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ABSTRACT

The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological

studies from weak lensing and photometric redshifts. It uses the European Southern Observa-

tory VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in

four filters similar to the Sloan Digital Sky Survey ugri bands. The best seeing time is reserved

for deep r-band observations. The median 5σ limiting AB magnitude is 24.9 and the median

seeing is below 0.7 arcsec. Initial KiDS observations have concentrated on the Galaxy and

Mass Assembly (GAMA) regions near the celestial equator, where extensive, highly complete

redshift catalogues are available. A total of 109 survey tiles, 1 square degree each, form the

basis of the first set of lensing analyses of halo properties of GAMA galaxies. Nine galaxies

per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69

arcmin−2. Accounting for the shape measurement weight, the median redshift of the sources

is 0.53. KiDS data processing follows two parallel tracks, one optimized for weak lensing

measurement and one for accurate matched-aperture photometry (for photometric redshifts).

This technical paper describes the lensing and photometric redshift measurements (including

a detailed description of the Gaussian aperture and photometry pipeline), summarizes the data

quality and presents extensive tests for systematic errors that might affect the lensing analyses.

We also provide first demonstrations of the suitability of the data for cosmological measure-

ments, and describe our blinding procedure for preventing confirmation bias in the scientific

analyses. The KiDS catalogues presented in this paper are released to the community through

http://kids.strw.leidenuniv.nl.
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1 IN T RO D U C T I O N

Measurements of the gravitational fields around galaxies have for

many decades provided firm evidence for ‘dark matter’: galaxies at-

tract their constituent stars, each other and their surroundings more

strongly than can reasonably be estimated on the basis of their vis-

ible contents (for a historical account of the subject, see Sanders

2014). Furthermore, observations of the temperature anisotropies of

the cosmic background radiation show that most of this dark matter

cannot be baryonic (Planck Collaboration XIII 2015a), in agreement

with constraints from big bang nucleosynthesis models (e.g. Fields

& Olive 2006). Understanding the distribution of matter in the Uni-

verse is therefore a fundamental task of observational cosmology.

The cold dark matter (CDM) model, augmented with increasingly

sophisticated galaxy formation recipes, has been very successful

in describing, and reproducing the detailed statistical properties of,

the large-scale distribution of galaxies. Though important issues

remain, the �CDM model is the baseline for interpreting galaxy

formation.

A central role in testing galaxy formation and cosmology mod-

els is played by observational mass measurements. They provided

the first evidence for dark matter as mass discrepancies in galax-

ies (e.g. Bosma 1978; Rubin, Thonnard & Ford 1978; Faber &

Gallagher 1979; Fabricant, Lecar & Gorenstein 1980; van Albada

et al. 1985; Buote & Canizares 1994) and clusters (Zwicky 1937).

Mass measurements also serve to establish the link between the

observed galaxies and their dark haloes, whose assembly age and

clustering are mass dependent, as is well described by the halo

model (Cooray & Sheth 2002). Masses can be obtained from in-

ternal and relative kinematics of galaxies and their satellites, from

X-ray observations of hydrostatic hot gaseous haloes around galax-

ies and clusters, and from strong and weak gravitational lensing.

While kinematics and X-ray mass determinations usually require

assumptions of steady-state dynamical equilibrium, gravitational

lensing directly probes the projected mass distribution. This model-

independent aspect of lensing is very powerful, but comes at a

price. Strong lensing measurements are rare and depend on suitable

image configurations and mass distributions. These result in com-

plex selection effects which are essential to understand (Blandford

& Kochanek 1987). Weak lensing, on the other hand, is intrinsi-

cally noisy and thus requires stacking many lenses, except for the

most massive galaxy clusters (Tyson et al. 1984). Over the past two

decades, telescopes equipped with larger and larger CCD cameras

have provided the means to make wide-area weak lensing studies

possible: most recently from the CFHTLenS analysis of the CFHT

Legacy Survey (Heymans et al. 2012, henceforth H+12), which

targeted galaxies (see for example Coupon et al. 2015), groups

and clusters (see for example Ford et al. 2015) and the large-scale

structure (see for example Fu et al. 2014).

This paper introduces the first lensing results from a new, large-

scale multi-band imaging survey, the Kilo-Degree Survey (KiDS).

Like the on-going Dark Energy Survey (DES; for first lensing results

from DES science verification data, see Melchior et al. 2015; Vikram

et al. 2015) and the HyperSuprimeCam (HSC) survey (for first

lensing results from HSC, see Miyazaki et al. 2015), KiDS aims

to exploit the evolution of the density of clustered matter on large

scales as a cosmological probe (Albrecht et al. 2006; Peacock et al.

2006), as well as to study the distribution of dark matter around

galaxies with more accuracy than has been possible thus far from

the ground (e.g. Mandelbaum et al. 2006; van Uitert et al. 2011;

Velander et al. 2014) or space (e.g. Leauthaud et al. 2012). Unlike

DES and HSC, which use large allocations of time on 4 and 8 m

facility telescopes, respectively, KiDS uses a dedicated 2.6 m wide-

field imaging telescope, specifically designed for exquisite seeing-

limited image quality. It is also unique in that all its survey area

overlaps with a deep near-infrared (near-IR) survey, VIKING (Edge

et al. 2013), providing extensive information on the spectral energy

distribution (SED) of galaxies.

In de Jong et al. (2015, henceforth deJ+15), we present the public

data release of the first KiDS images and catalogues. Here we de-

scribe the aspects of the survey, data quality and analysis techniques

that are particularly relevant for the weak lensing and photomet-

ric redshift measurements, and introduce the resulting shape cata-

logues. Accompanying papers present measurements and analyses

of the mass distribution around galaxy groups (Viola et al. 2015),

galaxies (van Uitert et al., in preparation) and satellites (Sifón et al.

2015).

This paper is organized as follows. Section 2 presents the survey

outline and data quality, as well as the data reduction procedures

leading up to images and catalogues. Section 3 describes how the

lensing measurements are made, Section 4 discusses the photome-

try pipeline and the derived photometric redshifts, and in Section 5

a number of tests for systematic errors in the data reduction are pre-

sented. Having demonstrated that the KiDS data deliver high-fidelity

lensing measurements, in Section 6 we calculate the cosmic shear

signal from this first instalment of KiDS imaging. Our conclusions

are summarized in Section 7. In three appendices, we give the math-

ematical detail of the point spread function (PSF) homogenization

and matched-aperture photometry ‘GAaP’ (Gaussian aperture and

PSF) pipeline, illustrate some of the quality control plots that are

used in the survey production and validation, and provide a guide

to the source catalogues which are publicly available to download

at http://kids.strw.leidenuniv.nl.

2 D ESCRI PTI ON O F SURVEY

A N D DATA QUA L I T Y

KiDS (de Jong et al. 2013) is a cosmological, multi-band imag-

ing survey designed for weak lensing tomography. It uses the VLT

Survey Telescope (VST) on the European Southern Observatory’s

(ESO) Paranal observatory. The VST is an active-optics 2.6 m modi-

fied Ritchey–Chrétien telescope on an alt-az mount, with a two-lens

field corrector and a single instrument at its Cassegrain focus: the

300 megapixel OmegaCAM CCD mosaic imager. The 32 CCDs

that make up the ‘science array’ are 4102 × 2048-pixel e2v 44-82

devices, which sample the focal plane at a very uniform scale of

0.213 arcsec per 15 micron pixel. The chips are three-edge buttable,

and are mounted close together with small gaps of 25–85 arcsec.

OmegaCAM has thinned CCDs, which avoids some of the problems

inherent in deep depletion devices such as the ‘brighter-fatter’ effect

that introduces non-linearity into the extraction of PSF shapes from

the images (Melchior et al. 2015; Niemi et al. 2015, see also Sec-

tion 3.2.3) or the ‘tree rings’ (Plazas, Bernstein & Sheldon 2014).

In order to maintain good image quality over the large field

of view, OmegaCAM makes use of wavefront sensing. For this

purpose, two auxiliary CCDs are mounted on the outskirts of the

focal plane, vertically displaced ±2 mm with respect to the science

array. As a result, the star images registered on these chips are

significantly out of focus and their shapes and sizes provide the

information required to monitor and optimize the optical set-up

in real time. Autoguiding of both tracking and field rotation is

done using two further (in-focus) auxiliary CCDs. For more details

on VST and OmegaCAM, see Capaccioli & Schipani (2011) and

Kuijken (2011) and references therein.
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Figure 1. Example of high-quality KiDS data obtained with VST/OmegaCAM. PSF SEXTRACTOR parameters shown are for the stacked r-band image of tile

KIDS_132.0_−0.5. Left: direction and strength of the ellipticities of stars in the field. Right: PSF ellipticity (top) and FWHM size (bottom) versus distance

from the centre of the image.

The integrated optical design of the telescope and camera makes

for uniquely uniform and high-quality images over the full 1 square

degree field of view, well matched to the seeing conditions on

Paranal. An example ‘best-case’ PSF measured from a co-added

stack of five dithered sub-exposures is shown in Fig. 1, demonstrat-

ing that the system is able to deliver better than 0.6 arcsec seeing

over the full field even in long exposures with low-level elliptic-

ity distortion. This benign PSF variation can be modelled well and

leads to very low residuals in the galaxy ellipticity measurements

(see Section 3 below). Furthermore, since there are no instrument

changes on the VST, the system is mostly stable, and continuously

monitored photometrically. For a discussion on the long-term pho-

tometric stability of VST/OmegaCAM, see Verdoes Kleijn et al.

(2013).

KiDS is part of a suite of three ESO Public Imaging Surveys on

the VST. Through queue scheduling each survey is observed as con-

ditions and visibility allow (Arnaboldi et al. 2013). The VPHAS+
survey (Drew et al. 2014) targets the southern Galactic plane with

short exposures in broad-bands and Hα, and the ATLAS project

(Shanks et al. 2015) covers some 5000 square degrees of extragalac-

tic sky in the Southern Galactic Cap to similar depth as the (mostly

northern) Sloan Digital Sky Survey (SDSS; Ahn et al. 2014). KiDS,

by contrast, aims to survey a 1500 square degree area to consider-

ably greater depth, with the specific goal of measuring weak gravi-

tational lensing masses for galaxies, groups and clusters as well as

the power spectrum of the matter distribution on large scales.

KiDS targets two ∼10◦-wide strips on the sky: an equatorial strip

between right ascension 10h20m and 15h50m plus the GAMA G09

field between 08h30m and 09h30m, and a southern strip through

the South Galactic Pole between 22h00m and 03h30m (see deJ+15

for the footprint of the survey). It makes use of four broad-band

interference filters, ugri, with bandpasses very similar to the SDSS

Table 1. Observing parameters for the KiDS survey. The longer r-band

observations are made in the best seeing conditions and are used for galaxy

shape measurements, while the remaining bands are used to measure pho-

tometric redshifts. Ranges cover >95 per cent of the data.

Filter Exposure Dithers Seeing Limiting Moon

time (s) (arcsec) magnitude

u 960 4 0.95 ± 0.2 24.2 ± 0.2 Dark

g 900 5 0.8 ± 0.2 25.1 ± 0.2 Dark

r 1800 5 0.7 ± 0.2 24.9 ± 0.25 Dark

i 1080 5 0.8 ± 0.3 23.7 ± 0.7 Bright

filters described in Fukugita et al. (1996). The observations of a

particular KiDS tile in any given filter consist of five dithered sub-

exposures (four in the case of the u band), and are taken in immediate

succession. This choice means that KiDS is not well suited for the

study of variable stars or supernovae, but it does mean that all data

for each tile/filter combination are taken in very similar observing

conditions, resulting in homogeneous data. The prevailing seeing

and sky brightness dictate which observation is scheduled. The

seeing limits for the different filters are matched to the long-term

Paranal average, such that the deep, best seeing r-band observations

can proceed at the same rate as the shallower u and g exposures. We

summarize the observing parameters in Table 1.

The first weak lensing results from KiDS are based on the first

two public data releases (deJ+15), comprising the first 148 square

degrees that were observed in all four filters. 109 square degrees

from this data set overlap with the unique GAMA spectroscopic

galaxy survey (Driver et al. 2011; Baldry et al. 2014), and this

provides the focus of the early lensing science analyses.

MNRAS 454, 3500–3532 (2015)
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Figure 2. Distribution of mean ellipticities and standard deviations of el-

lipticities of co-added images in data releases 1 and 2 of KiDS. The values

are based on SEXTRACTOR ellipticity measurements of the 500 brightest un-

saturated stars in each tile. The grey-scale indicates the number of survey

tiles in each bin. Top: r band only; bottom: data from all filters.

A detailed discussion of the data quality can be found in deJ+15;

in Table 1 we summarize the key quality indicators of PSF sizes and

limiting magnitudes. The PSF size distributions reflect that the best

dark time is reserved for r, with g and u receiving progressively

worse seeing time. The seeing distribution of the i band, which

is the only filter used in bright time, is very broad. Limiting AB

magnitudes (calculated as 5σ in a 2 arcsec aperture) in g and r are

typically ∼25, with u significantly shallower. For i-band observa-

tions, the large variation in seeing and sky brightness results in a

wider variation in limiting magnitude than in the other bands.

PSF ellipticity is of critical importance for weak lensing studies.

Tile-by-tile statistics of the mean and standard deviation of the

PSF ellipticities1 are presented in Fig. 2, and show a typical mean

ellipticity of 0.055 and scatter 0.035. Ellipticities do sometimes vary

significantly over the field of view, due to focus or alignment errors

of the optical system. When such errors arise, the most common

ellipticity patterns encountered are an increase in ellipticity either

in the centre or towards the corners of the field, and an increase

in ellipticity towards one edge. Examples of such PSF ellipticity

patterns are illustrated in Fig. 3.

The KiDS data processing pipeline for lensing builds upon the

pipeline developed for the CFHTLenS project (H+12). CFHTLenS

reanalysed data from the 154 square degree CFHTLS-Wide survey

(see for example Fu et al. 2008), the largest deep cosmological

lensing survey completed to date. It is based on new methods for

measuring galaxy colours for photometric redshifts, and for obtain-

ing ellipticities, the crucial ingredient for weak lensing. Our KiDS

analysis uses further refinements of these techniques.

1 Note that in this section PSF ellipticity is defined as (1 − q), where

q = b/a is the minor-to-major axial ratio of the star images; this differs from

the lensing definition used later on in this paper.

Figure 3. PSF ellipticity patterns caused by a non-optimal optical config-

uration of the telescope. The curved focal plane of the VST translates any

primary mirror astigmatism into increased ellipticity in the centre of the

field (top). A tilt of the secondary mirror results in increased ellipticity near

one edge of the field (bottom panel).

For historical and practical reasons, KiDS uses different data re-

duction pipelines for the lensing shape measurements and for the

photometry. The latter is based on the four-band co-added images

that are released for general-purpose science through the ESO sci-

ence archive, while the former uses a lensing-optimized processing

pipeline of the r-band data only. Integration of both these pipelines

and workflows into a single process is underway. Meanwhile, we

have taken advantage of the redundancy to perform cross-checks

between the different pipelines, for example on star–galaxy separa-

tion, masking and photometric calibration, where possible.

Weak lensing measurements are intrinsically noise-dominated;

results therefore rely on ensemble averaging so that even small

systematic residual shape errors can propagate into the final result

and overwhelm the statistical power of the survey. For this reason,

our dedicated shape measurement pipeline (see Section 3) avoids

MNRAS 454, 3500–3532 (2015)
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stacking sub-exposures and re-sampling of the image pixels. In-

stead, it relies on combining the likelihoods of shape parameters

from the different sub-exposures of each source. This part of the

reduction was performed only on the r-band data, with image cali-

bration and processing using the THELI pipeline (Erben et al. 2013,

henceforth E+13; Schirmer 2013), and object detection and classi-

fication, PSF modelling and shape measurements using the lensfit

code (Miller et al. 2013, henceforth M+13). Before distribution

to the team for scientific analysis, the shape measurements were

‘sabotaged’ through a blinding procedure described in Section 6.1.

The multi-colour photometry was performed tile by tile on

stacked images for each of the four bands. This part of the re-

duction made use of the ASTRO-WISE environment (Begeman et al.

2013) and optical reduction pipeline (McFarland et al. 2013). These

multi-band images are released to the ESO archive as part of the sec-

ond KiDS data release, as described in deJ+15. The lensing-quality

reduction of the r-band imaging is made available on request.

3 K iD S G A L A X Y S H A P E S F O R L E N S I N G

As the lensing data processing of KiDS is built upon the pipeline

developed for CFHTLenS, we refer the reader to the CFHTLenS

technical papers (H+12; E+13; M+13) for detailed descriptions of

the lensfit and THELI implementation. In this section, we highlight

the differences and improvements implemented for this first KiDS

lensing analysis.

3.1 Lensing-quality THELI r-band data reduction

Our reduction of OmegaCAM data starts from raw data provided

by the ESO archive. Most of the processing algorithms used are

similar to those initially developed for the wide-field imager on the

ESO 2.2 m telescope at La Silla, as described in Erben et al. (2005).

A more in-depth description with tests on the THELI data products

will be published in Erben et al. (in preparation).

The THELI processing consists of the following steps.

(i) The basis for all THELI processing is formed by all publicly

available OmegaCAM data at the time of processing. All data are

retrieved from the ESO archive.2

(ii) Science data are corrected for crosstalk effects. We measure

significant crosstalk between CCDs #94, #95 and #963 (deJ+15).

Each pair of these three CCDs show positive or negative crosstalk

in both directions. We found that the strength of the flux transfer

significantly varies on short time-scales and we therefore determine

new crosstalk coefficients for each KiDS observing block (maxi-

mum duration ca. 1800 s).

(iii) The characterization and removal of the instrumental signa-

ture (bias, flat-field, illumination correction) is performed simulta-

neously on all data from a two-week period around each new-moon

and full-moon phase. Each two-week period of dark or bright time

defines an OmegaCAM processing run (see also section 4 of Erben

et al. 2005), over which we assume that the instrument configura-

tion is stable. The processing run definition by moon phase also

naturally corresponds to the observations with different filters (u, g

and r in dark time and i during bright time).

(iv) Photometric zero-points, atmospheric extinction coefficients

and colour terms are estimated per complete processing run. They

2 ESO data archive: http://archive.eso.org
3 Note that the OmegaCAM CCD’s have names ESO_CCD_#65 to #96; see

deJ+15 for their layout in the focal plane.

are obtained by calibration of all science observations in a run that

overlap with the Data Release 10 of the SDSS (Ahn et al. 2014).

Between 30 and 150, such images, with good airmass coverage, are

available per each processing run.

(v) If necessary we correct OmegaCAM data for occasional elec-

tronic interference which produces coherent horizontal patterns over

the whole field of view.

(vi) As the last step of the run processing, we subtract the sky

from all individual chips. The resulting single-CCD sub-exposures,

160 per r-band tile, form the basis for the later shape analysis with

lensfit.

(vii) All science images belonging to a given KiDS pointing are

astrometrically calibrated against the 2MASS catalogue (Skrutskie

et al. 2006). At present, we only use KiDS data belonging to each

individual pointing for its astrometric calibration. A more sophisti-

cated procedure, taking into account overlaps from adjacent point-

ing as well as data from the overlapping ATLAS survey (Shanks

et al. 2015), will be included in the future and should constrain the

astrometric solution further near the edges of each tile.

(viii) The astrometrically calibrated data are co-added with a

weighted mean algorithm. The identification of pixels that should

not contribute, for example those affected by cosmic rays, and

weighting of usable pixels are determined as described in E+13.

(ix) Finally, SEXTRACTOR (Bertin & Arnouts 1996) is run on the

co-added image to generate the source catalogue for the lensing and

matched-aperture photometry measurements.

The final products of the THELI processing are, for each tile, the

single-chip r-band data, the corresponding co-added image with

associated weight map and sum image, and a source catalogue (see

also E+13 for a more detailed description of these products). These

images are made publicly available on request.

3.2 Point spread function

Knowledge of the PSF is essential for any weak lensing analy-

sis, since the PSF modifies galaxy shapes. The thousands of stars

recorded in every KiDS tile provide samples of the PSF across the

field. The first steps are to identify these stars among the many

galaxies in each image, and to build a PSF model from them.

3.2.1 Star selection

High-density, spatially homogeneous and pure star catalogues are

required to construct a good PSF model across the field of view. We

outline in this section how we classify stars in order to meet these

requirements. We start by creating a source detection catalogue for

each of the five sub-exposures in a KiDS field, using SEXTRACTOR

with a high detection threshold. For each sub-exposure, and every

detected object for which FLUX_AUTO has a signal-to-noise ratio

(SNR) larger than 15, we then measure the second-order moments

Qij and the axisymmetric fourth-order moment J given by

Qij =
∫

d2x W (x)I (x) xixj
∫

d2x W (x)I (x)
, (1)

J =
∫

d2x W (x)I (x) |x|4
∫

d2x W (x)I (x)
. (2)

In the above equations, I (x) is the surface brightness of the object

at position x measured from the SEXTRACTOR position of the object

and W (x) is a Gaussian weighting function which we employ to

MNRAS 454, 3500–3532 (2015)
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Figure 4. Automatic star–galaxy separation based on the second- and fourth-order moment radii Q1/2 and J1/4 of individual sources, for a typical KiDS

observation. Five out of the six square panels show the distributions for the individual sub-exposures, with the objects identified as stars shown in red. As the

seeing differs between the sub-exposures, the combined distribution for the observation, in the sixth square panel, reveals a series of distinct stellar peaks. The

rightmost panel shows the distribution of these points in the traditional radius–magnitude plane for the co-added image.

suppress noise at large scales. The width of the weighting function

is fixed and we choose it to have a dispersion of 3 pixels, motivated

by the typical seeing value of our r-band data (∼0.7 arcsec).

Defining Q = Q11 + Q22, we note that Q1/2 and J1/4 are two

different measures of the size of an object, and the ratio between

these two quantities depends on the concentration of the object’s

surface density profile. These two parameters therefore efficiently

classify sources according to their sizes and luminosity profiles.

Fig. 4 shows the distribution of detected objects as a function

of their second- and fourth-order moments for the different sub-

exposures in an example tile. We see that galaxies are scattered

over a wide range of (Q, J) values whereas point sources cluster in

a very compact region with low Q1/2 and J1/4. The width of this

region depends on how strongly the PSF varies across the field of

view.

We identify stars in the Q1/2–J1/4 plane by locating the compact

overdensity with a ‘friends-of-friends’ algorithm. The fixed linking

length was empirically determined from a sample of the data. We

require the final star catalogue to contain the largest possible number

of objects while minimizing contamination by galaxies, as assessed

visually by inspecting the stellar locus in the (half-light radius,

magnitude) plane, shown in the right-hand panel of Fig. 4. In order

to minimize the effect of the PSF variation across the field of view,

we perform this search in each individual CCD and sub-exposure

separately. This automated method is a significant improvement

over the approach taken by CFHTLenS, where the stellar locus

was visually identified for each chip using data from the co-added

image, for every tile in the full survey.

In a final cleaning stage, we combine the five star catalogues

for each chip and we count how many times each object has been

classified as a star. The final star catalogue requires that an object

be classified as a star in at least three out of the five sub-exposures.

In the cases where the object is not observed in all sub-exposures,

for example when the object lands in a chip gap or at the edge

of the field due to the dithering, we only require the star to be

classified as such once. In Appendix B1 on quality control, Fig. B1

shows an example distribution of the selected stars across the field

of view. Plots such as these are inspected for each field to ensure

that the stellar classification is producing a spatially homogeneous

catalogue. Confirmation of the purity of our star catalogue comes

from the PSF modelling where typically less than 1 per cent of the

objects are rejected as outliers at that stage.

3.2.2 PSF modelling

For each KiDS sub-exposure, we construct a PSF model that de-

scribes the position-dependent shapes of the identified stars. The

PSF model is expressed as a set of amplitudes on a 32 × 32 pixel

grid, sampled at the CCD detector resolution and normalized so that

their sum is unity. The variation of each pixel value with position in

the field takes the form of a two-dimensional polynomial of order

n, with the added flexibility that the lowest order coefficients are

allowed to differ from CCD to CCD: this allows for a more complex

spatial variation of the PSF and also, in principle, allows for discon-

tinuities in the PSF between adjacent detectors. If the polynomial

coefficients up to order nc are allowed to vary in this way, then the

total number of model coefficients per pixel is

Ncoeff =
1

2
[(n + 1)(n + 2) + (ND − 1)(nc + 1)(nc + 2)] (3)

with ND = 32, the number of CCD detectors in OmegaCAM. The

coefficients for each PSF pixel are fitted independently and a check

is made that the total PSF normalization is unity at the end of the

fitting process. The flux and position of each star are also allowed to

be free parameters in the fit, with the stars aligned to the pixel grid

of the PSF model using a sinc function interpolation. This approach

allows a great deal of flexibility in the PSF model: in particular it

does not imprint any additional basis set signature on top of the

detector pixel basis. The total number of coefficients is large, but is

well constrained by the large number of data measurements (number

of pixels times number of stars) in each sub-exposure. Only stars

with a high SNR should be used for constructing the PSF model,

because otherwise noise on the measurement of the stellar positions

will bias the model towards larger sizes.

In order to optimize the functional form of the PSF model, we

selected 10 KiDS fields at random and analysed the five r-band sub-

exposures in each field, varying the polynomial orders n and nc. We
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Figure 5. Selecting the optimal fitting orders for the PSF model for a sample of representative KiDS observations. The upper panels show the residual

PSF ellipticity correlation, measured at 1 arcmin separation, as a function of the average PSF ellipticity within the sub-exposure. The lower panels show the

two-point residual PSF size correlation measured at 1 arcmin separation as a function of the average PSF size R2
PSF. Each data point represents a different

sub-exposure, with the point style indicating the polynomial orders (n, nc) of the model. Left: results for n = 3; right: results for n = 4.

characterize the PSF ellipticity ǫPSF and size R2
PSF of the pixelized

model and data as

ǫPSF =
Q11 − Q22 + 2iQ12

Q11 + Q22 + 2
√

Q11Q22 − Q2
12

, (4)

R2
PSF =

√

Q11Q22 − Q2
12 (5)

(cf. equation 1), with the weight function W (x) set to a Gaussian of

dispersion two pixels.

For an accurate PSF model, the residuals

δǫPSF = ǫPSF(model) − ǫPSF(data) and δR2
PSF = R2

PSF(model) −
R2

PSF(data) should be dominated by photon noise, and therefore

uncorrelated between neighbouring stars. Following Rowe (2010)

we therefore seek to minimize the PSF ellipticity residual autocor-

relation, with as few parameters as necessary. This statistic can be

estimated from the data as

〈δǫPSFδǫ
∗
PSF〉θ = ℜ

[

δǫPSF(xa)δǫ∗
PSF(xb)

]

, (6)

where the average is taken over pairs of objects for which |xa − xb|
falls in a bin around angular separation θ , and ℜ and ∗ denote the

real part and complex conjugate, respectively. Analogously, we also

measure the correlation function of the residual size δR2
PSF.

Fig. 5 shows the residual correlation functions measured at 1 ar-

cmin separation. We chose this scale as it is the smallest scale that

can be reliably measured given the typical star density in the im-

ages. The data come from our sample of KiDS sub-exposures for

six different PSF models, with the full field-of-view polynomial

order n = 3 and 4, and chip-dependent polynomial order nc = 0

and 1. We also test models without any chip-dependent coefficients,

denoted nc = none (these models have a total of 1
2
(n + 1)(n + 2)

coefficients). The lower panels of Fig. 5 show the residual PSF

size correlation as a function of the average PSF size R2
PSF. We see

a general trend, that the larger sized PSFs lead to more accurate

modelling, which suggests that the impact of undersampling, when

imaging the PSF, may be an important effect to model in the fu-

ture. The upper panels of Fig. 5 show the residual PSF ellipticity

correlation as a function of the average PSF ellipticity |ǫPSF|. Un-

surprisingly, more elliptical PSFs lead to less accurate modelling.

Comparing the results from the different models, we find a re-

duction in the residuals with the inclusion of a chip-dependent com-

ponent to the PSF modelling, favouring nc = 1. With that choice,

we find little difference between the n = 3 and 4 model, selecting

the n = 3 PSF model, as it has the lowest number of parameters

for the two options. With n = 3 and nc = 1, we fit Ncoeff = 103

parameters per model PSF pixel. (With several thousand stars per

tile, this large number of parameters can still be determined reliably

from the data.)

Analysing the full KiDS data set with this PSF model, we

find residual correlation functions in the range 〈δR2
PSFδR

2
PSF〉θ=1′ =

(3.5 ± 1.3) × 10−7 arcsec4 and 〈δǫPSFδǫ
∗
PSF〉θ=1′ = (7.1 ± 3.5) ×

10−6. The size residual correlation remains fairly constant as a func-

tion of angular separation, whereas the amplitude of the ellipticity

residual correlation decreases with increasing separation, becoming

consistent with zero for scales θ > 20 arcmin. The angular depen-

dence of the PSF ellipticity correlation function and the residuals

are shown for an example KiDS field in Appendix B2. Even though

we find persistent PSF residual correlations, they are too small to

impact our scientific analyses of the data. For example, Rowe (2010)

defines a requirement on the systematic PSF ellipticity residual with

correlation amplitude 〈δǫPSFδǫ
∗
PSF〉θ=1′ < 5 × 10−5, such that it con-

tributes to less than 5 per cent of the �CDM cosmic shear lensing

signal for source galaxies at z ∼ 0.5. At larger separations, the

requirement is more stringent with 〈δǫPSFδǫ
∗
PSF〉θ=10′ < 8 × 10−6

but, as seen in Fig. B2, the KiDS residual correlation functions are

already consistent with zero on these scales. With the present anal-

ysis, we therefore easily meet the Rowe (2010) target requirement

on PSF ellipticity residuals for the full KiDS data set.

PSF modelling software development, currently undergoing test-

ing for future data analysis, allows for the central region of the pixel
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Figure 6. The average residual PSF size as a function of the magnitude

of the star, showing no significant flux dependence in the PSF size. The

average non-zero residual (shown as a dashed line) is too low to introduce

any significant bias in our analysis.

basis PSF model to be oversampled by a factor of 3. Rather than

re-centring each star’s data to its best-fitting position, the fitting

proceeds by shifting the model to the best-fitting data position for

each star. These developments improve the sampling of the core of

the PSF and avoid the introduction of correlated noise caused by

interpolation of the star data in the re-centring process. The dis-

advantage of this procedure is that the model pixel values become

correlated, requiring a joint fit of a large number of parameters,

which is computationally expensive.

3.2.3 Testing PSF flux dependence

Melchior et al. (2015) report a significant flux dependence in the

PSF size in DES data. The effect is due to the use of modern

deep depletion CCDs in DECam (Antilogus et al. 2014), and is not

expected to affect the thinned OmegaCAM detectors used for KiDS.

This is indeed the case. Fig. 6 shows the difference between the PSF

model size and the star size, averaged over the full KiDS data set,

as a function of the star’s magnitude. As the PSF model has no flux

dependence by definition, any detected flux dependence in the size

offset between model and data would arise from CCD effects. Only

a very slight trend with star magnitude is seen, more than an order

of magnitude smaller than the effect seen by Melchior et al. (2015).

The origin of the average non-zero residual of (3.3 ± 0.3) × 10−3 is

unclear: most likely it arises from the presence of noise in the size

measurement of the data, in comparison to the measurement on the

noise-free model, or from not including the effects of undersampling

in the PSF modelling. We conclude that PSF flux dependence will

not be a challenge for the KiDS analysis.

3.3 Shape measurement with lensfit

Weak gravitational lensing induces a coherent distortion in the im-

ages of distant galaxies, which we parametrize through the observed

complex galaxy ellipticity ǫ = ǫ1 + iǫ2. For a galaxy that is a perfect

ellipse, the ellipticity parameters are related to the axial ratio q and

orientation φ as

ǫ = ǫ1 + iǫ2 =
(

1 − q

1 + q

)

e2iφ . (7)

Central to any weak lensing study is a data analysis tool that can

determine galaxy shapes from imaging data. We use the lensfit code4

(Miller et al. 2007; Kitching et al. 2008; M+13) which performs a

seven-parameter galaxy model fit (x, y position, flux, scalelength rd,

bulge-to-disc ratio and ellipticity ǫ1, 2), simultaneously to all sub-

exposures of a given galaxy, taking into account the different PSFs

in each sub-exposure and the astrometric solution for each CCD.

lensfit first performs an analytic marginalization over the galaxy

model’s centroid, flux and bulge fraction, using the priors from

M+13. It then numerically marginalizes the resulting joint like-

lihood distribution L(ǫ, rd) over scalelength, incorporating a

magnitude-dependent prior derived from high-resolution Hubble

Space Telescope (HST) imaging. Finally, for each galaxy, a mean

likelihood estimate of the ellipticity and an estimated inverse vari-

ance weight are derived, as described by M+13. We will refer to

this latter quantity as the ‘lensing weight’.

The KiDS lensing data are obtained in the r band. We therefore

change the lensfit scalelength prior with respect to the i-band-based

prior used in the CFHTLenS analysis. For this purpose, we repeat

the M+13 analysis of the Simard et al. (2002) catalogue of morpho-

logical parameters. This catalogue is based on GALFIT galaxy profile

fitting (Peng et al. 2010) of HST imaging data, and provides disc

and bulge parameters in various wavebands including the F606W

filter which is a good match to the KiDS r band. Selecting galaxies

with 18.5 < r606 < 25.5, we find the following relation between the

median disc scalelength and magnitude:

ln(rd/arcsec) = −1.320 − 0.278(r606 − 23) . (8)

We note that the more extensive HST galaxy morphology analysis by

Griffith et al. (2012) satisfies our requirements in terms of imaging

depth and filter choice. However, it is limited to single Sérsic profile

fits which prevent the selection of disc-dominated galaxies with

which to determine a scalelength prior for the disc component.

As discussed in M+13, the measurements do not strongly con-

strain the shape of the prior of rd, and we therefore adopt the same

functional form (M+13, appendix B1). For the bulge scalelength

prior, the small numbers of bulge-dominated galaxies in the Simard

et al. (2002) catalogue prevent a robust determination. We continue

to fix the half-light radius of the bulge component to be the exponen-

tial scalelength of the disc component, as motivated in appendix A

of M+13.

The change of the galaxy size prior is the only significant change

in lensfit as compared to the CFHTLenS analysis. While appropri-

ate, its effect on the results is small: Hildebrandt et al. (in prepa-

ration) present an analysis of the RCSLenS survey where similar

changes in the scalelength prior are shown not to impact the mea-

sured shear amplitudes by more than a few per cent.

3.4 Masking of the KiDS images

The masking of the r-band THELI reduction uses the AUTOMASK tool5

to generate automated masks, which come in three types. ‘Void

masks’ indicate regions of high spurious object detection and/or

a strong density gradient in the object density distribution (see

Dietrich et al. 2007). ‘Stellar masks’ are generated based on standard

stellar catalogues GSC-1 (complete at the bright end; Lasker et al.

4 See H+12 for a discussion on why lensfit is our preferred shape measure-

ment method.
5 http://marvinweb.astro.uni-bonn.de/data_products/THELIWWW

/automask.html
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Figure 7. Left: small and large stellar haloes, due to reflection from different

pairs of surfaces within the VST. Right: same image, displaying the two types

of halo masks demarcated by small and large circles. The reflection halo

centroids are offset from the star; relative to the centre of the field of view,

the small (large) halo centroids lie inwards (outwards). The bright star in

these images has an r magnitude of ∼10. The large circle has a radius of

210 arcsec.

1988) and UCAC4 (Zacharias et al. 2013, complete from r ≃ 10 to

≃16). The stellar catalogues are used to mask the brighter stars as

well as associated small and large reflection haloes, using mask radii

and centroid offsets that were derived empirically for OmegaCAM

as illustrated in Fig. 7. Finally, the ‘asteroid masks’ flag asteroids

and satellite trails. The AUTOMASK algorithms and procedures are

described in more detail in Erben et al. (2009).

Fig. 8 shows the effect of bright stars, grouped by magnitude,

on the neighbouring ‘source galaxies’, defined here as objects

with valid shape measurements. The upper panel shows the rel-

ative source number density within the large reflection haloes as a

function of the radial distance from the centre. The annular halo

clearly results in a source count incompleteness out to ∼200 arcsec

from the halo centre, the severity of which increases with stellar

magnitude. The detection incompleteness is essentially identical

whether the source objects are unweighted or weighted using the

lensfit weights, implying that the source density count deficiency

originates in the object detection stage.

The second panel of Fig. 8 shows the tangential shear measured

by lensfit for objects detected within the large reflection haloes, as

a function of the distance from its centre. In general, this signal is

found to be consistent with zero, on all scales, indicating that the

local sky background subtraction performed by lensfit removes any

bias introduced by the haloes. The cross shear signal, not shown,

is also consistent with zero. For the brightest stellar sources with

r < 10.5, however, there is an ∼2σ coherent tangential ellipticity

detected at the halo edges at ∼170 arcsec, and on small scales

<50 arcsec. For this reason, we mask and remove the areas with

reflection haloes from the scientific analyses. A similar analysis

was also performed within the other, smaller halo seen in Fig. 7,

showing identical trends in source count incompleteness and shape

coherence.

Based on this analysis, we define two reflection halo masks: a

‘conservative’ mask, with a magnitude limit at r = 11.5, to indicate

the regions of source density incompleteness, and a ‘nominal’ mask

that flags regions where there are signs of a coherent shear (r < 10.5).

The stellar halo masks are based on both the GSC-1 and UCAC4

catalogues.

The lower panels of Fig. 8 investigate source incompleteness and

radial alignment of source galaxies around the centre of the bright

stars themselves, where no sources are detected within 10 arcsec of

Figure 8. The impact of bright stars on source galaxy counts and galaxy

shapes. The upper two panels show the number count completeness and

tangential shear measured within the large reflection haloes as a function

of the radial distance from the centre; the dashed vertical line indicates the

210 arcsec radius that is used to mask these haloes. For the very brightest

haloes, a coherent tangential alignment of ∼1–2 per cent can be seen at

the edges of the large reflection halo, and on small scales. The lower two

panels show the same quantities as a function of distance from the centre

of bright stars. We see two effects: a decrease in the source galaxy counts

and a strong, coherent radial shape alignment immediately around the star,

which can be removed from the sample by applying stellar masks.

the star, as these pixels are typically saturated. Again, we see that the

incompleteness and shape coherence depend strongly on the stellar

magnitude, and the radial dependence of this effect determines the

area masked around each star. All stars in the UCAC4 catalogue with

r < 14.0 are masked, with masking radius (in arcsec) determined

from the stellar magnitude as Rmask = 2.96r2 − 81.2r + 569. Taking

an example r = 11 mag star, Rmask = 34 arcsec, thereby masking

the full area within which a significant coherent negative tangential

shear is measured.

The automatically generated masks were visually inspected, and

additional manual masking was performed if necessary. A number

of the early observations are affected by stray light from bright

objects outside the field of view as a result of poor baffling of the

telescope (see deJ+15 for some examples). Additionally, a number

of missed asteroid and satellite tracks were masked manually in the

co-added image. Manual masking is also used to cover areas of non-

uniformity which the void automask had missed, or for additional

stellar halo masks in the cases where the bright stellar catalogues

are incomplete. The manual masking is then inspected by a single

person to check for uniformity.

In total, the automated masks, using the conservative halo reflec-

tion scheme, along with the manual masks from the lensing pipeline
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remove 32 per cent of the imaged area. With recent improvements

at the VST to reduce scattered light, we anticipate the masked area

fraction to reduce in future analyses. For this first analysis of 109

square degrees of KiDS data that overlap with GAMA, the total

unmasked area is A = 75.1 square degrees.

3.5 Effective number density of lensed galaxies

In its current implementation, lensfit is quite conservative when it

comes to rejecting galaxies whose isophotes might be affected by

neighbours. The final lensfit shape catalogue contains a total of

2.2 million sources with non-zero lensing weight, with an average

number density of 8.88 galaxies per square arcminute over the un-

masked area A of 75.1 square degrees. While this raw number den-

sity provides information about the number of resolved, relatively

isolated galaxies, it does not represent the true statistical power of

the survey. When weights are employed in the analysis to account

for the increased uncertainty in the galaxy shape measurements of

smaller or fainter objects, the effective number density is reduced.

Chang et al. (2013) propose an effective number density defined

as

neff =
1

A

∑

i

σ 2
SN

σ 2
SN + σ 2

m,i

, (9)

where σ SN is the intrinsic ellipticity dispersion (‘shape noise’) and

σ m, i is the measurement error for galaxy i. With this definition,

neff represents the equivalent number density of high-SNR, intrinsic

shape-noise-dominated sources with ellipticity dispersion σ SN that

would yield a shear measurement of the same accuracy.

As the lensfit weights are designed to be an inverse variance

weight, w−1
i ∼ σ 2

SN + σ 2
m,i , with the intrinsic ellipticity dispersion

fixed to a value σ SN = 0.255, we can estimate neff as

neff ≈ σ 2
SN

∑

i wi

A
= 4.48 arcmin−2 . (10)

The inverse shear variance per unit area, ŵ, that the survey provides

is thus equal to

ŵ =
∑

i wi

A
= 69 arcmin−2 (11)

which corresponds to a 1σ shear uncertainty of (ŵA)−1/2 =
0.12/

√
N when averaging N square arcminute of survey. While this

definition is useful for forecasting, it makes a number of assump-

tions: that the shape noise and measurement noise are uncorrelated,

that the estimated inverse variance weight is exact, that the intrinsic

ellipticity dispersion does not evolve with redshift and that it can

be accurately measured from high-SNR imaging of low-redshift

galaxies.

H+12 propose an alternative definition of an effective number

density defined as

n∗
eff =

1

A

(
∑

i wi)
2

∑

i w2
i

= 5.98 arcmin−2 . (12)

With this definition, n∗
eff represents the equivalent number density

of sources with unit weight and a total ellipticity dispersion per

component of σ ǫ , which would yield a shear measurement of the

same accuracy where

σ 2
ǫ =

1

2

∑

i w2
i ǫiǫ

∗
i

∑

i w
2
i

. (13)

For KiDS we measure σ ǫ = 0.278 per ellipticity component, which

is very similar to the ellipticity dispersion measured in CFHTLenS.

This definition is useful as it makes no assumptions about how the

weight is defined. As the shot-noise component for cosmic shear

measurement scales with σ 2/neff, the difference between these two

definitions for KiDS would change the expected shot-noise error on

a cosmic shear survey by ∼10 per cent.

4 K iD S PH OTO M E T RY A N D P H OTO M E T R I C

REDSHI FTS

Without good redshift estimates, any weak lensing data set is of

limited use, as redshifts are required to determine the critical sur-

face density that sets the physical scale for all lensing-based mass

measurements. For the moment, KiDS photometric redshifts are

derived from ugri imaging, and are adequate for the first lensing

science analyses from the survey (Sifón et al. 2015; van Uitert et al.,

in preparation; Viola et al. 2015). Combination with the VIKING

near-IR flux measurements will be used to refine the redshifts fur-

ther in future.

The colours of the galaxies are obtained with ‘GAaP’ photometry,

a novel technique that is designed to account for PSF differences be-

tween observations in different filter bands while optimizing SNR.

The procedure is summarized in Section 4.2 below, and described

in detail in Appendix A.

We base our photometric redshifts on the BPZ code of Benı́tez

(2000). Further details are given in Section 4.4 below. Alternative

photometric redshift techniques based on machine learning are also

being investigated (Cavuoti et al. 2015), but have not been integrated

into the lensing analysis at this point.

4.1 Data reduction

The KiDS photometric redshifts are based on the co-added images

provided in the public data releases. The processing from raw pixel

data to these calibrated image stacks is performed with a version

of the ASTRO-WISE pipeline (McFarland et al. 2013) tuned for KiDS

data. We refer the reader to deJ+15 for a detailed description of all

the steps.

There are some small differences between the THELI reduction of

the r-band data described in Section 3.1 and the four-band ASTRO-

WISE processing. The latter uses a single flat-field per filter for the

entire data set, since a dome-flat analysis shows that the peak-to-

valley variations of the pixel sensitivity were less than 0.5 per cent

over the period during which the data were taken. Also, the i-band

data require a de-fringing step, and different recipes are used to

create the illumination correction maps (which are applied in pixel

space), and the pixel masks that flag cosmic rays and hot/cold pix-

els. Satellite track removal is automatic (currently implemented on

a per-CCD basis). Finally, background structures from shadows cast

by scattered light hitting the shields that cover the CCD bond wires

are subtracted separately in a line-by-line background removal pro-

cedure. All images are visually inspected and masked if necessary

before release.

Photometric calibration starts with zero-points derived per CCD

from nightly standard field observations, tied to SDSS DR8 PSF

magnitudes of stars (Aihara et al. 2011). The calibration uses a

fixed aperture (6.3 arcsec diameter) not corrected for flux losses.

Magnitudes are expressed in AB in the instrumental system. For g,

r and i, the photometry is homogenized across all CCDs and dithers

for each survey tile individually. In the u band, the smaller source

density often provides insufficient information for this scheme. The

resulting photometry is homogeneous within 2 per cent per tile and

filter. Due to the rather fragmented distribution of observed tiles in
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the first two data releases, no global photometric calibration over

the whole survey is feasible yet, resulting in random offsets in the

absolute zero-points of the individual tiles thus obtained. For the

GAMA tiles, which overlap with SDSS, we correct these offsets

after the fact. Detailed analysis and statistics of the photometric

calibration are presented in deJ+15.

A global astrometric calibration combining all CCDs and dithers

is calculated per filter for each tile using a second-order polynomial.

The de-trended sub-exposures are then re-gridded to a 0.2 arcsec

pixel scale, photometrically scaled and co-added to produce the

image stacks.

4.2 GAaP photometry

Photometric redshifts of galaxies require accurate colour measure-

ments. These colours do not need to describe the total light from

the galaxy, but they should represent the ratio of the fluxes from the

same part of the galaxy in different filter bands. This means that we

can optimize SNR by measuring the colours of the brighter, central

regions of galaxies without the need to include the noise-dominated

low surface brightness outskirts.

Such aperture photometry is complicated by the fact that the PSF

is not constant: it varies from sub-exposure to sub-exposure, with

position in each image and with wavelength. We correct for PSF

variations in two steps. First, we homogenize the PSF within each

co-added image to a Gaussian shape without significantly degrading

the seeing. The resulting images contain most of the information that

is present in the original stacks, with a simpler PSF but correlated

noise between neighbouring pixels. Secondly, we perform aperture

photometry using elliptical Gaussian aperture weight functions, and

correct analytically for the seeing differences.

In brief, the PSF Gaussianization of each KiDS tile consists of

the following steps.

(i) We model high-SNR stars in the co-added image with a

shapelet expansion (Refregier 2003), using the pixel-fitting method

described in Kuijken (2006). This formalism provides a natural

and mathematically convenient framework for PSF modelling and

image convolutions. The scale radius (i.e. size of the parent Gaus-

sian in the shapelet expansion) of the shapelets is matched to the

worst seeing found in the individual sub-exposures making up the

co-added image for each filter.

(ii) We then derive a PSF map by fitting the variation of the

shapelet coefficients across the image, using polynomials.

(iii) We construct a grid of kernels that yield a Gaussian when

convolved with the model PSF, also expressed in the shapelet for-

malism. The size of the ‘target’ Gaussian is set by the shapelet

scale chosen in step (i). We fit the spatial variation of these kernels’

coefficients using polynomials, resulting in a kernel map.

(iv) Each co-added image is convolved with its kernel map.

(v) The shapes of the PSF stars on this PSF-Gaussianized image

are modelled once again with a shapelet expansion, but now using a

larger scale radius in order to measure residual flux at large radii. A

map of the residual PSF non-Gaussianities is then made as above,

and used to make a perturbative correction to the Gaussianized

image to improve the PSF Gaussianity further.

(vi) As a result of the convolution (and to a lesser extent, also

from the preceding re-gridding before co-addition), the noise in

these images is correlated on small scales. We keep track of the

noise covariance matrix during the Gaussianization, and account

for it in the photometric measurements.

The GAaP photometry is performed from these PSF-Gaussianized,

co-added images for all sources in the r-band THELI–lensfit cata-

logue. First, we pick an elliptical Gaussian aperture for each source,

with aperture size, shape and orientation chosen to optimize the

SNR of the fluxes, based on the pre-Gaussianization r-band im-

age. For major and minor axis lengths a and b, and orientation α

with respect to the pixel coordinate grid, we construct an ‘aperture

matrix’

W =

(

a2 cos2 α + b2 sin2 α (a2 − b2) sin α cos α

(a2 − b2) sin α cos α a2 sin2 α + b2 cos2 α

)

, (14)

which in turn is used to define the GAaP flux FW as the Gaussian-

weighted aperture flux of the pre-seeing image of the source,

Ipre(x):

FW ≡
∫

dx Ipre(x)e− 1
2

xT
W

−1 x . (15)

FW is well defined and manifestly PSF independent, but since it is

defined in terms of the pre-seeing image, it is a theoretical construct.

However, it is possible to measure this quantity from a Gaussian-

smoothed image IG = Ipre ⊗ G (where G is a Gaussian PSF of

dispersion p and ⊗ denotes convolution) using the identity

FW =
det(W)

1
2

det(W − p21)
1
2

∫

dx IG(x)e− 1
2

xT(W−p2
1)−1 x (16)

which is valid for any PSF size p < a, b (i.e. as long as the aperture

is larger than the PSF). 1 denotes the identity matrix. For a given

source, provided the same aperture matrix W is used for all bands,

equation (15) shows that this technique returns fluxes that weight

different parts of the source consistently.

A detailed description of the PSF Gaussianization pipeline, prop-

agation of the noise correlation due to the convolution, and a dis-

cussion and derivation of the GAaP flux formalism, may be found

in Appendix A. We stress that these aperture magnitudes are not

designed to be total magnitudes.

4.3 Photometric calibration

As described above, the photometric zero-points of the co-added

images used for the current analysis are calibrated based on nightly

standard star field observations, and no global photometric cali-

bration is included. To improve these absolute zero-points, a cross-

calibration to SDSS is done before the derivation of the photometric

redshifts.

We calibrate against the eighth data release of the SDSS (Ai-

hara et al. 2011), which represents the complete SDSS imaging

and fully overlaps with the KiDS–GAMA fields. Stars are selected

from SDSS and matched to the KiDS multi-colour catalogues. We

choose a magnitude range where the OmegaCAM sub-exposures

are not saturated and SDSS photometry is sufficiently precise. Over

this range we average the differences in the photometry between

our GAaP measurements and the SDSS PSF magnitudes in all four

bands (ugri). We find no trend with magnitude, confirming that the

difference is a pure zero-point offset.

The distribution of the differences for all 114 fields is similar to

the one shown in deJ+15. We find the mean offset to be consistent

with zero in the g band and offsets of ∼0.02, ∼0.05 and ∼0.06 mag

in the r, i and u bands, respectively. Field-to-field scatter is in the

range 2.5–5 per cent. The offsets are applied to each field glob-

ally relying on the photometric stability of SDSS and the KiDS
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Figure 9. Number counts in the r band of the lensing catalogue (blue,

weighted by lensfit weight) and the spectroscopic catalogue (red, un-

weighted).

illumination correction. All subsequent analysis is based on these

re-calibrated magnitudes.

4.4 Photometric redshifts

The KiDS photometric redshift estimates are obtained following the

methods used for CFHTLenS (Hildebrandt et al. 2012). We use the

Bayesian photometric redshift code BPZ (Benı́tez 2000), a spectral

template-fitting code, together with the re-calibrated template set

by Capak (2004).

To assess the accuracy of our photometric redshifts, we also

produce stacks from VST data in two fields with deep spectroscopic

coverage, the Chandra Deep Field-South (CDFS) and the COSMOS

field. These data were taken under the VOICE (De Cicco et al. 2015)

project. Total exposure times in these fields are much longer than for

typical KiDS observations, but individual sub-exposures are similar

to those from KiDS, allowing us to produce stacks with similar

depth and seeing as a typical KiDS field. We extract catalogues and

photometric redshifts in the same way as for the KiDS tiles, and

then match the resulting photometric catalogues with the combined

CDFS spectroscopic catalogue6 and a deep zCOSMOS catalogue

(zCOSMOS team, private communication). In the following, we

compare the KiDS photometric redshifts to the high-confidence

spectroscopic redshifts from these catalogues.

Fig. 9 shows the r-band magnitude number counts of the lens-

ing catalogue (weighted by the lensfit weight, see Section 3) and

the spectroscopic matches (unweighted). This deep spectroscopic

sample spans the full magnitude range of the lensing sample, with

broadly similar distribution, and therefore we do not apply any

further weighting. This is also the reason why we concentrate on

the zCOSMOS and CDFS fields here. Adding in the numerous

bright spectroscopic redshifts from SDSS and GAMA would not

add significant information about the performance of the photomet-

ric redshifts of the faint KiDS sources.

A straight comparison of the Bayesian photometric redshifts,

zB, and the spectroscopic redshifts, zspec, is shown in Fig. 10. To

6 http://www.eso.org/sci/activities/garching/projects/goods

/MasterSpectroscopy.html

Figure 10. Photometric redshift versus spectroscopic redshift in the CDFS

and COSMOS fields for objects with 19 < r < 24. Contours are spaced in

0.5σ intervals with the outermost contour corresponding to the 2σ level.

Photo-z are estimated from four-band ugri data from the VOICE project

in the two fields, stacked so as to approximate the KiDS depth and seeing.

Spec-z are from the combined ESO CDFS catalogue and a deep zCOSMOS

catalogue. For this sample, we find a photo-z scatter of 0.054 after rejecting

11 per cent of the galaxies as outliers. The photo-z bias for this sample is

0.01.

Figure 11. Statistics of the photometric versus spectroscopic redshift dis-

crepancy 
z as a function of r-band magnitude in the CDFS and COSMOS

fields. From top to bottom: clipped rms dispersion, outlier fraction, average

offset and fraction of galaxies in each given ODDS cut (normalized to the

total).

quantify the level of agreement, we characterize the photometric

redshift of each galaxy by the relative error


z =
zB − zspec

1 + zspec

(17)

and plot its statistics in bins of magnitude and redshift in Figs 11

and 12, respectively. We use the mean of 
z as a measure for the
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Figure 12. As Fig. 11, but plotted as a function of photometric redshift zB.

photometric redshift bias, the fraction of objects with |
z| > 0.15

as the outlier rate and the rms scatter after rejection of the outliers

as the dispersion. We show the statistics for different cuts on the

BPZ ODDS parameter (see Benı́tez 2000), which is a measure of the

unimodality of a galaxy’s posterior redshift distribution. Cutting

on ODDS usually leads to slightly better photometric redshifts at

the expense of losing objects. This is reflected in the completeness

fraction, plotted in the bottom panel of Figs 11 and 12.

These tests check for the accuracy of the photometric redshift

point estimates. Such point estimates can be used to select galaxies

in certain redshift regions, to define tomographic redshift bins, and

to distinguish between foreground and background galaxies in dif-

ferent lensing applications. The modelling of the lensing measure-

ment, however, makes use of the full photometric redshift posterior

probability distributions p(z) that BPZ estimates for each galaxy, and

in that sense p(z) is the more crucial quantity for the weak lensing

science goals.

We have checked that the summed p(z) posteriors of the galaxies

plotted in Fig. 10 agree well with their spectroscopic redshift dis-

tribution provided we exclude galaxies whose zB values lie at the

extremes of the redshift distribution of the spectroscopic calibration

sample. After some experimentation, based on these results as well

as on Fig. 12, we cut our galaxy catalogue at 0.005 < zB < 1.2 in

all lensing analyses.

Detailed characterization and testing of the p(z) will be presented

in forthcoming papers (Choi et al., in preparation; Hildebrandt et al.,

in preparation).

4.5 Galaxy clustering analysis

As a further test of our photometric redshifts, following Newman

(2008) we calculate the angular cross-correlation of the positions

of GAMA and KiDS galaxies on the sky, grouped by spectroscopic

(GAMA) and photometric (KiDS) redshifts. Galaxies that are phys-

ically close will produce a strong clustering signal, and hence this

measurement can validate photometric redshift estimates.

GAMA is a highly complete spectroscopic survey down to a limit-

ing magnitude of r < 19.8, measuring redshifts out to zspec = 0.5. We

group the GAMA galaxies into five redshift bins i of width 
zspec ≃
0.1. We limit the KiDS galaxies to r < 24, and group them into eight

photometric redshift bins j, listed in Fig. 13. The photometric red-

shifts extend beyond the GAMA redshift range to zB = 1.2. The

projected angular clustering statistic wij
gg(θ ), between spectroscopic

bins i and photometric bins j, is then estimated using the Landy &

Szalay (1993) estimator by means of the ATHENA code (Kilbinger,

Bonnett & Coupon 2014). Errors are calculated using a jackknife

analysis. We focus on angular scales 1 arcmin < θ < 30 arcmin,

where the upper angular scale is set by signal-to-noise constraints,

and the lower angular scale is chosen to reduce the impact of scale-

dependent galaxy bias on the measurements (Schulz 2010). The

results are shown in Fig. 13 with the spectroscopic redshift bin i

increasing from top to bottom, and the photometric redshift bin j

increasing from left to right.

The strongest angular clustering is found when the spectroscopic

and photometric redshift samples span the same redshift range,

which can be seen along the ‘diagonal’ of Fig. 13 where i = j.

This is anticipated if there is no significant bias in the photomet-

ric redshift measurement zB. As the photometric redshifts have an

associated scatter, we also see clustering between adjacent spec-

troscopic and photometric redshift bins. With the exception of the

0.2 < zB < 0.3 bin, we find non-zero clustering only in matching

or adjacent bins, implying that the photometric redshift scatter is

less than the spectroscopic bin width 
z = 0.1. This is consistent

with the analysis presented in Section 4.4 which found the scatter

σ z < 0.08 out to zB = 1.2.

A correlation between the positions of galaxies in widely sepa-

rated redshift bins would indicate the presence of catastrophic errors

in the KiDS photometric redshifts. We see this to some extent in

the non-zero clustering measured between the 0.2 < zB < 0.3 and

0.4 < zspec < 0.5 galaxy samples, indicating that a small fraction of

the photometric redshifts in this bin are actually at a higher redshift.

This measurement could be used to infer the true redshift distribu-

tion of this galaxy sample (see for example McQuinn & White 2013,

which is beyond the scope of this paper). For all other photometric

redshift bins, we find the clustering signal to be consistent with zero

for all bin combinations separated by 
z = 0.1 or more. We can

therefore conclude that the fraction of ‘catastrophic outliers’ is low,

in agreement with the direct spectroscopic–photometric redshift

comparison presented in Section 4.4.

We consider this analysis as a validation of our redshift esti-

mates. A similar conclusion is drawn from the analysis of the cross-

correlation between different photometric redshift bins of KiDS

galaxies, presented in deJ+15, which extends the cross-correlation

between bins beyond redshift z = 0.5 which cannot be probed with

the GAMA catalogues.

4.6 The combined shear–photometric redshift catalogue

In Section 4.4 we defined a photometric redshift selection crite-

rion 0.005 < zB < 1.2 to ensure a good level of accuracy in the

photometric redshifts. We now combine that redshift selection with

the shape measurement analysis by also selecting galaxies with a

lensfit weight w > 0 (this cut excludes all galaxies for which no

shape measurement was obtained; see M+13). The upper panel

of Fig. 14 compares three redshift distributions for this sample of

galaxies, showing the distribution of the zB point estimates of the

photometric redshift, and the weighted and unweighted sums of

the associated posterior distributions p(z). The weighted distribu-

tion, plotted as the thick solid line, is the one most relevant for our
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Figure 13. Angular cross-correlations between KiDS galaxies binned by photometric redshift and GAMA galaxies binned by spectroscopic redshift. Spectro-

scopic redshifts increase from top to bottom, and photometric redshifts increase from left to right.

analysis: it is the effective redshift distribution of the lensing infor-

mation and has a median redshift of zm = 0.53.

The weights used in the lensing analysis favour higher SNR

galaxies which are typically at lower redshift in this flux-limited

survey, and hence the weighted median redshift is lower than that of

the unweighted sample (which has zm = 0.63). Indeed, if the shape

measurement criterion w > 0 had not been applied, the unweighted

median redshift would be even higher with zm = 0.66. This is il-

lustrated in the lower panel of Fig. 14, which shows the effective

redshift distribution for galaxies with different BPZ ODDS parame-

ters: the more precise photometric redshifts, with high ODDS, also

tend to be at lower redshifts (e.g. the weighted median redshift for

galaxies with ODDS > 0.9 is 0.43). As the ODDS value decreases,

so does the accuracy of each individual photometric redshift, owing

to multiple peaks in each galaxy’s posterior distribution that result

from degeneracies in the redshift solution. In the stacked posterior

shown in Fig. 14, these degeneracies are responsible for the shape

of the distribution at the peak.

Fig. 14 illustrates the importance of using the full posteriors p(z)

instead of the best-fitting photometric redshifts zB to define the

survey redshift distribution. The point estimates are more prone to

artefacts associated with the particular filter set used. They also do

not reflect the full information content of the photometry. As an

illustration of how using zB could bias a lensing analysis, Fig. 15

shows the measured angular diameter distance ratio Dls/Ds for a

lens at redshift zl = 0.25. Using zB or p(z) to determine the redshift

distribution of the background lensed sources changes the average

distance ratio by ∼10 per cent. As the distance ratio defines the

lensing efficiency of sources at different redshifts, using zB instead

of p(z) would result in an underestimate of the lensing surface mass

density by ∼10 per cent.

5 TESTS FOR SYSTEMATI C ERRORS

I N T H E K iD S L E N S I N G C ATA L O G U E

Different science cases require different levels of accuracy in

the shear and photometric redshift catalogues. It is common to

model calibration corrections to shear measurement in terms of a

multiplicative term m and additive terms ck such that

ǫobs
k = (1 + m)ǫtrue

k + ck , (k = 1, 2) , (18)

where ǫobs
k are the observed ellipticity parameters and ǫtrue

k the true

galaxy ellipticity parameters (Heymans et al. 2006). Massey et al.

(2013) present a compilation of possible sources of such correction

terms, and calculate requirements on their amplitudes for different

kinds of analysis. In an ideal shape measurement method, both m

and ck would be zero. In reality however, these corrections need to

be determined so the data can be calibrated, and then systematics

tests performed to ensure that the calibration is robust.

Our first series of lensing science papers measure shear–position

correlation statistics, also known as galaxy–galaxy lensing, where

the tangential shear of background galaxies is determined relative to

the position of foreground structures. As this measurement is taken

as an azimuthal average, it is very insensitive to additive correction

terms ck except on scales comparable to the survey boundaries. It

is, however, very sensitive to the accuracy of the measured mul-

tiplicative calibration m, an error which leads directly to a bias

in the mass determined from the lensing measurement. Further-

more, these measurements rely on good knowledge of the photo-

metric redshift distribution to determine the level of foreground

contamination in the background source sample and hence the level

of dilution expected in the measured lensing signal. In this sec-

tion, we therefore first describe the analysis done to validate the
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Figure 14. The galaxy photometric redshift distribution. Upper panel:

summed posterior redshift distributions n(z), with (solid line) and with-

out (dashed line) weighting by the lensfit weight. The effective median

redshift of the lensing survey is zm = 0.53. The histogram shown in this

panel shows the distribution of the zB point estimates of the photometric

redshift. Lower panel: the lensing weighted posterior n(z) distributions of

galaxies in progressively lower ODDS categories (see the text).

multiplicative calibration m used, and then verify that the redshift

scaling of the galaxy–galaxy lensing signal is consistent with the

expectation based on the photometric redshift error distributions.

In this technical paper, we also present the first demonstration of

the suitability of the data for cosmological measurements through

two-point shear statistics. Such an analysis places more stringent

requirements on the accuracy of the shear catalogue, in particular

the additive corrections ck. We therefore perform an additional set

of tests, following H+12, first selecting fields where the cross-

correlation between the measured shear signal and the PSF pattern

Figure 15. Effect of using the full photometric redshift posterior p(z), or the

point estimate zB to determine the angular diameter distance ratio Dls/Ds for

a lens galaxy at redshifts zl = 0.25. The average distance ratio Dls/Ds sets

the lensing efficiency and differs by 10 per cent depending which redshift

measure is used (dashed lines).

is consistent with zero systematics. We then empirically determine

the ck terms from the remaining data.

5.1 Multiplicative calibration

The multiplicative calibration term m can only be determined

through the analysis of image simulations where the true galaxy

shapes are known. M+13 describe the CFHT MegaCam image

simulations against which lensfit was calibrated extensively in the

CFHTLenS analysis. The primary aim of these simulations was to

correct for noise bias (Hirata et al. 2004; Melchior & Viola 2012;

Refregier et al. 2012). On average the noise bias resulted in an

∼5 per cent correction to the measured shear, with more significant

corrections for smaller, fainter galaxies. This analysis provided a

calibration correction that depends on the lensfit parameters SNR

and size rd as

m(SNR, rd) =
β

log10 SNR
exp(−α rd SNR) , (19)

with α = 0.306 arcsec−1 and β = −0.37.

The r-band KiDS VST-OmegaCAM imaging differs from the

simulated i-band CFHT MegaCam imaging in a few key respects.

The pixel scales differ: θpix = 0.213 arcsec for OmegaCAM and

θpix = 0.186 arcsec for MegaCam. The KiDS data are shallower than

CFHTLenS, and while the mean PSF full width at half-maximum

(FWHM) values for the two sets of lensing data are the same

(0.64 arcsec), the average KiDS PSF ellipticity is ∼15 per cent

smaller than the average CFHTLenS PSF. We verify in two dif-

ferent ways that this CFHTLenS correction is suitable to use for

KiDS: (i) using a re-sampling technique such that the simulated

catalogues better match the KiDS data, and (ii) by comparing the

galaxy–galaxy lensing signal around bright galaxies in CFHTLenS

and KiDS for progressively fainter source samples.
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Figure 16. Comparison of the observed properties of galaxies in the image

simulations from M+13 (thin lines) to the observed properties of galaxies in

KiDS (thick lines). The upper panels compare the SNR distributions in bins

of increasing galaxy size (in arcseconds). The ellipticity distributions can

be compared as a function of galaxy size (middle panels) and SNR (lower

panels).

5.1.1 Re-sampled image simulations

Fig. 16 compares the measured properties of galaxies in the image

simulations from M+13 (thin lines) to the properties of galaxies

in KiDS (thick lines). The upper panels compare the SNR distri-

butions in bins of increasing galaxy size7 showing that the image

simulations have a deficit of small galaxies. M+13 concluded this

arose from an overestimate of the true PSF size when creating the

image simulations. Compared to the image simulations, which are a

good match to the SNR distribution of the CFHTLenS data, we also

see a higher proportion of low-SNR galaxies in KiDS. This arises

because CFHTLenS imposed a magnitude limit i < 24.7 on their

galaxy sample, based on the depth to which photometric redshifts

were considered reliable. For KiDS, we do not include a similar im-

posed fixed magnitude limit, see Fig. 9, as the depth of the survey

is within the limits covered by deep spectroscopic surveys.

Comparing the ellipticity distributions as a function of galaxy

size (middle panels) and SNR (lower panels) in Fig. 16, we see

an excess of simulated galaxies of large ellipticity in the high-

SNR regime. As shown in Viola, Kitching & Joachimi (2014) and

Hoekstra et al. (2015), calibration corrections can be sensitive to the

ellipticity distribution. For the purposes of the analysis of our first

100 square degrees, we re-sample the simulated galaxy catalogues

from M+13 such that the simulated ensemble galaxy properties

match the KiDS data in terms of size, SNR and ellipticity. This

is possible as the image simulations from M+13 simulated two

complete CFHTLenS surveys. Hence, while there is a deficit of

small, low-SNR galaxies in the simulations, relative to the global

populations, there are sufficient numbers with which to validate the

calibration scheme m from equation (19), for KiDS, in this under-

represented regime.

We sample galaxies from the image simulations, such that the

correlations that exist between observed size, observed SNR and

7 In principle, this comparison should be made in terms of the relative

galaxy-to-PSF size, but as the KiDS and CFHTLenS imaging have similar

seeing distributions we work with galaxy size in arcseconds.

observed ellipticity in the data are retained. As lensfit performs a

joint parameter fit of galaxy ellipticity and size, selecting galaxies

based on their observed size will introduce a selection bias on galaxy

ellipticity. It is therefore critically important not to subject lensfit

catalogues to any ‘cleaning criterion’, for example rejecting small

galaxies based on the lensfit size estimate. Instead, we use the lensfit

weights to optimally combine the shape measurements. Following

M+13, we determine the accuracy of the CFHTLenS calibration

correction for KiDS by calculating

δm =
∑

ik [1 + m(SNR, rd)] wi(ǫ
obs
ik − ǫtrue

ik )

2
∑

i wi

= −0.04 ± 0.02 ,

(20)

where the sum is taken over the simulated galaxies i in the re-

sampled image simulation catalogues, weighted by the observed

lensfit weights wi and calculated for both components k of the

ellipticity. We find that the CFHTLenS calibration correction un-

derestimates the calibration required for KiDS by a few per cent,8

which is within the current statistical error budget for the early sci-

ence presented in Viola et al. (2015), Sifón et al. (2015) and van

Uitert et al. (in preparation). We also verified that this underesti-

mate did not vary significantly as a function of galaxy SNR, as it

arises from the increased fraction of small galaxies in the sample.

A new suite of KiDS image simulations are in production using the

GALSIM software (Rowe et al. 2015), in preparation for future analy-

ses in which the larger area surveyed will demand a more accurate

calibration scheme.

5.1.2 Galaxy–galaxy lensing at different SNR:

KiDS versus CFHTLenS

In this section, we apply an additional consistency check to confirm

the findings of the image simulation re-sampling analysis, using

real data. We verify that the SNR dependence of the multiplicative

calibration is robust by comparing galaxy–galaxy shear measure-

ments from observations of different depths. To divorce this test

from any uncertainties in photometric redshift, we define lens and

source samples purely by r-band magnitude. We then compare the

dimensionless, m-calibrated tangential shear profile γ t(θ ) measured

with KiDS and with the deeper CFHTLenS data (E+13). The lens

samples are selected with 20 < r < 21, and four source samples

are selected in half-magnitude bins from r = 22 to 24. For the

brightest sources, the average calibration corrections from equation

(19) are only a few per cent for both surveys, but the faintest bin

includes a 14 per cent calibration correction for KiDS compared

to a 4 per cent correction for CFHTLenS. Fig. 17 shows the good

agreement between the calibrated KiDS and CFHTLenS tangential

shear profiles, measured between 1 and 20 arcmin, for the four dif-

ferent source samples. To quantify the consistency, we perform a

direct bin-by-bin comparison of the measured shears in the right-

hand panel of Fig. 17. Fitting a simple proportionality relation to

the points, using uncorrelated bootstrap errors, as motivated by the

results of the analytical prescription described in Viola et al. (2015),

we find a best-fitting ratio of (KiDS/CFHTLenS) = 1.05 ± 0.13.

8 We note an error in the calculation of equation (19) used in the first KiDS

lensing analyses (Sifón et al. 2015; Viola et al. 2015) that did not correctly

account for the different MegaCam and OmegaCAM pixel scales. By luck

this error erroneously increased the average value of m, such that the KiDS

correction δm was reduced to δm = −0.03 ± 0.02.
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Figure 17. Four panels on the left: KiDS versus CFHTLenS comparison of the average tangential shear around galaxies with 20 < r < 21 measured from

progressively fainter source populations. The insets show the average multiplicative correction factor, as derived from equation (19) and applied to the plotted

measurements. Right-hand panel: bin-by-bin comparison of the shear values for θ between 1 and 20 arcmin. The red line shows the best-fitting linear regression,

and the grey zone the corresponding 1σ uncertainty (errors on both axes are taken into account).

5.2 Testing redshift scaling with galaxy–galaxy lensing

As objects get fainter, our ability to measure shape, photometry

and photometric redshifts degrades. On the other hand, the fainter

galaxies tend to be at higher redshifts, and therefore they experi-

ence a stronger lensing distortion. Measuring the dependence of the

lensing signal with source redshift can in principle provide tight con-

straints on the growth of structure and geometry of the Universe. It

is therefore imperative to perform a cosmology-insensitive joint test

of the shear-redshift catalogue and determine whether any redshift-

dependent shear bias exists. In H+12, a galaxy–galaxy lensing test

of shear-redshift scaling was designed that was found to be only

very weakly sensitive to the fiducial cosmology assumed in the

analysis. The mean tangential shear γ t is measured around a sam-

ple of lens galaxies for a series of source galaxies split by increasing

photometric redshift, zB. We approximate the mass distribution of

the galaxies in the lens sample as singular isothermal spheres (SIS)

with a fixed velocity dispersion σ v. The predicted tangential shear

around the lens sample i, measured from source sample j, is then

given by

γ
ij
t (θ ) =

2π

θ

(σv

c

)2
〈

Dls

Ds

〉

ij

. (21)

Here c is the speed of light, and Dls/Ds is the ratio between the

angular diameter distances from the lens to the source, and from

the observer to the source. The average of this ratio depends on the

effective redshift distribution of the lens and source sample (see for

example Bartelmann & Schneider 2001). For a fixed lens sample,

we should recover consistent measurements of σ v, independent of

which source sample is used. Any discrepancy indicates either poor

knowledge of the photometric redshift distribution for that source

sample, a redshift-dependent shear measurement bias or a strong

redshift dependence in the velocity dispersion σ v of the lenses

within their foreground redshift bin.

Fig. 18 shows the tangential shear determined at 1 arcmin, for

source galaxies in seven bins of zB spanning 0.005 < zB < 1.5. Two

samples of lens galaxies from GAMA were used, with spectroscopic

redshifts between 0.25 < zspec < 0.5 (filled) and zspec < 0.25 (open).

Figure 18. The tangential shear measured at 1 arcmin as a function of the

average redshift of the source sample, for two samples of GAMA lenses with

spectroscopic redshifts between 0.25 < zspec < 0.5 (filled) and zspec < 0.25

(open). The solid line shows the predicted signal from the best-fitting SIS

model, with the dashed lines showing the 68 per cent confidence interval.

The solid line connects the predicted signals from the best-fitting

SIS model, assuming a Planck cosmology, taking into account the

full redshift posterior p(z) for the sources in each bin. The ampli-

tude of the model is set by fitting to all sources with photometric

redshifts 0.2 < zB < 1.0, which is considered to be the safest pho-

tometric redshift range based on the results presented in Fig. 12.

The dashed lines show the 68 per cent confidence intervals on the

model amplitudes.

As expected, the signal increases as the average redshift of the

source sample increases. We also see that the signal and model do

not tend to zero for low zB, even though the mean source photo-

metric redshift is in front of the lens. This is a result of a non-zero

fraction of catastrophic outliers in the photometric redshift sample

that are actually at high redshift, causing a significant tangential

shear signal. By taking account of the full photometric redshift

posterior probability distributions of the sources, the knowledge of

catastrophic outliers enters the model, generating an upturn at low
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source redshift (note that such low-zB galaxies which are actually

at high redshift do not show up in the cross-correlations in Fig. 13

as they fall outside the GAMA redshift range). This analysis shows

that, within the current SNR of the measurement, our shear-redshift

catalogue is not subject to significant redshift-dependent shear

biases.

5.3 Field selection for cosmic shear test

H+12 describe a method to identify observations with significant

residual contamination of the galaxy shapes by the PSF. It involves

comparing the correlation between galaxy and PSF shape, mea-

sured in the data and with mock catalogues. As a result, 25 per

cent of the CFHTLenS tiles were flagged as unsuitable for cosmic

shear science; none the less these data could be retained for the

galaxy–galaxy lensing analyses as the azimuthal averaging renders

the measurement essentially insensitive to additive PSF errors. We

follow CFHTLenS in not applying field selection for our first se-

ries of galaxy–galaxy lensing science papers, but repeat the H+12

analysis on KiDS in order to assess its future competitiveness for

cosmic shear science. We summarize the key steps of the analysis,

and refer the reader to H+12 for a detailed description.

The ellipticity estimate for each source can be written as

ǫobs = ǫint + γ + η + Asys,iǫ
i
PSF , (22)

where ǫint is the intrinsic galaxy ellipticity, γ is the true cosmological

shear that we wish to detect and η is the random noise on the shear

measurement whose amplitude depends on the size and shape of the

galaxy in addition to the SNR of the observations. The final term

reflects residual amounts of PSF contamination from the various

sub-exposures i that ‘print through’ to the final galaxy ellipticities.

Even though the coefficients Asys, i should be very small for good

shape measurement pipelines, this term can generate significant

coherent correlations when the shapes of many galaxies on the

same tile are averaged.

From a set of N sub-exposures of a part of the sky (N = 5

in the case of KiDS r-band data), H+12 define a vector of star–

galaxy cross-correlation coefficients ξsg, with one element per sub-

exposure:

ξsg = 〈ǫobsǫ∗
PSF〉 = 〈ǫintǫ∗

PSF〉 + 〈γ ǫ∗
PSF〉 + 〈η ǫ∗

PSF〉 + CAsys ,

(23)

where the average is taken over all galaxies in the pointing. Here ǫPSF

is a vector of PSF ellipticity patterns, one per sub-exposure, deter-

mined from the PSF model at the locations of the source galaxies in

each sub-exposure. C is a matrix whose elements Cij = 〈ǫi
PSFǫ

j

PSF

∗
〉

give the average covariance of PSF ellipticities between the sub-

exposures. The complex conjugate of the ellipticity is denoted with

an ‘∗’, and only the real part of the averages in equation (23) is kept

(as in equation 6). We have assumed that Asys does not vary across

the field of view.

For a sufficiently wide area, the first three terms of equation (23)

average to zero, in which case Asys = C−1ξsg. The contribution of

this systematic ellipticity error to the two-point shear correlation

function, 〈ǫobsǫobs∗〉, is then given by


ξobs = ξT

sgC
−1ξsg . (24)

We wish to use ξsg as a diagnostic with which to identify those

tiles where, for whatever reason, the PSF modelling has left signif-

icant residuals that would contaminate the shear–shear correlation

function. The KiDS data are taken in square degree tiles, and on

Figure 19. Field selection based on the degree of correlation between the

PSF ellipticity pattern and the galaxy ellipticities as compared to simulated

data. See the text for the definition of
∑

(
ξobs), which quantifies the degree

of residual PSF contamination in measurements of the two-point shear cor-

relation function. The histogram shows the expected range of this statistic

in simulations, and the hashed region indicates the measured value ± the 1σ

bootstrap error. For comparison, the dashed histogram shows the expected

range for shape-noise-free simulations. Top: all 109 KiDS fields. Bottom:

result of field selection (see the text for details).

these scales the measurement of ξsg will have contributions from

the first three noise terms in equation (23) through chance align-

ments between the different noise, PSF and cosmic shear fields.

We therefore estimate the expected amplitude of 
ξobs, a posi-

tive quantity, from a series of 184 simulated KiDS data sets each

containing 109 systematics-free 1 square degree mock catalogues.

These mock catalogues are populated to match the intrinsic el-

lipticity and measurement noise in the data. A correlated cosmic

shear signal is also added, drawn from the N-body simulations of

Harnois-Déraps, Vafaei & Van Waerbeke (2012), following the ef-

fective galaxy redshift distribution n(z) of KiDS shown in Fig. 14.

Fig. 19 shows the distribution of
∑

(
ξobs), where the sum is taken

over all 109 mock fields, for the 184 different mock realizations of

KiDS. The dashed line shows the result we would have obtained if

the mock catalogues had contained a cosmic shear signal only, to

emphasize that the two-point star–galaxy cross-correlation function

will be non-zero even in the absence of ellipticity noise. We then

measure the average star–galaxy cross-correlation coefficient for

each field observed, with the result summed over all fields shown

as the hashed rectangle in the upper panel. The difference between

the expected result from the mock simulations and the data shows

that some fields do indeed contain strong PSF residuals. To isolate

these fields, we determine a probability p for each field that 
ξobs

is consistent with zero systematics (see H+12 for details). We then
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Figure 20. The weighted mean ellipticity components 〈ǫ1〉 (left) and 〈ǫ2〉
(right), as a function of PSF Strehl ratio (upper), galaxy size (middle) and

galaxy SNR (lower). The points are shown before (open symbols) and after

(filled symbols) the empirical calibration has been applied, with the latter

offset horizontally for clarity.

set a threshold on this probability such that the data (shown hashed)

match the expected distribution from the simulations, a requirement

met when p > 0.11. We find that this procedure rejects only four of

our fields (3.7 per cent, cf. 25 per cent for CFHTLenS), suggesting

that the PSF modelling in KiDS is of a significantly higher quality

than in CFHTLenS, as could have been expected owing to the clean

OmegaCAM PSF.

5.4 Additive calibration correction

For the data that passed our field selection (Section 5.3), we measure

the average weighted ellipticity components 〈ǫ1, 2〉. For a KiDS-

size survey, in the absence of systematic error, these should be

consistent with zero. As with the analysis of CFHTLenS (H+12),

we find a small residual shear signal in KiDS at the level of ∼10−3

(shown in Fig. 20). The dependence on galaxy size and SNR is

different though. In CFHTLenS small, high-SNR galaxies were

found to be the dominant source of the residual signal in 〈ǫ2〉,
whereas 〈ǫ1〉 was consistent with zero: instead, for KiDS we find that

the lowest SNR galaxies dominate the residual, which is stronger

in 〈ǫ1〉. In addition, we see a strong dependence of 〈ǫ1〉 on the

Strehl ratio (defined here as the fraction of light in the PSF model

that falls into the central pixel), which could be a sign of error due

to undersampling of the PSF. Indeed, with typical pixel-to-seeing

ratio of 0.25 for CFHTLenS and 0.3 for KiDS, we expect KiDS

to be more prone to such errors. Future analyses of KiDS will

therefore include a PSF modelling method that correctly accounts

for the undersampling (Miller et al., in preparation). For this first

release, however, we follow the CFHTLenS strategy of calibrating

Figure 21. The measured dependence of 〈ǫ1〉 (left) and 〈ǫ2〉 (right) as a

function of SNR, for three different size bins (panels upper to lower r = 0.6,

0.3, 0.2 arcsec), and two different Strehl ratio bins with Strehl = 0.05 (open

symbols) and Strehl = 0.1 (filled symbols). The corresponding best-fitting

models are shown as solid (Strehl = 0.05) and dashed (Strehl = 0.1) lines.

and removing this small systematic effect empirically. Note that the

first lensing analyses are based on tangential shear averages and are

therefore not affected by such additive errors as long as the analysis

is not affected by the survey boundaries: for the current data set, we

see no sign of additive effects out to projected radii of 2 h−1Mpc

(Viola et al. 2015).

Using all the data that passed the field selection in Section 5.3,

we bin the data in three dimensions with six bins in size and SNR,

and three bins in Strehl ratio, and fit a 3D second-order polynomial

model to the bins.9 Fig. 21 presents example slices from the data

cube and the model fit. Applying the c-correction to the shear cat-

alogue changes the one-point statistics 〈(ǫ1, ǫ2)〉 from (−0.0015,

−0.0002) to (0.0004, 0.0004), with a 1σ uncertainty of 0.0003.

This is sufficiently small that it will not impact the measurement

of the two-point shear correlation function presented in Section 6.

This level of residual shear will however impact future degree-scale

cosmological shear measurements, requiring improvements in the

calibration scheme for future data releases.

6 C O S M I C SH E A R M E A S U R E M E N T

The measurement of weak gravitational lensing by large-scale struc-

ture, often referred to as ‘cosmic shear’, has the ability to set

tight constraints on both standard cosmological parameters (see

9 For our first set of galaxy–galaxy lensing papers, an earlier version of

the additive correction was applied that used a third-order polynomial fit

to a 3D binning with 10 bins on each axis. On further inspection, this sub-

optimal set-up was discovered to introduce a low level of spurious noise

into the shape measurement. As the shear–position correlations were found

to be insensitive to the additive correction, we only updated the additive

calibration for the cosmological analysis demonstration in this paper.
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for example Heymans et al. 2013, and references therein) and a

range of modified gravity scenarios (Simpson et al. 2013; Planck

Collaboration XIV 2015b). While the amount of data analysed in

this paper represents less than 10 per cent of the final KiDS area,

in this section we argue that the data quality is at the level that the

full survey will indeed provide high-fidelity cosmic shear measure-

ments. It also provides a practical demonstration of our blinding

scheme, which has been designed to counter user confirmation bias

in future KiDS cosmic shear analyses.

6.1 Blinding the KiDS weak lensing catalogues

In the post-Planck precision cosmology era, one of the challenges

that new cosmological observations face is confirmation bias (e.g.

Croft & Dailey 2011). Many new surveys are therefore following the

approach, particularly favoured by the particle physics community,

of performing a ‘blind’ analysis. The first stage of such an analy-

sis is the verification and validation of software packages through

the analysis of mock simulated data. The KiDS N-body simulations

span 30 000 square degrees with a Wilkinson Microwave Anisotropy

Probe 9 cosmology (Hinshaw et al. 2013), and are an extension of

the suite of lensing simulations described in Harnois-Deraps & van

Waerbeke (2015). With these simulations, we can verify the analy-

sis methods for galaxy–galaxy lensing, galaxy–cluster lensing and

tomographic cosmology, and also determine covariance matrices

for the analysis of the data.

This mock data strategy does not prevent confirmation bias in

the analysis of the real data, where potentially unknown sources

of systematic error increase the complexity of the analysis. For

example, choices are currently made about which sub-exposures or

pointings to excise from the analysis based on the outcome of a

range of systematics tests on the shear measured in these regions.

Choices are also made as to which length-scales to include in the

analysis of correlation functions or power spectra, which binning

to use and which photometric redshift ranges to trust. It is therefore

important to build blinding into our data analysis such that these

choices are informed purely through scientific rationale, and not

influenced by the results of independent experiments.

An example of an early blind cosmological data analysis is Davis

et al. (2007) where the analysis team was given supernova data in

which the redshifts had been stretched. This strategy of manipulat-

ing the data with a small multiplicative perturbation has also been

used by other groups, but has the drawback that when the data are

finally unblinded, the analysis has to be re-run. This potentially

allows for low-level adjustments in the re-analysis, for example

choosing which scales to include. We have therefore designed an

alternative blinding scheme that prevents this, by ensuring that the

true data are analysed along with the perturbed versions.

All KiDS weak lensing catalogues analysed contain four sets

of ellipticity data: the true data, and three versions that have been

manipulated by an unknown amount. Specifically, the magnitudes

of the ellipticities in column A = 1, 2, 3, 4 of the catalogues are

‘curved’ with a function

ǫA = ǫ
(

ekA[1−(ǫ/ǫmax)2]2
)

(25)

parametrized by a single value kA such that ǫmax, the maximum

ellipticity in the catalogues, is left invariant under this remapping.

The values {kA} are unknown, except that for one of them, the true

data, kA is equal to zero. The differences between the kA can easily

be reconstructed by dividing the shear columns, but this provides

no information as to which column contains the true ellipticities.

The values of kA were limited to |kA| < 0.2, in order to satisfy two

conditions. On the one hand, the effect of the transformation should

be sufficiently large that it effectively blinds KiDS to confirma-

tion bias with cosmic microwave background measurements from

Planck, by changing the results up to ∼10σ in terms of the Planck

error on the amplitude of the matter density power spectrum (Planck

Collaboration XIII 2015a). At the same time, equation (25) must

not distort the lensing values to such an extent that it creates sus-

picious effects in galaxy–galaxy lensing, ellipticity distributions,

SNR or redshift scaling. We asked a trusted colleague, external

to the team, to set the values of kA through a PYTHON executable

that takes the original lensing catalogues output from lensfit (see

Section 3), manipulates the ellipticity columns, according to equa-

tion (25), and outputs a new catalogue with the additional blind

columns inserted in an order unknown to any member of the KiDS

team.

The team members agreed that they would not wilfully unblind

themselves by attempting to back-track the data manipulation to

discover which column contains the original data. All analyses are

carried out on all four sets of columns, including systematics tests,

empirical corrections and covariance matrix estimation. Different

fields may pass or fail the systematics tests in different blinded

columns and this has been taken into account in the final analysis.

Even though this set-up incurred a factor of 4 increase in the com-

putational analysis time, we felt this was a necessary step to make,

whilst also encouraging the good practice of creating, verifying and

validating ‘press-of-the-button’ end-to-end analysis scripts. In or-

der to allow for phased unblinding, team members add an additional

individual layer of blinding by not labelling their results with the

blinded column number used. Pre-publication, our results were sent

to our external who provided the blinding key, and can verify that

the results presented in both this paper and our first scientific anal-

yses (Sifón et al. 2015; Viola et al. 2015) were not changed after it

was revealed to the authors which column contained the true shear.

We show an example of the blinding scheme in action in the next

section, where we present the cosmic shear measurement from the

four blinded shear measurements.

Thus far, our blinding is limited to the shape measurements only

and future blinding will also include manipulation of galaxy weights

and potentially photometric redshifts, stellar masses and galaxy

luminosities. As our first analysis covers less than 10 per cent of the

final KiDS area, the blinding described here had only a small effect

on the early science results presented in the accompanying Viola

et al. (2015) and Sifón et al. (2015) papers. We agreed, however,

that it was important to implement this blinding scheme from the

beginning, in order to learn from this ‘dry run’ in preparation for

the future larger area KiDS cosmological analyses.

6.2 Second-order weak lensing statistics

To detect weak lensing by large-scale structures and extract cos-

mological parameter constraints and information about systematics

from the data, a wide range of different two-point statistics have

been proposed (see Schneider et al. 2002b; Schneider, Eifler &

Krause 2010, for a comprehensive discussion of the relationship

between these statistics). These real-space statistics all derive from

the observed angular two-point correlation function ξ̂± which can

be estimated from the data as follows:

ξ̂±(θ ) =
∑

θ wawb [ǫt(xa)ǫt(xb) ± ǫ×(xa)ǫ×(xb)]
∑

θ wawb

. (26)
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Using inverse variance weights w, the sum is taken over pairs of

galaxies with angular separation |xa − xb| = θ ± 
θ/2, where 
θ

is the width of the bin.10 The tangential and cross components of

the ellipticities ǫt, × are measured with respect to the vector joining

each pair of correlated objects (Bartelmann & Schneider 2001).

Weak gravitational lensing produces curl-free gradient distortions

(E-mode) and contributes only to the curl distortions (B-mode) at

small angular scales, θ < 1 arcmin, mainly due to source redshift

clustering (Schneider, van Waerbeke & Mellier 2002a). Decompos-

ing the weak lensing signal into E and B modes therefore provides

a method with which to gauge the contribution to the overall shear

correlation signal from non-lensing sources. These could arise from

residual systematics in the shape measurement method or from the

intrinsic alignment of nearby galaxies (see Troxel & Ishak 2015,

and references therein).

Crittenden et al. (2002) show that the shear correlation functions,

estimated in equation (26), can be decomposed into the E- and

B-type correlators

ξE(θ ) =
ξ+(θ ) + ξ ′(θ )

2
and ξB(θ ) =

ξ+(θ ) − ξ ′(θ )

2
,

(27)

where

ξ ′(θ ) = ξ−(θ ) + 4

∫ ∞

θ

dϑ

ϑ
ξ−(ϑ) − 12θ2

∫ ∞

θ

dϑ

ϑ3
ξ−(ϑ) .

(28)

The measured E-mode ξE(θ ) is related to the underlying non-linear

matter power spectrum Pδ that we wish to probe, via

ξ±(θ ) =
1

2π

∫

dℓ ℓ Pκ (ℓ) J0,4(ℓθ ) , (29)

where J0, 4(ℓθ ) is the zeroth (for ξ+) or fourth (for ξ−) order Bessel

function of the first kind. Pκ (ℓ) is the convergence power spectrum

at angular wavenumber ℓ

Pκ (ℓ) =
∫ wH

0

dw
q(w)2

a(w)2
Pδ

(

ℓ

fK (w)
, w

)

, (30)

where a(w) is the dimensionless scale factor corresponding to the

comoving radial distance w and wH is the horizon distance. The

lensing efficiency function q(w) is given by

q(w) =
3H 2

0 �m

2c2

∫ wH

w

dw′ n(w′)
fK (w′ − w)

fK (w′)
, (31)

where n(w) dw is the effective number of galaxies in dw, normalized

so that
∫

n (w)dw = 1. fK(w) is the angular diameter distance out

to comoving radial distance w, H0 is the Hubble parameter and

�m is the matter density parameter at z = 0. For more details, see

Bartelmann & Schneider (2001) and references therein.

6.3 KiDS shear correlation data and survey parameters

Fig. 22 presents the derived E- and B-type shear correlation func-

tions, from equation (27). These were calculated following the

method in Pen, Van Waerbeke & Mellier (2002), using 4000 finely

binned measurements of the shear correlation function ξ±(θ ) span-

ning 9 arcsec < θ < 4◦ in equal bins of log θ . As our data extend

10 Note that the final reported angular scale of the bin should not be the

mid-point of angular range selected, but the weighted average separation of

the galaxy pairs in that bin.

Figure 22. Comparison of the E-type (upper) and B-type (lower) shear cor-

relation functions measured using all the data (dashed), after the application

of the field selection (open points), and after the application of both field

selection and the additive calibration correction (solid). Without these two

corrections, the B mode, which is an indicator of non-lensing systematic er-

rors, becomes significantly non-zero on large scales. Note that the B-mode

vertical axis has been multiplied by θ (in arcminutes) in order to emphasize

the differences from a zero signal.

over many degrees, but not to infinity, we use a fiducial cosmo-

logical model to determine the integrand in equation (28), splitting

the integrals into two. The first is calculated from the observations

directly, extending from θ to θmax, where θmax = 4◦. The second

extends from θmax to ∞ and is calculated by inserting ξ−(θ ) calcu-

lated from equation (29) assuming the KiDS redshift distribution

and the best-fitting Planck cosmology (Planck Collaboration XIII

2015a). This model-dependent part of the integrand sums to ∼10−7

for the three cosmological models that are compared in Fig. 23. This

model dependence prevents cosmological parameter estimation di-

rectly from the E-mode signal. The analysis is still a valid diagnostic

test for residual systematics, however, as the model-dependent ad-

dition to equation (28) is less than 10 per cent of the total signal on

the largest angular scales probed. The errors are estimated follow-

ing Pen et al. (2002), treating each noisy finely binned raw shear

correlation measurement as uncorrelated with the others. We then

propagate these uncorrelated errors through to a final correlated

error on the coarsely binned E- and B-type shear correlation func-

tions. This approximation is sufficient for this diagnostic test as the

current KiDS area is relatively small such that for the majority of

scales the data are shot-noise-dominated.

Focusing first on the measured E mode presented in the upper

panel of Fig. 22, the small effect of removing the 4 per cent of fields

that failed the selection stage (Section 5.3) can be seen, as well

as the result of subsequent application of the additive calibration

correction (Section 5.4). The impact of this two-step calibration

can also be seen in the B-mode signal (lower panel), which is con-

sistent with zero on all scales, demonstrating excellent control of

systematic errors in shape measurement with KiDS. Without the

field selection or additive ellipticity corrections, however, we find a

significant B-mode signal on scales θ > 10 arcmin. In preparation

for future releases, we are currently implementing a number of im-

provements in the data reduction pipeline, PSF modelling and shape
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Figure 23. The E-type shear correlation functions from the 105 tiles of

KiDS data that pass the PSF systematics tests in Section 5.3. Measurements

from all four blindings are shown, with the true shear measurement indicated

with an error bar. For comparison, the E-mode signal expected from three

different �CDM cosmological models is shown: Planck cosmology using

the TT spectra (dashed) and EE spectra (dotted) along with the best-fitting

CFHTLenS result (solid). Note that the vertical axis has been multiplied by

θ (in arcminutes) in order to improve the visualization by enhancing the

differences.

measurement analysis which are designed to reduce the significance

of the calibration corrections on our analysis.

To illustrate how the implemented blinding scheme modified the

results, Fig. 23 compares the E mode measured from all four blind-

ings, with the true shear measurement indicated as the data point

with Poisson error bars. For comparison, the E-mode signal ex-

pected from a range of �CDM cosmological models is also shown,

using the effective weighted redshift distribution shown in Fig. 14,

as estimated from the weighted sum of the photometric redshift

probability distributions p(z). The three cosmological models use

the Planck results from table 3 of Planck Collaboration XIII (2015a)

showing the difference between the cosmology fit to the TT spec-

tra (dashed) and EE spectra (dotted) along with the best-fitting

CFHTLenS result (solid) from Kilbinger et al. (2013).

7 C O N C L U S I O N S

In this paper, we present the first lensing analysis of the KiDS data

obtained at the VST at ESO’s Paranal Observatory. KiDS is a multi-

band survey specifically designed for weak lensing tomography,

which takes advantage of the very good image quality at the VST.

A particular advantage of the VST, where the camera operates at

an f/5 Cassegrain focus, compared to much faster wide-field prime-

focus cameras, is the simplicity and generally low amplitude of the

ellipticity pattern, as well as the uniformity of the size of the PSF

over the full field of view.

The KiDS lensing analysis draws heavily on heritage from the

CFHTLenS project (H+12), in particular in the use of THELI (E+13)

and lensfit (M+13) for measuring galaxy shapes (Section 3), and BPZ

(Benı́tez 2000) for photometric redshifts (Hildebrandt et al. 2012).

As input for the photometric redshifts, matched-aperture colours are

derived from PSF Gaussianization of the public data release of the

ASTRO-WISE reduction of the KiDS images (deJ+15), and subsequent

GAaP photometry. This procedure, which was developed specifically

for KiDS, is described in detail in Section 4 and Appendix A. The

resulting shear/photometric redshift catalogues are available to the

community (Appendix C), and form the basis of three companion

scientific analyses (Sifón et al. 2015; van Uitert et al., in preparation;

Viola et al. 2015) that exploit the overlap of these data with the

GAMA spectroscopic survey (Driver et al. 2011). The KiDS lensing

catalogues contain 8.88 galaxies per square arcminute with non-

zero lensing weight, cover an unmasked area of 75 square degrees

and provide an inverse shear variance of 69 arcmin−2. The median

redshift of the summed posterior photometric redshift distributions

of the galaxies, accounting for the lensfit weight, is 0.53.

Considerable attention was paid to quantifying and correcting

the lensing estimates for additive and multiplicative bias. In order

to validate the galaxy ellipticities, we carried out extensive tests

(Section 5). All indications are that the data are indeed ‘lensing

quality’. For example, the degree of star–galaxy shape correlation

in the KiDS data is essentially consistent with the expectations from

realistic simulated cosmic shear fields, with just 4 per cent of the

tiles falling outside expected parameter ranges, and the amplitude of

galaxy–galaxy lensing around magnitude-limited foreground lenses

scales in the same way as it did in CFHTLenS even though the depths

of the surveys differ. Taking advantage of the GAMA overlap, we

also tested the way the tangential shear around galaxies at known

(spectroscopic) redshift scales with the (photometric) redshift of

the sources. Also here we recover the expected dependence, which

gives us confidence in both the photometric redshifts and the shears

we measure.

Finally, in Section 6 we present a first measurement of the cosmic

shear correlation function from these data. Though admittedly still

noisy, the results are consistent with previous measurements, and

show negligible B-mode signal, demonstrating the high fidelity of

the KiDS lensing data.

KiDS observations continue at the VST, and as the area of the

survey grows, more refined cosmological lensing measurements

will follow.
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APPEN D IX A : PSF GAUSSIANIZATION

A N D G AaP P H OTO M E T RY

In this appendix, we describe the processing steps involved in the

PSF Gaussianization, and the subsequent Gaussian aperture pho-

tometry. The aim is to obtain multi-colour photometry that is insen-

sitive to difference in PSF between the different bands, yet optimizes

SNR by down-weighting the outer parts of the images. It is impor-

tant to stress that the resulting fluxes do not provide total magnitudes

of the sources; they are mainly intended for consistent estimation

of the SED of the high-SNR parts of a source.

The procedures presented here build on the ideas presented in

Kuijken (2008), but differ in that here (i) an explicit pixel-space

PSF Gaussianization convolution is performed, and (ii) the aperture

shape and size can be specified independently of the PSF size.

A1 PSF Gaussianization

We start from a co-added image of a KiDS tile, observed with a

particular filter, and construct a convolution kernel that modifies the

PSF everywhere so as to make it a circularly symmetric Gaussian.

The first step is therefore to model the PSF from the many star

images that are found on every KiDS tile.

To describe the PSF, we model the stars with shapelet expan-

sions following Refregier (2003), and use these to construct and

apply a suitable spatially varying convolution kernel. Shapelets are

Gaussians multiplied by polynomials and form elementary, com-

pact, orthonormal 2D functions which can be used to fit an image to

arbitrary precision. The shapelet with scale radius β and Cartesian

orders (a, b) is (for a, b = 0, 1, 2, . . . )

S
β

ab(x, y) =
Ha(x/β)Hb(y/β)

β
√

2a+b
πa!b!

e−(x2+y2)/2β2

, (A1)

where Ha(x) is a Hermite polynomial, familiar from the eigen-

states of the quantum harmonic oscillator. Many useful properties

of shapelets, such as their behaviour under infinitesimal transla-

tion, rotation, magnification, shear and convolution, can be derived

(Refregier 2003) and are used below. We use the implementation of

shapelets of Kuijken (2006).

Among many applications, shapelet decompositions have been

used to characterize the galaxy populations (e.g. Kelly & McKay

2004; Melchior, Meneghetti & Bartelmann 2007), to measure weak

lensing shear (e.g. Refregier & Bacon 2003; Kuijken 2006) and flex-

ion (e.g. Bacon et al. 2006; Massey et al. 2007; Velander, Kuijken

& Schrabback 2011) and for PSF-corrected photometry (Kuijken

2008). Even though the shapelets are formulated in Cartesian co-

ordinates, truncating the expansion at maximum combined order

N = a + b results in an orientation-invariant subspace of possible

shapes that can be described. Such truncated shapelet expansions are

most effective at modelling structure at radii between β/
√

N + 1

and β ×
√

N + 1. At large radii, they asymptotically approach a

Gaussian.

Because of the orthonormality of the elementary shapelets, any

source image I(x, y) can be described as a sum
∑

ab sabS
β

ab(x, y)

with coefficients

sab =
∫

dx dy I (x, y)S
β

ab(x, y). (A2)

Since our data are pixellated, we do not use this integral relation, but

rather make a least-squares fit of a truncated shapelet model to the

image of our source. We fit all pixels within a radius (4 +
√

N)β of

the centre of the source. Typically, we truncate the series at N = 10.

Using this formalism, our ‘PSF Gaussianization’ procedure,

which we apply to each survey tile and filter separately, is as follows.

A1.1 Fit shapelet models to all stars

First, we identify high-SNR unsaturated stars in the images, us-

ing the traditional flux versus radius plot (Kaiser, Squires &

Broadhurst 1995) obtained from a SEXTRACTOR run on the indi-

vidual sub-exposures. Typically, several thousand such stars can be

found per tile. For each CCD, the PSF size (FWHM) is averaged

over the four or five sub-exposures through a given filter, and these

32 values are fitted with a second-order 2D polynomial to give a

rough map of the average seeing for the tile. The scale radius βp

for the shapelet model for the PSF is then fixed at (1.15/2.35) × the

largest FWHM value in this map (this choice makes the FWHM of

the S00 shapelet 15 per cent wider than the PSF, enabling the higher

order terms to fit the inner structure of the PSF as well as the wings.

It will also be the size of the target Gaussian PSF, see below).

Once βp is chosen for a particular tile and filter, we determine

shapelet parameters up to order a + b = 10 for each star using

least-squares fitting (66 coefficients per star). This truncation order

is set by the pixel size, which is typically about one-third of the

scale radius. All shapelet models use Cartesian pixel coordinates

x = (x, y) with respect to a centre position ξ = (ξ, η) of the star:

we define this centre as the position for which s10 = s01 = 0 and

determine it iteratively.

A1.2 Interpolate the PSF model

The PSF models are then interpolated across the image by means

of fourth-order polynomial fits of each shapelet coefficient versus ξ

and η position (15 spatial variation coefficients per shapelet term).

In this step, outliers are rejected iteratively, resulting in a smooth

model of the PSF variation across the image. The PSF model for a
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particular co-added image is thus described as a linear combination

of 15 × 66 = 990 terms sab; kl:

P (x, y, ξ, η) =
a+b≤10
∑

a=0;b=0

sab(ξ, η)S
βp

ab (x, y) , (A3)

where

sab(ξ, η) =
k+l≤4
∑

k=0;l=0

sab;kl(ξ − ξ0)k(η − η0)l (A4)

and (ξ0, η0) is the centre of the image.

A1.3 Construct the Gaussianization kernel

Once we have a map of the PSF, the next step is to construct a

convolution kernel that renders the PSF Gaussian. Also here the

shapelet formalism is convenient, since shapelets behave nicely un-

der convolution. Refregier (2003) provides recurrence relations for

calculating the matrix elements C
βoβ1β2

nlm that express the convolu-

tion of two basis functions as a new shapelet series of arbitrary scale

radius βo:

S
β1

ab (x, y) ⊗ S
β2

cd (x, y) =
∞

∑

e,f =0

Cβoβ1β2
eac C

βoβ1β2

f bd S
βo

ef (x, y). (A5)

The convolution of an image with shapelet coefficients sab and scale

radius β with a PSF that has shapelet coefficients pab and scale radius

βp can then be written as a new shapelet, with scale radius βo and

coefficients

(p ⊗ s)mn =
∑

ab

(

∑

cd

C
βoββp
mac C

βoββp

nbd pcd

)

sab ≡
∑

ab

Pmnabsab ,

(A6)

where the expression in parentheses, the ‘PSF matrix’ P, gives the

linear transformation from pre- to post-convolved source coeffi-

cients. Note that the sum in equation (A6) runs over an infinite

number of terms, so that the series needs to be truncated in practice.

Given a PSF, the corresponding Gaussianization kernel is a

shapelet which, when convolved with the PSF, gives the target

Gaussian (for which s00 = (2
√

πβp)−1 and all other coefficients are

zero): i.e. we seek those shapelet coefficients kab for which

a+b≤Nk
∑

ab

Pmnabkab −
δmn

2
√

πβp

= 0 for m + n ≤ N. (A7)

In order to regularize the calculation of the kernel, we truncate kab

at shapelet order Nk = 8, whereas the PSF is modelled to order

N = 10. This overconstrained set of equations for the kab is then

solved by minimizing the residuals in the least-squares sense. Ker-

nels are constructed in this way for 121 (ξ, η) positions on an 11×11

grid covering the image, explicitly normalized to unit integral, and

their coefficients’ variation across the image fitted with a fifth-order

polynomial K(x, y; ξ, η) (see equation A4). This spatially varying

kernel map is now ready for convolution with the co-added image.

We set the dispersion of the target Gaussian PSF to be equal to the

scale radius βp of the shapelet expansion of the PSF. We have found

that this choice preserves the seeing of the image, while avoiding

significant deconvolution (and the associated noise amplification)

anywhere on the image. As a final check, we make sure that the

peak of this target PSF is everywhere lower than 90 per cent of the

central height of the original PSF, and if it is not, we increase the

value of βp until it is. An example of the PSF model and the effect

of the corresponding kernel is shown in Fig. A1.

Note that this smooth model for the PSF (and hence also the ker-

nel) variation across the co-added image does not allow for discrete

jumps in the PSF, such as might be caused by seeing variations

between the dithered sub-exposures, or misalignments of adjacent

chips. While we have no indications that such effects adversely

impact the quality of the photometric redshifts, in future releases

we plan to construct separate Gaussianization kernels for each sub-

exposure, and to apply these before co-addition.

A1.4 Image convolution

Convolving the co-added images by the kernel is mathematically

most convenient in Fourier space, especially because of the shapelet

formulation: shapelets have simple Fourier transforms which can

straightforwardly be multiplied into the Fourier transform of the

image. Since the kernel is compact, we can speed up the convolution

by splitting the image into smaller segments and processing these

separately. In practice, we split the (over 18 000 × 18 000 pixel)

co-added images into segments of 512 × 512 pixels, which appears

to be a reasonable optimum on most machines. This step can also be

parallelized. Each segment I(x, y) is background-subtracted, edge-

tapered to zero and padded around the edges, with the width W of the

edge set to four times βp (see Appendix A1.3). This preprocessed

segment is then convolved with the kernels Kbl, Ktr, etc., at the

bottom-left, top-right, etc., corners of the segments, and the four

convolutions are averaged as

G(x, y) = (1 − t)(1 − u)(I ⊗ Kbl) + (1 − t)u(I ⊗ Ktl)

+ t(1 − u)(I ⊗ Kbr) + tu(I ⊗ Ktr) , (A8)

effectively convolving I with a bilinear interpolation of the kernel

map. (Here t and u run from 0 to 1 along the x- and y-axes of the

segment, respectively.) The edge of the resulting convolved segment

is then trimmed by a width 2W, the background is added back in

and the pixels are pasted into the final output convolved image.

To prevent numerical issues, pixels that deviate greatly from their

neighbours are clipped before the image segment is Fourier trans-

formed and convolved; copies of the kernel of appropriate amplitude

are instead added into the convolved image at the locations of the

clipped pixels.

A1.5 Noise propagation: noise autocorrelation function

Convolution of an image correlates pixel noise, and this needs to

be taken into account in measurements based on the Gaussianized

co-adds. If G(ξ) is the result of convolving image I (ξ) by a kernel

K(x), the covariance CG between the errors on two pixel values

G(ξ) and G(ξ + δ) is

Cov

(
∫

dxI (x)K(ξ − x),

∫

d yI ( y)K(ξ + δ − y)

)

=
∫ ∫

dx d y Cov (I (x), I ( y)) K(ξ − x)K(ξ + δ − y). (A9)

Our kernels are compact, and for all but the brightest sources

the pixel noise in the original images is background-limited and

slowly varying. We can therefore assume that the covariance be-

tween neighbouring pixels depends mostly on the vector distance

between those pixels and write

Cov (I (x), I ( y)) ≃ CI (x − y) = CI ( y − x). (A10)
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Figure A1. Illustration of the PSF Gaussianization and homogenization, for a KiDS field with significant PSF variation. The PSF model is shown on the left,

the Gaussianization kernel in the middle, and a comparison of the radial profiles of the resulting convolved PSF (red circles), the target Gaussian (line) and

the original PSF (blue dots) on the right. The top row of plots shows the PSF in the centre of the field, where it is rather round; the second row shows a much

more elliptical, and wider, PSF in one of the corners. The colour scale is the same for each PSF, running from zero (white) to the peak value in the top panel

(dark green). Each kernel has been normalized separately to its peak value. Green pixels are positive; the red scale runs from 0 to −5 per cent of the peak, to

highlight the mildly negative regions of the kernel.

(Note that strictly speaking the pixel values in the image are I (x)

times the area of a pixel; for clarity, we assume without loss of

generality that this area is equal to one.)

Writing x = y − x′, y = y′ − ξ, and using the symmetry of CI

(equation A10), we obtain

CG(δ) =
∫ ∫

dx′d y′CI (x′)K(x′ − y′)K(δ − y′)

=
∫

dx′CI (x′)(K∗K)(δ − x′) , (A11)

where K∗K denotes the autocorrelation function (ACF) of the kernel

K. The noise covariance matrix CG of the convolved image is there-

fore the convolution of the original covariance matrix CI with K∗K.

In our application, the kernel ACF is calculated analytically using

the shapelet formalism. As the shape of the kernel varies across the

image, so does its ACF: we model the kernel ACF as a shapelet map

(see equation A4) of the same order as the kernel, with scale radius

βp

√
2.

Even before Gaussianization, neighbouring pixels in our incom-

ing co-added images have non-zero covariance as a result of re-

gridding after astrometric calibration, particularly since our images

are re-sampled on to slightly finer pixels (0.2 arcsec) than the na-

tive 0.213 arcsec scale of OmegaCAM. The SWARP code (Bertin

et al. 2002) that does this re-sampling and co-addition produces a

weight image that gives the inverse variance on each pixel value,

but does not report covariances. Rather than calculating CI analyti-

cally using the form of the SWARP interpolation kernel, we estimate

the covariances numerically from the images themselves. An exact

measurement is not critical here because in any case the dominant

covariance contribution in equation (A11) comes from the Gaus-

sianization kernel.

Assuming that our incoming co-added frame I consists of roughly

Gaussian background noise plus positive sources, we estimate the

shape of its covariance matrix, CI (δ)/CI (0), from the statistics of

pixel values which are likely to be source-free. The amplitude will

vary across the image as a result of variations in background, dither

patterns, CCD sensitivity variations, etc., but we assume that the

shape of CI is constant. The amplitude CI (0) is set by scaling CI so

that its peak value agrees with the SWARP weight image value at the

centre of the source under consideration.

The noise variance CI(0) of the incoming co-added frame is esti-

mated empirically from the statistics of ‘source-free’ pixel values,

which we select as those below the median (background) level B. We

estimate the width of the distribution from their median difference

from B, dividing by 0.675 to obtain a standard deviation estimate σ̃

assuming these statistics to be approximately Gaussian:

CI (0) ≃ σ̃ 2 , where σ̃ = m/0.675 (A12)

and m is the median of |I (ξ) − B| for those pixels with I < B.

The covariance CI (δ) between pixel values separated by δ

is similarly derived from the distribution of values of I± ≡
1
2

(I (ξ) ± I (ξ + δ)). We obtain

CI (δ) ≃ σ̃ 2
+ − σ̃ 2

− , (A13)

where σ̃± = m±/0.675 and the m± are the medians of |I± − B| for

those pixel pairs with I+ < B.

These estimated covariances are then modelled as a low-order

shapelet, and convolved with the ACF of the Gaussianization kernel

(equation A11) to give the total noise covariance matrix.
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Figure A2. The effect of the residual PSF non-Gaussianity correction step

described in Appendix A1.6. The panels in the top row show the residual

PSF flux around a bright star after PSF Gaussianization, both as an image

(left) and with pixel values plotted as a function of distance from the centre

of the star (right). For reference, the target Gaussian PSF profile is plotted

as a solid line, scaled down by a factor of 100. The bottom row shows the

same star after the correction step, and demonstrates that the large-radius

residual flux is removed effectively by this perturbative procedure.

A1.6 Residual correction

Because the shapelet description of the original PSF is not perfect –

in particular, shapelets asymptotically drop off faster than real PSFs

– some residual star flux remains at large radii after the convolution

with the Gaussianization kernel. To correct for this, the Gaussian-

ized co-added frames are improved further by means of a ‘tweaking’

step. To this end, for each star on the Gaussianized image, we mea-

sure the difference 
P (x) = P (x) − G(x) of its flux-normalized

image P to the target Gaussian G. We then fit this residual PSF using

a spatially variable shapelet expansion as above, but with a scale

radius that is a factor of 2 larger than before in order to capture more

of the large-scale flux into the PSF model. The Gaussianized image

is then convolved with a kernel (1 − 
P ⊗ −1 G) that corrects, to

first order in 
P, this residual non-Gaussianity of the PSF. Here

⊗−1G indicates deconvolution by the target Gaussian PSF G of dis-

persion βp, which can be done analytically since 
P is expressed

as a shapelet series with scale radius β > βp. Fig. A2 shows that

this process works well.

A2 GAaP photometry

Once the PSF is standardized to a Gaussian, it is possible to perform

aperture photometry in such a way that the answer is independent of

the seeing. The central result of this ‘GAaP’ photometry is the relation

between the pre- and post-seeing Gaussian aperture weighted flux

when the PSF is a Gaussian of dispersion p:
∫

dx

[

1

2πp2

∫

dx′I (x′)e− 1
2
|x−x′|2/p2

]

e− 1
2

xT
W

−1 x

=
det(W)

1
2

det(W + p21)
1
2

∫

dx I (x)e− 1
2

xT(W+p2
1)−1 x . (A14)

Here the expression in square brackets is the PSF-convolved image

of a source with intrinsic, pre-seeing surface brightness distribution

I (x), and W is an ‘aperture matrix’ that defines the shape, orien-

tation and size of the Gaussian aperture. For a Gaussian aperture

of major and minor axis dispersion a and b, with the major axis

oriented an angle α from the x-axis, we have

W =

(

a2 cos2 α + b2 sin2 α (a2 − b2) sin α cos α

(a2 − b2) sin α cos α a2 sin2 α + b2 cos2 α

)

. (A15)

Equation (A14) shows that, when the PSF is Gaussian, a Gaussian-

weighted aperture flux on the PSF-convolved image with aperture

matrix W can be related directly to the intrinsic Gaussian-weighted

aperture flux of the pre-seeing image with aperture matrixW + p21.

Conversely, photometry for the intrinsic source with aperture matrix

Wint is simply done by applying the aperture matrix Wint − p21 to

a Gaussianized-PSF image, independent of the PSF size p it was

convolved to, and normalizing appropriately. We therefore define

the GAaP flux FW with reference to an aperture matrix W on the

pre-seeing image I (x), but measure it from a PSF-Gaussianized

image G(x):

FW ≡
∫

dx I (x)e− 1
2

xT
W

−1 x

=
det(W)

1
2

det(W − p21)
1
2

∫

dx G(x)e− 1
2

xT(W−p2
1)−1 x . (A16)

For our variable-seeing, multi-band data set, GAaP photometry there-

fore provides a way to obtain fluxes which pertain to the same part

of the galaxy at all wavelengths, from which true colours can be

derived.

Since aperture photometry is a linear combination of pixel values,

it is straightforward to take account of the noise covariance CG

(see Appendix A1.5) of the Gaussianized image when determining

the uncertainty on the fluxes derived. The variance on a GAaP flux

measurement is given by

Var(FW) =
2

1
2 π det(W)

det(W − p21)
1
2

∫

dx CG(x)e− 1
4

xT(W−p2
1)−1 x . (A17)

With some work it is possible to take advantage of the shapelet

formulation of CG in this equation to do the integral analytically.

We use a dedicated code for the GAaP photometry. It first reads

the PSF-Gaussianized image, the noise ACF map, the weight map

corresponding to the original co-added image, as well as a list which

contains each source’s position together with the axis lengths (a,

b) and position angles α of the corresponding pre-seeing apertures

(all in world coordinates). It then transforms these to pixel coor-

dinates, performs the aperture photometry according to the second

line of equation (A16) and calculates the error bar following equa-

tion (A17). The same input list is used for runs on the images

obtained for the tile with different filters. These multi-band fluxes

and corresponding errors are then fed into BPZ for photometric red-

shift estimation, and merged into the master SEXTRACTOR and lensfit

catalogue of the tile.

While for isolated sources any aperture matrix can be used to

obtain unbiased estimates of the GAaP flux, the optimal SNR is

obtained when the shape and orientation of the post-seeing aperture

defined by W − p21 are matched to the source. It turns out that

the SNR of the flux has a rather broad maximum as a function of

aperture size (Fig. A3), with the details depending on the exact

Gaussianization kernel at the location of the source. This means

that it is possible to select a compromise aperture which yields

nearly optimal SNR in all bands even if these have different seeing.

After some experimentation, we chose an aperture Wint which is
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Figure A3. GAaP apertures on an r ≃ 20 galaxy. Top: co-added image,

with 2 arcsec × 0.99 arcsec (1σ ) aperture overlaid. Middle: same, but PSF-

Gaussianized image is shown. Bottom: SNR for different circular apertures

(solid curve) and for the aperture shown in the other panels (star symbol), for

a source as the one illustrated but 10 times fainter. The figure illustrates the

broad maximum of the SNR curve as well as the enhancement that follows

from approximately matching the aperture size and shape to the source.

derived from the SEXTRACTOR rms axis lengths of the source on the

r-band image, where we have the best seeing, by adding 0.7 arcsec

in quadrature to the axis lengths a and b. We keep the position

angle α aligned with the major axis. This choice ensures that also

poorer seeing observations in the other bands (chiefly u or i) can

still be photometered with reasonable SNR. To prevent overlaps

with neighbouring sources, we maximize a and b at 2 arcsec.

It is important to realize that these GAaP aperture photometry val-

ues are not total fluxes, but rather the flux inside a well-defined

tapered aperture. So while they are eminently suited to colour mea-

surements, they do not replace total magnitudes. The exception is

very compact sources and stars: in these cases, the intrinsic aper-

ture function exp(− 1
2

xTW
−1
int x) is equal to 1 over the area where

the source contributes flux, and hence the GAaP flux does equal the

total flux.

Note that even though, for practical reasons, we carry out the

photometry as a two-step process (first manipulating the pixels in

the image and then photometering the result), it can also be written

as a single photometry step on the original variable-PSF stack (albeit

with a complicated aperture function, given by the convolution of

the Gaussianization kernel with the Gaussian aperture function).

Effectively, therefore, our photometry is still a linear combination

of calibrated pixel fluxes, with a tractable error analysis.

While here we restrict our use of the Gaussianized images to

the aperture photometry, they can also be used for other aspects

of the analysis, such as improving star–galaxy separation (Pila-

Dı́ez et al. 2014), measurements of galaxy morphology parameters,

PSF-corrected galaxy ellipticity measurements or generating multi-

colour images without colour-dependent PSF effects.

A P P E N D I X B : QUA L I T Y C O N T RO L

B1 Object detection and photometry

Once an object catalogue is available, we inspect and verify the data

quality with a ‘check plot,’ generated for each tile. Fig. B1 shows

an example for one of the KiDS fields, consisting of a collection

of 12 plots. The top row shows the masked distribution of galaxies

(left) and the angular correlation function w(θ ) for a subset of these

objects (right). The angular correlation function plot contains data

for the given field (red), overlaid with those from other tiles within

the same region of the survey (dotted black). Discrepant correlation

functions are a sensitive indicator of spurious object detection and

surface density inhomogeneity; the combination of the two plots

in the top row thus flags cases where additional masking may be

necessary.

The three plots in the second row show the stellar distribution (red

crosses) and the distribution of galaxies with valid shape measure-

ments in grey-scale (left), the PSF whisker plot from the co-added

image (centre) and the r-band extinction map (right). The plot on the

left allows a first check of the star selection: sufficient stars must be

available over the entire unmasked area for reliable PSF estimation

(and hence shape measurements). The PSF whisker plot is that of

the co-added image, and will indicate any issues with astrometry

or the star–galaxy separation (the slight star–galaxy contamination

seen in Fig. B1 is acceptable). The extinction map allows additional

diagnosis of the main photometry checks below.

The bottom two rows contain the main photometry checks. The

two leftmost plots in the third row contain a pair of colour–colour

diagrams of the stars (grey-scale), with the predicted stellar loci

calculated from Pickles standard star SEDs overlaid (red crosses).

An error in the zero-point magnitude can be detected by a shift in

the stellar loci, while a broadening or lack of stellar loci indicates a

problem with the star–galaxy separation. The rightmost plot in this

row shows the photometric redshift distributions for bright (blue)

and faint (cyan) objects, both for the photometric redshift point

estimates zB (histograms) and the stacked p(z) probability distri-

bution (smooth curves). The photometric redshift distribution is

sensitive to zero-point errors in photometry. The bottom row shows

the galaxy number density per magnitude dn/dm in the four survey

bands ugri. Similarly to the w(θ ) plot, these distributions (shown

in red) are compared to those of neighbouring tiles, plotted with

dotted black lines. A horizontal shift of dn/dm indicates a possible

zero-point error, while a vertical offset signifies an unusually low

number count, most likely the result of a processing failure.
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Figure B1. A check plot for photometry. A single sanity check plot is generated for each pointing for inspection. See the text for details.
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Figure B2. A check plot for PSF modelling. A single check plot is generated for each pointing for inspection. See the text for details.
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B2 PSF modelling

Fig. B2 shows an example check plot for one of the KiDS fields,

designed to inspect the quality of the PSF modelling for the five

sub-exposures of each field (each row displays the data for each

sub-exposure). There are four panels from left to right. The first

panel shows the PSF model, where the length and colour of the

tick mark show the direction and strength of the PSF ellipticity

(defined in equation 4). The second panel shows the residual PSF

ellipticity δǫPSF, as defined under equation (5). Here the range of

the ellipticity scale is reduced to enhance the residuals. The exam-

ple shown is a typical KiDS observation revealing a rather noisy

PSF residual, which at first sight might not appear useful. This

type of visualization does however reveal the rare occasions where

a poorly constrained polynomial model of the PSF (for example

in a heavily masked region of the image) becomes ill-behaved.

The two right-hand panels compress the information in the two left-

hand panels using the two-point PSF ellipticity correlation function,

where the estimator is given in equation (26). Between the dotted

lines, at ξ = 2 . 10−5 (left) and 10−6 (right) the log–log scale be-

comes log-linear; the dashed line signifies zero correlation. We see

that the model accurately predicts the amplitude and angular de-

pendence of the two-point PSF ellipticity correlation function, and

that the PSF distortion for KiDS contributes predominantly to the

ξ+ correlation, only signal leaking into the ξ− correlation on large

scales. The final panel on the right shows the two-point PSF resid-

ual ellipticity correlation function which is two orders of magnitude

lower than the PSF distortion and within the requirements for a fu-

ture cosmological analysis of the full KiDS area, as discussed in

Section 3.2.2.

A P P E N D I X C : K iD S SH E A R A N D

P H OTO M E T R I C R E D S H I F T C ATA L O G U E S :

S O U R C E L I S T C O L U M N S

Table C1 lists the columns that are present in the KiDS-DR2 shear

and photometric redshift catalogues that are made publicly avail-

able to download from http://kids.strw.leidenuniv.nl. We provide

three catalogues, one for each GAMA field G09, G12 and G15, in

LDAC-FITS
11 format. The survey configuration is shown in fig. 1 of

Viola et al. (2015). Please note that the sources and masks in these

catalogues do not correspond exactly to those in the ESO public

data release catalogues presented by deJ+15, who did not use the

THELI reduction that is the basis of the lensing catalogues described

here. We recommend that users apply the following selection crite-

ria on the masks, the lensfit weight, SNR and the BPZ photometric

redshift in order to measure a robust lensing signal: MANMASK = 0,

weight > 0, 0.005 < zB < 1.2 and SNratio > 0. Objects that ap-

pear in overlapping tiles have already been removed from these

region compiled catalogues. Redshift distributions should be cal-

culated from the full photometric redshift probability distribution

p(z), labelled PZ_full. Multiplicative, m_cor_best, and addi-

tive calibration corrections, c1_best and c2_best, should also

be applied to the shear estimates.

In the following, we provide additional information on certain

columns in the catalogue.

11
LDAC tables can be read with most FITS reading tools or

with specialized THELI tools from http://marvinweb.astro.uni-bonn.de

/data_products/THELIWWW/.

(i) KIDS_TILE is the name of the KiDS survey tile the source

falls on. Searching the ESO archive with this OBJECT name will

link to the ASTRO-WISE images of this tile.

(ii) THELI_NAME gives the THELI name of the KiDS survey tile.

For scripting reasons, these names replace the ‘.’ and ‘-’ characters

with ‘p’ and ‘m’, respectively.

(iii) MAG_GAAP_f_CALIB gives the GAaP aperture flux in filter

f (for filters u, g, r and i), cross-calibrated to the SDSS photometry

(Section 4.3). For each source, these photometric parameters are

given for a single aperture, specified by the major and minor axis

lengths given in the Agaper, Bgaper and PAgaap keywords.

The fluxes are measured from the ASTRO-WISE co-added u-, g-, r-

and i-band images, using the sky positions from the THELI r-band

source catalogue. Note that these aperture magnitudes are mainly

intended to be used for colour measurements, since they refer only

to the central regions of the source. They are not total magnitudes

except in the case of unresolved sources (see Section 4.2 and Ap-

pendix A2). Approximate total magnitudes may be obtained by

taking the MAG_AUTO magnitude, which is based on the r-band

images, applying the extinction correction, and adding the GAaP

colours.

(iv) Flag_GAAP_f is set to 100 when no GAaP flux could be

measured in band f, 0 otherwise.

(v) PZ_full: this is the full photometric redshift probability

distribution p(z) from 0.005 ≤ z ≤ 3.505. There are 70 columns

sampling p(z) at intervals of dz = 0.05. The first bin is centred at

z = 0.03 and we recommend a linear or spline interpolation between

the mid-points of each bin to recover a smooth redshift distribution

from a sample of galaxies. There is a final bin not included in these

catalogues with z > 3.505, such that in a small number of cases

p(z) will not sum to 1. In a lensing analysis, it is highly unlikely

that a galaxy at such a high redshift would have a plausible shape

measurement, and we recommend applying a hard prior of zero

probability past z > 3.505.

(vi) e1 or e2: lensfit shear estimators. Note that the e2 com-

ponent is defined relative to the ALPHA_J2000, DELTA_J2000

coordinate grid. Depending on how users define their angles in this

reference frame, they may find that they need to change the sign of

e2.

(vii) TILE_PSF_SYS_OK: the star–galaxy ellipticity correla-

tion pass/fail flag, as described in Section 5.3, which applies on a

tile-by-tile basis. Applying this field selection is required to reduce

systematic contamination from the PSF for cosmic shear science.

It is not, however, required for galaxy–galaxy lensing or cluster

lensing science.

(viii) m_cor and m_cor_best: the multiplicative calibration

correction which should be applied in an ensemble average, rather

than on a galaxy-by-galaxy basis. m_cor was the correction used

by the early science papers that accompany this release which

did not include the correct pixel scale (see Section 5.1.1 for dis-

cussion). m_cor_best is the calibration correction used in the

cosmic shear analysis in this paper, with the correct pixel scale

applied.

(ix) c1 and c2: the additive calibration correction used in

the early science papers that accompany this release. These

should be subtracted from the lensfit shear estimators e1 and

e2. Some regions in the SNR–size–Strehl parameter space

are too sparsely populated to calculate this empirical correc-

tion, resulting in a few tens of galaxies raising a flag value

for c1 and c2 of −99. These galaxies should either be re-

moved from the analysis or the correction should not be

applied.
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Table C1. Columns provided in the KiDS lensing catalogues.

Label Description Units

KIDS_TILE Name of survey tile

THELI_NAME THELI name for the tile

SEXTRACTOR
a parameters derived from the THELI r-band co-added image:

SeqNr Running object number within the catalogue

FLUX_AUTO r-band flux counts

FLUXERR_AUTO Error on FLUX_AUTO counts

MAG_AUTO r-band magnitude mag

MAGERR_AUTO Error on MAG_AUTO mag

KRON_RADIUS Scaling radius of the ellipse for magnitude measurements

BackGr Background counts at centroid position counts

Level Detection threshold above background counts

MU_THRESHOLD Detection threshold above background mag

arcsec−2

MaxVal Peak flux above background counts

MU_MAX Peak surface brightness above background mag

arcsec−2

ISOAREA_WORLD Isophotal area above analysis threshold deg2

Xpos Centroid x position in the THELI image pixel

Ypos Centroid y position in the THELI image pixel

ALPHA_J2000 Centroid sky position right ascension (J2000) deg

DELTA_J2000 Centroid sky position declination (J2000) deg

A_WORLD Profile rms along major axis deg

B_WORLD Profile rms along minor axis deg

THETA_J2000a Position angle (west of north)a deg

ERRA_WORLD World rms position error along the major axis deg

ERRB_WORLD World rms position error along the minor axis deg

ERRTHETA_J2000 Error on THETA_J2000 deg

FWHM_IMAGE FWHM assuming a Gaussian object profile pixel

FWHM_WORLD FWHM assuming a Gaussian object profile deg

Flag SEXTRACTOR extraction flags

FLUX_RADIUS Half-light radius pixel

NIMAFLAGS_ISO Number of flagged pixels

CLASS_STAR Star–galaxy classifier

Other parameters derived from the THELI r-band co-added image:

MAN_MASK Final masking flag value, including both manual and automated masks (0 = no mask)

SG_FLAG Star–galaxy separator from second and fourth image moments (0=star, 1=galaxy)

Parameters derived from the ASTRO-WISE u-, g-, r- and i-band co-added images:

Agaper Major axis of GAaP aperture arcsec

Bgaper Minor axis of GAaP aperture arcsec

PAgaap Position angle of major axis of GAaP aperture (north of west) deg

MAG_GAAP_[ugri]_CALIB GAaP [ugri] magnitude, zero-point and extinction-calibrated mag

MAGERR_GAAP_[ugri] Error on MAG_GAAP_[ugri]_CALIB mag

Flag_GAAP_[ugri] Flag for MAG_GAAP_[ugri]_CALIB

EXTINCTION_[ugri] Galactic extinction in the ugri band mag

MAG_LIM_[ugri] 1σ limiting magnitude in the ugri band mag

Z_B BPZ redshift estimate; peak of posterior probability distribution

Z_B_MIN Lower bound of the 95 per cent confidence interval of Z_B

Z_B_MAX Upper bound of the 95 per cent confidence interval of Z_B

T_B Spectral type corresponding to Z_B

ODDS Empirical ODDS of Z_B

Z_ML BPZ maximum likelihood redshift

T_ML Spectral type corresponding to Z_ML

CHI_SQUARED_BPZ χ2 value associated with Z_B

BPZ_FILT Filters with photometry used in BPZ; bit-coded mask

NBPZ_FILT Number of filters with good photometry used in BPZ

BPZ_NONDETFILT Filters with faint photometry (not used in BPZ); bit-coded mask

NBPZ_NONDETFILT Number of filters with faint photometry

BPZ_FLAGFILT Filters with flagged photometry (not used in BPZ); bit-coded mask

NBPZ_FLAGFILT Number of filters with flagged photometry

PZ_full Vector containing the posterior photo-z probability
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Table C1 – continued

Label Description Units

Parameters derived with lensfit on the THELI r-band sub-exposures:

weight inverse variance weight

fitclass fit class (class=0 means a galaxy, no issue)

scalelength galaxy model scalelength pixel

bulge_fraction galaxy model bulge fraction

model_flux galaxy model flux counts

SNratio SNR for model fit

PSF_e1 mean ellipticity of PSF, component 1

PSF_e2 mean ellipticity of PSF, component 2

PSF_Strehl_ratio Pseudo-Strehl ratio of PSF (flux fraction in central pixel)

catmag r-band magnitude used to calculate the size prior

n_exposures_used Number of sub-exposures used

PSF_e1_exp1 PSF model ellipticity component 1, on sub-exposure 1

PSF_e2_exp1 PSF model ellipticity component 2, on sub-exposure 1

... ... ...

PSF_e1_exp5 PSF model ellipticity component 1, on sub-exposure 5

PSF_e2_exp5 PSF model ellipticity component 2, on sub-exposure 5

e1 Galaxy ellipticity ǫ1 (no c or m correction)

e2 Galaxy ellipticity ǫ2 (no c or m correction)

c1 Additive bias of ǫ1 based on SNR, scalelength and Strehl

c2 Additive bias of ǫ2 based on SNR, scalelength and Strehl

m_cor Multiplicative bias of ǫ1 and ǫ2 based on SNR, scalelength and Strehl

c1_best Updated additive bias of ǫ1 based on SNR, scalelength and Strehl

c2_best Updated additive bias of ǫ2 based on SNR, scalelength and Strehl

m_cor_best Updated multiplicative bias of ǫ1 and ǫ2 based on SNR, scalelength and Strehl

Parameters derived from systematics tests on the catalogue:

TILE_SYS_OK Tile pass/fail flag based on star–galaxy ellipticity correlation (pass=1, fail=0)

aThese catalogues were created with SEXTRACTOR version 2.2.2. Note that from version 2.4.6 onwards the definition of THETA_J2000 was

changed from ‘west of north’ to ‘east of north’, i.e. the sign flipped.

(x) c1_best and c2_best: an improved estimate of the ad-

ditive calibration correction used in the cosmic shear analysis in

this paper. These should be used in conjunction with the pass/fail

field selection TILE_PSF_SYS_OK. See above for flagged

values.

(xi) PSF_e1 and PSF_e1_exp[k]: model PSF ellipticities at

the location of the object, in this case the real part of ǫPSF. PSF_e1

is the average PSF ellipticity over all sub-exposures that included

the object, whereas PSF_e1_exp[k] refers to the single sub-

exposure number k. In the cases where objects are not imaged in

the sub-exposure, PSF_e1_exp[k] is given a value of −99.
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