
1116 

Progress of Theoretical Physics, Vol. 69, No.4, April 1983 

Gravitational Instabilities in a Dust-Gas Layer 
and Formation of Planetesimals in the Solar Nebula 

Minoru SEKIY A 

Department of Physics, Kyoto University, Kyoto 606 

(Received November 22, 1982) 

Dust particles which are initially distributed homogeneously in the solar nebula aggregate 
and settle towards the equatorial plane. As a result, the solar nebula separate into three layers: 
an equatorial thin dust-gas layer and two residual gas layers. We study gravitational in
stabilities in the dust-gas layer on the assumption of axial symmetry, taking account of motions 
perpendicular to as well as parallel to the equatorial plane and also making use of proper 
boundary conditions between the dust-gas layer and the gas layers. 

As far as radii of dust particles are sufficiently small (:S 1 cm at 1 au), a dust fluid and a gas 
fluid are firmly coupled owing to the drag force; consequently, they behave like one fluid. It is 
also found that the dust-gas layer behaves like an incompressible fluid owing to high pressure 
of the gas layers exerted on the dust-gas layer. Taking these conditions into account, a mode 
of gravitational instability accompanied with a motion perpendicular to the equatorial plane is 
newly found. If unstable wavelengths of the largest growing rate for non-axisymmetric and 
axisymmetric perturbations are the same, typical masses of planetesimals are 4 x 1017 g at the 
Earth orbit, 3X 1020 g at the Jupiter orbit and 4X 1021 g at the Neptune orbit. 

§ 1. Introduction 

Among various theories of formation of the solar system, theories based on 
a less massive nebula model with a mass of 0_01 ~0_04 Me have made remarkable 
achievements during the latest decade; formation mechanisms of the terrestrial 
and giant planets have been clarified ;1),2) origin of the asteroids and satellites is 
also going to be explained.3

) In contrast to stable, less massive nebula models, 
Cameron4

) have proposed a massive solar nebula model with a mass of the order 
of 1 Me; this massive nebula is unstable and breaks into gaseous giant proto
planets. The massive nebula model may result in formation of giant planets 
naturally; Cameron's theory seems to have, however, serious difficulties in ex
plaining the formation processes of the asteroids and the satellites and also the 
dissipation mechanisms of the massive nebula and primitive atmospheres of the 
terrestrial planets and also of Uranus and Neptune. Among several less massive 
nebula models, we adopt in this paper the latest model by Hayashi. 5) According 
to this model, surface density distribution is given by 

(1.1) 

Here, we briefly describe our scenario of the early evolutionary stage of the 
solar system. Initially, ,u-sized dust particles floated homogeneously in the 
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Fig. L The structure of the dust-gas layer and 
the gas layers in the solar nebula. 

nebula. At that time, the ratio, c, of 
the dust density, Pd, to the gas density, 
Pg, was as small as 1/57 (r >2.7 au) 
and 1/ 240 (r < 2.7 au) according as 
water had been condensed or not, re
spectively. These dust particles ag
gregated and settled towards the 
equatorial plane. As a result, the 
solar nebula. separated into three 
layers: an equatorial thin dust-gas 
layer and the two residual gas layers 
(Fig. 1).*) With sedimentation of dust 
particles, half thickness, h, of the dust-

gas layer decreased. Simultaneously, dust density increased in inverse propor
tion to h. As a result, a greater part of dust particles were concentrated in the 
thin dust-gas layer. One should note that gas density was continuous without 
any gaps at the boundaries between the dust-gas layer and the gas layers. 

Gravitational instability. in the dust-gas layer is considered to have occurred 
when its density became sufficiently high. Fragmentation of the dust-gas layer 
due to self-gravity under the influence of the solar gravity and resultant formation 
of planetesimals were studied by Safronov,l) Hayashi,6) Goldreich and Ward,7) and 
Coradini et al.8

) Safronov, and Goldreich and Ward supposed a fluid consisting of 
dust particles only, and neglected the effect of the gas contained in the dust-gas 
layer on the motion of the dust particles. This effect is, however, large in 
practice as seen later; therefore, the neglect of the gas effect is not reasonable. 
On the other hand, Hayashi6) supposed a fluid composed of gas and dust which 
were coupled firmly owing to drag force. He derived a dispersion relation 
(referred to as the 2D mode) taking account of only the motion parallel to the 
equatorial plane. As seen in this paper, however, the motion perpendicular to the 
equatorial plane plays an essential role in the dynamics of the instability of the 
dust-gas layer. Recently, Coradini et al.8

) proposed two-fluid model of the dust
gas layer. They also restricted the fluid motion to be parallel to the equatorial 
plane. As a result, they found two typical modes; these are (1) a mode where 
dust fluid fragments through an unperturbed gas fluid (referred to as the type I 
mode after Coradini et al.8») and (2) the 2D mode mentioned above. The time 
scale of growth of the type I mode is, however, comparable to the sedimentation 
time of dust particles; therefore, it seems unsafe to neglect the dust sedimentation 
in deriving type I mode. 

In this paper, dust and gas are assumed to be coupled firmly, and to be able 

*) In practice, the boundary between the dust-gas layer and the gas layer was diffuse. We assume, 
however, the boundaries were sharp in order to simplify a mathematical treatment. 
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1118 M. Sekiya 

to be regarded as one fluid in order to avoid the complexity attributed to the 
relative motion of dust and gas. This assumption is good as far as the dust 
radius is smaller than the upper limit given in § 4. Further, we remove the 
restriction imposed by Hayashi, and Coradini et al. that the motion of the fluid is 
pallalel to the equatorial plane. In other words, a motion perpendicular to the 
equatorial plane is also taken into account. In addition, we consider the effect of 
pressure of the gas layers exerted on the dust-gas layer; i.e., proper boundary 
conditions between the dust-gas layer and the gas layers are used. As a result, 
we derive a new mode (referred to as the 3D mode) of gravitational instability in 
the dust-gas layer, after the analytical method by Goldreich and Lynden-Be1l9

) (in 
the following, referred to as GL). This mode accompanies the motion perpen
dicular to the equatorial plane and bears resemblance to GL's incompressible 
mode. As seen in § 4, the 3D mode grows faster than the 2D mode. 

§ 2. Basic equations 

(a) Equations for the dust-gas layer 

The dust-gas layer is composed of two fluids:-a dust fluid and a gas fluid. 
They exert drag force and gravitational force with each other. We consider a 
case where a velocity difference of magnitude u between the dust fluid and the gas 
fluid is much less than the sound velocity of the gas and where the Reynolds 
number is much less than 10. In this case, the drag force exerted on the dust fluid 
per unit mass by the gas, fD, is given bylO) 

(2'1) 

The coefficient A is independent of u but depends on the Knudsen number: the 
ratio of the mean free path of gaseous molecules, I, to the radius of a dust particle, 
rp. When rp< I, the coefficient A is proportional to rpl; the drag formula is 

Table I. Gas density, Pg, mean free path of the gas molecules, I, and coefficient of the gas drag, A. at 
the Earth, Jupiter and Neptune orbits. For convenience of later use, values of A are given by the 
forms multiplied by rpQ-l pg and r p'Q-l pg in the cases where rp:S I and rp< I, respectively, where 
Q is the Keplerian circular angular velocity. Hayashi's model gives pgex r-'·75 and lex r 2

.
75 We 

assume the mean molecular weight of the gas to be 2.34 and the mean collision cross section of 
molecules to be 2 x 10-15 cm2

• We also assume the solid density of dust particles to be 3.0 (r< 2.7 
au) and 1.0 (r>2.7 au). 

Region 
pgArpQ-l pgArp2Q-l 

pg 
(rp:Sl) (rp< l) 

(au) (gcm-') (em) (em) (cm2
) 

Earth (1.0) 1.4 X 10-9 1.4 3.6X 102 7.8X 10 2 

Jupiter (5.2) 1.5 x 10-11 1.3 X 102 9.1 x 10 1.8 X 10' 
Neptune (30.2) 1.2 x 10- 1

' 1.7X10' 6.5 1.7 x 105 
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Gravitational Instabilities in a Dust-Gas Layer 1119 

reduced to Epstein's law. Conversely, if rp> I, A is proportional to rp-2; Eq. (2·1) 
is reduced to Stokes' law. Table I gives values of A at the orbits of the Earth, 
Jupiter and Neptune. 

Consider the Sun to be at the origin of the cylindrical coordinate system (r, 
¢, z) with z measured from the equatorial plane of the solar nebula. The two 
fluids revolving around the Sun are described by the following equations on the 
assumptions of ax i-symmetry (%¢=o): 

OUd + U OUd + W OUd _ vi 
ot d or d oz r 

OVd + OVd + OVd + UdVd _ 
ot Ud or Wd oz r-

OVg + U OVg +w OVg + UgVg = 
ot g or g oz r 

Opg 0 ( )+ 0 ( )+ pgUg -0 ---;:;t+Tr PgUg Tz PgWg -r--' 

(2·5) 

(2·6) 

(2·9) 

(2·10) 

(2·11) 

Here, U, v and ware the r-, ¢- and z-components of the velocity, respectively; the 
subscripts d and g refer to quantities of the dust and the gas, respectively; t 
denotes the time; ¢ the gravitational potential of the dust-gas layer; Pg the gas 
pressure. In the above, the polytropic equation of state is assumed for the gas 
fluid; on the other hand, the dust pressure is neglected, since this is sufficiently 
small in our case. The solar gravity is simply written as Q2r and Q2Z (Q being 
the Keplerian angular velocity of a circular orbit, (G M 0 /r3)112), because of the 
smallness of z2/r2(;:S1O-IO). 

In the following, we restrict ourselves to a case where relative velocity of the 
dust fluid to the gas fluid is very small owing to a strong drag force. In other 
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1120 M. Sekiya 

words, we consider a phenomenon with a time scale much shorter than the 
separation time of the dust fluid and the gas fluid (examination on this assumption 
will be made in § 4). Mathematically, this assumption corresponds to the limit
ing case where Ud-> Ug, Vd-> Vg, Wd-> Wg and A ->00. In this case, Eqs. (2·2)~ (2·11) 
are reduced to the following one-fluid equations: 

where 

and 

2 JcjJ 1 JP =-Q z----
Jz P Jz ' 

JP J ( ) J ( ) pU_ 7Jt+a; pU + Jz p W +-r--O, 

U= Ud= Ug, 

V=Vd=Vg, 

W=Wd=Wg, 

P=Pd+Pg, 

P=Pg , 

x=xg(l +c >-7 

(2·12) 

(2·13) 

(2·14) 

(2·15) 

(2·16) 

(2·17) 

(2·18) 

(2·19) 

(2·20) 

(2·21) 

(2·22) 

(2·23) 

(2·24) 

We assume that c is a constant throughout the dust-gas layer in order to simplify 
a mathematical treatment. 

(b) Unperturbed state 

Before deriving perturbation equations, we describe the unperturbed state 
adopted here, which is hereafter denoted by the subscript o. As seen later, 
wavelength of the most unstable mode as well as a thickness of the dust-gas layer 
is sufficiently smaller than r. Therefore, we can replace r by f, Q ( r ) by Q ( f ) 
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Gravitational Instabilities in a Dust-Gas Layer 1121 

and a[rQ( r )]/ar by - Q( r)/2, where r is a characteristic heliocentric distance 
of the region under consideration. We also neglect the dependence of Po and Po 
on r and take values at r; their distributions are assumed to be symmetric with 
respect to the equatorial plane. 

In this case, unperturbed gravitational potential, ¢o, is given by that of an 
infinite disk spreading uniformly over the radial direction, i.e., 

(2·25) 

where 

(2·26) 

The components of a velocity are assumed to be equal to those of Keplerian 
circular motion, i.e., 

(Uo, Vo, Wo)= (0, Qr, 0). (2·27) 

Therefore, po and Po are independent of time as seen from Eqs. (2·15) and (2·16). 
Lastly, the remaining equations (2·14) and (2·16) become 

0= - Q2Z - d¢o _l dPo 
dz Po dz 

(2·28) 

and 

PO=XPOT, (2·29) 

respectively. Equation (2·28) means that pressure gradient of the gas is in 
equilibrium with the sum of gravitational forces exerted on both dust and gas. 

(c) Perturbation equations 

Now, we will derive perturbation equations from Eqs. (2·12)~ (2·17) taking 
the first order terms of small perturbations (subscript 1). By means of the usual 
manner, we have 

aUI -2QV = _ aj ¢ +-.!i) 
at I Tr\ I Po' (2·30) 

(2·31) 

(2·32) 

Opl + aUI +~( W)+ POUI =0 
at Po ar az Po I r ' (2·33) 
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1122 M. Sekiya 

(2·34) 

(2·35 ) 

where Co is the sound velocity of the dust-gas fluid, i.e., 

(2·36 ) 

As seen from Eq. (2·23), the sound velocity of a dust-gas fluid, Co, is (1+£)-1/2 

times as large as the sound velocity of the gas, CgO, which is given by 

do=Xgyplo-l. (2·37) 

Denoting 

f= - O[I/JI + (Pl/PO)]/or , (2·38) 

9 = - o</h/or , (2·39) 

Wr=awdar (2·40) 

and 

Pr=OPI/or, (2·41) 

and assuming a form like U 1 = U(z)Jl(kr)e- iwt
, we finally obtain the following 

equations from Eqs. (2·30)~(2·35): 

-i(t)U -2QV= i, 

- i(t) V + (1/2)QU =0, 

-i(t)Wr=di/dz, 

- i(t)Pr- k2po U + d(po Wr)/ dz =0, 

[f-i=(co2/Po )Pr, 

[- k2+ (d2/ dz 2)] [f = -4nCPr . 

§ 3. The 2D mode 

(2·42) 

(2·43) 

(2·44) 

(2·45) 

(2·46) 

(2·47) 

Here, we briefly review the 2-dimensional (2D) mode of instability in order to 
compare with the 3D mode of instability which will be derived in § 4. In order 
to simplify a mathematical treatment, we assume that co2 and po depend very 
weakly on z. As seen in Appendix(a), this assumption is consistent with con
stancy of £ which has been assumed in § 2. We further assume that the fluid 
motion is restricted to be parallel to the equatorial plane, i.e., WI = O. Putting Wr 
=0, we get the following equations for 2D mode from Eqs. (2·42), (2·43) and 
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Gravitational Instabilities in a Dust-Gas Layer 

-iwU -2QV= 1, 
-iwV+(1/2)QU=0, 

-iwPr-k2poU=0, 

§ -1 = (c02/po)Pr, 

[-k2+(d2/dz 2)]§= -4lCGPr. 

1123 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

We assume here that §(z) and Pr(Z) are proportional to cos(Lz/h) or sin(Lz/h) 
in the range - h < z < h; while, in the range / z / > h, § is proportional to 
exp( - k/z/). The boundary condition imposed on the gravitational potential is 
deduced from continuity of §'(z)/ §(z) at /z/ = h, i.e., 

L·tanL=K, (3·6) 

for cosine mode and 

L·cotL=-K, (3·7) 

for sine mode, where K = kh. As is easily seen, we have infinite number of 
eigenvalues of L. From Eq. (3·5), the relation between § and Pr is given by 

§=(4lCGh/k)F(K)Pr, (3·8) 

where 

(3·9) 

Weare of course interested in the most rapidly growing mode of instabilities. As 
seen from Eqs. (3·8) and (3·9), § increases with the decrease in the value of L; 
hence, the maximum growth rate is expected to be realized for the minimum 
eigenvalue, i.e., the eigenvalue of the cosine mode in the range 0 < L < lC/ 2 (as seen 
from Eq. (3·7), no eigenvalues are found in the range 0<L<lC/2 for the sine 
mode). In this case, the asymptotic forms of Eq. (3·9) are very simple. If K ~1, 
we have V-:::::K .from Eq. (3·6); therefore F(K)-:::::1. On the other hand, if K~I, 
Eq. (3·6) leads to L-:::::lC/2; therefore F(K)-:::::I/K. 

Now, the dispersion relation for the 2D mode6
) is derived from Eqs. (3·1) 

~(3·4) and (3·8), i.e., 

(3 ·10) 

where 60 = 2Poh. As seen just below, this mode does not grow till the dust-gas 
layer becomes extremely thin, i.e., c becomes sufficiently high. In this case, we 
have F(K)= 1, since K ~1. The conditions for the critical stability (denoted by 
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1124 M. Sekiya 

Table II.(a) The values of e, h and A at the marginal stability of the 2D mode. 

Region 

Earth 
Jupiter 
Neptune 

ee 

2.5 x 10' 
6.2x 106 

2.6x 106 

he (em) 

1.0 x 10 
1.4 X 10' 
2.9X 10' 

the subscript C), i.e., w = aw/ ak = 0, are given by 

ce= (Cgo!2/TCC(JO)2_1 

and 

Ae (em) 

2.4 x 10' 
1.2 X 10' • 

1.7X10" 

(3·11) 

. (3·12) 

Table II(a) gives values of ce, he (being the critical thickness of the dust-gas 
layer) and Ae (= 2TC/ ke) at the orbits of the Earth, Jupiter and Neptune. In all the 
regions, the critical value of ce (or he) is surprisingly large (or small); hence, the 
3D mode of instability, mentioned in the next section, certainly overcomes the 2D 
mode. 

§ 4. The 3D mode 

Here, a mode of gravitational instability in the dust-gas layer including a 
motion perpendicular to as well as parallel to the equatorial plane (i.e., the 3D 
mode) is derived. We hereafter assume that the dust-gas fluid behaves like an 
incompressible fluid. In other words, we consider the limiting case where co->oo 

and Pr->O. This approximation is very good for the dust-gas fluid under consid
eration as seen in Appendix(a). Further, we neglect the z-dependence of Po; this 
assumption is consistent with the one that c is constant throughout the dust-gas 
layer as seen in Appendix(a). In this case, the surface density, (Jo(h), is simply 
given by 

(4'1) 

On these assumptions, we obtain the following equations for the dust-gas fluid 
from Eqs. (2'42)~(2'45) and (2'47), i.e., 

- iwU -2!2V= j , 

- iw V +(1/ 2)QU =0, 

-iwWr=dj/dz, 

-k2 U +dWr/dz=O, 

[-k2+(d2/dz 2)]ff=0. 

(4·2) 

(4'3) 

(4·4) 

(4·5) 

(4·6) 
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Gravitational Instabilities in a DUst-Gas Layer 1125 

Note that the equation of state, (2·46), is replaced by the equation Pr=O. 
In order to obtain a dispersion relation, boundary conditions between the 

dust-gas and the gas layers must be imposed. In the following, we will consider 
only a mode symmetric with respect to the equatorial plane, since asymmetric 
modes are always stable as shown by GL. In this case, it is sufficient for us to 
give boundary conditions at the boundary in the region z > 0, although there are 
two boundaries with their unperturbed coordinates, Z = hand z = - h. Denoting 
the displacement of the boundary perpendicular to the equatorial plane by 81, we 
obtain the following equation within the same order of accuracy as the perturbed 
quantities, i.e., 

(4·7) 

Putting 

(4·8) 

and using Eq. (4·4), we have the equation describing the motion of the boundary, 
i.e., 

(4·9) 

The boundary condition that the gas pressure should be continuous between the 
gas layer and the dust-gas layer is given by 

(4 ·10) 

where Pge is the pressure of the gas layer at the boundary. We can neglect the 
change of the value of Pge due to displacement of the boundary as shown in 
Appendix(b). Then, Eqs. (4·10) and (2·22) lead to 

Pg(h)=Pgo(h)+ PgI(h)=Pge+ PgI(h) 

(4·11) 

The equation of motion of a fluid element in the range h < z < h + 81 (if 81 < 0, 
suppose a fluid element with negative density in the range h + 81 < z < h) is given 
by 

(4·12) 

Integrating this equation from h to h+81, neglecting higher order terms of 
perturbed quantities and using Eq. (4·11), we get 

(4·13) 

Eliminating 60, PI, 1/11 and 1/10 from Eqs. (2·25), (2·38), (2·39), (4·1) and (4·13), and 
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performing the Fourier-Bessel transformation, we finally obtain 

!J(h)-/(h)= aA4J[Cpo+,Q2)h. (4·14) 

The boundary condition to be imposed on the gravitational potential has been 
already given by Eq. (53) in GL and is rewritten in our case as 

(4·15) 

The perturbation equations and the boundary conditions described above are 
almost the same as those given by GL for a rigidly rotating disk of· an 
incompressible fluid except for the following two points: (1) the term, 2,Q, in GL's 
Eq. (89) is replaced by ,Q/2 as Eq. (4·3) owing to the difference between the rigid 
and differential rotations; (2) the z component of the solar gravity, ,Q2 h, is added 
in the pressure boundary condition as Eq. (4·14). 

By means of calculations similar to those made by GL, a dispersion relation 
can be deduced from Eqs. (4·2)~(4·6), (4·9),(4·14) and (4·15), 

{[ 1+ e-
2K 

] } al= 1- 2K 4J[CpO+,Q2 nK·th(nK), (4 ·16) 

where n2= [1-(,Q2/w2)]-1 and K=kh. Note that in the case where O<W2<,Q2, n 
is a pure imaginally number; the term nK·th(nK) in Eq. (4·16) should be 
replaced by -mK·tan(mK), where m2=[(,Q2/w2)_1]-1. 

At the marginal stability (denoted by the subscript d, we have Ke=O.2775 
and (4J[CPo/,Q2)e=7.617; i.e., ke=l.057,Q2/JrC60 and Poe=O.17PR, where PR (=3.534 
x M",/ r 3

) is Roche's density.ll) Thus, the critical wave number of the 3D mode 
is almost equal to that of the 2D mode (see Eq. (3·12». On the other hand, the 
critical density of the 3D mode is much less than that of the 2D mode. In Table 
II(b), the values of ee, he and lie are given. Since lie/ r~ 1 as seen from Table 
II(b), the adopted assumption that,Q, a(rSJ)/ar, po and Po are all independent of 
r is justified with a good accuracy. Denoting the critical wavelength of non
axisymmetric mode as ';lIe, about which we have little knowledge, a mass of a 
fragment is given by Me= ';lIe2

60. Table II(b) also gives values of Me in the case 
where ';=l. 

In Fig. 2, dispersion relations of the 3D mode are illustrated for the two cases 
where the minimum values of w2 are equal to 0 (i.e., the marginal stability, which 
is denoted by A) and to -,Q 2 (denoted by B). A perturbed state with a small 

Table H.(b) The values of E, h and A at the marginal stability of the 3D mode. 
Masses of the planetesimals are also given. 

Region Ee he (em) Ae (em) mass (g) 

Earth 2.6x 102 9.9XlO' 2.2x 108 3.5 x 10" 

Jupiter 1.7x 102 4.9XlOB 1.1 X 10 10 3.2 X 1020 

Neptune 1.1 x 102 6.9 X 109 1.6 X 1011 4.4 X 1021 
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Gravitational Instabilities in a Dust-Gas Layer 1127 

1.5 

A 

0. 8 

-as 

-I QL--Q.L.I--Q..l2-"'~Qk.3:::"'--Q.L.4--Q..l.5=----:CQ.'::-6---;:'Q.7 

wave number is stabilized owing 
to tidal force by the Sun; in the 
limit k---c>O, we have Iwl---c>Q. On 
the other hand, a perturbed state 
with large wave number is again 
stabilized by z-components of the 
solar gravity and of the self-grav
ity. The term { ... } in Eq. (4'16) is 
an increasing function of K and is 
positive for K larger than a criti
cal value K*. The value of K* 
depends on the value of 47rGpO/Q2 

(K* = 0.5804 (A), 0.6075 (B)). In 
Fig. 2, only a mode with 0< mK < 
7r is illustrated for 0< w2< Q2. 

K 

Fig. 2. Dispersion relations of the 3D modes are 
shown for the case where (A) 4JrCpO/Q2 
=7.6169 (((j~lIn=OO) and (8) 4JrCPo/Q2=14.875 In Fig. 3, the values of Iwl/ Q 

for 3D mode as well as those for 
2D mode with a wave number 

where w2 « 0) has the minimum value, i.e., the maximum growing rate, are 
illustrated. Figure 3 also shows sedimentation rate Ws of the dust particles, i.e., 

(4'17) 

where values of pgA/ Q is given in Table I. From this figure, we find that 3D 
mode grows faster than the sedimentation of the dust particles, as far as the dust 

10. 

Iwl 
Sf 

2D 

4J[GPoIQ2 

Fig. 3. The growth rate of the 2D and 3D modes. Sedimentation rates of dust 
particles with the radii of 1 em (denoted by S) and 1 mm (denoted by S') are also 
given, where the Earth, Jupiter and Neptune orbits are referred to as E, J and N, 
respectively. 
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radii are smaller than 1 cm at the-Earth and the Jupiter orbits and than 1 mm at 
the Neptune orbit.*) While, the growth rate WI of the type I mode (see § 1) is 
given byS) 

(4-18) 

Since WI< Wg, we can also neglect the radial migration of the dust fluid through 
the gas fluid as far as the dust radius is smaller than the value given above. 
Further, we can see from this figure that 3D mode grows with a sufficiently large 
rate at a density below the critical density for growth of the 2D mode. There
fore, we can conclude that 3D mode derived in this paper is the most probable 
mode of the fragmentation of the dust-gas layer in the solar nebula. 

Lastly, we speculate the further fate of the dust-gas layer after the beginning 
of the growth of the 3D mode. The fragment composed of the dust and the gas 
probably approaches a stable configuration, where the solar and the self-gravities 
are balanced with the centrifugal force, conserving angular momentum, mass and 
also volume owing to its incompressibility in a short time scale of the order of 
1 yr. Next stage lasts rather longer where dust particles settle towards the center 
of the fragment. As a result, solid planetesimals are formed. Therefore the 
formation time of planetesimals is of the order of the sedimentation time of the 
dust particles. It should be noted, however, that the mass of the fragment is 
determined by the 3D mode. 
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Appendix 

(a) Incompressibility 

We neglected fir in Eqs. (2-45) and (2-47) when we derived Eqs. (4'5) and 
(4·6). Here, this neglect is assured. Using Eq. (2'46), we have 

(A·l) 

*) Nakagawa et al. 12) estimated the dust radius to be 22cm (Earth), 7.5cm (Jupiter) and O.86cm 
(N eptune) at Roche's density assuming the sticking probability to be unity. The accurate values of the 
dust radius are, however, not be able to be estimated without a precise knowledge of the sticking 

probability. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/69/4/1116/1880740 by guest on 21 August 2022



Gravitational Instabilities in a Dust-Gas Layer 1129 

and 

(A·2) 

We will show that these are much smaller than unity. As for the 3D mode, we 
have from Eqs. (4·2) and (4·3) that 0 ~ llQ when w~Q; further we note that 1 
~ 9 ~ (g - 1). Noticing that 47(Gpo ~ Q2 for the density of the order of Roche's 
density and that kh= 0(0 for the most unstable wavelength, we obtain 

(A·3) 

At the marginal stability of the 3D mode, the values of Q2 h 2 I co2 are equal to 7 
xlO-8 (for the Earth region), 2xlO- 6 (Jupiter) and 3xlO-6 (Neptune). This 
means that the approximation of incompressibility is very good. 

We also see from the above result that the density scale height col Q is much 
larger than half thickness of the dust-gas layer h. Therefore Po depends very 
weakly on z for the 3D mode as far as c is independent of z. In other words, the 
neglect of the z -dependence of Po is consistent with the assumption that c is 
constant. This consistency is also held for the 2D mode, since the ratio of the 
half thickness of the dust-gas layer to the density scale height, G6ohlco2

, scarcely 
depends on h. 

(b) Change of the pressure of the gas layer at the boundary 

We show here that the change of the value of Pge can be neglected. The flow 
velocity of the gas, Vg, due to the motion of the boundary between the dust-gas 
layer and a gas layer is of the order of AW, where A is the wave length (= 27(1 k). 
In the case where w~Q, we have Vg~AQ. Therefore values of the ratio of the 
flow velocity to the sound velocity vgI CgO are of the order of 4 x 1O-4(E), 2 x 1O-3(J) 
and 4 x 1O-3(N) and are much smaller than unity. Therefore the approximation 
of hydrostatic equilibrium is very good. Further, the change of hydrostatic 
pressure due to the displacement, 81, is smaller by a factor pgl Pd = c -I than the 
change of the pressure due to the gravitational force exerted on the dust in a 
region between hand h+81. This factor is sufficiently smaller than unity (see 
Table II(b)); therefore, the change of the gas pressure, Pge, can be neglected. 
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