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The gravitational instability is investigated for an isothermal gas cylinder with a uniform axial
magnetic field. We treat the eigenvalue problem for the linear perturbations and obtain the disper-
sion relation numerically. It is found that the self-gravitating isothermal cylinder is unstable for
axisymmetric perturbations of wavelength A>A.,=11.2H, where H is the radial scale height of gas
distribution in the cylinder and that the fastest growing mode appears at the wavelength An~ 24cr.
For the cylinder with the radius larger than H, the magnetic field reduces the growth rate but does
not change the range of wavelength for unstable ones. The stabilizing effect saturates when the
magnetic energy becomes comparable to the thermal energy. On the other hand, when the cylinder
has a finite radius smaller than H, the dispersion relation approximates to that of incompressible fluid.
The magnetic field is so effective to prevent the instability that both the critical wavelength and the
most unstable growing time become longer exponentially as the strength of magnetic field increases.

§1. Introduction

Cylindrical structures of astronomical objects are attracting attention in many
ways. In observations, the spiral arm of the galaxy has been the outstanding exam-
ple for a long time and the large-scale structure of universe indicates the filamentary
formation of clusters of galaxies. Starlight polarization measurements of our galaxy
suggest that the lines of magnetic force are parallel to the filamentary dense region of
interstellar medium and several discrete clouds locate with regular separation along
it.? : ‘

There are some theoretical mechanisms on the formation of cylindrical objects.
. Concerning the star formation process, three-dimensional simulation of the collapse of
rotating clouds tells us that the bar-like phase is important to initiate the fragmenta-
tion of cloud.® Density enhancements such as galactic density waves or interstellar
ionization shock fronts can propagate as plane waves. In general, if such waves
collide with each other, they are considered to trigger the cylinder-like dense region
at the intersection of waves.” When the ram pressure at such a location is higher
than the magnetic pressure, the magnetic field can be parallel to the dense cylinder.
If the incompressible gas layer with a plane-parallel magnetic field is formed by a
strong shock front for example, it has an instability to break up into filaments along
magnetic field lines.”

Are these cylindrical objects gravitationally stable? The gravitational in-
stability of the compressible gas is often discussed according to the Jeans criterion as
a first approximation. The self-gravitating system is not stable if its size is greater
than the Jeans length:
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A =(xCs[Gp)'"?
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where G is the gravitational constant, and Cs, o, T, # and # are the sound velocity,
the mass density, the temperature, the mean molecular weight and the number density
of gas, respectively. However, is the Jeans criterion valid to apply for the stability
of the cylinder? How about the effects of the axial magnetic field?

In the theory of star formation from the interstellar magnetic cloud, which can be
approximated as an isothermal ideal gas in the early stage of star formation, the
contraction of the cloud proceeds along the lines of magnetic force.? As the initial
condition of such a contraction, the isothermal gas sphere with the size of ~A;
threaded by the uniform magnetic field is usually assumed. This means that the
cloud has to fragment into the pieces of the length ~ A; before the contraction starts
if it initially extends uniformly along the magnetic field line. But, there is no proof
on the possibility of fragmentation from the isothermal magnetic cylinder.

In fact, the isothermal cloud cannot remain stable if the perturbation whose
wavelength longer than A; is set in. But the Jeans criterion is applicable only to the
isotropic homogeneous medium with infinite extent and its dispersion relation tells us
that the longer the perturbation wavelength such as A> 4, is, the faster the instability
increases. For the fragmentation to occur, it is required that the perturbation with
the finite wavelength is the most unstable among various modes of perturbations.
Therefore, as a result of the Jeans instability, no fragmentation occurs and the sphere
threaded by a uniform magnetic field cannot be obtained. Is there not any change in
the cylindrical configuration?

For the incompressible cylinder, the analytical dispersion relation is obtained by
Chandrasekhar” in the presence of an axial magnetic field and the fragmentation of
cylinder is possible. According to this dispersion relation, however, the most unsta-
ble wavelength becomes longer exponentially with the strength of magnetic field and
much beyond the Jeans length. Therefore, to ascertain the initial condition of star
formation from magnetic cloud quantitatively, we have to clarify two points: One is
the possibility of fragmentation of isothermal cloud which extends uniformly along
the magnetic tube and the other is the effects of magnetic field to its gravitational
instability and the size of each fragment. '

In this paper, we search the most unstable mode of the self-gravitating isothermal
cylinder by treating the eigenvalue problem for linear perturbations and include the
effect of magnetic field parallel to the cylinder. In § 2, cylindrical hydrostatic equili-
brium solution on which we study the gravitational instability is presented. Linear
perturbation equations for the isothermal cylinder with a frozen-in axial magnetic
field are given in § 3. In § 4, we have numerical dispersion relations which tell us the
nature of gravitational instability of the cylinder. Section 5 is devoted to the compar-
ison of our results for isothermal cylinder with Chandrasekhar’s dispersion relation
for incompressible one and some astronomical implications are also discussed.
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Gravitational Instability of Magnetic Cylinder 637

§ 2. Hydrostatic equilibrium

We investigate the gravitational stability of an isothermal ideal gas. As the
unperturbed state we assume that the gas extends to infinity along the cylinder axis,
which we define as the z-axis of cylindrical coordinates (#, ¢, z), and is threaded by
a magnetic field B, parallel to it. ‘

In investigating the effect of magnetic field, we assume the conductivity is large
enough to keep the magnetic field frozen into the matter. For simplicity, the unper-
turbed magnetic field is assumed to be constant as

B.=(0,0, By), o (2-1)

and it exerts no force on the unperturbed structure. In contrast to the above assump- -

tion, Stodolkiewicz,” who studied the critical wavelength, assumed magnetic field

scales as Bo0'? so that the unperturbed equilibrium can be supported by both
thermal and magnetic pressure. He concluded that the magnetic fields make the
system unstable because the critical wavelength becomes short as his parameter x*
= Va’/Cs® increases, where V., is the Alfvén velocity at the center. But his result can
be interpreted in another way. The increase of x#*> means the decrease of thermal
pressure in the unperturbed state at the same time, so that Jeans-like instability may
. become manifest for such a cold cylinder. To avoid this confusion, it would be better
to take uniform magnetic fields as the unperturbed state. »
Therefore, hydrostatic equilibrium should be achieved in the radial direction.
The density distribution for such an equilibrium has an analytic expression,”

an=od1+5(5) ] (2-2)
where scale height

H=Cs/(4nGoc)'" . (2-3)
The total mass per unit length of the cylinder is

o 20 )
M=£ 2mordr = g , (2-4)

which is independent of p.. This is an interesting feature of the isothermal cylinder
different from that of the plane-parallel layer. That means, for any central density,
hydrostatic equilibrium solution does not exist in the cylindrical configuration if the
line mass exceeds the above value which is determined only by sound speed, i.e.,
temperature. Therefore, the isothermal cylinder will collapse to line singularity if
the mass is accreted keeping the cylindrical symmety or if the temperature decreases.
In this paper, we concentrate on the stability of cylindrical hydrostatic equilibrium.
Therefore, we assume the line mass does not exceed the value of Eq. (2-4).
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§3. The perturbations

We restrict ourselves in the linear analysis of the gravitational instability and
investigate the small perturbations in the unperturbed equilibrium state given in § 2.
3.1. The lnear periurbalion equations

Let us denote all the first-order quantities of perturbations by the suffix 1. Then
the linearized equations for the perturbed quantities are given as

o picjleo—_cﬁV(%)—m, (3-1)

P14 7 (pov)=0, - (3-2)

P2y =47Go1, (3-3)

=-S5V XB (3-4)
4 b

351 =P X(: X By) | | (3-5)

where ¢ is the light velocity, vi, Ji are the velocity and the electric current density
which appear only in the perturbed state and ¢: is the perturbed gravitational
potential. :

By the normal mode analysis in the cylindrical coordinates, we can write all the
perturbed value ¢: in the form,

a(r, o, z; )=q(»)explikz+ imp—iwt) . (3-6)

Then from Egs. (3-4) and (3-5) we have for vi(#)=(vr, vy, vz) and j{#)=Ur, jo, 72),

=B L] |
]r_4ﬂw_7<d7+7 vr+l 72 +k Ve 5 (3 7)
. cBo[.f @ |1 d_ml__2> _ﬂ(a’_i)} el
7" 4w _Z<a’r2+rdr 72 K Jor Ndr 7)Y (3-8)
-_CBo_.ﬂ . d L | .
]z—47m)_zkrvr k(—dr—i—;,)v‘p]. v , - (3-9)

Using Eqs. (3-1) and (3:7)~(3+9), the perturbation of each velocity component is
written as . : '

s . Bd _< > 1 d 1 _ 2> ﬂ(i_i> ]_- _d
WU T o0 | d72+rd7 »? R Jorti r\dr 7))V W gy X
(3-10)
. .
B LA B, o
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Gravitational Instability of Magnetic Cylinder 639

UzszI , (3'12)

where
xlsczpl + . (3-13)

By use of Eq. (3-6), continuity equation (3-2) and Poisson’s equation (3+3) become

Zw%jLL( dcff Lr>(.0<>vr)+ z'L,}fv;Jr tkv.=0 (3-14)
and |
2 w2 .
(Gt r e B Jh=txGor, (8-15)

respectively. We solve Egs. (3-10)~(3-15) as an eigenvalue problem for  for a given
set of (k,m) with the proper boundary conditions.

3.2. The boundary conditions for the cylinder with infinite radius

Isothermal hydrostatic equilibrium solution has an infinite radius for the case of ,

free boundary without external pressure. We give the boundary conditions of
regularity at the center and infinite 7,

Ur, Uo, Cgf f;)f,l and fofl -0 for -0, (3-16)

dve dve dve dy o ddr . 3
dr’ dr’ dr’ dr @ and dr 0 for r—eo. (8-17)

The dispersion relations obtained by using these boundary conditions are presented in
§§4.1 and 4.2.

3.3. The boundary conditions for the cylinder with Jfinite radius

For more realistic situation, we include the effect of external pressure and
investigate the gravitational instability of the cylinder with a finite radius R. We set
up the following boundary condition at the perturbed surface of the cylinder:

r=R+ Srexp(ikz+ imp—iwt) . (3-18)

First, the »-component of the velocity at the boundary must be compatible with
this deformed surface,

vr(R)=—iwdr . | (3-19)

As the second boundary condition, we require that the boundary pressure, includ-
ing the magnetic one, must always balance the external pressure Po(R)=Cs20o(R).
To first order in the perturbation, we obtain

dPs

e +P1(R)+ BIZ(R) “2B:i.*(R). (3-20)

The third condition follows from the requirement that the potential and its
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derivative must be continuous on the deformed surface. This can be written to the
first order. in the perturbation,

$(R)=h™(R) _ o (3-21)
and
f}[: R+4ﬂGpo(R)6r=‘%f—xL : (3-22)

We assume that the cylinder is surrounded by a hot and tenuous (00°*—0) medium,
so that the exterior potential ¢** must satisfy Laplace’s equation in cylindrical
coordinates for the given perturbation. The suitable solution should be written with

“the modified Bessel function of order m which is regular at infinity.

0 ()= A1 Kn(lr) for r>R. (3-23)
Eliminating the constant A: from Egs. (3-21) and (3-22), we obtain

0] +arGouR)or =HEx{T) 4 () (3-24)

where
x=FkR . , v (3-25)

Moreover, we assume that there is no electric current outside the cylinder. The
~ magnetic field to the first order can be expressed in the form

B =( Ak (r), A Kolhr), AsikEn(kr)). (3-26)

Since the normal component of B: must be continuous across the boundary, the
constant A: is determined as

Bi(R)
A= s (3-27)

Hence we obtain from Eq. (3-20),

By iKn(z)

2. GP0 dpo
Cdr ir Ko (z)

d 87’+ Cs pl(R)+ BO Blz(R)—

Bi-(R). (3-28)

We use the above three boundary conditions (3:19), (3-24) and (3-28) to get the
dispersion relation of the cylinder with a finite radius and to investigate the effect of
external pressure in § 4.3.

§4. Dispersion relations

In this section, we give the dispersion relations for the gravitational instability of
isothermal gas cylinder and show how the eigenmode of perturbation depends on the
strength of magnetic field and the strength of external pressure. The dimensionless
perturbation equations and the numerical method that we use to obtain the dispersion
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Gravitational Instability of Magnetic Cylinder 641

relations are compiled in the Appendix.

4.1. Axisymmetrvic and non-axisymmetric modes

In Fig. 1, we show the computed dispersion relation for the axisymmetric mode
(m=0) of the isothermal gas cylinder without magnetic field.*
The critical wave number is obtained numerically,

kcr=0561(47Z'Gpc)1/2/Cs:0561/H . (4'1)

Therefore, the infinite cylinder is unstable for an axisymmetric perturbation of 2 < kc,.
The most unstable wave number is

kn=0.284(47Gpc)"?/Cs , (4-2)
where the growth rate has the maximum value,
|wn|=0.339(47Gpc)" . (4-3)

Unlike the Jeans instability, the most unstable perturbation occurs at a finite wave-

) length and the- infinite ~wavelength

X%ﬁ; perturbation needs infinite growing time,

' ie., w—0 as £—0. This means that the

infinite cylinder will break up most prob-
ably into the pieces with a length of

m=1 An=27/kn=22.1Cs/(47Gpoc)"*, (4+4)

0.104

0.05 4
m= 0 in the e-folding time scale of |wx|™.

We show also the dispersion rela-

tions of the “kink” mode (m=1) in Fig. 1

— kH  in the absence of magnetic field. The

non-axisymmetric mode (m=1) of any
wavelength. This is also true in the
case of incompressible fluid.”

We can understand the above result
as follows. In the limit of w—0, using
Egs. (3-12), (3-13) and (3-15), we get

-0.05

-0.104

w n

0

o 1d . B Y=
drz v dr - r? p H z)h=
Fig. 1. The dispersion relation of an infinite iso- . ’ (4'5)

thermal cylinder for axisymmetric mode (m Th bili b
—0) and non-axisymmetric “kink” mode (m—=1) e stability criterion can be represent

in the absence of magnetic field (»’=0). The ed approximately -

wave number % and the eigenfrequency w are 2

normalized in the unit (4xGpc)"?/Cs and kz—}-—-m—z <00 >0. (4-6)
(47Gpc)'"?, respectively. : <> pcH*

*) In this case, the most unstable mode is also calculated by Hayashi'® using the energy variational
principle and coincides with the lowest line of Fig. 1.

infinite cylinder is stable against all the.
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From the definition of critical wave number for m=0, k>~ 00>/ocH? and the
effective radius <7> is the same order as H. Therefore, we rewrite the approximate
stability condition Eq. (4+6) to

kE\? 2 Pc ' .
<kcr> tm <,00>21’ (4 7)

so that the cylinder is always stable for m=1. The same argument is possible for the
incompressible case replacing the scale height H by the cylinder radius R. "It seems
to be equivalent to the fact that we cannot give the perturbation in the ¢-direction
longer than 27H or 27R, which nearly corresponds to the critical wavelength.

Provided that the inner region of the cylinder is empty, that is, in the case of
cylindrical shell, the Rayleigh-Taylor instability is dominant and becomes more
unstable for non-axisymmetric higher m perturbations as studied by Welter and
Schmid-Burgk."” Similarly, the interchange instability of high # mode appears
when the compressible cylinder is under the influence of an axisymmetric external
gravitational field.*?

4.2. The effect of the axial magnetic field

We shall now consider the effect of the uniform magnetic field along the axis of
an infinite cylinder on its gravitational instability. As shown in the Appendix, the
effect of magnetic field can be represented by one non-dimensional parameter:

(4-8)

0.1 0.2 0.3 0.4 0.5 0.6 ﬁZE = C
s

0.00 : : 1 . : i kH drpcCsd

BOZ < Va >2

The parameter p stands for the ratio of
Alfvén velocity to sound velocity. Simi-
lar to the cylinder without magnetic
field, the cylinder is unstable only for

-0.02

4,,%)/,0 certain axisymmetric perturbations. In
~0.06 Fig. 2 we show the dispersion relation
for the gravitationally unstable modes
-0.08 (B<ker) of an infinite cylinder for vari-
ous values of parameter p°>. The axial
010 magnetic field affects the unstable modes
to reduce the growth rate, but it does not
m =0 change the critical wave number ZA.,.

-0.12+4 R - o0

The latter result can be expected from
Fig. 2. The dispersion relation for gravitationally VEqS- (A'Z)N(A'EZ))-. In the marginal
unstable mode (£< k) of an infinite cylinder mode of w—0, p° is factored out and
with the axial magnetic field frozen into the disappears from perturbed equationS.
gas. As the magnetic field strength 2 - Therefore k.- is not affected by * unless

tabl ..
creases, t.he growth rate |o| of ﬂ.le. Lnstabie the boundary condition depends on
perturbation decreases but the critical wave i
magnetic field.

number k.- does not change at all. The stabi- -
lization effect by the magnetic field saturates This is because the unperturbed

so that the lines of »*21 are almost overlapped. state is supported only by the thermal
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Gravitational Instability of Magnetic Cylinder 643

e — pressure gradient and the uniform
magnetic field has no scale length since
the volume integral of the magnetic
pressure is infinite, while if the unpertur-
bed magnetic field scales as Booc p'/?, the
critical wave number depends on the
magnetic field due to the change of scale
height such as H-> H(1+ V.2/CsHY2. In
the case of the cylinder with a finite
radius, even if the unperturbed magnetic
field is uniform, the magnetic energy is
-0, 115 | rrmr—r finite and the characteristic scale length

p? of the magnetic field exists so that there
is a possibility for the magnetic field to

-0.085
-0.090
-0.095

w?2
~0.100

-0.105

Fig. 3. ' The satul"atlon o‘f stabilizing effect by the affect the critical Wavelength.
axial magnetic field in the case of the cylinder

with infinite radius. The growth rate of the Th? StabIIIZIHg effect of an axial
most unstable perturbation £».H =0.284 is sup- magnetic field on the growth rate of the
pressed with the increase of magnetic field but most unstable mode saturates at

it is limited in the range of p*<1.
lwal'=0.295(47Gp)"*  (4-9)

for p*21.0 as shown in Fig. 3. This means that no magnetic field, however strong,
can stabilize the cylinder for disturbances of all wavelength.

We understand this result for the isothermal cylinder in the following way.
When the magnetic field is present, the deformation which bends the magnetic field
line can be stabilized. The magnetic field whose energy is comparable to thermal
energy (p”~1), i.e., half the gravitational energy, is enough to suppress the deforma-
tion of the cylinder as if it were bounded by the rigid walls. However, in the unstable
density perturbations such that £< k.., the gas is compressed along the axial magnetic
field. Therefore, even a magnetic field of infinite strength cannot stop the contraction
of gas along the field direction and the stabilization by magnetic fields has to saturate
as in Fig. 3. The above nature of the magnetic field is not restricted in the cylindrical
geometry. The saturation of the stabilizing effect by the parallel magnetic field is
expected also in the disk geometry.®

4.3. The effect of the external pressure

We solve the eigenvalue problem of the cylinder with a finite radius to examine
the effect of the external pressure. In this case, we use the boundary conditions given
in §3.3.

For cylinders with the radius larger than scale height (R =10H), the dispersion
relation is almost the same as in Fig. 2, because these models correspond to that of
very small external pressure Pex/P.<107%. Figure 4 shows the dispersion relation of
the cylinder with radius R=y8H, whose density at the boundary is just one fourth of
the central density. The critical wave number is slightly larger than that of the
cylinder without external pressure. For this model, magnetic field reduces not only
the growth rate of unstable perturbations but also the critical wave number due to the
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0.00 0.00
-0.024
-0.024
~0.04+
w2 w?
4GP 471G Pc
-0.06 -0.04
~0.08-
-0.064
-0.104
, m = 0 m =0
“0.121 R =2.83 H -0.08+ R =0.28 H

Fig. 4. The dispersion relation for gfavitationally Fig. 5. The dispersion relation for gravitationally

unstable mode («®<0) of the cylinder with the
radius comparable to its scale height. As the
magnetic field strength #* increases, the growth
rate |o| and the critical wave number 4. of the
unstable perturbations decrease. The stabi-
lization effect by the magnetic field saturates
for p*21.

unstable mode (#*<0) of the cylinder with the
radius smaller than its scale height. As the
magnetic field p* increases, the growth rate o]
and the critical wave number %c- of the unsta-
ble perturbations decrease. The behavior of
this isothermal cylinder is very similar to that
of the incompressible cylinder with the axial

magnetic field.

surface boundary conditions which depend on 2%
magnetic field exists also in this case.
the cylinder with field strength p*x1.

As the radius becomes much smaller than scale height, the dispersion relation of
isothermal cylinder becomes more similar to that of incompressible one. Figure 5
shows the dispersion relation of the cylinder with the radius R=0.283H, on which the
strong external pressure is exerted. For this cylinder, the density contrast in unper-
turbed state is very small o(R)/o.=0.980 and similar to that of incompressible
cylinder (o=const). The dispersion relation also resembles that of incompressible
cylinder, which is given by the analytic expression: '

The saturation of stabilization by
The dispersion relation does not change for

w* _ xl(x) [Ko(x)]o(x) ] < "

ixGo  Iz) 47rG”2R.0> ]o(x)%l(x) ’ (4-10)

where I(z) and Li{x) are the modified Bessel functions which are regular at origin.
The critical and the most unstable wavelengths approximate kc-—1.07/R and kn
- 0.58'/R, respectively. The stabilization by magnetic field is much effective to reduce
both the critical wavelength and the growth rate. We find no saturation of stabiliz-
ing effect for this cylinder within a resolution of our numerical method.
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Gravitational Instability of Magnetic Cylinder 645

§ 5. Discussion

In this section, we make a comparison of gravitational instability between iso-
thermal and incompressible cylinder and give some astronomical applications espe-
cially on star forming regions.

5.1. Comparison with the incompressible cylinder

The isothermal cylinder with infinite radius and the incompressible cylinder are
unstable for the perturbations with the wavelength longer than Acr ~27H12 and 27R,
respectively, where Hy is the half width of the unperturbed state such that eo(Hz)
=p¢/2. The most unstable wavelength is about twice of the critical one in both cases.
Therefore, fragmentation will proceed in the cylindrical configuration irrespective of
the equation of state.

The remarkable difference of the gravitational instability of isothermal cylinder
and that of incompressible one is the stabilization effect by the axial magnetic field.
The result of § 4.2 tells us that no magnetic field, however strong, can stabilize the
isothermal cylinder with infinite radius for disturbances of all wavelength. On the
contrary, there is no saturation in the case of incompressible fluid.” The incompress-
ible cylinder can be stabilized completely by the axial magnetic field B of infinite
strength as

|wnl/(47Gp)"*=0.21exp(— B*/87*GR*0?) . (5-1)

The above difference can be understood by considering the nature of magnetic
fields. The magnetic field stabilizes the gravitational instability by compensating for
the gain of gravitational energy with the increase of magnetic energy which follows
the field deformation. For the cylinder of an incompressible fluid, only the deforma-
tion instability presents so that it could be stabilized effectively by the axial magnetic
field.

From the dispersion relations of the isothermal cylinder with a finite radius, we
realize that the gravitational instability of the cylindrical isothermal gas has two
aspects. One is the deformation instability and the other is the compressible in-
stability. The former corresponds to the “sausage” instability of the cylindrical
objects and is caused by the global deformation of the surface. The latter is a certain
kind of the Jeans instahility of compressible uniform medium and does not exist in the
case of incompressible fluid. In order to understand the appearance of these two

aspects for the finite radius isothermal cylinder, we make use of the tensor virial

equation in »-direction,

1Ly [(P+B2)av— [orSav - [(P+ BB s, (5

where

Irr=[/.o7’2dV
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646 M. Nagasawa

The integral is performed on the unit length of cylinder. In the hydrostatic equ111-

brium state given by Egs. (2-1) and (2- 4) the three terms of the r.h.s. of Eq. (5-2)
should balance,

U+W+S=0, (5-3)

where

R
U=47r1: Pr dr,

R
W=—27r£ ,o%

and
S=—27R*Py(R) . (5-4)

Figure 6 shows the comparison of the thermal energy term U, the gravitational
energy term W and the volume energy term S in the unperturbed states for various
cylinder radii #. For the hydrostatic cylinder with a small radius (R<2H), the
volume energy term due to the surface integral of the external pressure is dominant.
When the perturbation is given to such a cylinder, the thermal energy term U is
almost unchanged due to the conservation of line mass. But the surface deformation
can easily decrease the term S and make the cylinder unstable. Hence, the instability

T ; — LOK ]
T i R=0.28H
0.8 U - 0.8} i
/// _W
0.6 Ve 0.6} e ]
/ _
0.4 // 0.4t ,
/
Vi
0.2 // 0.2} 4
& } - I R-28. 3H
S T T 1 I 1
0.0k pd L ' ' L L T 0.0 I ! ' '
2 [ 7 8 10 12 14 16 0.0 0.2 0.4 0.6 0.8 1.0
R/H
r/R

Fig. 6. The comparison of each term (the thermal

energy U, the gravitational energy W and the Fig. 7. The eigenfunctions ¢(») for the most

volume energy S) in tensor virial equation as a
function of the radius R of cylinder. The unit
of the ordinate is twice the thermal energy per
unit length of the cylinder with infinite radius.
For the hydrostatic cylinder with a small
radius (R <2H), the volume energy term due to
the surface integral of the external pressure is
dominant. On the other hand, if the radius is
much larger than the scale height, the volume
energy is negligible and the virial equilibrium
is achieved mainly by the balance between U
and W.

unstable axisymmetric mode m=0 without
magnetic field p*=0. The solid line represents
the perturbed gravitational potential of the
cylinder with a large radius R=28.3H for the
most unstable wavelength £,=0.28/H. The
dotted line is for the cylinder with a radius R
=J/8H and the most unstable wavelength An
=0.33/H. The dashed line is for the cylinder
with a small radius R=0.283/ and the most
unstable wavelength %£,=21/H. The am-
plitude is normalized by the maximum value of
each eigenfunction.
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of small radius isothermal cylinder can be regarded as the deformation instability.
While, if the radius is much larger than the scale height, the volume energy is
negligible and the virial equilibrium is achieved mainly by the balance between U and
W. Therefore, such a cylinder can be unstable by the local density increase in

perturbations which enhance self-gravity and decrease the gravitational energy W. .

This should be called the compressible instability.
The profiles of the eigenfunction also tell us, these characteristics. Figure 7
shows the perturbed gravitational potential ¢1(#) for the most unstable axisymmetric

perturbation in the non-magnetic cylinder. For the cylinder with the radius much

larger than the scale height, the instability increases in the central region. The
increase of central density deepens the gravitational potential and the self-gravity
increases the central compression further. On the other hand, if the cylinder radius
is smaller than the scale height, the instability appears in the whole region of the
cylinder and the amplitude is the largest at the surface boundary. The change in the
gravitational force is small, but the deformation of the surface decreases the total
energy of the cylinder. ,

The understanding of these two aspects is consistent with the stabilization effect
by the magnetic field. For the cylinder with small radius, the stabilization does not
saturate because the deformation instability mainly appears and the magnetic field
can prevent it effectively. While in the case of the cylinder with large radius, the
compressible instability can occur without bending the field lines so that there arises
a limitation of stabilization by the magnetic field.

5.2. Astrophysical applications

The dispersion relation tells us that the cylindrical object whose radius is larger
than the scale height is unstable for the axisymmetric perturbations with wavelengths
larger than A irrespective of the presence of axial magnetic field and the maximum
instability occurs at A». The cylindrical cloud will break into the fragments of size
An. We obtain the mass of the fragment using Eq. (2-4),

MAn=125(Cs*/G%0c)"? , (5-5)

which is nearly equal to the Jeans mass in order of magnitude. Such fragments will
appear along the line of magnetic field in the growing time scale of

lo|'=2.95~3.39 (47Goc)™"?, (5-6)

which depends on the strength of magnetic field as shown in Fig. 3.

In fact, such a configuration is observed in p-Ophiuchi dark cloud region. The
region rich in young stellar objects and the region poor of stellar objects locate with
the separation along the direction of interstellar magnetic field determined by the
measurement of starlight polarization, and the stellar-rich clouds have the mass
comparable to the Jeans mass.'” We may regard these clouds as the fragments
caused by the gravitational instability of the cylinder. Moreover each cloud is
flattened in the direction of magnetic field,’®'® which suggests that it is in the process
of contraction with magnetic field or in the hydromagnetic equilibrium. v

From our numerical results and the above observational support, we can justify
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the initial condition for the star formation from the magnetic cloud. The fragments
with the size ~A; can be formed along the field line even if the cloud has infinite and
uniform extent in the direction of magnetic fields initially. \

What about the cylinder which is confined by the external pressure? According
to the dispersion relation of isothermal cylinder in the limit of small radius, a
filamentary cloud with the radius R<H and uniform density o will break up into
pieces of length 2»=10.83R and the fragment mass M,=34.03p0R*< oH? in the absence
of magnetic field. However, one can think that the small radius cylinder, with the
axial magnetic field, can accumulate enough mass along the axis to start contraction
by self-gravity. In fact, the magnetic field makes the most unstable wavelength
longer and hence the fragment mass larger exponentially as

An=15.21 Rexp(B?*/87*GR*0?) , : (5-7)
M;=47.780R%exp(B?/81?GR?*p?) . : (5-8)

But at the same time, it reduces the growth rate and the characteristic time scale
becomes far beyond the dynamical time scale 1/(47Gp)"? of our interest. Therefore,
in the context of star formation, the gravitational instability of the small radius
cylinder has no direct influence because such a cylinder will disrupt into globules with
characteristic size smaller than H or remain stable for the time of our interest.

§ 6. Conclusion

The gravitational instability is investigated for the hydrostatic equilibrium of
isothermal gas in a cylindrical configuration with a uniform axial magnetic field.
From the numerical dispersion relation, we find that the self-gravitating isothermal
cylinder is unstable for axisymmetric perturbations of wavelength 1> Aer =1.77(xCs2
/Goc)'? and that the fastest growing mode with the growth rate |wn|=0.34(47Goc)"?
appears at the wavelength A,=3.52(xCs*/Go.)" ,

The uniform axial magnetic field has stabilizing effect on the system. ~For the
cylinder with the radius larger than its scale height, it reduces the growth rate but
does not affect the range of unstable wavelength. The stabilizing effect saturates
when the magnetic energy becomes comparable to the thermal energy. This means
any strong axial magnetic field cannot stabilize the infinite cylinder perfectly with
respect to all the wavelengths. While the magnetic field of infinite strength can
stabilize all the perturbations in the case of incompressible fluid with a finite radius.
This can be true even for the isothermal gas when the surface of cylinder is con-
fined by the external pressure and has a finite radius smaller than its scale height.
As the radius of the isothermal cylinder becomes smaller, this compressible gas
behaves more like incompressible one and the dispersion relation approximates to
Chandrasekhar’s one. v ‘

We can interpret these characteristics as the manifestation of two aspects of
gravitational instability of the isothermal gas cylinder, namely, the deformation
instability and the compressible instability. The deformation of cylindrical surface
brings the deformation instability, while the density perturbation increases in the

220z 1snBny |z uo 1senb Aq /G16981/5€9/E// L/o1o1e/d)d/w oo dno-oiwapese)/:sdyy Woly papeo|umo



Gravitational Instability of Magnetic Cylinder‘ _ 649

compressible instability. The axial magnetic field can stabilize chiefly the deforma-
tion instability. The magnetic field which has the energy comparable to the thermal
energy is enough to suppress the deformation of surface and make it like a rigid wall.
However, any strength of magnetic field cannot stabilize the compressible instability
because the self-gravitating gas can always accumulate along the field lines when the
perturbations such as 4> A¢r are set in.  As the result of this compressible instability,
the cylindrical cloud will break into the fragments and each mass, which is determined
by the most unstable A, is heavier than the Jeans mass.

As for the pressure-confined isothermal cylinder whose radius is smaller than its
scale height, the sausage-type fragments due to the deformation instability are
expected. The magnetic field is much effective to prevent this kind of instability.
The fragments that will be formed in this way have the smaller mass than the Jeans
mass. The star formation from these fragments cannot be expected and only the
small cloudlets will be left as the results of this deformation instability.
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Appendix
—— Dimensionless Peviuvbation Equations and Nuwmevical Method ——

In the course of calculation to get the numerical dispersion relation, the variables
are normalized as follows:

1=x/Cs:, $=h/Cs, F=v/Cs,
7=v/H, &d=wH/Cs and Fk=FH . (A-1)

We omit the tilde on the new variables hereafter and use the same notations as the old
ones for simplicity. Then Egs. (3-10)~(3- 15) can be rewritten in non-dimensional
form as

[0+ 2Lt bl L )oY, iy Lo, (aD)
L LYot [ oL 42 oy — 0 =0, (A-3)
(wZ—wm—w2¢1+iw(di;+ir+g)u,~w—’j‘u¢=o, | (A-4)
(L ld ooy Nypy (A-5)

where
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f(r)E—p‘;Ef) =<1+%72>_2, (A-6)

o)=Ll (A1)
and

e (4-8)

We solve the eigenvalue problem numerically by using a finite-difference method

described by Nakamura."” We obtain two second-order differential equations from
Egs. (A-2)~(A-5),

[(92+p2 S s (o )| Py (A-9)
[{QZ(wZ—kZ)—(Q“rprz)%f}ifLo !22<k2 )]s/h |
oL+ Lag)-pm-Gu=o, (A-10)

where

U=iwvr, : (A-11)

Q= f— R (A-12)
and ‘

Fo= ;,’;2 +1 L 72 | (A-13)

The boundary conditions given in § 3.3 for the cylinder with finite radius can also
be rewritten in the dimensionless form combined with Egs. (A-2)~(A-5),

[(.Q“r pzwz)d;‘ﬂifio)—gzd%] i [QZ— p2<gdi;+ g’)}67=0 , (A-14)
[a%_ kI[{{:(%) ] +for=0 (A-15)

and

0]

_P(E_\\1lp pPE P’ 2 REn(x) ], .
| -2 (GG e (1o ) A or=0. (a16)
We use the above three boundary conditions (A-14),~(A-16) to get the dispersion

relations in §4.3. Using these boundary conditions, we can write the differential
operators of Eqgs. (A+9) and (A-10) in a finite difference scheme,

SZ A¢ Ay J _ .
HEF

I
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" When we divide the radial coordinate in N grids, A., B. and B, are tridiagonal N XN
‘matrices, A, is a penta-diagonal N X N matrix and ¢, # are N vectors. Equation (A
-14) has a non-trivial solution only when detL=0. Therefore we can determine the
eigenvalue w® for given values of &£, m and p* by searching the zero point of detL=0
iteratively.
Although we can rewrite Egs. (A-9) and (A-10) into one fourth-order differential
equation for ¢ as

L4¢IE[L1a(L3—%gLZ>+L2] $hi=0, (A-18)
where

F_.d 1

L= 7 + r—l—eg,

Lo=(w?c— uz)Lf[A,o— Ve,

r=(1+88) 4 (15) 4

Q* Jdr\ f
2 -1
[l
e=(w*f —p*V) /2 ' (A-19)
and
v=p+2%

we use Egs. (A-9) and (A-10) instead of Eq. (A+18) for the accuracy and convenience
of numerical calculation. Equation (A-18) is reduced to Welter and Schmid-Burgk’s
expression'? in the case £=p=0.

For the cylinder with an infinite radius, we have transformed the coordinate #
=[0, oo] to £=[0,1] by

E=QQ+*/8)", : (A-20)

- and used the matrix which represents the transformed differential operator in accor-
dance.
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