would not impose any
curvature upon the vertical-gradient dependence. However,
these calculations are for illustration only: we remind the
reader that the frequency averaging implicit here is invalid
when using the Ramsey resonance technique.

C. Horizontal fields: ∂Bt=∂x
We consider here additional weak fields Bt that are

everywhere parallel to the xy plane. If uniform, such fields
simply act to produce a small tilt in the net direction of
the main holding field B0, and—since the perpendicular
components add quadratically—a tiny change in its mag-
nitude. The resulting field would still be uniform, leaving
both the depolarization rate and the frequency ratio R
unaltered.
Such horizontal fields may of course have gradients of

their own, e.g. if they are quadrupole-type fields of the form
Bx ¼ qy, By ¼ qx, as discussed in Sec. VI.c of [4]. The
direction of the total field will alter slightly from one side
of the bottle to the other, but the UCN spins follow these
changes adiabatically during their trajectory.
To understand the process in simple terms, let us first

consider a neutron polarized with its spin along the ẑ axis.
If the cell has a difference ΔBt in a transverse (i.e.
horizontal; x or y) field component from one side to the

other, then on traversing the cell the UCN sees the ~B field
tilt through an angle ϕ ¼ ΔBt=Bz in a time tc ¼ 2r=vt,
where vt is the relevant transverse velocity. The angular
frequency of this tilting motion is therefore ωtilt ¼
ðΔBt=BzÞ · ðvt=2rÞ. To keep ~B steady, we go to a reference
frame rotating at ωf ¼ ωtilt. To see the correct spin motion
in this frame, we have to add the field

B0
t ¼

1

γn
ωf ¼

ΔBt

Bz

vt
2γnr

: ð15Þ

A new B0
t must be used after each wall collision, since ωf

changes abruptly at that point. The result is that the spin of
any one UCN executes a random walk, tracing out cones of
small opening angles θ1; θ2; θ3;…, where θ ¼ B0

t=Bz, in
the vicinity of the ẑ direction. Assuming N such wall
collisions during a storage time t ¼ Ntc, these small angles
add vectorially to give a total angular displacement of
magnitude

θt ¼
ffiffiffiffi
N

p
hθi ¼

ffiffiffiffiffiffiffi
t
vt
2r

r
B0
t

Bz
: ð16Þ

Following the same methodology as for Eq. (9), and
substituting for B0

t from Eq. (15), we arrive at

T1;tfi ∼
80r3γ2n
v3

B4
z

ΔB2
t
; ð17Þ

where we now refer to the longitudinal spin-relaxation time
T1 rather than T2 because we began with the spin aligned
along ẑ. The subscript “tfi” refers to “transverse-field,
intrinsic,” and we have taken v2t ¼ v2=3. This derivation is
of course extremely simplistic (for example, use of the
mean free path λ rather than the cell diameter would
immediately reduce T1;tfi by a factor ∼3 for our trap
geometry). However, it gives interesting insight, and (given
that we are in the “high-field” regime where the spin-
precession frequency is substantially higher than the
collision frequency) we note that its dependence upon
parameters is identical to that of the rather more sophis-
ticated Eq. (66) in [28].
This particular depolarization mechanism is less effec-

tive by a factor of 2 when acting upon a spin precessing in
the horizontal plane rather than aligned with ẑ, for the
simple reason that Bx components do not affect the x
component of spin, and similarly for y components. This
leads to the well-known result for this case [23]:

T2;tfi ¼ 2T1;tfi: ð18Þ

Putting in realistic numbers for our apparatus (a few nT
for ΔBt, and v ∼ 2 m=s), we find that Eq. (17) predicts
T1;tfi (and therefore T2;tfi) values of order 106 seconds. We
certainly cannot expect to be sensitive to this. In any case,
we have observed T1 times in excess of 1000 s, implying
that T2;tfi > 2000 s, so this is clearly not a dominant effect.
In terms of frequency shifts, the mercury atoms will

average out the horizontal components, whereas the neu-
trons remain sensitive to the total field magnitude. This
gives rise to a change in the frequency ratio R of

δR
R

¼ q2r2

4B2
0

; ð19Þ

where, as before, the radius of the trap is r. This will be a
constant shift, independent of the applied vertical gradient.
In the case of the EDM spectrometer, where horizontal field
components are several hundred to a thousand times
smaller than the vertical field, the resulting frequency shifts
are of the order of a part per million or less.

D. Wall collisions

The cell walls may contain tiny magnetic impurities.
Collisions with these would disturb the spins on time scales
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much shorter than the Larmor precession period. Since
such perturbations can affect any orientation of spin
equally, one can anticipate that

T2;wall ¼ T1;wall: ð20Þ

As noted above, we have measured T1 to be in excess
of 1000 s, which therefore sets a lower limit of 1000 s
on the contribution to T2 arising from wall collisions.
This is therefore unlikely to be a significant source of
depolarization.

V. POLARIZATION VS APPLIED
VERTICAL GRADIENT

Having established the expected response to the intrinsic
depolarization, we now go on to look at the effects of the
gravitationally enhanced depolarization, using calculations
as discussed in Sec. III above.
We show in Fig. 4 the residual polarization, after 180 s of

storage, as a function of the applied vertical magnetic-field
gradient. The data points (black triangles) represent mea-
surements [9] made with the magnetic holding field B0

pointing downwards. These measurements were made in
2012, more than two years before the spin-echo measure-
ments of the UCN spectrum, but we have no reason to
suspect that the spectrum would have changed during the
intervening period. The solid line in light magenta shows
the approximate expected contribution of the intrinsic
depolarization, based on the formulas of Eqs. (9) and
(14); its profile should be correct, although there is
uncertainty over its scale because we do not know the

extent to which reflection of UCN within the trap is
specular. The blue solid (green dashed) line shows the
contribution of gravitationally enhanced depolarization,
using the measured SE (MC) spectrum as input. The blue
dotted (green dot-dashed) line shows the combined calcu-
lated effect. In each case the calculated profiles are
normalized to reflect the peak measured value of 0.67,
which is a result both of imperfect initial polarization and
also of intrinsic depolarization e.g. from horizontal field
gradients of the form ∂Bz=∂x. B0 up data are omitted from
this plot for clarity; they are similar in form to the data
shown, but with a somewhat lower maximum value of
about 55%.
There are two striking features about this plot. The first

is the very distinctive peaked shape of the profile near
the maximum. The intrinsic depolarization mechanism
has a very soft peak, parabolic in nature. In contrast, the
gravitationally enhanced component is almost triangular in
form, precisely mirroring the behavior of the data.
The second feature of interest is the close match in the

polarization profile across a wide range of gradients. No
parameters were optimized in the calculated curves beyond
the normalization of the peak value (equivalent to assuming
∂Bz=∂x ¼ 50 pT=cm). As noted above, the MC spectrum
is expected to be a little too hard, and we see that the data
lie below the corresponding (green) lines as one would
anticipate. The measured SE spectrum, on the other hand, is
known to be a little too soft, since it is representative of a
220 s storage time whereas the data points were measured
at 180 s. One would therefore expect the combined effects
of intrinsic and enhanced contributions (dotted blue) to lie a
little below the data points, as indeed they do. It would
appear that, rather fortuitously, the offset from the use of a
softened spectrum is here almost exactly compensated by
the additional contribution of the intrinsic depolarization,
leaving the calculated enhanced contribution more or less
perfectly aligned with the data.

VI. FREQUENCY SHIFTS AT LARGE VERTICAL
FIELD GRADIENTS

We now turn to measurements of the ratio of neutron
to mercury precession frequencies under applied vertical
magnetic-field gradients.
Figure 5 shows the measured data alongside the results

from calculations of the effect of gravitationally enhanced
depolarization, based upon the measured SE (solid blue
line) and simulated MC (dashed green line) spectra dis-
cussed in Sec. II above. The adjacent blue dotted and green
dot-dashed lines include the approximate respective con-
tributions from intrinsic depolarization, with the sines and
cosines of the contributing phases [see Eq. (5)] weighted as
α2. As anticipated, the intrinsic depolarization has little
additional effect.
Both the SE and the MC spectra result in the right

general trend, i.e. curvature of the appropriate form.
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FIG. 4 (color online). Depolarization as a function of applied
vertical magnetic-field gradient. Light magenta line: calculated
intrinsic contribution. Blue solid and green dashed lines are the
enhanced contributions applied to the SE and MC spectra,
respectively. The blue dotted and green dot-dashed lines show
the combined effects. Measured data points are represented as
black triangles.
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However, as one might expect, the (stiffer) simulated
spectrum results in curves that are less steep than the data,
whereas the (softer) spin-echo spectrum, with its larger Δh,
results in curves that are rather steeper.
Also shown in this figure as a pair of red dashed lines is

the expected response based on Eq. (2), using the Δh from
the SE spectrum (with no depolarization), as well as (black
dot-dashed lines) a fit to the data points with vertical
gradients of less than 60 pT=cm. Bearing in mind both that
the SE spectrum is a little too soft and that no depolari-
zation effects at all are included, one would anticipate that
the former lines would be slightly steeper than the latter, as
is indeed the case.

VII. FREQUENCY SHIFTS AT SMALL VERTICAL
FIELD GRADIENTS

The effect that we wish to discuss here is arguably more
subtle. We focus upon the very central region of the
frequency-ratio curves, as shown in Fig. 6. We again show
(via the blue solid and green dashed lines, respectively) the
results of calculations of gravitationally enhanced depo-
larization based upon the SE and MC spectra.
It is apparent that there is a change in the slope of the

lines as the crossing point is approached. It is visible in the
data, where the trend at higher gradients is highlighted by
the black dot-dashed lines: these represent a common fit of

all of the data with gradients of more than 100 pT=cm to
the function

jR − R0j ¼ m

���� ∂Bz

∂z
����þ c; ð21Þ

where R0 ¼ 3.8424574 is the crossing-point value of R [9].
If extrapolated to lower gradients, these lines would clearly
result in a significant discontinuity.
We ascribe this phenomenon to Ramsey wrapping,

which makes the spreading low-energy tail of the array
of integrated phases indistinguishable from the contribu-
tions of high-energy UCN. This moderates the frequency
shift as described in [1] and shown in Fig. 4 therein.
Intuitively, we would expect this to start happening when
the difference in magnetic field between the bottom of the
bottle (where the low-energy UCN preferentially spend
their time) and the center of the bottle (which is the average
position for higher-energy neutrons) is sufficient to produce
a phase shift of between π and 2π over the 180 s storage
time. This amounts to about 100–200 pTover the 6 cm half-
height, i.e. a gradient of about 15−30 pT=cm, which is
precisely where we observe it happening.
The particularly keen-eyed reader may be able to

perceive a further slight curvature in the calculated curve
at a gradient of about �50 pT=cm. This is due to that same
low-energy tail wrapping itself around for a second time.
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FIG. 5 (color online). Ratio of neutron to mercury frequencies
as a function of the applied vertical magnetic-field gradient.
Triangular upwards-pointing data points (running downwards
diagonally) are for B0 up; triangular downwards-pointing data
points (running upwards diagonally) are for B0 down. Red dashed
lines show the expectation from Eq. (2), using Δh from the SE
spectrum. The black dot-dashed lines represent a fit to data in the
central region, with gradients of less than 60 pT=cm. The blue
solid (green dashed) line includes gravitationally enhanced
depolarization, based on the SE (MC) spectrum, with the adjacent
blue dotted (green dot-dashed) lines including the effect of
intrinsic depolarization.
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FIG. 6 (color online). A closeup of the central region of the
curves showing the dependence of the ratio of neutron to mercury
frequencies upon the applied vertical magnetic-field gradient.
Triangular upwards- and downwards-pointing data markers once
again represent measurements taken with the holding field B0

aligned vertically upwards and downwards respectively. Solid
blue and dashed green lines again arise from calculations based
on the spin-echo and simulated spectra, respectively. The black
dot-dashed lines in the corner regions represent the trend of the
data at higher gradients.
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The data do not have adequate resolution to discern this
effect.
We note finally that both the curves and the real physical

behavior of the system are expected to be symmetric with
respect to the crossing point (indeed, the calculations
represented here were generated in a single quadrant only,
and then reflected through ∂Bz=∂z ¼ 0 and through
R ¼ R0). Therefore, data taken at points using the same
positive and negative gradients and with both B0 field
directions would allow one to extract the correct crossing
point without knowing the curvature. This is an important
safeguard for future nEDM data taking.

VIII. IMPLICATIONS FOR nEDM

The leading systematic error in the nEDM measurement
described in [5] arose from shifts in the Larmor precession
frequency brought about by the interplay between (a) small
magnetic-field gradients within the apparatus and (b) the
motional magnetic fields due to the particles (both UCN
and, in particular, the mercury atoms used for magnetom-
etry) moving through the applied electric field [4]. This
effect was compensated by considering the behavior of the
observed apparent EDM signal over a range of magnetic-
field gradients. There was no direct measurement of the
field gradient: instead, it was parametrized [Eq. (2)] by
the ratio R of neutron to mercury precession frequencies.
It is now clear, however, that even at quite moderate
gradients R is subject to the nonlinearities discussed above.
Furthermore, it is stated in [5] that the height difference Δh
between the UCN and the mercury atoms was 2.8 mm, with
a precision of 4%. This latter was based upon measure-
ments of the frequency response within a variable-height
trap; in fact those measurements also would have been
affected by gravitationally enhanced depolarization. The
UCN energy spectrum was undoubtedly softer than had
been thought, implying that the calculated slope of the lines
in Fig. 2 of [5] was steeper than it should have been. The
relatively good match of the calculated to the actual slope
of the fitted line is due in part to the nonlinear nature of the
dependence of R upon ∂Bz=∂z, which would be similar in
form to that shown in Fig. 6 above and in Fig. 4 of [1], and
which would result in a steeper-than-expected slope once
beyond the linear region.
Since the data were taken more or less symmetrically

about the crossing point, this effect is unlikely to produce a
very substantial change in the nEDM limit in this case.
Nonetheless, a detailed reanalysis is now underway, and it
is expected that a revised result will emerge shortly. Future
measurements will doubtless enjoy the advantage of better
diagnostics both of the magnetic field (with improved

magnetometry) and of the energy spectrum (using the spin-
echo technique).

IX. CONCLUSIONS

Measurements undertaken at the EDM spectrometer
at PSI, showing the dependence upon applied vertical
magnetic-field gradients of depolarization rates and of
the neutron precession-frequency, have clearly demon-
strated features that are characteristic of the anticipated
behavior resulting from gravitationally enhanced depolari-
zation and Ramsey wrapping: namely, a sharply peaked
rather than parabolic depolarization profile, and significant
nonlinearities in the frequency-response curve. Using
estimates of the spectrum of stored UCN, based upon
measurements using the spin-echo technique and also
upon detailed simulations, we have demonstrated excellent
qualitative agreement between measurements and theoreti-
cal expectations. It also seems clear that intrinsic depo-
larization processes have only a marginal effect upon
frequency shifts in the presence of magnetic-field gradients,
and that such shifts are dominated by the gravitationally
enhanced component.
There are obvious implications for nEDM measure-

ments, including for the analysis that led to the current
world limit [5], since the frequency-response curve is used
to correct for systematic effects.
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