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1 Introduction

Black hole interiors present many theoretical challenges, at both a classical and quantum

level. One of these challenges is the singularity at which spacetime ends [1]. The classical

approach to generic singularities is expected to be very complicated [2], while the classical

description itself eventually breaks down as curvatures become large. Another challenge is

the possible presence of Cauchy horizons, at which the predictability of the classical dy-

namics breaks down, even away from regions with large curvature [3]. The strong cosmic

censorship conjecture posits that such Cauchy horizons are artifacts of some highly sym-

metric solutions that are known analytically, and do not arise from generic initial data [4].

In holographic duality, eternal black holes in asymptotically AdS spacetimes arise as

thermofield double states in a large N CFT [5]. This fact has led to rigorous boundary

probes of the black hole interior using e.g. entanglement entropy [6]. So far, probes of the

region close to spacelike singularities have required analytic continuation of boundary corre-

lation functions [7] and do not appear to directly access Cauchy horizons [8]. Holographic

arguments suggest that in general, Cauchy horizons do not survive in the full quantum

gravity theory [9, 10]. (To first subleading order in large N , the three-dimensional BTZ

black hole maintains its Cauchy horizon [11, 12], but it is probably destroyed at higher

order [13].) With ongoing interest in probing the interior, it is important not to be led
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astray by aspects of the spacetime that may be artifacts of the simplest known solutions.

The most studied solutions in holography are the Schwarzschild-AdS spacetime as dual to

the canonical ensemble [14] and Reissner-Nordström-AdS (RN-AdS) spacetime as dual to

the grand canonical ensemble [15]. These have rather particular singularity structures and

RN-AdS has an inner Cauchy horizon.

While a fully generic interior will be highly inhomogeneous, a tractable step in the

direction of genericity for uncharged black holes was considered in [16], motivated from

the dual field theory perspective. The simplest AdS black holes spacetimes are dual to the

thermofield double state of a CFT. The CFT itself is often non-generic within the space of

field theories in the sense that relevant deformations (such as mass terms) must be tuned

to zero to remain at the critical point. To probe more generic thermal states, the relevant

operators can be turned on. This can be done with a coupling constant that is uniform

in the boundary spacetime. Relevant operators are described in the bulk by scalar fields

with negative mass squared (but above the Breitenlohner-Freedman bound [17]). Sourcing

such fields at the AdS boundary should be expected to produce more generic black hole

solutions. In [16] it was found that, indeed, these solutions had a more generic behavior at

the black hole singularity, with the Schwarzschild singularity arising as a fine-tuned special

case. The more generic behavior is described by a one parameter family of homogeneous,

anisotropic cosmologies known as Kasner spacetimes. Thus, genericity at the boundary led

to genericity at the singularity. In this paper we will ask an analogous and perhaps more

consequential question for charged black holes: does turning on a relevant deformation of

the boundary theory remove the Cauchy horizon? The answer will be that it does.1

The boundary perspective motivates a holographic version of strong cosmic censorship

with a slightly different flavor from the conventional one. Usually one asks about the

stability of Cauchy horizons in the space of generic initial conditions. Holographically one

can ask instead whether a generic time-independent thermal state of the boundary theory

leads — in the classical large N limit — to a dual black hole with a Cauchy horizon. As

we have explained above, from this boundary perspective RN-AdS is not generic if the

CFT has relevant deformations that have been fine tuned to zero. The results below are

evidence in favor of such a notion of holographic strong cosmic censorship.

Three comments should be made here. Firstly, since the radial black hole coordinate

becomes timelike in the interior, what start off as asymptotic boundary conditions ulti-

mately play the role of initial conditions for the interior. Thus the two formulations of

strong cosmic censorship have some overlap. Secondly, a key step in attempting to prove

strong cosmic censorship involves establishing that perturbations outside the horizon do

not decay too quickly, so that they can build up inside and prevent the formation of a

Cauchy horizon [18]. For example, it has recently been shown that the Cauchy horizon

is stable for some charged black holes in de Sitter space where the perturbations fall off

exponentially fast outside the horizon [19, 20]. A source at the boundary that is present for

all time clearly helps with this issue and therefore this holographic version is weaker than

1It was noted in [11] that a multi-trace deformation of a two-dimensional CFT can destroy the Cauchy

horizon of a BTZ black hole.
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Figure 1. Schematic illustration of the interior of a charged AdS black hole in Einstein-Maxwell

theory with a small scalar field source. It begins close to RN-AdS with its standard Einstein-Rosen

(ER) bridge. This undergoes a rapid collapse discussed in section 4, followed by a Kasner cosmology

towards the singularity, discussed in section 5. The Penrose diagram is considered in more detail

section 6. The black solid lines indicate the boundary and horizon of the geometry.

the conventional one. Thirdly, inhomogeneous deformations of the boundary can induce

regions of strong curvature that are directly visible to boundary observers [21, 22]. These

are violations of weak cosmic censorship, which is not the focus of our present discussion.

(The effect of a small inhomogeneous deformation on a Cauchy horizon is discussed in [23].)

We have focused on relevant deformations so far, but irrelevant deformations of the

CFT will also be generically present at nonzero temperature if the CFT is obtained as the

IR fixed point of some UV completion such as a lattice model. While relevant deformations

always remove Cauchy horizons, we will show that certain irrelevant deformations, dual to a

bulk scalar withm2 > 0 (positive mass squared), do allow them. But these Cauchy horizons

can only occur at a discrete set of m2 for each temperature. Irrelevant deformations destroy

the asymptotic AdS region, which must either be explicitly cut off or otherwise allowed

to flow to some distinct UV fixed point where the operator is relevant. However, our

discussion will only require knowledge of the spacetime inside the event horizon.

The fate of the Cauchy horizon is especially dramatic for the case of a small deformation

of the AdS boundary. The solution remains close to RN-AdS until one approaches the

would-be Cauchy horizon. At that point there is a rapid collapse of the Einstein-Rosen

bridge connecting the two asymptotic boundaries. That is, any finite stretch of this bridge

rapidly shrinks to an exponentially small size. This is universal behavior that we will see

both analytically and numerically. Following this rapid collapse, the solution approaches a

spacelike Kasner singularity. These regimes are illustrated in figure 1. With a larger source

there is a smoother transition between the RN-AdS and Kasner epochs.

Although Schwarzschild-AdS also has a Kasner singularity, we will see that the singu-

larities that arise from deformations of RN-AdS have Kasner exponents that are bounded
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away from that of Schwarzschild-AdS. For small deformations, the Kasner singularity is

almost null and ‘bends up’ in the Penrose diagram, while for sufficiently large deforma-

tions it can ‘bend down’ like the Schwarzschild-AdS case. Finally, we will also discuss the

singularities inside Einstein-Maxwell-dilaton AdS black holes. In these theories, there are

analytically known black hole solutions that are free of Cauchy horizons and exhibit space-

like Kasner singularities. They describe the near-horizon geometry of near-extremal black

holes, and asymptotically approach a Lifshitz solution. We show that the fixed Kasner

exponent of the explicit solutions arises due to an attractor mechanism. Deformations of

the Lifshitz regime result in Kasner exponents that depend on the deformation and black

hole parameters just like the nondilatonic black holes.

2 Background and equations

In the grand canonical ensemble the dual field theory is held at a chemical potential µ for

some global U(1) symmetry. In the bulk we must correspondingly introduce a Maxwell

field A such that At → µ at the boundary. To deform the boundary theory by a scalar

operator O we must introduce a dual scalar field φ in the bulk. The leading asymptotic

behavior φ(0) of the scalar field will be the source for operator. A minimal bulk theory that

contains these ingredients is

L = R+ 6− 1

4
F 2 − gab∂aφ∂bφ−m2φ2 . (2.1)

We will consider this theory in 3+ 1 bulk dimensions, though as we note below our results

hold in higher dimensions also. We have set the AdS radius and the gravitational coupling

to one. The mass m will determine the scaling dimension ∆ of the operator O through the

usual formula:

∆ =
3

2
+

√

9

4
+m2 . (2.2)

The Maxwell field strength is F = dA.

We wish to find planar charged black hole solutions to the theory (2.1). We will assume

the solutions are static and homogeneous, so they can be written in the form

ds2 =
1

z2

(

−f(z)e−χ(z)dt2 +
dz2

f(z)
+ dx2 + dy2

)

. (2.3)

The AdS boundary is at z = 0 and the singularity will be at z → ∞. At a horizon, f = 0.

The scalar field and scalar potential take the form

φ = φ(z) , A = Φ(z) dt . (2.4)

In this gauge regularity requires Φ = 0 at a horizon. As we will be especially interested in

the behavior of the solution behind the horizon, we rewrite the metric in ingoing coordi-

nates:

ds2 =
1

z2

(

−f(z)e−χ(z)dv2 − 2e−χ(z)/2dv dz + dx2 + dy2
)

. (2.5)
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The radial functions should obey the following leading asymptotic behavior at the AdS

boundary as z → 0

f → 1 , χ → 0 , Φ → µ , φ → φ(0)z
3−∆ . (2.6)

This behavior fixes the normalization of time on the boundary as well as the chemical

potential µ and source φ(0) for the dual operator O. Because there is no charged matter

in the bulk, it will be convenient to introduce the boundary charge density

ρ = − lim
z→0

Φ′ . (2.7)

The bulk equations of motion with the above ansatz are written down as follows. First,

the Maxwell equation can be integrated once to give

Φ′ = −ρ e−χ/2 . (2.8)

Here ρ is a constant, the boundary charge density (2.7). The remaining minimal set of

equations of motion can be taken to be

z2eχ/2
(

e−χ/2z−2fφ′
)′

=
m2

z2
φ , (2.9a)

4z4(z−3f)′ = −12 + 2m2φ2 + 2z2f(φ′)2 + z4eχ(Φ′)2 , (2.9b)

χ′ = z(φ′)2 . (2.9c)

Using (2.8) and (2.9c) one can eliminate Φ and χ from the equations of motion. The

substantive problem is therefore to solve (2.9a) and (2.9b) for f and φ. We can then

immediately obtain Φ and χ.

3 Horizons

Solutions to the equations of motion with the asymptotics (2.6) will typically have a horizon

at zH, with f(zH) = 0. The temperature of the dual quantum field theory is

T =
1

4π
|f ′(zH)|e−χ(zH)/2 . (3.1)

The infalling coordinates (2.5) continue across the horizon. Our main interest is the interior

geometry that is found beyond the horizon.

In the absence of a scalar field, with φ = 0 everywhere, the solution is the Reissner-

Nordström-AdS spacetime, with χ = 0 and

fRN(z) = 1 +
ρ2z4

4
−
(

z

zH

)3(

1 +
ρ2z4H
4

)

. (3.2)

In addition to the horizon at z = zH, there is an inner horizon at z = zI with

(

zI
zH

)2

+
zI
zH

+ 1 =
ρ2z4H
4

(

zI
zH

)3

. (3.3)
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This inner horizon is well known to be a Cauchy horizon, leading to the breakdown of

predictability in the black hole interior. At high temperatures ρ2z4H → 0 and in this

limit the inner horizon is at zI ≈ 4zH/(ρ
2z4H) → ∞, although the proper time between

the horizons does not become large. At low temperatures zI → zH as the black hole

becomes extremal.

We now discuss the effect of a nonzero scalar field on the inner horizon. For the theory

with action (2.1) this depends on the sign of the mass squared, which also corresponds to

whether the operator is relevant or irrelevant. With a more general potential for the scalar

field, however, there need be no connection between relevance or irrelevance near the AdS

boundary and the sign of the potential in the black hole interior.

3.1 Relevant deformations remove Cauchy horizons

The black hole interior is dramatically changed by a nonzero φ. For m2 ≤ 0, which

corresponds to relevant operators with ∆ ≤ 3 in our theory, we can prove that there is

no inner horizon as follows. Suppose that there were two horizons at zH and zI . From

eq. (2.9a):

0 =

∫ zI

zH

(

fe−χ/2φφ′

z2

)′

dz =

∫ zI

zH

e−χ/2

z4
[

m2φ2 + z2f(φ′)2
]

dz . (3.4)

In the first equality we have used the fact that f(zH) = f(zI) = 0. In the final expression

note that between the two horizons f < 0. If m2 ≤ 0, the integrand in the final expression

is therefore non-positive over the range of integration. Thus, the only way there can be two

horizons is if φ = 0 identically. The scalar field necessarily removes the inner horizon. For

more general scalar potentials V (φ), the above argument still applies provided φV ′(φ) < 0.

3.2 Irrelevant deformations can have fine-tuned Cauchy horizons

For certain irrelevant deformations, we will see that inner horizons can exist at one specific

temperature. Irrelevant operators are dual to bulk fields with m2 > 0. These grow large

towards the AdS boundary, and so cannot be consistently included as sources. Instead

they will induce a renormalization group flow up towards a different UV completion. Our

analysis will only depend on the scalar field profile in between the black hole horizon and

the Cauchy horizon, and is therefore independent of the UV completion. We will do this

in two steps: first we analyse the linear problem, and then we bootstrap the problem

non-linearly.

For the linearized problem we look at the scalar field on the Reissner-Nordström back-

ground. This amounts to eq. (2.9a) with χ = 0 and f = fRN as in (3.2):

z4
(

z−2fRNφ
′)′ = m2φ . (3.5)

We wish to solve (3.5) for z ∈ (zH, zI) — where here zH and zI are the outer and inner

horizons of RN-AdS — with the regularity conditions that

φ′(zH) =
m2

z2Hf
′
RN(zH)

φ(zH) , and φ′(zI) =
m2

z2If
′
RN(zI)

φ(zI) . (3.6)
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Figure 2. The values of mass squared allowing for a regular scalar field between the inner and

outer horizons of RN-AdS, as a function of the near-extremality parameter (ξ − 1). The lowest

few solutions of the infinite tower are shown. The solid, dashed, dotted and dotted-dashed lines

correspond to the perturbative result given by (3.8) with ℓ = 1, 2, 3, 4, respectively. The disks,

squares, diamonds and triangles are the corresponding exact numerical data.

These boundary conditions together with (3.5) define an eigenvalue problem for m2. Be-

cause fRN < 0 between the two horizons, it is clear from (3.5) that there are no eigenvalues

with m2 < 0, consistent with our result in the previous section. Perhaps unsurprisingly,

we will find an infinite tower of positive eigenvalues of m2. The eigenvalues can be written

as a function of

ξ ≡ zI
zH

≥ 1 . (3.7)

Given a UV completion that restores an asymptotically AdS region, for instance due to a

more complicated scalar potential than just m2φ2, the ratio ξ has the same information as

the dimensionless boundary quantity T/µ. (The asymptotic region is necessary to fix the

normalization of the time coordinate.) At extremality, ξ = 1.

The linearized eigenvalue problem can be readily solved via the numerical methods

detailed in [24]. Alternatively, we can perturbatively solve (3.5) around extremality, using

the methods of [25]. As expected, we find an infinite tower of modes, which we label by

an integer ℓ ≥ 1. For these masses, a regular scalar field configuration exists between the

inner and outer horizon. We shall just quote here the result for m2 to quartic order in

(ξ − 1) for generic values of ℓ. Once the dust settles, we find:

m2 = 6λℓ

[

1 +
5λℓ + 2

12(2ℓ− 1)(2ℓ+ 3)
(ξ − 1)2 − 5λℓ + 2

12(2ℓ− 1)(2ℓ+ 3)
(ξ − 1)3 (3.8)

+
18460λ4

ℓ − 82565λ3
ℓ + 60864λ2

ℓ + 13608λℓ − 11880

864(2ℓ− 3)(2ℓ+ 5)(2ℓ− 1)3(2ℓ+ 3)3
(ξ − 1)4

]

+O
[

(ξ − 1)5
]

,

where λℓ = ℓ(ℓ + 1). In figure 2 we show the numerically determined values of m2 as a

function of (ξ − 1). The numerical and perturbative results agree for ξ ∼ 1.
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The large ξ behavior shown in figure 2 can also be understood analytically. In the

strict ξ → ∞ limit, the RN-AdS background becomes Schwarzschild-AdS. Generically,

linear massive scalar fields in this spacetime diverge logarithmically near the singularity.

(This leads to a change in the Kasner exponents in the full nonlinear solutions, as discussed

in [16].) The analog of demanding that the Cauchy horizon remain smooth, is to demand

that the scalar field vanish at the singularity. If one imposes this (and regularity at the

event horizon), one again obtains an eigenvalue equation for m2 with eigenvalues:

m2 = 9λℓ +O(ξ−1) . (3.9)

The large ξ results in figure 2 indeed asymptote to these values. One can go a bit further

and compute the corrections in ξ−1 using standard perturbation theory. These turn out to

be given by

m2 = 9λℓ

[

1− 2ℓ+ 1

ξ

Γ
(

5
3

)

Γ
(

ℓ+ 1
3

)

Γ
(

1
3

)

Γ
(

ℓ+ 5
3

)4F3

(

1− ℓ, 2 + ℓ,
2

3
,
5

3
;
2

3
− ℓ,

5

3
+ ℓ, 2; 1

)

]

+O(ξ−2) ,

(3.10)

where 4F3 (a, b, c, d; e, f, g; z) is a generalised hypergeometric function.

Since m2 is a parameter in the bulk action, it is probably more physical to turn figure 2

around and interpret it as saying that for certain given m2, there can be one value of T/µ

for which the inner horizon is not destroyed (at the linearized level).

We now establish that these linearized solutions extend without obstruction to non-

linear solutions with a smooth Cauchy horizon. As noted below (2.9) the equations to

be solved are a first order equation for f and a second order equation for φ. There are

correspondingly three constants of integration. We can take these to be {ξ, φH, φI}. Here
φH = φ(zH) and φI = φ(zI). These equations in addition depend on the parameters ρz2H
and m2. A solution can therefore be specified by the five parameters {m2, ρz2H, ξ, φH, φI}.
Suppose that we take a solution that is regular at the outer horizon and integrate in, and

we take a solution that is regular at the inner horizon and integrate out. These will combine

into a solution that is regular everywhere between the horizons if {φ, φ′, f} match at some

intermediate point. With five paramaters and three constraints we expect to find a two-

parameter family of solutions with a smooth Cauchy horizon. These can be labelled e.g.

by {ξ, φH}. As φH → 0, m2 should match the values obtained previously from a linearized

analysis in figure 2.

We have scanned a large portion of parameter space, and found the above counting

picture to be correct. In figure 3 we show an example at fixed ξ = 1.448. This leaves a one

parameter family of solutions that extend the linearized solutions to nonzero φH. On the

left panel we plot the mass, on the middle panel the charge density and on the right panel

zH |f ′(zH)|, with the latter quantity being proportional to the black hole temperature. The

final plot suggests that at fixed ξ we can always find a large enough value of φH where we

reach extremality (and f acquires a double zero). Furthermore, we have checked that the

extremal limit appears non-singular, in the sense that RabcdR
abcd does not appear to blow

up when zH |f ′(zH)| → 0, nor any other curvature invariant. In addition, we searched for
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Figure 3. Nonlinearly smooth Cauchy horizons as a function of the scalar field at zH. Left: mass

m of the scalar field, middle: charge density ρ, right: zH |f ′(zH)|. All plots were generated while

keeping ξ = 1.448. The red disks were obtained by solving the linear problem.

tidal force singularities, and found none. We have chosen many other values of ξ, and the

overall behaviour appears similar.

4 Collapse of the Einstein-Rosen bridge

When the inner horizon is absent, the black hole interior ends at a spacelike singularity as

z → ∞. We describe the asymptotic near-singularity behavior in the following section. In

this section we describe a crossover that occurs at the location zI of the would-be horizon.

The crossover is most dramatic when the scalar field is small, and in this limit can be

obtained analytically. While the scalar field is small, the spacetime dynamics is highly

nonlinear in this regime. We will see that it corresponds to a collapse of the Einstein-

Rosen bridge between the two asymptotic boundaries.

The collapse occurs over an extremely short range in the z coordinate, so it is consistent

to simply set z → zI in the equations of motion (2.9a)–(2.9c). We can think of the variables

f, χ, φ as functions of δz = z − zI . Furthermore, at these values of z it can be verified

numerically (or, a posteriori on the solution below) that the mass of the scalar field becomes

negligible in (2.9a) and (2.9b). With these approximations the equations become

(

e−χ/2fφ′
)′

= 0 , 4zIf
′ = 2z2If(φ

′)2 + z4Iρ
2 − 12 , χ′ = zI(φ

′)2 . (4.1)

The general solution to these equations can be found, starting by integrating the first

equation and writing φ′ = −c1(z
4
Iρ

2/2 − 6)1/2eχ/2/f . Here c1 is a constant and the nor-

malization is for future convenience. The solution is most nicely expressed in terms of the

metric component gtt = −fe−χ/z2I . This is found to obey

g′′tt
g′tt

=
c21g

′
tt

gtt
(

c21 + gtt
) . (4.2)

The general solution to this equation takes the form (recall gtt > 0 in the black hole interior)

c21 log(gtt) + gtt = −zI
2

c22(δz + c3) . (4.3)
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Here c2 and c3 are additional constants of integration (again normalized for convenience).

And then, in addition to f = −eχgttz
2
I , one finds that

φ = − 2c1
zIc2

log (c4 gtt) , e−χ =
2z4I

c21(z
4
Iρ

2 − 12)
(φ′)2g2tt . (4.4)

The scalar field exhibits the expected logarithmic growth as gtt becomes small close to the

would-be inner horizon. The special cases discussed in the previous section where the inner

horizon survives will have c1 = 0.

The first equation in (4.4) suggests that c2/c1 will become large when the boundary

source for φ is small. This is because the argument of the logarithm in (4.4) is order one

at the end of the crossover region, and in the limit of a small scalar field, the scalar can

be integrated from the crossover region to the asymptotic boundary as a linear equation.

We verify from numerics in figure 4 that indeed c2/c1 ∼ 1/φ(0) as the source φ(0) → 0.

Thus even while δz is small, (c2/c1)
2δz in (4.3) can be very large. This allows the metric

to undergo a big change with the coordinate z hardly changing. This fact is, a posteriori,

what has allowed us to only solve the equations in the vicinity of zI . A large c2/c1 in (4.3)

leads to an extremely fast crossover in behavior (setting the shift c3 = 0 here for clarity):

δz < 0 → δz > 0 ,

gtt =
zIc

2
2

2
|δz| → gtt = e−(c2

2
zI/2c

2

1
) δz , (4.5)

φ′ =
c1
c2

1

|δz| → φ′ =
c2
c1

. (4.6)

Here we see that a linear vanishing of gtt towards the would-be inner horizon is replaced

by a rapid collapse to an exponentially small value, while the divergence in the scalar

field derivative towards the horizon is cut off at a large value. This behavior is verified by

comparison with numerical solutions to the equations of motion, illustrated in figure 4. The

inversion in the value of the scalar derivative reveals the nonlinear nature of this transition.

In the black hole interior, gtt sets the measure for the spatial t coordinate that runs

along the wormhole connecting the two exteriors of the black hole. This is the Einstein-

Rosen bridge. The rapid decrease in gtt that we have just described can therefore be

thought of as a collapse of the Einstein-Rosen bridge for a fixed coordinate separation ∆t.

The collapse to an exponentially small gtt happens over a short proper time ∝ c31/c
3
2.

5 Kasner singularity

After the collapse of the Einstein-Rosen bridge, the spacetime enters an asymptotic regime

that tends towards a Kasner singularity. Recall that the Kasner solution is a homogeneous,

anisotropic cosmology with power law behavior near the singularity. When the Maxwell

flux terms are subleading, the asymptotic solution is given by [26, 27]

ds2 = −dτ2 + ctτ
2ptdt2 + cxτ

2px
(

dx2 + dy2
)

, φ = −
√
2pφ log τ . (5.1)

Here ct and cx are constants. The Kasner exponents obey pt+2px = 1 and p2φ+p2t+2p2x = 1.

– 10 –
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Figure 4. Collapse of the Einstein-Rosen bridge. Left: abrupt crossover of gtt at the would-be inner

horizon. Blue line is from a numerical solution of the equations of motion and the red line is a fit to

the analytic crossover form (4.3). Right: fit parameter c2/c1 as a function of the boundary value of

the scalar deformation. As the deformation becomes small, c2/c1 becomes large and the crossover

more dramatic. Blue dots are numerical data points and the red line shows c2/c1 ≈ 0.8µ/φ(0).

All data shown for temperature T/µ ≈ 0.2188 and a scalar field with m2 = −2. Left plot has

φ(0)/µ ≈ 0.2193, corresponding to c2/c1 ≈ 3.89.

The near-singularity behavior is similar to that of the neutral black holes studied

in [16]. We find that as z → ∞, the solutions take the form

f = −foz
3+α2

, φ = α
√
2 log z , χ = 2α2 log z + χo , Φ′ = −ρe−χo/2z−α2

, (5.2)

with α > 1. This restriction on α ensures that the Maxwell flux terms are always unimpor-

tant asymptotically. It is easy to see that the metric and scalar are indeed of the Kasner

form (5.1) with

pt =
α2 − 1

3 + α2
, 1 ≥ pt > 0 . (5.3)

The lower bound on pt (following from the bound on α) excludes the Schwarzschild near-

singularity behavior which has pt = −1/3. Figure 5 shows pt as a function of the boundary

value of the scalar field and the temperature, for the choice of mass m2 = −2.

Figure 5 shows that, consistent with our proof of no inner horizon for m2 < 0 in

section 3, the entire φ(0) > 0 and T > 0 phase diagram flows to a spacelike Kasner

singularity. We now describe the limits φ(0) → 0 and T → 0.

As the scalar field is turned off at fixed temperature, the Kasner exponent pt → 1.

This is different to the case of neutral black holes, where pt → −1/3 as the deformation is

turned off [16]. The difference is easily understood: In the neutral case the solution reverts

to the Schwarzschild singularity, while in the charged case the Kasner singularity reverts

to the regular inner horizon (which has pt = 1 in Kasner coordinates). An exception to

this statement arises at very low temperatures. At sufficiently low temperatures, neutral

scalar fields can spontaneously condense in the Reissner-Nordström-AdS background [28].

– 11 –
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Figure 5. Near-singularity Kasner exponent pt as a function of the boundary temperature T/µ

and strength of the deformation φ(0)/µ. The scalar field is taken to have m2 = −2. The dashed

line shows the transition from the singularity bending up to bending down in the Penrose diagram,

discussed in section 6.

Below the critical temperature Tc, this leads to a Kasner singularity with pt < 1 even in

the absence of a source, φ(0) = 0, as shown in figure 6. Each spontaneous solution will

extend to a family of solutions with nonzero source. For small values of the source, these

solutions will compete with the solutions that continue to the trivial solution at φ(0) = 0.

As T/µ → 0 for fixed deformation strength φ(0)/µ, again the Kasner exponent pt → 1.

This is not completely clear from figure 5 but is seen clearly in figure 6. We make two

further observations. Firstly, in figure 6 we see that extending to very low temperatures,

the limiting numerical behavior is well fit by α ∝ [− log(T/µ)]1/2 → ∞ in (5.3). This

corresponds to pt → 1. Secondly, in this limit the outer horizon is verified in numerics to

be approaching a singular solution first written down in [29]:

f =
(m2)2

2

1

ρ2z4
+ · · · , φ = ± ρz2√

−2m2
+ · · · . (5.4)

The series expansion continues in powers of 1/(ρz2)2. In addition, there is a nonperturba-

tive contribution of the form δφ = A exp
{

− ρ z2√
6+m2

}

.2 The parameter A is fixed by the

asymptotic source, φ(0). In the low temperature limit ρz2H → ∞. This allows the expansion

above in ρz2 ≫ 1 even outside the outer horizon where z < zH. The divergence of α in

the low temperature limit is consistent with the scalar field φ crossing over to the stronger

than logarithmic growth of (5.4).

2This corrects a statement in [29].
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Figure 6. Left : Near-singularity Kasner exponent pt at φ(0) = 0 below the temperature Tc =

9.26×10−5µ (vertical dashed line) at which the scalar spontaneously condenses. For T > Tc, pt = 1.

Right : Near-singularity Kasner exponent pt in a linear− log scale as a function of T/µ, at constant

φ(0)/µ = 1. The red dashed line shows a one-parameter fit to (5.3) with α = a0 [− log(T/µ)]1/2 in

the range T/µ ∈ (10−100, 10−6). For this run, we obtained a0 ≃ 1.94876.

Finally, we note that in the discrete cases with m2 > 0 where an inner horizon survives,

as discussed in section 3.2, the singularity beyond the inner horizon will be that of the

Reissner-Nordström black hole, with the scalar field becoming unimportant towards the

singularity (φ ∼ 1/z) and the equations dominated by the flux terms.

6 Penrose diagrams

Penrose diagrams are convenient ways to picture the global causal structure of a spacetime.

Given a static AdS black hole with a spacelike singularity, one often imagines its Penrose

diagram is a square, with singularities on top and bottom. However, as pointed out in [7]

there is a conformally invariant distinction between spacelike singularities that bend down

toward the event horizon and ones that bend up away from the horizon. In Schwarzschild-

AdS, the singularity bends down [7]. For small deformations of the RN-AdS spacetime, the

singularity appears close to the would-be inner Cauchy horizon and hence one might expect

the singularity to bend upwards in this limit. Let us now discuss this more systematically.

An ingoing radial null geodesic that leaves the boundary at boundary time t = 0

reaches the singularity at a value of the interior spatial coordinate t⋆ given by

t⋆ = PV

∫ ∞

0

eχ(z)/2

f(z)
dz , (6.1)

where PV denotes taking the principal value upon crossing the horizon at z = zH. The

principal value indicates that the interior spatial t coordinate is naturally related to the

boundary time by a constant imaginary shift from the residue −iπeχ(zH)/2/f ′(zH) = i/(4T ),

but this shift is unnecessary to understand the bulk Penrose diagram of a purely real
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Figure 7. Penrose diagrams for the grand canonical ensemble. At low temperatures or for small de-

formations, the singularity bulges up and approaches the Cauchy horizon of the Reissner-Nordström

solution, shown with grey dashed lines. At sufficiently high temperatures the singularity instead

bulges down.

spacetime. Recall that f > 0 outside the horizon and f < 0 inside the horizon, so the

integral in (6.1) could have either sign. The direction in which the singularity bends

depends on the sign of t⋆. This is because in the black hole interior t = 0 corresponds to

the midpoint of the Penrose diagram. If t⋆ > 0, for example, then the geodesic has reached

the singularity before reaching the midpoint of the diagram, and hence the singularity

must have bent down. Similarly, if t⋆ < 0 then the singularity bends up. Both of these

possibilities are realized in our solutions and are shown in figure 7.

We find that t⋆ → −∞ both as we turn off the deformation, φ(0)/µ → 0, and also at

low temperatures, T/µ → 0. In these limits the singularity therefore bends up and becomes

null. At higher temperatures and larger deformations, the singularity bends down. These

two regimes are shown in figure 5. The singularity can bend down more than that of

Schwarzschild AdS, but approaches this in the limit T/µ → ∞ at fixed φ(0)/µ 6= 0. Even

though the limiting Penrose diagram resembles Schwarzschild AdS, the Kasner exponents

are different, since pt → 1.3 When φ(0) = 0, and the scalar condenses spontaneously, the

singularity becomes null both as T → 0 and T → Tc.

7 Dilatonic theories: Lifshitz to Kasner

Einstein-Maxwell-dilaton theories have exact black hole solutions with no inner horizons

and with Kasner singularities determined by parameters in the action [30]. In this section

we describe how these fixed exponents relate to the source-dependent Kasner exponents

we have described so far. We will see that, in a holographic context, the known explicit

3It may seem strange that the singularity does not become null as pt → 1, but there is no contradiction.

When pt = 1, the Kasner singularity becomes a smooth null surface, but for pt < 1, the value of t∗ depends

on global properties of the solution.

– 14 –



J
H
E
P
1
0
(
2
0
2
0
)
1
0
2

solutions describe a low temperature, near-horizon limit of a class of geometries with more

general Kasner exponents. The fixed exponents arise in this limit in a sort of ‘attractor

mechanism’. In direct analogy to the nondilatonic case, deformations away from this limit

change the exponents by an amount that depends on the deformation.

The simplest holographic setting for the physics we are after is the theory [31, 32]

L = R+ 6− eγφ

4
F 2 − gab∂aφ∂bφ . (7.1)

There is a single coupling γ in the Lagrangian. With the same ansatz for the fields as we

have been considering all along, the equations of motion are now

z2eχ/2
(

e−χ/2z−2fφ′
)′

= −1

4
γz4ρ2e−γφ , (7.2a)

2z4(z−3f)′ = z2f(φ′)2 − 6 +
1

2
z4ρ2e−γφ , (7.2b)

χ′ = z(φ′)2 , (7.2c)

and the electric field is

Φ′ = −ρ e−γφ−χ/2 . (7.3)

These equations have an exact black hole solution given by [31]

fBH = fo

(

1− (z/zH)
3+8/γ2

)

, χBH =
16

γ2
log z , φBH =

4

γ
log z + φo , (7.4)

with the constants

fo =
3γ4

(4 + γ2)(8 + 3γ2)
, φo =

1

γ
log

ρ2(4 + γ2)

48
. (7.5)

This solution has the following asymptotics. As z → 0 it tends to a so-called Lifshitz

geometry with dynamical scaling exponent

zL = 1 +
8

γ2
. (7.6)

As z → ∞ it tends towards a Kasner singularity with

pt(γ) =
8− γ2

8 + 3γ2
. (7.7)

Thus in this solution the Kasner exponent is fixed by the parameter γ in the theory. Despite

the presence of a Maxwell field, these solutions are best thought of as a one-parameter

family generalization of the Schwarzschild-AdS solution, which is recovered in the limit

γ → ∞ (wherein zL → 1 and pt → −1/3).

The exact solution discussed above arises as the near-horizon geometry of a near ex-

tremal black hole in an asymptotically AdS spacetime [32]. While not strictly necessary,

it is clarifying to take this bigger perspective, in which case the geometry is divided into
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three regions for near-extremal states with T ≪ µ (here µ is some UV energy scale, such

as the chemical potential, that sets the crossover from AdS to Lifshitz):

AdS UV
z≫µ−1

−−−−→ Lifshitz IR: zL
z≫T−1/zL−−−−−−−→ Kasner transhorizon: pt . (7.8)

The important point here is the following. If the Lifshitz geometry is obtained in this

way by flowing from some AdS UV, then the solution cannot be pure Lifshitz at any

finite z. There must also be irrelevant deformations that decay as z → ∞. These are the

deformations that flow the Lifshitz solution back up to AdS. At any nonzero temperature,

where zH is finite, these deformations will be nonzero on the horizon. We will see that

these deformations on the horizon shift the Kasner exponent away from the value pt(γ)

in (7.7). As T → 0, zH → ∞ and the deformation becomes small on the horizon so that

pt → pt(γ). This is a transhorizon manifestation of the attractor mechanism — really just

an IR fixed point in the RG sense — discussed in [32]. However, at any T > 0 the value of

pt is different and depends on the strength of the irrelevant deformation.

The simplest point is to verify that Kasner scalings with more general exponents

than (7.7) are consistent asymptotic near-singularity behaviors of the theory. The only

constraint on the asymptotic Kasner exponent from the equations of motion is that

pt > − γ

γ + 2
√

2 + γ2
. (7.9)

At γ = 0 this recovers the constraint that pt > 0 that we found in (5.3) for Einstein-

Maxwell theory. As γ → ∞, the lower bound goes down to the Schwarzschild value of

−1/3, which is also consistent.

To see explicitly how a source shifts the Kasner exponent it is sufficient to work within

the Lifshitz IR scaling regime. The irrelevant deformation appears as a source δφ(0) for

the scalar field at the Lifshitz boundary (because the mode will be irrelevant and grow

towards the UV, the source should be imposed at some small but nonzero cutoff zUV).

This will lead to a linearized perturbation of the bulk fields about the Lifshitz black hole

background. Radial perturbations are easily seen to have the general form

φ = φBH+δφ , χ = χBH +
8

γ
δφ+δχo , f = fBH

(

1 +
4

γ
δφ

)

+δfo(z/zH)
3+8/γ2

, (7.10)

where δχo and δfo are constants and δφ must obey

z4eχBH/2
(

z−2e−χBH/2fBH δφ′
)′

= 12 δφ . (7.11)

We will focuss on δφ. The constants δχo and δfo can be chosen to keep either the energy

density (sourced by δgtt) or the temperature constant as we deform by the scalar operator.

This choice does not affect the considerations below.

The scalar equation (7.11) can be solved in terms of Gaussian hypergeometric functions.

The solution to this equation that is regular on the horizon takes the form

δφ = c∆

(

z

zH

)∆

2F1

(

∆

2 + zL
,

∆

2 + zL
;

2∆

2 + zL
;

(

z

zH

)2+zL
)

−
(

∆ ↔ 2 + zL −∆
)

, (7.12)
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where the scaling dimension is ∆ = [8 + 3γ2 +
√

(8 + 3γ2)(72 + 19γ2)]/2γ2 and the coef-

ficient is c∆ = εΓ
(

∆
2+zL

)2/

Γ
(

2∆
2+zL

)

. The small number ε can be related to the source

δφ(0) by expanding near the Lifshitz boundary as z → 0, where δφ = δφ(0)z
2+zL−∆ +

δφ(1)z
∆ + · · · . Clearly ε ∝ δφ(0). One immediately verifies that 2 + zL −∆ < 0 for all γ,

so that δφ(0) is indeed an irrelevant deformation of the Lifshitz fixed point as we expected.

Expanding the solution beyond the horizon as z → ∞ we find

δφ = 2ε cos
π∆

2 + zL
· log z2+zL + · · · . (7.13)

This logarithmic growth towards the singularity amounts to a linearized shift in the Kasner

exponent to the value

pt = pt(γ) +
32γ ε

8 + 3γ2
cos

π∆γ2

8 + 3γ2
. (7.14)

The strength ε is given, on dimensional grounds, in terms of the strength δφ(0) of the

deformation and the temperature T as

δpt ∝ ε ∝ δφ(0)T
(∆−2−zL)/zL . (7.15)

For this irrelevant deformation ∆ > 2 + zL. Therefore, as we should expect, the shift

becomes small as the temperature goes to zero (and hence the perturbative computation

is self-consistent in this limit). That is because the perturbation decays towards the IR

in the Lifshitz region outside the horizon. As the horizon goes deeper into the IR, the

perturbation on the horizon becomes smaller. Once past the horizon, the perturbation

starts to grow logarithmically and shifts the Kasner exponent. This shift of the exponent

is therefore smaller at small temperatures as we see in (7.15). The value pt(γ) is achieved

in the limit T → 0.

8 Traversing geodesics

The Penrose diagram in figure 7 has two boundaries corresponding, as usual, to the two

copies of the dual field theory that have been entangled in a thermofield double state. A

natural set of boundary observables are correlations functions of large dimension operators

between the two copies. These are described in the bulk by spacelike geodesics that tra-

verse the Einstein-Rosen bridge, going from one boundary to the other. The information

contained in such Schwinger-Keldysh correlation functions can also be obtained from the

retarded Green’s function, that depends solely on the black hole exterior. See e.g. [33]

for a holographic discussion. Nonetheless, the transhorizon perspective can reveal inter-

esting features of these correlation functions in a transparent way. In particular, we will

now see that our charged black holes all have a purely decaying ‘overdamped’ quasinormal

mode that can be related to a maximum of gtt in the black hole interior. The existence

of this maximum can be thought of as a remnant of the (now absent) Reissner-Nordström

Cauchy horizon.
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Radial spacelike geodesics in the black hole background can be labelled by a constant

‘energy’ E. These geodesics fall into the black hole up to a turning point z⋆ given by [7, 16]:

E2 = gtt(z⋆) . (8.1)

Recall that gtt = −fe−χ/z2⋆ > 0 beyond the horizon. After reaching the turning point,

the geodesics emerge on the other side of the Einstein-Rosen bridge. The behavior of

the geodesic in the interior depends upon the form of gtt(z). Clearly gtt vanishes on the

horizon. If gtt increases without bound beyond the horizon then z⋆ → ∞ as E → ∞. These

geodesics can come arbitrarily close to the singularity [7]. However, if gtt has a maximum at

some zc beyond the horizon, i.e. with g′tt(zc) = 0, then geodesics anchored at the boundary

get ‘stuck’ at this critical value and do not come closer to the singularity [6].

In the asymptotic Kasner regime gtt ∼ z1−α2 ∼ z−4pt/(1−pt). If pt > 0 then gtt → 0

asymptotically, while if pt < 0 then gtt → ∞. Our charged black holes have pt > 0, and

therefore gtt must have a maximum at some intermediate zc. This maximum is visible,

for example, in figure 4 above. In contrast, neutral black holes deformed by a scalar field

source necessarily have pt < 0 and there is no critical radius for real geodesics [16].

It was explained in [6] that if real (as opposed to complex) geodesics get stuck at a

critical interior radius zc, then large mass scalar fields in the black hole exterior have an

overdamped, non-oscillatory, quasinormal mode. The mode decays as e−Γt with decay rate

Γ determined directly from the black hole interior as

Γ = M
√

gtt(zc) . (8.2)

Here M is the large mass of the scalar field. We have verified the existence of this

precise mode directly from numerical computation of perturbations in the black hole

exterior. More general, oscillating, quasinormal modes are instead related to complex

geodesics [6, 7, 34–36].

In our solutions the maximum of gtt is in between the horizon and the would-be inner

horizon, where the ER bridge collapses. Indeed, the maximum exists also for RN-AdS,

where gtt vanishes at both horizons and must therefore have a maximum in between. In

this sense, we can think of the existence of this maximum (and hence the overdamped

mode (8.2)) in our solutions as a remnant of the RN-AdS inner horizon. It is not obvious

a priori that the maximum would survive with large boundary deformations, but the fact

that pt > 0 implies that it does.

9 Discussion

We have studied the gravitational dual of the grand canonical ensemble of a CFT deformed

by relevant or irrelevant operators. These black hole spacetimes are more generic than the

familiar Reissner-Nordström AdS solution, which is the most widely studied dual to the

grand canonical ensemble of a CFT. The region of spacetime inside the horizon turns out

to be quite different, and has some interesting properties. We have shown that Cauchy

horizons never arise for relevant perturbations dual to a bulk scalar with m2 < 0 (but above
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the BF bound). Instead, the spacetime ends in a spacelike Kasner singularity. For small

deformations, the Kasner phase is preceded by a dramatic collapse of the Einstein-Rosen

bridge connecting the two asymptotic regions.

It remains an open question how the experience of an infalling observer is encoded in

the dual field theory. Even though we expect the classical description of such an observer

to break down near the singularity, we can ensure that quantum and stringy corrections

remain small until we are well within the Kasner epoch by taking large N and large coupling

in the field theory.4 By constructing more generic black hole interiors, as we have done, we

can start to understand the classical data that is needed to characterize the approach to

the singularity. This data — such as the Kasner exponents — must be part of any eventual

field theoretic understanding of the fate of infalling observers or of the black hole interior

more generally.

We conclude with a few comments that extend some of our results. Firstly, we describe

a different setting in which Cauchy horizons can survive scalar field deformations at fine-

tuned values of the parameters. We have seen that Cauchy horizons can exist at a certain

discrete set of m2 > 0 for each temperature. Without changing the scalar potential, these

are specific irrelevant deformations which will destroy the asymptotic AdS boundary. It is

interesting to note that one can also construct asymptotically AdS solutions with a smooth

Cauchy horizon and a simple quadratic potential with negative mass squared, m2 < 0. This

can be achieved with two complex scalar fields φ1, φ2 and a (slightly) inhomogeneous field

configuration. Consider the theory (2.1) with two complex scalars with the same m2 < 0.

Suppose

φ1 = φ(z)eikx, φ2 = φ(z)eiky . (9.1)

The stress tensor and hence the metric then remain homogeneous and isotropic. These

are examples of holographic Q-lattices [37]. By a similar analysis as in section 3.2, at

the linearized level the condition of a regular Cauchy horizon translates into an eigenvalue

problem for k2 with a discrete set of solutions. Each of these solutions can then be extended

to a full nonlinear solution. These solutions do not violate strong cosmic censorship since

they are still nongeneric, but it is interesting that there are simple deformations of the dual

CFT that do not decay in time and still preserve a Cauchy horizon. If one allows boundary

sources that are unbounded, there are even simpler examples. If m = 0 and φ1 = a x,

φ2 = a y, there is a particularly well studied isotropic black brane [38–40], where

f(z) = 1− a2z2 +
z4ρ2

4
−
(

z

zH

)3(

1− a2z2H +
z4Hρ

2

4

)

, (9.2)

with χ = 0 and Φ as in eq. (2.8). So long as
ρ2z4

H

4 + a2z2H ≤ 3 and ρ > 0 a smooth Cauchy

horizon exists in the interior of the black hole.5

4Since we have not compactified any directions, classical stringy effects like winding modes becoming

tachyonic do not occur.
5The fine tuned case with ρ = 0 is more intricate. For a2z2H < 1, there is no Cauchy horizon and the

interior looks similar to a Schwarzschild black brane, with pt = −1/3. For 1 < a2z2H < 3 there is a smooth

Cauchy horizon, with the upper bound a2z2H = 3 representing a smooth extremal black brane. For a2z2H = 1

there is no Cauchy horizon, and pt = 0.
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Secondly, it is straightforward to generalize our analysis to d + 1 bulk spacetime di-

mensions. The equations of motion become

zd−1eχ/2(z1−dfe−χ/2φ′)′ =
m2

z2
φ, (9.3a)

2(d− 1)zd+1(z−df)′ = −2d(d− 1) + 2m2φ2 + z4eχ(Φ′)2 + 2z2f(φ′)2 , (9.3b)

χ′ =
2z

d− 1
(φ′)2 , (9.3c)

and we can again solve the Maxwell equation explicitly: Φ′ = −ρzd−3e−χ/2. All our results

still go through. There is still rapid collapse of the ER bridge for small deformations and

at large z the geometry has a Kasner behaviour,

f = −foz
2α2

d−1
+d, φ = α

√
2 log z, χ = 4

α2

d− 1
log z + χo, (9.4)

with α2 > (d− 2)(d− 1)/2. The Kasner exponent

pt =
2α2 − (d− 1)(d− 2)

2α2 + d(d− 1)
, 1 ≥ pt > 0. (9.5)

Furthermore, it is straightforward to check that the proof of no Cauchy horizons discussed

in section 3.1 goes through for general dimensions.

Finally, bulk theories obtained from a compactification of string theory will typically

have many coupled fields, with interactions between the fields and with the Maxwell field.

Both the collapse of the Einstein-Rosen bridge and the asymptotic Kasner solution involve

nonlinear dynamics of the scalar field and therefore could potentially change qualitatively

in theories with scalar field interactions. It would be interesting to look for novel be-

havior in more general theories. Given a specific theory of interacting, coupled fields, it is

straightforward to verify if the argument in section 3.1 excluding Cauchy horizons — which

follows from integrating the wave equations between the two horizons — goes through or

not. When it does not go through, the most likely scenario is that of section 3.2, with

Cauchy horizons allowed at discrete fine-tuned temperatures determined by an eigenvalue

problem between the two horizon. Note that the arguments in those two sections can also

be applied directly in the uplifted, higher dimensional theory.
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