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1 Introduction

Since the first connections between gravity and thermodynamics were realized in the study

of black hole physics [1–3], various attempts have been made to derive Einstein’s equations

from the thermodynamics of some underlying degrees of freedom, starting with Jacobson’s

intriguing paper [4] (see also [5, 6]). With the AdS/CFT correspondence [7, 8], the under-

lying degrees of freedom for certain theories of gravity with AdS asymptotics have been

explicitly identified as the degrees of freedom of a conformal field theory. It is thus inter-

esting to ask whether the Einstein’s equations in the gravitational theory can be derived

from some thermodynamic relations for the CFT degrees of freedom.

In this note, following [9–13] we demonstrate that at least to linear order in pertur-

bations around pure AdS, Einstein’s equations do follow from a relation dE = dS closely

related to the First Law of Thermodynamics, but where the entropy S is the entanglement

entropy of a spatial region in the field theory, and E is a certain energy associated with this

region. A key point is that dS and dE can be defined and the relation dS = dE shown to

hold for arbitrary perturbations around the vacuum state; thus, the relation is more general

than the ordinary first law which applies only in situations of thermodynamic equilibrium.

The specific relation we employ, which we write as

δSA = δEhyp
A (1.1)

was derived recently by Blanco, Casini, Hung, and Myers in [13]. Here A represents a ball-

shaped spatial region, δSA represents the change in entanglement entropy of the region A
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relative to the vacuum state, and δEhyp
A represents the “hyperbolic” energy of the perturbed

state in the region A, the expectation value of an operator which maps to the Hamiltonian

of the CFT on hyperbolic space times time under a conformal transformation that takes

the domain of dependence of the region A to Hd × time. We review the derivation of this

relation in section 2 below.

For holographic conformal field theories, each side of (1.1) has an interpretation in

the dual gravity theory. Assuming that the perturbed state |Ψ〉 corresponds to some

weakly-curved classical spacetime, the entanglement entropy SA may be calculated (at the

leading order in the 1/N to which we work) via the Ryu-Takayanagi proposal [9] and its

covariant generalization [10] as the area of an extremal surface in the bulk, as we review

in section 3.1. In section 3.2, we recall that the energy δEA can be calculated from the

asymptotic behavior of the metric. Thus, the field theory relation δSA = δEhyp
A translates

to a constraint on the dual geometry.

In section 4, we show that this constraint is precisely that the bulk metric corresponding

to |Ψ〉 must satisfy Einstein’s equations to linear order in the perturbation around pure

AdS (the geometry corresponding to the CFT vacuum state). That solutions of Einstein’s

equations satisfy δSA = δEhyp
A has already been shown in [13] (see also the related earlier

work [12, 14, 15]). For completeness, we provide an alternate demonstration of this in

section 4.1. In section 4.2, we go the other direction, showing that any perturbation to

pure AdS satisfying δSA = δEhyp
A must satisfy Einstein’s equations. This requires more

than simply reversing the arguments of section 4.2 (or of [13]). In particular, demanding

that δSA = δEhyp
A for all ball-shaped spatial regions A in a particular Lorentz frame only

places mild constraints on the metric, determining the combination Hxx + Hyy in terms

of the other components. It is only when we demand that δSA = δEhyp
A in an arbitrary

Lorentz frame (i.e. for ball-shaped regions on arbitrary spatial slices) that the full set of

linearized Einstein’s equations is implied.

In appendix A, we give an alternative proof that Einstein’s equations imply δSA =

δEhyp
A that is perhaps more straightforward, but assumes that the metric is analytic.

We conclude in section 5 with a discussion.

2 Entropy-energy relation

In this section, we review the relation δSA = δEhyp
A , derived by Blanco, Casini, Hung, and

Myers in [13] as a special case of an inequality that follows from the positivity of relative

entropy.

General expression for variation of the entanglement entropy. Consider a CFT

on Rd,1 in some state |Ψ〉. Choosing a spatial region A, define ρA to be the reduced density

matrix associated with this region for the state |Ψ〉,

ρA = trĀ |Ψ〉〈Ψ| .

From this, we can define the modular Hamiltonian HA by

ρA = e−HA .
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For general states, this modular Hamiltonian is not related to the usual Hamiltonian, and

cannot be written as the integral of a local density. We now consider an arbitrary variation

of the state |Ψ〉. The change in entanglement entropy SA for the region A is given by

δSA = δ(− tr(ρA log ρA))

= − tr(δρA log ρA)

= tr(δρAHA)

= δ〈HA〉

where we have used the fact that tr(δρA) = 0, a consequence of assuming that the density

matrix has a fixed normalization. In the last line, HA is the original modular Hamil-

tonian associated with the density matrix ρA for the original state. Thus, we have the

general relation

δSA = δ〈HA〉 , (2.1)

valid in any spatial region A for arbitrary perturbations of an arbitrary state.

“Thermodynamic” relation for perturbations around the vacuum state. We

now specialize to the case where |Ψ〉 is the vacuum state, and the region A is a ball

of radius R. In this case, the domain of dependence of the ball-shaped region1 can be

mapped by a conformal transformation to hyperbolic space times time. As shown in [11],

such a transformation maps the vacuum density matrix for the region A to the thermal

density matrix e−βHhyp for the hyperbolic space theory, where the temperature is related to

the hyperbolic space curvature radius RH by β = 2πRhyp. In this case Hhyp is the integral

of the local operator T 00
hyp over hyperbolic space. Mapping back to the ball-shaped region

of Minkowski space, it follows [11] that the modular Hamiltonian can be written as

Hvac
A = 2π

∫

A

ddx
R2 − r2

2R
T 00

where T 00 is the energy density operator for the CFT and r is a radial coordinate centered

at the center of the ball.

In this case, we have

δ〈HA〉 = 2π

∫

A

ddx
R2 − r2

2R
δT 00 ≡ δEhyp

A , (2.2)

i.e. the variation in the expectation value of the vacuum modular Hamiltonian Hvac
A under

a small perturbation away from the vacuum state is equal to the change in the “hyperbolic”

energy of the region. Thus, the general relation (2.1) gives

δSA = δEhyp
A , (2.3)

reminiscent of the First Law of Thermodynamics. We emphasize however that the en-

tanglement entropy SA can be defined for any state, in contrast to the usual thermody-

namic entropy which applies to equilibrium states. Thus, (2.3) represents a much more

general result.

1The domain of dependence of A is the set of points p for which all inextensible causal curves passing

through p also pass through A.
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3 Gravitational implications of dS = dE in holographic theories

Let us now consider the case of a holographic conformal field theory on Minkowski space,

whose states correspond to asymptotically AdS spacetimes in some quantum theory of

gravity. In this case, each side of the relation δSA = δEhyp
A has a straightforward grav-

itational interpretation. As we review below, the left side may be calculated using the

Ryu-Takayanagi proposal [9, 10], while the right side can be calculated from the asymp-

totic form of the metric. The equality of these quantities represents a constraint on the

gravitational dynamics implied by the dual field theory. In the next section, we show that

this constraint is precisely equivalent to Einstein’s equations linearized about AdS.

3.1 Gravitational calculation of dS

According to the Ryu-Takayanagi proposal [9] and its covariant generalization [10], the

entanglement entropy SA for a state with a geometrical gravity dual is proportional2 to

the area of the extremal co-dimension two surface Ã in the bulk whose boundary coincides

with the boundary of the region A on the AdS boundary,

SA =
Area(Ã)

4GN
.

The surface Ã is an extremum of the area functional

A(G,Xext) =

∫

ddσ
√
g

where

g = det(gab) = det(Gµν)
dXµ

dσa

dXν

dσb
.

Starting from pure AdS, with metric3

ds2 = G0
µνdx

µdxν =
1

z2
(−dt2 + dz2 + d~x2) (3.1)

the extremal surface ending on the spatial boundary sphere of radius R is described by the

spacetime surface

~x2 + z2 = R2 . (3.2)

We now consider a small variation

Gµν = G0
µν + δGµν . (3.3)

In this case, the extremal surface changes, and the new area is

A(G0 + δG,X0
ext + δX)

2Here, we are working to leading order in 1/N . See the discussion section for comments on 1/N correc-

tions.
3Throughout this paper, we set the AdS radius to one.

– 4 –



J
H
E
P
0
4
(
2
0
1
4
)
1
9
5

where the variation δX will be of order δG. Since the original surface was extremal, we have

A(G0, X
0
ext + δX) = A(G0, X

0
ext) +O(δX2) .

Thus, the variation of the surface gives rise to changes in the area that start at order δG2.

To find the order δG variation of the area, we need only evaluate

A(G0 + δG,X0
ext)−A(G,X0

ext)

expanded to linear order in δG. We find that

δA =

∫

ddσ
1

2

√
g0g

ab
0 δgab , (3.4)

where we have used lower-case letters to represent pullbacks to the extremal surface. Thus,

for field theory state |Ψ〉 close to the vacuum state with dual geometry described by (3.3),

the change in the entanglement entropy for region A relative to the vacuum state is given

by an integral of the metric perturbation over the original extremal surface Ã. Using

the explicit metric (3.1) and parameterizing the extremal surface (3.2) by the boundary

coordinates xi, we have finally that

δS =
R

8GN

∫

ddx

(

δij −
1

R2
xixj

)

Hij . (3.5)

3.2 Gravitational calculation of dE

General asymptotically AdS spacetimes with a Minkowski space boundary geometry may

by described using Fefferman-Graham coordinates by a metric

ds2 =
1

z2
(dz2 + dxµdx

µ + zdHµν(x, z)dx
µdxν) . (3.6)

where pure AdS, dual to the CFT vacuum, corresponds toHµν = 0. With this parametriza-

tion, the expectation value tµν of the field theory stress-energy tensor is simply related to

the asymptotic metric by [16, 17]

tµν(x) =
d+ 1

16πGN
Hµν(z = 0, x) .

Thus, we may write the change in the hyperbolic energy (2.2) relative to the vacuum

state as

δEhyp
A =

d+ 1

16GN

∫

A

ddx
R2 − r2

R
δH00(0, x) . (3.7)

This is an integral of the boundary value of H over the region A.

4 Derivation of linearized Einstein’s equations from dE = dS

We are now ready to demonstrate that using the holographic dictionary reviewed in the

previous section, the CFT relation δSA = δEhyp
A is equivalent to the constraint that metric

corresponding to the perturbed CFT satisfies Einstein’s equations to linear order. For
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clarity, we focus on the case of 2+1 dimensional conformal field theories, corresponding to

gravitational theories with four non-compact dimensions. However, the result can also be

proven for general higher-dimensional theories.

Using the results (3.5) and (3.7), the CFT relation δSA = δEhyp
A implies that a disk of

any radius R centered at any point (x0, y0) on the boundary, the integral

δŜ =

∫

DR

dxdy
{

Hxx(
√

R2 − x2 − y2, t, x+ x0, y + y0)(R
2 − x2)

+Hyy(
√

R2 − x2 − y2, t, x+ x0, y + y0)(R
2 − y2)

−2Hxy(
√

R2 − x2 − y2, t, x+ x0, y + y0)xy
}

(4.1)

over the bulk extremal surface must equal the integral

δÊ =
3

2

∫

DR

dxdy(R2 − x2 − y2)Htt(0, t, x+ x0, y + y0) (4.2)

over the z = 0 surface, where we have absorbed a factor of 1/8GNR to define δŜ(R, x0, y0)

and δÊ(R, x0, y0) (we drop the hats from now on). We will now show that this equality

is true for all disks in all Lorentz frames if and only if the bulk metric satisfies Einstein’s

equations to linear order in H. As shown in [13], these are equivalent to the set of equations

Hα
α = 0 ∂µH

µν = 0
1

z4
∂z

{

z4∂zHµν

}

+ ∂2Hµν = 0 (4.3)

that arise by plugging the Fefferman-Graham form of the metric (3.6) into the zz, zµ, and

µν components of Einstein’s equations

Wµν = Rµν −
1

2
gµνR− 3gµν = 0 ,

respectively and using the fact that H is regular at z = 0. In (4.3), the last equation is

equivalent to saying that each component of z3H must satisfy the Laplace equation on the

AdS background.

4.1 Proof that δS = δE for solutions of Einstein’s equations

We begin by showing that solutions of the linearized Einstein’s equations obey the equality

δS = δE. This has already been checked in section 3.1 of [13] by demonstrating the

result for a complete basis of solutions to the equations (4.3). In this section, we offer

an alternative proof that does not require using an explicit basis of solutions. A third

proof that is perhaps more straightforward but assumes a series expansion of H is given in

appendix A.

Using the equations (4.3), we have:

∂2
tHtt = ∂2

t (Hxx +Hyy)

⇒ ∂t(∂xHxt + ∂yHyt) = ∂2
t (Hxx +Hyy)

⇒ ∂2
xHxx + ∂2

yHyy + 2∂x∂yHxy = ∂2
t (Hxx +Hyy)

⇒ ∂2
xHxx + ∂2

yHyy + 2∂x∂yHxy = (∂2
x + ∂2

y)(Hxx +Hyy) +
1
z4
∂z(z

4∂z(Hxx +Hyy))

⇒ 2∂x∂yHxy = ∂2
yHxx + ∂2

xHyy +
1
z4
∂z(z

4∂z(Hxx +Hyy)) .

(4.4)
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We would like to use the last equation to eliminate Hxy from (4.1). However, we have Hxy

rather than ∂x∂yHxy in (4.1). To make progress, we begin by differentiating δS by x0 and

y0 (the coordinates of the center of the boundary disk). This gives

∂x0
∂y0δS =

∫

DR

dxdy
{

∂x∂yHxx(
√

R2 − x2 − y2, t, x+ x0, y + y0)(R
2 − x2)

+∂x∂yHyy(
√

R2 − x2 − y2, t, x+ x0, y + y0)(R
2 − y2)

−2∂x∂yHxy(
√

R2 − x2 − y2, t, x+ x0, y + y0)xy
}

. (4.5)

Now, using (4.4), we have

∂x0
∂y0δS =

∫

DR

dxdy

{

∂x∂yHxx(R
2 − x2) + ∂x∂yHyy(R

2 − y2).

− xy

(

∂2
yHxx + ∂2

xHyy +
1

z4
∂z(z

4∂z(Hxx +Hyy))

)

}

. (4.6)

It is straightforward to check that this expression is equal to the integral over the extremal

surface of an exact form dA, where A is defined for all (x, y, z, t) as

A =
(

−xz∂zHxx − 3xHxx + z2∂xHyy

)

dx

+
(

z2∂yHxx − yz∂zHyy − 3yHyy

)

dy

+(−yz∂yHxx − xz∂xHyy) dz . (4.7)

By Stokes theorem, this equals the integral of A over the boundary of the extremal surface,

so we have

∂x0
∂y0δS =

∫

∂DR

A

= −3

∫

∂DR

(xHxxdx+ yHyydy)

= 3

∫

dθ(Hxx +Hyy) cos(θ) sin(θ) .

In the second step, we have used the fact that all other terms in A vanish for z = 0.

Similarly, we find that ∂x0
∂y0δE may be written as

∂x0
∂y0δE =

3

2

∫

DR

dxdy∂x0
∂y0Htt(0, t, x+ x0, y + y0)(R

2 − x2 − y2)

=
3

2

∫

DR

dxdy∂x∂y(Hxx(0, t, x+ x0, y + y0)

+Hyy(0, t, x+ x0, y + y0))(R
2 − x2 − y2)

=
3

2

∫

DR

dÂ ,

where we can choose

Â =
(

−2xHxx + (R2 − x2 − y2)∂xHyy

)

dx+
(

−2yHyy + (R2 − x2 − y2)∂yHxx

)

dy .
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Again, using Stokes theorem, this reduces to the integral of (3/2)Â over the boundary, so

∂x0
∂y0δE =

3

2

∫

∂DR

Â

= −3

∫

∂DR

(xHxxdx+ yHyydy)

= ∂x0
∂y0δS .

We conclude that for any H satisfying Einstein’s equations,

δS(x0, y0, R;H)− δE(x0, y0, R;H) = Cx(x0, R;H) + Cy(y0, R;H) ,

where Cx and Cy are some functionals linear in H that do not depend on y0 or x0 respec-

tively. Now, consider the class of functions H that vanish for sufficiently large x20 + y20 at

the time t = 0 where we evaluate δS and δE. In this case, fixing any x0 and taking y0 → ∞
or fixing any y0 and taking x0 → ∞, the left side must vanish. For this to be true on the

right side, both Cx and Cy must be constant (as functions of x0 and y0), with Cx+Cy = 0.

Thus, the right side vanishes for any H that vanishes as x20+y20 → ∞. But more general H

can be written as linear combinations of such functions, and since the right side is a linear

functional in H, it must vanish for all H. This completes the argument that δSA = δEhyp
A

for solutions of Einstein’s equations.

4.2 Proof that δS = δE implies the linearized Einstein’s equations

In this section, we go the other direction to show that the relation δS = δE implies that

the metric satisfies Einstein’s equations to linear order, i.e. that the equivalence of (4.1)

and (4.2) implies the relations (4.3).

Given the boundary stress tensor tµν , let HEE
µν be the corresponding metric per-

turbation that follows from Einstein’s equations, i.e. the solution of (4.3) satisfying

HEE
µν (0, t, x, y) = (16πGN/3)tµν . We will show that there is no other H with these bound-

ary conditions for which δS = δE in all frames of reference.

Suppose there were another H for which δS = δE for all disk shaped regions in all

Lorentz frames. Then the difference ∆ = H −HEE must satisfy

∆µν(z = 0, t, x, y) = 0 , (4.8)

and

0 =

∫

DR

dxdy

{

∆xx

(

√

R2 − x2 − y2, x+ x0, y + y0

)

(

1− x2

R2

)

+∆yy

(

√

R2 − x2 − y2, x+ x0, y + y0

)

(

1− y2

R2

)

−2∆xy

(

√

R2 − x2 − y2, x+ x0, y + y0

) xy

R2

}

(4.9)

for arbitrary R, x0, and y0, and in an arbitrary Lorentz frame.

– 8 –



J
H
E
P
0
4
(
2
0
1
4
)
1
9
5

Let us first see the consequences of demanding this result in a fixed frame. To begin,

we note that (4.9) may be expanded in powers of R using the basic integral
∫

DR

dxdy(R2 − x2 − y2)
n
2 x2mxy2my = Rn+2mx+2my+2In,mx,my ,

where

In,mx,my =
Γ(mx +

1
2)Γ(my +

1
2)Γ(

n
2 + 1)

Γ
(

n
2 +mx +my + 2

) . (4.10)

Defining

∆µν(z, x, y) =
∞
∑

n=0

zn∆(n)
µν (x, y) (4.11)

we find that (4.9) becomes4

0=
∑

Rn+2mx+2my+2

{

1

(2mx)!(2my)!
∂2mx

x
∂2my

y
∆(n)

xx
(t, x0, y0)(In,mx,my

− In,mx+1,my
)

+
1

(2mx)!(2my)!
∂2mx

x
∂2my

y
∆(n)

yy
(t, x0, y0)(In,mx,my

− In,mx,my+1)

− 2R2 1

(2mx+1)!(2my+1)!
∂2mx+1
x

∂2my+1
y

∆(n)
xy

(t, x0, y0)In,mx+1,my+1

}

.

(4.12)

The vanishing of the terms at order RN+2 implies that

∆(N)
xx (t, x0, y0) + ∆(N)

yy (t, x0, y0) =
∑

(mx,my) 6=(0,0)

C
N,mx,my
xx ∂2mx

x ∂
2my
y ∆

(N−2mx−2my)
xx

+C
N,mx,my
yy ∂2mx

x ∂
2my
y ∆

(N−2mx−2my)
yy

+C
N,mx,my
xy ∂2mx−1

x ∂
2my−1
y ∆

(N−2mx−2my)
xy ,

where the C coefficients can be read off from (4.12). As examples, the first few equations

give

∆(0)
xx (t, x0, y0) + ∆(0)

yy (t, x0, y0) = 0

∆(1)
xx (t, x0, y0) + ∆(1)

yy (t, x0, y0) = 0

∆(2)
xx (t, x0, y0) + ∆(2)

yy (t, x0, y0) = −1

4
(∂2

y∆
(0)
xx (t, x0, y0) + ∂2

x∆
(0)
yy (t, x0, y0))

− 3

20
(∂2

x∆
(0)
xx (t, x0, y0) + ∂2

y∆
(0)
yy (t, x0, y0))

+
1

5
∂x∂y∆

(0)
xy (t, x0, y0)

∆(3)
xx (t, x0, y0) + ∆(3)

yy (t, x0, y0) = −1

6
(∂2

y∆
(1)
xx (t, x0, y0) + ∂2

x∆
(1)
yy (t, x0, y0))

−1

6
(∂2

x∆
(1)
xx (t, x0, y0) + ∂2

y∆
(1)
yy (t, x0, y0))

+
1

9
∂x∂y∆

(1)
xy (t, x0, y0) . (4.13)

4Here, we are assuming that the function ∆ is analytic. It would be useful to find a derivation of our

result that holds more generally.

– 9 –



J
H
E
P
0
4
(
2
0
1
4
)
1
9
5

We see that this set of equations completely determines the combination ∆xx + ∆yy at

each order in z in terms of the lower order terms in the expansion of ∆. However, apart

from the constraint (4.8) on the boundary behavior (equivalent to ∆
(0)
µν = 0), the remaining

elements of ∆µν are completely unconstrained.

To constrain ∆µν further, we need to use the requirement that the relation (4.9) should

hold in an arbitrary Lorentz frame. Thus, for each choice of reference frame, we will have

equations analogous to (4.13). Specifically, consider a general boost

Λ =







γ γβx γβy

γβx 1 + β2
x

γ2

γ+1 βxβy
γ2

γ+1

γβy βxβy
γ2

γ+1 1 + β2
y

γ2

γ+1






.

In the equations for a general frame of reference obtained by such a boost, the left sides

in (4.13) will be replaced by

Λx
µΛx

ν∆µν + Λy
µΛy

ν∆µν .

Up to an overall constant factor, this gives

∆ii + 2βi∆it + β2

(

∆tt −
1

2
∆ii

)

+

(

βiβj −
1

2
δijβ

2

)

∆ij .

Now, consider the general version of the second equation in (4.13) (the first equation already

holds by (4.8)). This requires the vanishing of

∆
(1)
ii + 2βi∆

(1)
it + β2

(

∆
(1)
tt − 1

2
∆

(1)
ii

)

+

(

βiβj −
1

2
δijβ

2

)

∆
(1)
ij .

For a fixed x0 and y0, this is a polynomial in βi that must vanish for all values of βi. Thus,

the polynomial must be identically zero. At order β0, this gives

∆
(1)
ii (t, x0, y0) = 0

as we had before. At order β, we get

∆
(1)
it (t, x0, y0) = 0 .

At order β2, this gives

∆
(1)
tt (t, x0, y0) =

1

2
∆

(1)
ii (t, x0, y0) = 0

and

∆
(1)
ij (t, x0, y0)−

1

2
∆ij∆

(1)
kk (t, x0, y0) = 0 .

Thus, we have ∆
(1)
µν = 0. We can now continue to analyze the remaining equations in (4.13)

in turn. Supposing that we have shown ∆
(k)
µν = 0 for k < n, the general version of the nth

equation in (4.13) requires the vanishing of

∆
(n)
ii + 2βi∆

(n)
it + β2

(

∆
(n)
tt − 1

2
∆

(n)
ii

)

+

(

βiβj −
1

2
δijβ

2

)

∆
(n)
ij ,

since the right hand side in (4.13) will be zero. Repeating the analysis above, we conclude

that ∆
(n)
µν = 0. By induction, this holds for all n, so we have shown that ∆µν = 0,

completing the proof.
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5 Discussion

In this paper, we have seen that to linear order in perturbations about the vacuum state,

the emergence of gravitational dynamics in the theory dual to a holographic CFT is di-

rectly related to a general relation satisfied by CFT entanglement entropies on ball-shaped

regions. This relation is closely related to the First Law of Thermodynamics, but is more

general since it applies to arbitrary perturbations of the state rather than perturbations

for which the system remains in thermal equilibrium.

While the CFT relation (1.1) is an exact equivalence, we have made use of this re-

lation only at the leading order in 1/N where the entanglement entropy maps over to

the extremal surface area. This corresponds to working in the classical limit in the bulk.

According to [18], 1/N corrections to the CFT entanglement entropy correspond to bulk

quantum corrections including the entropy of entanglement of bulk quantum fields across

the extremal surface. It will be interesting to understand the implications of the CFT

relation (1.1) beyond the classical level in the bulk, but we leave this for future work.

The derivations in section 4 were written specifically for the case of four-dimensional

gravity. However, the proof given in [13] that Einstein’s equations imply δS = δE, and

our method of proof in section 4.2 that δS = δE implies the linearized Einstein’s equations

work for general dimensions.5

The linearized Einstein’s equations we derived are for the metric components in the field

theory directions and radial direction of the bulk. Any additional fields in the gravitational

theory, including metric components in any compactified directions, are not constrained by

the CFT relation we have considered. At linear order, the equations for these fields decouple

from the linearized Einstein’s equations for the metric in the non-compact directions. Thus,

we can say that the universal relation δS = δE is equivalent to the universal sector of the

linearized bulk equations.

Our results do not imply that all holographic theories are dual to gravitational theories

whose metric perturbations satisfy Einstein’s equations. In this paper, we assumed that

entanglement entropies are related to areas via the usual Ryu-Takayanagi formula, and

that the stress-energy tensor in the dual field theory is related to the asymptotic form of

the metric. In more general theories, the entanglement entropy may correspond to a more

complicated functional of the bulk geometry and the relation between the stress tensor and

asymptotic metric may be modified. In these cases, we expect that the bulk equations will

be different, for example involving α′ corrections with higher-derivative terms. However,

it may be possible following the methods in this paper to derive the linearized version of

these more general equations given a particular choice for the holographic entanglement

entropy formula and the holographic formula for the stress tensor.

It will be interesting to see whether the first non-linear corrections to Einstein’s equa-

tions in the bulk are equivalent to some simple property of entanglement entropies.

Finally, we comment on the relation to the work of Jacobson [4], which partly motivated

our investigations. Jacobson realized that Einstein’s equations could be derived from the

5Specifically, eq. (4.9) becomes 0 =
∫
DR

ddx(Deltaii − xixj/R
2Deltaij); expanding this in powers of R

using the generalization of eq. (4.10) yields at each order in R an equation that relates ∆ii(n) to quantities

calculated from ∆ at lower orders in n. The steps in the proof are as before.
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assumption that the energy flux through a part of any bulk Rindler horizon gives rise to a

proportional local change in area of this horizon. Interpreting the area as an entropy, such a

relation looks like the first law of thermodynamics. However, in Jacobson’s work, it was not

clear why areas of segments of an arbitrary bulk Rindler horizon (not necessarily associated

with any black hole) should correspond to an entropy, so the origin of the thermodynamic

relation remained mysterious.

In our case, the “thermodynamic relation” dS = dE is an exact quantum relation

(i.e. not really thermodynamics) derived to hold for the underlying fundamental degrees of

freedom associated with our gravitational system. Thus, while our final result (in contrast

to Jacobson’s work) applies so far only at the linearized level, the starting point is well

understood. In detail, the bulk interpretation of our dS = dE relation is somewhat different

that Jacobson’s starting point (the bulk surfaces/horizons we deal with are global rather

than local and the energy has a different interpretation), but the two relations were similar

enough to motivate the question of whether Einstein’s equations could be derived from the

first law of [13].
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A Alternative derivation of linearized Einstein’s equations from δE = δS

In this appendix, we offer an alternative proof that solutions of Einstein’s equations satisfy

δSA = δEhyp
A . This proof replaces δSA = δEhyp

A with the infinite set of relations obtained

by matching the terms in the power series expansion of this relation in R, the radius of the

disk A, as we did in section 4.2.

A.1 Expansion of δE = δS in powers of R

To begin, we expand both (4.1) and (4.2) in powers of R. Defining

Hµν(z, x, y) =
∞
∑

n=0

znH(n)
µν (x, y) (A.1)

we have

δE =
3

2

∑

mx,my=0

R2+2mx+2myI2,mx,my∂
2mx
x ∂

2my
y H

(0)
tt (t, x0, y0) (A.2)

while

δS =
∑

Rn+2mx+2my+2

{

1

(2mx)!(2my)!
∂2mx

x
∂2my

y
H(n)

xx
(t, x0, y0)(In,mx,my

− In,mx+1,my
) (A.3)

+
1

(2mx)!(2my)!
∂2mx

x
∂2my

y
H(n)

yy
(t, x0, y0)(In,mx,my

− In,mx,my+1)

− 2R2 1

(2mx+1)!(2my+1)!
∂2mx+1
x

∂2my+1
y

H(n)
xy

(t, x0, y0)In,mx+1,my+1

}

where I was defined in (4.10).

– 12 –



J
H
E
P
0
4
(
2
0
1
4
)
1
9
5

A.2 Checking that solutions of Einstein’s equations satisfy δS = δE

Using these expansions, it is straightforward to verify that any solution of the linearized

Einstein’s equations (4.3) satisfies δE = δS, as was done originally in [13] and by another

alternative approach in section 4.

Using the expansion (A.1), the equations (4.3) become

H
(n)
tt = H(n)

xx +H(n)
yy (A.4)

∂tH
(n)
tt = ∂xH

(n)
tx + ∂yH

(n)
ty (A.5)

∂tH
(n)
tx = ∂xH

(n)
xx + ∂yH

(n)
xy (A.6)

∂tH
(n)
ty = ∂xH

(n)
xy + ∂yH

(n)
yy (A.7)

H(n)
µν =

1

n(n+ 3)
(∂2

t − ∂2
x − ∂2

y)H
(n−2)
µν n ≥ 2 (A.8)

H(1)
µν = 0 . (A.9)

Starting with (A.4) and then using (A.5), (A.6), (A.7), and finally (A.8), we find:

∂2
tH

(n)
tt = ∂2

t (H
(n)
xx +H(n)

yy )

⇒ ∂t(∂xH
(n)
xt + ∂yH

(n)
yt ) = ∂2

t (H
(n)
xx +H(n)

yy )

⇒ ∂2
xH

(n)
xx + ∂2

yH
(n)
yy + 2∂x∂yH

(n)
xy = ∂2

t (H
(n)
xx +H(n)

yy )

⇒ ∂2
xH

(n)
xx + ∂2

yH
(n)
yy + 2∂x∂yH

(n)
xy = ∂2

t (H
(n)
xx +H(n)

yy )

⇒ ∂2
xH

(n)
xx + ∂2

yH
(n)
yy + 2∂x∂yH

(n)
xy = (∂2

x + ∂2
y)(H

(n)
xx +H(n)

yy )

+ (n+ 2)(n+ 5)(H(n+2)
xx +H(n+2)

yy )

⇒ 2∂x∂yH
(n)
xy = ∂2

yH
(n)
xx + ∂2

xH
(n)
yy + (n+ 2)(n+ 5)(H(n+2)

xx +H(n+2)
yy ) .

Using this last equation, we can eliminate H
(n)
xy from (A.3). This gives

δS =
∑

Rn+2mx+2my+2

{

1

(2mx)!(2my)!
∂2mx
x ∂

2my
y H(n)

xx (t, x0, y0)C
xx
n,mx,my

+
1

(2mx)!(2my)!
∂2mx
x ∂

2my
y H(n)

yy (t, x0, y0)C
yy
n,mx,my

}

(A.10)

where for n ≥ 2 we have

Cxx
n,mx,my

= In,mx,my − In,mx+1,my −
2my

2mx + 1
In,mx+1,my

− n(n+ 3)

(2mx + 1)(2my + 1)
In−2,mx+1,my+1

= 0

Cyy
n,mx,my

= In,mx,my − In,mx,my+1 −
2mx

2my + 1
In,mx,my+1

− n(n+ 3)

(2mx + 1)(2my + 1)
In−2,mx+1,my+1

= 0

– 13 –
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while for n = 1 and n = 0, we have

Cxx
1,mx,my

= I1,mx,my − I1,mx+1,my −
2my

2mx + 1
I1,mx+1,my =

4

3
I3,mx,my

Cyy
1,mx,my

= I1,mx,my − I1,mx,my+1 −
2mx

2my + 1
I1,mx,my+1 =

4

3
I3,mx,my

and

Cxx
0,mx,my

= I0,mx,my − I0,mx+1,my −
2my

2mx + 1
I0,mx+1,my =

3

2
I2,mx,my

Cyy
0,mx,my

= I0,mx,my − I0,mx,my+1 −
2mx

2my + 1
I0,mx,my+1 =

3

2
I2,mx,my .

In each case, we have made simplifications using the definition (4.10) of I. Using these

results together with (A.9), we find that (A.10) simplifies to

δS =
∑

R2mx+2my+2 1

(2mx)!(2my)!
∂2mx
x ∂

2my
y (H(0)

xx (t, x0, y0)+H(0)
yy (t, x0, y0))

(

3

2
I2,mx,my

)

=
3

2

∑

R2mx+2my+2 1

(2mx)!(2my)!
∂2mx
x ∂

2my
y H

(0)
tt (t, x0, y0)I2,mx,my

= δE .

Thus, we have verified that δS = δE for linearized solutions of Einstein’s equations, pro-

viding an alternate argument to the one in [13].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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