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It is shown that a symmetric tensor field of the second rank A.av (x) should be introduced 
in order to retain the invariance of the action-integral under a generalized translation x.a 

-'>x.a+~.a(x), provided that the original action-integral is invariant under inhomogeneous 
Lorentz transformations. It is further proved that the generalized gauge field A.av should ap
pear in the Lagrangian in exactly the same fashion as the metric tensor g .av does in Einstein's 
theory of gravitation. 

Some general feature is also discussed with respect to a law of conservation of some 
physical quantity which becomes no longer valid when the interaction with the generalized 

gauge field takes place, provided that the associated group is non-Abelian. 

§ l. Introduction 

A gravitational field was first interpreted as a kind of generalized gauge 

fields by one of the present authors 1
) by introducing a system of tetrads haP (x) 

and extending the Lorentz transformation of the tetrads at each world point to a 

larger group depending upon six arbitrary functions of x instead of six parameters. 

Besides this article, some authors2
),S) tried to introduce a gravitational field by 

extending the translation group to a general transformation of coordinates 

X#---7X# + ~# (x), 

but their arguments seem rather unsatisfactory and complicated. 

Many groups of transformations depending on parameters have been found 

in connection with the different kinds of conservation laws. Among these groups 

it is well known that the group of phase-transformations of complex fields was 

extended to the gauge transformation depending on an arbitrary scalar function 

A (x) connected with the existence of an electromagnetic field. The invariance 

under rotations in the iso-spin space was extended to the invariance under a 

generalized rotation group by an adjoined introduction of the Yang-Mills field. 

The most well-known group, namely the translation group, has been conjectured 

to be related with the gravitational field because the gravitational field is, following 

Einstein's equation, produced by the energy-momentum tensor of material fields, the 

conservation of which holds owing to the invariance of the material system under 

a translation of coordinates. In spite of such a conjecture, however, there has not 

been any convincing article which shows the gravitational field being derivable 

from the postulate that the action integral of a matrial system is invariant under 

a group of gener(llized translations depending upon four arbitrary functions of x. 
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Gravitational Field as a Generalized Gauge Field 613 

The aim of the present paper is to show that a tensor field of the second 
rank should be introduced in order to retain the invariance of the action-integral 
and that this tensor field should appear in the original Lagrangian of the material 
field in exactly the same way as the metric tensor g pv does in Einstein's theory 

of gravitation. This conclusion is derived from the assumption that the original 

Lagrangian is invariant under inhomogeneous Lorentz transformations but the in
variance under rotations of tetrads has not been assumed. 

In addition to the derivation of the gravitational field, some general feature 
is discussed with respect to the laws of conservation. It is shown that a physi
cal quantity owned by some field, say ¢A (x), which is conserved owing to the 

invariance of the action-integral of ¢A under some parameter-group of transfor

mations, becomes unable to satisfy the law of conservation when the original ¢
field begins to interact with a generalized gauge :field associated with the group 
mentioned above, provided that this group of transformations is non-Abelian. The 

conservation is recovered only when the quantity carried by the generalized gauge 

field is taken into account together with that possessed by the field ¢A· 
The present procedure of introducing the interaction of a gravitational field 

with a material system might include its application in a derivation of an S
matrix for a material system interacting with a gravitational field if the Lorentz
invariant S-matrix is known for this matrial system without the gravitational in
teraction. 

§ 2. Fundamental postulate 

Consider a field ¢A (x) (A= 1, 2· · ·N) with a Lagrangian density 

Let us assume that the action-integral 

Is invariant under the following groups of transformations: 

i) translation 

(aP =constant parameter) 

ii) Lorentz transformation 

where ep Is an infinitesimal parameter and is restricted by the condition 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/45/2/612/1874397 by guest on 21 August 2022



614 R. Utiyama and T. Fukuyama 

p=v=1, 2, 3, 

tl~V, 

tt=V=O. 

Here it has been assumed that the field ¢A is a kind of tensor and the transfor
mation-coefficient C~ is an appropriate sum of products of Kronecker's IJ. 

Our fundamental postulate is that the action integral should be invariant 
under the generalized translations which is a generalization of (i) and (ii) de
pending upon four infinitesimal arbitrary functions of x, in place of four para
meters a'", i.e. 

x"'-?x"'' =x"'+ ~"" (x). (2·1) 

In order to realize this postulate, the original arguments of the Lagrangian, 
for example 8>..¢A, should be replaced with an appropriately defined "covariant 
derivative" f\¢A by introducing a new field Ax(x). 

Let a Lagrangian 

L1 (¢A, ¢A, A.• Ax, Ax,>..) 

be a substitute for the original one. Since the parameter a"' in (i) behaves as 
a vector under Lorentz transformations, it is plausible to assume that the new 
field Ax is a covariant tensor of the r-th rank, following the conclusion of the 
theory of generalized gauge fields. 4

) Thus the field Al"l""l"r (x) has to be trans
formed under the transformation (2 ·1) in the following way: 

-"A ( ) -A D c~~~···llr )v cf! 
U l"t'''l"r X - Vt••·vr" f!t"'f!r fl • £" ,v' (2·2) 

where the transformation coefficient D is 

(2 ·3) 

The expression of 1J¢A for the Lorentz transformation has the form 

(JcpA=c/JB·C~;-~!!,v 

for the variation of ¢A under the transformation (2 ·1). This expression of 1J¢A 
gives rise to not only terms being proportional to f)~ /8x but also terms having 
82~ jfJx · fJx in the variation of the action-integral. In order to cancel these terms, 
it is necessary (a) to let the Lagrangian L 1 depend upon fJAidax in addition to 
Ax if Ax is a tensor as we have assumed, or (b) to change the definition (2 · 2) 
of IJAx in such a way that a term having 82~ /ax· ax appears in the definition of 
iJAx, provided that fJAx/ax should not appear in L 1• The approach (b) means 
an abandonment of the tensor character of the A-field. In the present paper, 
however, we assume the A-field to be a tensor, and consequently L 1 depends on 
both AK and aAx/ax, 
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Gravitational Field as a Generalized Gauge Field 

The postulate that the new action-integral 

I1 = f L1d
4
x 

615 

should be invariant under (2 ·1) leads to the following various identities (see 
Appendix A) : 

f) J) { [ LI]A. c~~. ¢B + [ Ll]a!"'ar. D (~~:::~~)~. Au!···br} 

+ {tL and v interchanged} =0, 

where the following abbreviations have been used: 

§ 3. Determination of the type of gauge field A<a1 ... r,r;r) 

(2·4) 

(2 ·5) 

(2 ·6) 

(2·7) 

The identity (2 · 7) shows that ¢A,v and Aa
1 
... ar,A- should be included m L 1 

only through a particular linear combination f7 A-¢A of the following type: 

(3 ·1) 

where the coefficient M is to be determined later and probably depends on x. 
f7 A-¢A is called in what follows a "covariant derivative" of ¢A· 

The Lagrangian L 1 can be rewritten in terms of f7 A-¢ A as 

(3·2) 

Making use of (3 ·1) and rewriting (2 · 7) in terms of L 2, we have 

8L2 ·'"'- . [{~v.cB!l +MBa1 ... arv·D(bt· .. br)ll·A } >:lf7 'f'B U;, Ap AJ. a1 .. ·ar p b!'"br 
U A.rpA 

+ {v and tL interchanged}] =0. 
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616 R. Utiyama and T. Fukuyama 

This expression suggests that the coefficient M should be a linear combination 

of c~~: 

By substituting (3 · 3) . for M's in the above identity, (2 · 7) gives . 

2~a ~(vp)_ - Up'U().{3)= 

(3 ·3) 

Since the left-hand side of (3 · 4) is symmetric with respect to the subscripts A 
and {3, the same should also be true for the right-hand side. Thus we find*> 

In what follows, for the sake of simplicity, let the discussion be restricted 

to the case that the field A is an irreducible tensor of the r-th rank with a full 

symmetry: 

Acal· .. ar) (x) · 

The double contraction of (3 · 4) by putting v =A and fJ. = {3 and making use of 

the definition (2 · 3) gives a relation 

2o~a _ 2r yca~· .. ar- 1 •/.l)va (x) A (x) 
Up- • (vp) • (a 1• .. ar- 1p) • 

(3 ·5) 

the above relation Is written as 

(3 ·6) 

This result shows that r should be > 1 otherwise (3 · 6) leads to a contradiction. 
The relation (3 · 5) allows us to represent Y in terms of A Cat ... l as 

(3 ·7) 

where the coefficient Z on the right-hand side is an appropriate sum of products 

of Kronecker's o. 
Substituting (3 · 7) for Y in (3 · 4) and making use of the definition (2 · 3) 

of D, we have an important relation 

(3·8) 

From our assumption that Aca
1 

... ar) and A (IJ 1 
... 1Jr) are both fully symmetric with 

respect to their suffices, it is plausible to assume that the undetermined coefficient 

Z is also symmetric with respect to both superscripts (a1 .. ·ar) and subscripts 

(b1 • • ·br), in addition to the symmetric pair of subscripts ().{3). Since we have 

no information about the symmetry of Z with respect to the extra superscripts 

*> ({3).) means that Y is symmetric with respect to suffices inside the parentheses. 
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Gravitational Field as· a Generalized Gauge Field 617 

v and a, Z having the above mentioned symmetry with respect to the suffices 
can be expressed in terms of the products of Kronecker's o in the following way: 

where a, b, c and d are undetermined constants. A'(···) 
U(···) ln (3 · 9) means 

where the summation should be taken over all the permutations of (b1· · ·br). 
Inserting the expression (3 · 9) into (3 · 8), and taking contractions of (3 · 8) 

with respect to many different pairs of suffices, we arnve at the result 

r=2, a=b=O, c= -d=i (3 ·10) 

with the normalization 

AC~'P)(x) ·Acpv)(x) =o~. (3·11) 

The details of the derivation of this result are given m Appendix B. (3 ·10) 
determines Z, Y and 17 >..¢A as follows: 

YS/i)a 2 )va (x) · A(a
1
a

2
),v =!A aa {Aa>..,,e + A,ea,A.- A>..,e,a} = J';#;. (x), 

17 >..¢A= f)>..¢ A+ ¢B · Clj_~ · Ll{n . 

(3 ·12) 

(3 ·13) 

(3 ·14) 

Ll';#;. in (3 ·13) is nothing but the Christoffel's r;;. provided that our Af'V IS 

identified with the metric tensor g f'V' 

§ 4. Derivation of Lagrangian 

Before beginning a discussion about (2 · 6), let us consider a little extension 
of the Lorentz-invariance of the original Lagrangian L. 

The Lorentz-invariance of the original Lagrangian can be made manifest by 

writing explicitly the metric tensor r; f'V' It is easily seen, however, that this 
manifestly invariant expression of the action-integral can also be invariant under 
an affine transformation*) 

x~'-----.:;.x"'' = a~'v · xv +a~', (4·1) 

*> In the case of an affine transformation, since the coefficient afl.v has no such restriction 
as 7Jp.vafl.a·av13 =7Ja!3• there cannot exist such a covariant affine tensor as 7Jp.v whose components are 
kept unchanged under the transformation ( 4 ·1). 
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if the metric tensor r; "'" in L is replaced with a constant covariant affine tensor 

("'" and at the same time, if L is replaced with 

L(¢A, ¢A;A., '"'") = v -( ·L(¢A, ¢A,"A.' '"'"), 

( = det (("'"). (4·2) 

The invariance of I= J Ld4x under an infinitesimal affine transformation 

gives the following identities: 

[L]A · ¢A,p = - f)"A.T\ (4·3) 

and 

(4·4) 

where 

Making use of ( 4 · 3), we can rewrite ( 4 · 4) as 

f)L ·CBAtt.,t,B+ ~,t,B' .cBAtt-2~.r =T"' . 
01,!, " 'f' 01,1, 'f' '"' " f)Y '-,vp " U'f'A U'f'A,"A. '-,pp 

(4·5) 

Now let us return to a discussion about (2 · 6) which is rewritten in terms 

of L 2 defined by (3 · 2) as follows : 

8L2 . ¢B. C~ _ 2 8L2 AP" + 8L2_. C~ ·l7 "A.¢B 
8¢A f) Apv f)l7 "A.r/JA 

-(a~~;~ .f7,¢rii:L,) =ac~~¢X {···}, 
where the following relations have been employed: 

aLl _ aL2 + aL2 cAa: J/3 
f)¢ A - f)¢ A f) 17 "A.¢ A . B/3 . a A. ' 

_f)L1 = 8L2 _ 8L2 ·"' .cBa ·A'~'~•aAn1l.z<rs)v/3 ·A 
8Aao 8Aao ar "A.¢ A 'f'B A/3 (mn)(la) rs,v . 

(4·6) 

The expression { · · ·} on the right-hand side of ( 4 · 6) vanishes owing to the com

mutation relation 

[Ctp, C~] =o~·C~-o~·C~, (4·7) 

where cc; is a NxN matrix whose (A, B) element IS (AICtpjB)=Cli';. The 

commutation relation ( 4 · 7) holds owing to the fact that the matrix CJi is a re-
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Gravitational Field as a Generalized Gauge Field 619 

presentation of the N-th order of generators of the group of affine transfor
mations and, in fact, we can easily derive the relation ( 4 · 7) by considering a simple 
example. 

Comparing ( 4 · 5) with ( 4 · 6) and rem em bering that the right-hand side of 
( 4 · 6) identically vanishes, we are led to the conclusion that L 2 should have the 
same functional form as L, namely 

where 

L2==.JIAI·L(¢A, fl'-¢A, A~'v) 

=L(¢A, fl}.¢A, Apv), 

A=det(Apv). 

The discussion so far developed neither compelles us to interpret Apv as the 
gravitational field nor gives any information on the signature of A~'v' but in order 
to let the field equation of ¢A be hyperbolic, Apv should have the signature -, 
+, +, +. In place of our A~'v' one can consider a particular tensor field Bpv 

· which can be derived by introducing a system of curvilinear coordinates u~' into 
the Minkowskian space, that is, 

ds2 = 1Jaf3 · dxa · dx13 = Bpv (u) · duP · duv, 

axa 8x13 

Bpv (u) = au~' . auv ·1Jaf3 . 

The question whether our A,uv is identical with the fictitious gravitational field 
Bpv or is an entity being completely different from B~'v' giving a non-vanishing 
"curvature tensor",*> is to be answered by the field equation of Apv· Thus if 
Einstein's equation is taken as a field equation, our Apv describe~ a permanent 
gravitational field produced by the material field ¢A· 

§ 5. Law of conservation derived from identities (2 · 4) and (2 · 5) 

The equation of the field ¢A (x) 

[ Ll]A = 0 ( 5 ·1) 

gives rise to an interesting relation when it 1s inserted into the identities (2 · 4) 
and (2·5). 

By recalling the definition (2 · 3), the identity (2 · 5) becomes 

while (2 · 4) reads 

8T/'l)p _ a S'" 
ax'" -ax'" p' 

(5·2) 

*> The term "curvature tensor" means the Riemann-Christoffel's curvature tensor when A.av 
is substituted for the metric tensor g .uv in the ordinary definition of the curvature tensor. 
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620 R. Utiyama and T. Fukuyama 

(5·3) 

where the following notations have been employed: 

8 "' =8~-'P.A v pv • (5·4) 

The relationship between 8"" v and T &)v is given by (2 · 6) with the aid of (5 ·1): 

(5·5) 

where 

The antisymmetry of F with respect to the superscripts [tl,u] is due to the identi
ty (2 ·7). 

The relations (5 · 5) and (5 · 2) and the fact that S""v is a symmetric tensor 
density, as easily seen from the definition (5 · 4), show that S""v should be regard 
ed as a energy-momentum tensor density of the field ¢A interacting with the 
field Ap.v• 

Taking into account the transformation property of S""lJ under (2 ·1), we can 
rewrite (5 · 3) in a covariant form 

(5. 3)' 

where 

and the covariant derivative of sv P is 

J7 >..sv p = fASlJ p + L1~o- ·so-p- L1fp · sv o- • 

The existence of the non-vanishing right-hand side of (5 · 3) means that the energy
momentum of ¢A is not conserved owing to the interaction of ¢A with A. It is 
well known that (5 · 3) can be transformed into the expression 

(5·6) 

by the aid of the field equation of A, where tvP represents a pseudo energy
momentum tensor density of the field A. 

This result that the energy-momentum of ¢A can no longer be conserved 
when the interaction of ¢A with A takes place, is a consequence of the general 
theory of the non-Abelian gauge fields on which a brief explanation willbe given 
in the next section. 
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Gravitational Field as a Generalized Gauge Field 621 

§ 6. General remarks on the law of conservation*> 

Consider a field ¢A (x), (A= 1, 2, · · ·N), the field equation of which i$ derived 
from the action-integral 

Let us assume that I is invariant under a group of transformations depending on 
parameters Ea, (a= 1, z .. ·r) :**> 

a 

IJcpA(x) =cpA' (x)- cpA (x) =cpB·C~' Ea · 

For simplicity, the transformation of coordinates is excluded from our discussion. 
The invariance of I leads to a set of identities 

[L<<I>>]A· ¢B·C~ + aA (aLes~>> · ¢B·C~) ==0. 
a¢A,A 

(6·1) 

The postulate that I should be invariant even under an extended group which 
depends upon arbitrary function Aa (x) 's instead of Ea's, necessitates an intro
duction of a generalized gauge field Aa,. (x) with a transformation property 

(6·2) 

This postulate of invariance gives rise to the following identities, if one follows 
a similar line of argument to that given in Appendix A: 

(6·3) 

(6·4) 

aL1 ·C~. ¢B+ aL1 ==O, 
a¢A,A aAaA 

(6·5) 

where the new Lagrangian L 1 IS 

L1 (¢A, ¢A,A' Aa,.) • 

The identity (6 · 5) implies that L 1 should depend upon ¢A, A and AaA only 
through an "invariant derivative" P' A¢A defined by 

a 

P'AcpA =ax¢A -Aax ·C~ ·ifJB · (6·6) 

Thus L1 can be written as 

L1 (¢A, ¢A,x, AaA) =L2 (¢A, P' x¢A) · (6·7) 

*) The first half of the content of this section is a review of the paper I.I.I., but our defini
tion of j<a) is different from that given by (1.27) on page 1601 of I.I.I. 

**) For brevity, coordinate transformations are not considered in this section. 
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622 R. Utiyama and T. Fukuyama 

The identity (6 · 3) 1s transformed into the following expression with the aid of 
(6 · 6) and (6 · 7): 

(6. 3)' 

where Lie's commutation relations*> 

a b c 
[ C, C] =fa c b • C 

have been used together with the reasonable assumption 

M a b_Ja b c - c. 

A comparison of (6 · 3)' with (6 ·1) suggests that L 2 should be chosen to have 
the same functional form as L<<P>' namely, 

Ll(¢A, ¢A,-,.., Aa-,..) =L(cp)(¢A, P-,..¢A)• 

Let us define the "(a) -current" jl¢?;. by 

•(a)l.- f)L(cp) caB A, - f)Ll 
)(t/J) - --• A''f'B=--- · 

f)p -,..¢A 8Aa-,.. 
(6·8) 

It 1s easily seen from the definition (6 · 8) that j<<P> has a transformation property 

iJjc<¢Jl =icC:?;. ·feb a· Ac (x), 

which leads to the definition of the "invariant derivative" of iccf>): 

r"" j/J;?Il = ().,._ il¢?f.l- Ac-,... fc b a ·iU))Jl. 

Making use of (6 · 9) and assuming the field equation of ¢A 

[Lt]A=O, 

(6·9) 

we can derive the equations of continuity for jC</>) from the identity (6 · 3): 

rJ •(a)p- 0 
y p.)(t/J) - • (6 ·10) 

(6 ·10) shows that the "(a) -charge" of the ¢A-field defined by 

is no longer conserved except for the Abelian case facb==O. 
Let us assume that a Lagrangian density L(A) (Aa-,.., Aa-,_,,.) is chosen in such 

a way as that the action-integral IA = f L<A)d 4x is invariant under the transforma
tion (6 · 2). Then in a completely similar way we can derive many identities, 
among which the following identity corresponds to (6 · 4): 

a 
*> The (B, A) element of the NX N matrix C is defined by 

a a 
CBICIA)=C~. 
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Gravitational Field as a Generalized Gauge Field 623 

(6 ·11) 

where 

Ltot = L(rp) (¢A, r ,¢A) +LeA) (Aap.' Aa,.,,). 

If the field equation of Aa."' 

[L ]ap. = fYL(A) _ 8 ( fYL(A) ) _ •(a)p = 0 
tot 8A " ~A Jc!fi) 

a.p. V a,u,), 

(6 ·12) 

Is employed, (6 ·11) reads 

~ [J•(a).t +J•(a)l] _ 0 
V), (1/J) (A) - ' (6 ·13) 

where the second term defined by 

J
•(a).t_ 8L(A) .Jc a.A 
(A) - ~A 0 . Cp. 

V o,u,).. 

(6 ·14) 

is interpreted as the "(a) -charge" carried by the A-field. The relation (5 · 6) in 
§ 5 is a particular example of (6 ·13). In the former case, the energy and mo
mentum stand for the "(a) -charge" of the present section. 

The field equation (6 ·12) shows that the A-field emerges from a current 
density of the "(a) -charge". This interpretation (6 ·12) together with the fact 
that the A-field possesses the "(a) -charge" as is shown by (6 ·13), leads to the 
conclusion that the A-field can be produced by itself. This is the reason why a 
generalized gauge field associated with a non-Abelian group should obey a set of 
non-linear field equations. 

Appendix 

A. Derivation of identities (2 · 4) ,..,_, (2 · 7) 

Consider a variation of 

/1 = L L1 (¢A, ¢A,,, Aca1 ... ), Aca.1 ... ),,) d
4x 

due to the variations of ¢A and Aca.
1 
... ) 

c/Ji(x') -cpA(x) =fJcpA=cpB·CIJ.;·~~"' 

A~a.c .. ) (x') - Aca.1 ... ) (x) = iJAca.1 ... > = Aco1 ... > • D (!!:::)~ · ~~v · 
which are caused by a transformation of coordinates 

x"'~x"'' = x" + CJx"' = x"' + ~,.. (x). 

fJ/1 of the first order with respect to ~,.. is given by 

l 8 (x0
' • "X

3
') 4 fJl1= Ld¢A+fJ¢A, ¢A,,+fJ¢A,,, ... } fJ( 

0
' 

3
) ·d x-I1 

n x, ···x 

(A·1) 
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624 R. Utiyama and T. Fukuyama 

= i { ~Ll o¢A + ~f)Ll o¢A,").. + aLl ·oAca~···) 
!J ¢A u¢A,").. 8Aca1 ... ) 

+ aL1 oAca1 ... ),").. + A1 • ~;~~} d 4x. 
8Aca1 ... ),").. 

Let us introduce another kind of variation defined by 

which has a convenient property 

In terms of this variation, o/1 is written as 

(A·2) 

(A·3) 

Substituting the definitions . (A ·1) for o¢A and oAcat•") in the above expression 
and putting oll=O, we are led to the identities. Especially when ~f' (x) =a~'+ .d~'v. XV 

and Aca
1 

... ) (x) is replaced with a constant affine tensor (~-'v (and consequently 

Aca
1 
... ),").. = O), the coefficient of each parameter a~' or .d~'v in ol1, should identically 

vanish because the domain of integration can be arbitrarily chosen. The relations 

thus obtained are the identities ( 4 · 3) and ( 4 · 4) where L takes the place of the 

present L1. 
On the contrary if ~~-' (x) is an arbitrary function of x, the first and the 

second terms of the right-hand side in (A· 3) can be transformed by a partial

integration to the following form: 

oil= - s!J ~ p • [f) v { [ LdA . c 1 ~ . ¢ B 

+ [L J(a1 ... ar) D (b 1• .. br)v A } + [L JA r1. + [L JCat"'ar) A J d4 
1 • a 1• .. ar p' (b 1• .. lJr) 1 • 'f'A,p 1 • (at"'ar),p X 

If e and ~~ tl are chosen to vanish on the boundary surface of !2, the second 

integral in (A· 4) vanishes and we have 

(A·5) 
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Gravitational Field as a Generalized Gauge Field 

where ~P can take any value inside Q. Thus we have the identity 

[ · • ·]P = [8~~{ [L1]A ·C~~ · ¢B+ [Ll]U];~···) · D (~~:::)~ ·A<b1···)} 
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+ [L1JA·¢A,p+ [Ll]<a~ .. ·).A<a
1 
... ),p]==O (A·5)' 

which Is nothing but the identity (2 · 4). Inserting (A· 5)' into (A· 4), we have 

olt= L 8:\[ ... ]:\·d 4x=s:O 

for arbitrary ~"''s. By putting equal to zero the coefficients of ~P, and its deriva
tives in the above identity, (2 · 5) rv (2 · 7) can be derived. 

B. Determination of A<a1 ... ar) 

Let us begin with the substitution of (3 · 9) for Z's m the identity (3 · 8). 
The latter is written as 

2~a~(f.lV)_r a[A/.1 ~(va) +All ~(/let)] 
UpU(AfJ)= ' p'U(J.{i) p'U(J..[i) 

+ r · b [2A~ · o~ff? + 2A~ · o~f;~ + 2 (r -1) {o$Af~ +of A$~}] 

+ r· c[4A~o~f;~ + (r-1) {o:9Af:+ o~A$~+ o$A~~+ ofA:9~}] 

+r(r-1) ·d· [2(r-2) ·Af;~+o;3A~~+ofAp~+opAf:+olA$~], (B·1) 

where the following abbreviations have been employed: 

etc. 

The double contraction of (B ·1) by putting fJ. = ,{ and v = {3 leads to 

A~{5ra+ 2 (2r+ 3) · r·b + 10 · r(r+ 3) · c+ 2r(r-1) (r+ 3) · d} ==:20o~, 

which allows to put 

and consequently 

Inserting (B · 3) into (B · 2) , we have 

5ra+2(2r+3)rb+ 10r(r+3)c+2r(r-1) (r+3)d=20. 

(B·2) 

(B·3) 

(B·3)' 

(B·2)' 

In a similar way, the contraction of (B ·1) by putting a= p and fJ. = ,{ leads to 

6ra+2r(2r+3)b+IOr(r+3) ·c+2r(r-I) (r+3)d=20, (B·4) 

where the normalization (B · 3) and (B · 3)' have been employed. The third type 
of contraction a=,{ and fJ. = p gives a relation 

15ra+10r(2r+3)b+2r(7r+3)c+2r(2r+3) (r-1)d=10. (B·5) 
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A subtraction of (B · 2)' from (B · 4) gives 

ra=O 

or 

a=O. 

If (B ·1) is contr~Cted by putting fi =A, we obtain a relation 

{2(r-1) ·r·b+6(r-1) ·r·c+2r(r-1) (r+ 1)d}Ae~ 

= {5- rb- r(r+ a)c- r(r-1) ·d}o~op -2r(r+ 2)b ·oeo~. 

(B·6) 

(B·7) 

Since the left-hand side of (B · 7) is symmetric with respect to the pairs of suf
fices (a, v) and (/3, p) the same should be true for the right-hand side. Thus 

we have 

5-rb-r(r+9)c-r(r-1) ·d= -2r(r+2) ·b, 

and consequently (B · 7) becomes 

(B·8) 

{2r(r-1)b+6(r-1) ·r·c+2r(r-1) (r+1) ·d}Ae~= -4r(r+2) ·b·o~e1). 
(B ·7)' 

Similarly, contractions fi = p and a= A lead to 

{cr+ r(r-1/d}Af.9= {1- (2r+ 3) rb -r(r+ 1) c- r(r-1)d}o~f.9~ (B·9) 

and 

{5r(r-1)b + r(r-1)c+ r(r-1?d}Af;= {1- 5rb- r(r+ 1)c- r(r-1) d}o~fp~ 
(B ·10) 

respectively. 
In (B · 7)', (B · 9) and (B ·10), if the coefficients of A:: do not vanish, these 

relations show that A::: should be proportional to o~::~. Recalling the normaliza

tion (B · 3), we have to put 

A av _ 2~(av) 
{Jp- 5U({Jp) • 

Thus (B · 9) and (B ·10) give 

' 5(2r+3)rb+ (5r+7)r·c+ (2r+3) (r-1) ·r·d=5 

and 

5(2r+3)rb+ (7r+3)rc+ (2r+3) (r-1)rd=5 

respectively. 
A subtraction of (B · 9)' from (B ·10)' gives 

(2r-4) ·r·c=O. 

If we choose r= 2, then (B ·11) becpmes unsolvable relations 

Aa"(x) ·A13p(x) =fo~P1) · 

(B ·11) 

(B · 9)' 

(B ·10)' 

(B·12) 
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On the contrary if c = 0 is chosen, we have three relations: 

(B·8) ~ (2r+ 3) ·r·b=r(r-1)d-5, 

(B·9)', (B·10)'~5(2r+3) ·r·b+ (2r+3) (r-1) ·r·d=5, 

(B·7)'~3(2r+3) ·b+ (r-1) (r+1)d=O. 

627 

These three equations are unsolvable with respect to b and d. Therefore (B ·12) 
cannot hold. 

Thus we arrive at a conclusion that all the coefficients of both sides of re
lations (B · 7)', (B · 9) and (B · 1 O) should vanish. Vanishing of the right-hand 
side of (B · 7)' gives 

b=O 

while the left-hand side of (B · 7)' gives a relation when it vanishes: 

3c+ (r+1)d=O. 

Similarly, (B · 9) g1ves a couple of relations 

c+ (r-1id=O, 

1=r(r+1)c+r(r-1)d. 

Finally from (B ·10) we obtain relations 

c+ (r-1)d=O, 

1=r(r+1)c+r(r-1)d. 

A comparison of (B ·15) with (B ·17) gives 

(r-2) ·d=O. 

Since the case d = 0 leads to a contradiction as easily seen, we obtain 

r=2. 

It 1s easily verified that the solution of our problem 1s 

a=b=O, c= -d=t. 
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