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Abstract We investigate the weak and strong deflection
gravitational lensing by a quantum deformed Schwarzschild
black hole and find their observables. These lensing observ-
ables are evaluated and the detectability of the quantum
deformation is assessed, after assuming the supermassive
black holes Sgr A* and M87* respectively in the Galactic
Center and at the center of M87 as the lenses. We also inten-
sively compare these findings with those of a renormalization
group improved Schwarzschild black hole and an asymptot-
ically safe black hole. We find that, among these black holes,
it is most likely to test the quantum deformed Schwarzschild
black hole via its weak deflection lensing observables in the
foreseen future.

1 Introduction

Although Einstein’s general relativity (GR) has been tested
and verified in many experiments [1], it is commonly believed
that GR is incomplete. A black hole is the simplest object in
the universe predicted by GR. However, it contains a central
singularity at which GR is invalid and an event horizon which
might cause information paradox. Therefore, with extremely
strong gravitational field, a black hole also provides an ideal
and unique laboratory for examining GR and alternative the-
ories of gravitation, which can access neither on the Earth
nor in the Solar System. Direct imaging of the supermas-
sive black hole M87* in the center of the giant elliptical
galaxy M87 [2–7] and successful detection of the gravi-
tational waves from the black holes merger events [8–13]
demonstrate that black holes spread widely across the uni-
verse, paving the way for strong-field tests of new theories
of gravitation which might cure the “illness” of a black hole.

In order to fix these problems once for all, we have to
wait for a self-consistent and well accepted quantum the-
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ory of gravity available. However, before that, there are still
some effective ways to manifest the quantum effects on the
spacetime of a black hole for removing the singularity, such
as replacing it with a regular core [14–17], making use of
quantum pressure to create a bouncing geometry [18–20]
and formation of quasi black holes [21–24] (see Ref. [25] for
a review). The event horizon could also be erased, if either
an exotic compact object [26] or a compact quantum object
[27] are considered. These horizonless objects are more or
less involved with quantum dynamics and effects (see Ref.
[28] for a review). Quantum characteristics and nature of
the spacetime and gravitation have been widely and inten-
sively investigated as well in various contexts and inspired
by plenty of motivations [29–36]. They lead to quantum black
hole solutions, such as those in the effective field theory [37–
39], in the asymptotically safe gravity [40–43], in the loop
quantum gravity [44,45], in the non-commutative geome-
try [46–49], and under the modified uncertainty principles
[50,51].

In this work, we focus on the quantum deformed
Schwarzschild black hole, which is affected by the spher-
ically symmetric quantum fluctuations of the metric and the
matter fields [52]. Its singularity shifts to a finite distance and
becomes a divergent sphere, which connects two asymptoti-
cally flat world sheets. This is very different from the central
singularity of the Schwarzschild black hole. These intriguing
quantum behaviors have drawn much attention. The entropy
of the quantum deformed Schwarzschild black hole with
electrical charges [53], its quasinormal modes [54], its ther-
mal dynamics and equation of state in the quintessence field
[55], the tunneling process [56] and its unique phase tran-
sitions [57] were well studied. The quasinormal modes and
grey-body factors of fields of various spin for the quantum
deformed Schwarzschild black hole were analyzed through
the WKB approach and time-domain integration method, and
it was shown that the quantum deformation can cause the
shadow cast by this black hole to decrease [58]. Its photon
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rings and lensing rings were also studied and the lensing ring
was found to be brighter than the one of the Schwarzschild
black hole [59]. However, the gravitational-lensing signa-
tures of the quantum deformed Schwarzschild black hole are
barely known, which requires a comprehensive investigation.

In the gravitational lensing, the trajectory of a photon
propagating through the gravitational field of a massive body
might be deflected and the arrival time of the photon might
be delayed, providing insight on the nature of the space-
time [60]. The gravitational lensing might have two impor-
tant scenarios according to its deflection angle. In the weak
deflection gravitational lensing, the deflection angle is much
smaller than 1. It has been a invaluable tool in astronomy
[61–64] and been widely employed in gravitational physics
[65–69]. In the strong deflection gravitational lensing by a
compact object, the photon passes its vicinity in the strong
field so that its deflection angle might be much bigger than 1.
This will allow photons to loop around such an object by sev-
eral times and to produce relativistic images [70]. The direct
image of M87* by EHT [2–7] demonstrates the possibility
of observing the strong deflection gravitational lensing by
black holes, which would be helpful for understanding the
physical properties of the black holes [71–78], for probing
and distinguishing various kinds of black holes [79–84] and
horizonless compact objects [85–101].

Gravitational lensing has also been widely adopted for
detecting and testing the quantum nature of spacetime. The
deflection angle in the weak deflection gravitational lensing
might be affected by the quantum properties of some black
holes in the effective field theory [102], in the asymptotically
safe gravity [103] and with the vacuum effect [104,105] so
that the resulting lensing observables might be altered [106].
The shadow and other observables in the strong deflection
gravitational lensing might also be inflected for some black
holes in the asymptotically safe gravity [107,108], in the loop
quantum gravity [109] and in the non-commutative geom-
etry [110–112]. In order to obtain a full understanding of
the quantum effects, both weak and strong deflection grav-
itational lensing have been studied for some black holes in
the asymptotically safe gravity [113,114], in the loop quan-
tum gravity [115], under the Extended Uncertainty Principle
[116] and in the rainbow gravity [117].

Inspired by these previous works and hoping to gain a
whole picture of the weak and strong deflection gravita-
tional lensing [118–124], we will investigate these two sce-
narios of gravitational lensing by the quantum deformed
Schwarzschild black hole for detecting and searching its
quantum signatures. We will carefully compare its observ-
ables with those of two other quantum black holes, the renor-
malization group improved Schwarzschild black hole [41]
and the asymptotically safe black hole [107], both of which
were proposed in the asymptotic safety scenario in the quan-
tum gravity and which have very similar spacetime metrics.

Although the weak and strong deflection gravitational lens-
ing by the renormalization group improved Schwarzschild
black hole was known [113], most lensing observables in
the weak and strong deflection gravitational lensing by the
asymptotically safe black hole are still unknown except its
shadow [107] so that we will also fill in the blanks here. For
the gravitational lensing by these quantum black holes, their
observability in practice will be intensively discussed.

This paper is structured as follows. In Sect. 2, we brief
the spacetime of the quantum deformed Schwarzschild black
hole and the essentials of the gravitational lensing. In Sects. 3
and 4, its weak and strong deflection gravitational lensing are
investigated, respectively. The lensing observables and their
observability are found and discussed by taking Sgr A* and
M87* as lenses (if applicable). Conclusions and discussion
are given in Sect. 5.

2 Spacetime and gravitational lensing

2.1 Metric

Affected by the spherically symmetric quantum fluctuations
of the metric and the matter fields, the spacetime of a quantum
deformed Schwarzschild black hole with massm• was found
as (G = c = 1) [52]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 dφ2), (1)

with

A(r) = [B(r)]−1 = −2m•
r

+
√
r2 − a2•
r

, (2)

C(r) = r2, (3)

where a• controls the deformation originated from the effec-
tive two-dimensional dilaton gravity. When the quantum
deformation vanishes, i.e., a• = 0, the metric (1) reduces
to the one of the Schwarzschild black hole. The real-valued
metric demands a obvious limit on the radial coordinate that
r ≥ a•. While such a spacetime is asymptotically flat as
r → +∞, the quantum fluctuations make it not Ricci-flat,
differing from the Schwarzschild black hole [52]. Its singu-
larity where the curvature is infinite is located at r = a• [52],
which is always covered by the event horizon at

rH =
√

4m2• + a2• . (4)

When a• = 0, rH returns to the Schwarzschild one 2m•.
For later convenience, we define the following dimension-

less variables

x = r

m•
and xH = rH

m•
, (5)
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Fig. 1 The (dimensionless) radius of the event horizon for the quan-
tum deformed black hole changes with the (dimensionless) deformation
parameter

and the dimensionless deformation parameter

a = a•
m•

, (6)

so that the dimensionless radius of the event horizon is

xH =
√

4 + a2. (7)

Figure 1 shows xH with respect to a, indicating that the
stronger is the quantum deformation, the bigger is the event
horizon than the Schwarzschild one. It makes the quan-
tum deformed Schwarzschild black hole quite different from
other quantum-corrected black holes, such as the renormal-
ization group improved Schwarzschild black hole [41] and
the asymptotically safe black hole [107], that the quantum
effects cause their event horizons to shrink.

As long as a photon stays outside the event horizon, it
can freely propagate in the spacetime (1) with any possible
real a•. However, it does not mean that a• can be arbitrar-
ily big, since it would significantly change the angular size
of the shadow cast by the quantum deformed Schwarzschild
black hole. Based on the direct image of the supermassive
black hole M87* [2–7], it was found [125] that the angu-
lar size of the M87*’s shadow, which is consistent within
17% at 68% confidence level with the predicted size of
GR, can be employed for various gravitational tests in the
strong-field regime. Following the approach of Ref. [125],
we obtain a preliminary bound on the (dimensionless) defor-
mation parameter as (see Sect. 4.1 for details)

D = {a | 0 < a < 1.53}, (8)

which will be adopted in the following investigation on the
weak and strong deflection gravitational lensing by the quan-
tum deformed Schwarzschild black hole.

2.2 Essentials of gravitational lensing

In the asymptotically flat and spherically symmetric space-
time (1), the deflection angle of a photon α̂ can be determined
by [126]

α̂(r0) = 2
∫ ∞

r0

dr

r2
√
u−2 − A(r) r−2

, (9)

where r0 is the closed approach between the photon and the
black hole, u is the impact parameter

u = r0√
A(r0)

, (10)

and the relation A(r)B(r) = 1 has been used, see Eq. (2).
In the weak deflection gravitational lensing that r0 � m•,
the deflection angle α̂ will be much smaller than 1. In the
strong deflection gravitational lensing, r0 is be close to m•
and, thus, α̂ will diverge.

In this work, we adopt the following lensing equation to
describe the geometric relation among the source, the lens
and the observer as [71,72]

tanB = tan ϑ − DLS

DOS

[
tan ϑ + tan(α̂ − ϑ)

]
, (11)

where B and ϑ are, respectively, the angular positions of
the source and the lensing images, and DLS and DOS are,
respectively, the distances from the source to the lens and to
the observer. The magnification of the image μ is the flux
ratio of the lensed image to the unlensed source, which is
defined as [127]

μ =
(

sinB
sin ϑ

dB
dϑ

)−1

. (12)

If the source has time-evolved emission, the time delay
between the two lensed images will be an important observ-
able as well, which depends on the travel time of the photon
from the source to the observer [126]

T = T (Rsrc) + T (Robs). (13)

Here, Rsrc and Robs are, respectively, the radial coordinates
of the source and the observer relative to the lens that

Rsrc =
√
D2

LS + D2
OS tan2 B, (14)

Robs = DOL, (15)

where DOL is the distance from the observer to the lens. The
function of T (R) is defined as

T (R) =
∫ R

r0

∣∣∣∣
dt

dr

∣∣∣∣ dr, (16)

and it can be evaluated by the metric (1) as

T (R) =
∫ R

r0

dr

A(r)
√

1 − u2r−2A(r)
, (17)
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where the relation A(r)B(r) = 1 has been used.
In the following sections, the observables in both weak

and strong deflection gravitational lensing will be investi-
gated. Considering the routinely monitoring on Sgr A* by
the ground-based telescopes in the optical/near-infrared band
and the direct image of M87* by EHT in the radio band, we
will take these supermassive black holes as the lenses (if
applicable) for assessment of the lensing observables. In the
meantime, we will carefully compare these observables with
those of other quantum-corrected black holes, such as the
renormalization group improved Schwarzschild black hole
[41] and the asymptotically safe black hole [107], and inten-
sively discuss their observability in practice.

3 Weak deflection gravitational lensing

In the weak deflection gravitational lensing, while the deflec-
tion angle of the trajectory of a photon is very small, it can
affect the positions and magnification of the lensed images
as well as the arrival time of the photon.

3.1 Deflection angle

In the scenario of the weak deflection gravitational lensing,
the closet approach between the photon and the quantum
deformed Schwarzschild black hole r0 is much larger then
the gravitational radius of the black hole ∼ m•, so thatm• r−1

can be treated as a small parameter for any given r ≥ r0 of a
photon, and A(r) and B(r) can be expanded in terms of it as

A(r) = 1 − 2
m•
r

− a2

2

m2•
r2 − a4

8

m4•
r4 + O

(
m5•
r5

)

, (18)

B(r) = 1 + 2
m•
r

+
(
a2

2
+ 4

)
m2•
r2 +

(
2a2 + 8

) m3•
r3

+
(

3

8
a4 + 6a2 + 16

)
m4•
r4 + O

(
m5•
r5

)

. (19)

We can see that the quantum deformation manifests itself
starting from the second-order term of m• r−1.

Before we proceed, it is necessary to compare these
expanded forms with those of the renormalization group
improved Schwarzschild black hole [41] and the asymptot-
ically safe black hole [107], which are given in Appendix
A. The quantum improvement for the renormalization group
improved Schwarzschild black hole is dominantly controlled
by the parameter �, while the quantum correction for the
asymptotically safe black hole is characterized by the param-
eter �. By looking at Eqs. (18) and (19) for the quantum
deformed Schwarzschild black hole, Eqs. (A.3) and (A.4)
for the renormalization group improved Schwarzschild black
hole, and Eqs. (A.7) and (A.8) for the asymptotically safe

black hole, we find that the quantum effects of a, � and
� begin to play their roles, respectively, from the second-,
third- and fourth-order terms of m• r−1 in their expanded
metrics. Hence, we can expect that these quantum effects
in the weak deflection gravitational lensing by the quan-
tum deformed Schwarzschild black hole, the renormalization
group improved Schwarzschild black hole and the asymptot-
ically safe black hole will orderly decrease. As a result, the
quantum deformed Schwarzschild black hole is most likely to
be detected by the weak deflection gravitational lensing, fol-
lowed by the renormalization group improved Schwarzschild
black hole, and the asymptotically safe black hole will be
most difficult to distinguish. Meanwhile, the leading terms
of a have the signs opposite to those of the leading terms of
� and �, implying that the quantum effect of the quantum
deformed Schwarzschild black hole will change its observ-
ables in the opposite direction from those of the renormal-
ization group improved Schwarzschild black hole and the
asymptotically safe black hole, beneficial to tell the differ-
ence among them.

Following the standard scheme [126] for the weak deflec-
tion gravitational lensing, we can find the deflection angle α̂

(9) in terms of h = m• r−1
0 as

α̂(h) = 4h +
(

15

4
π − 4 + 3

8
πa2

)
h2

+
[

122

3
− 15

2
π +

(
7 − 3

4
π

)
a2

]
h3

+
[

3465

64
π − 130 +

(
825

64
π − 25

)
a2

+ 87

256
πa4

]
h4 + O(h5). (20)

When the quantum deformation vanishes, i.e., a = 0, α̂(h)

returns to the one of the Schwarzschild black hole [65]. The
quantum deformation affects the deflection angle beginning
from the second-order term of h, while the quantum effects
of the renormalization group improved Schwarzschild black
hole and the asymptotically safe black hole influence their
deflection angles, respectively, starting from the third- and
fourth-order terms of h. Since r0 depends on the choice of
the coordinates, it can be replaced with the gauge-invariant
impact parameter u based on Eq. (10) that

u

r0
=

√√√√
r0√

r2
0 − a2• − 2m•

. (21)

A real-valued u demands that the photon has to be outside
the event horizon, i.e., r0 > rH. Thus, the relation between
r0 and u can be solved as

123



Eur. Phys. J. C           (2021) 81:627 Page 5 of 19   627 

r0

u
= 1 − m•

u
−

(
a2

4
+ 3

2

)
m2•
u2 −

(
a2 + 4

) m3•
u3

−
(

7

32
a4 + 35

8
a2 + 105

8

)
m4•
u4 + O

(
m5•
u5

)

. (22)

When the quantum deformation disappears, it reduces to the
expression for the Schwarzschild black hole. Substituting
Eq. (22) into the deflection angle α̂(r0), we obtain that

α̂(u) = 4
m•
u

+
(

15

4
+ 3

8
a2

)
π
m2•
u2

+
(

128

3
+ 8a2

)
m3•
u3

+45

64
π

(
77 + 21a2 + 3

4
a4

)
m4•
u4

+O
(
m5•
u5

)

. (23)

Likewise, the quantum deformation starts to affect the deflec-
tion angle α̂(u) from the second-order term. When this defor-
mation vanishes, such a deflection angle goes back to the one
of the Schwarzschild black hole [65].

3.2 Position of lensed image

For the convenience, we define the following dimensionless
variables [65]

β = B
ϑE

, θ = ϑ

ϑE
, ε = ϑ•

ϑE
, (24)

where ϑ• = arctan(m•D−1
OL) is the angle subtended by black

hole’s gravitational radius at the observer and ϑE is the angu-
lar Einstein ring radius

ϑE =
√

4m•DLS

DOLDOS
. (25)

Among them, β and θ are, respectively, the dimensionless
angular positions of the source and the image, and ε can be
considered as a small parameter since we assume both the
observer and the source are far away from the lens in the
weak deflection gravitational lensing, making the angular
gravitational radius of the black hole ϑ• much smaller than
angular Einstein ring radius ϑE.

The smallness of ε permits the Taylor expansion of the
position of the lensed image θ as [65]

θ = θ0 + εθ1 + ε2θ2 + O(ε3). (26)

By making use of the deflection angle α̂(u) (23) and the lens
equation (11) by the orders of ε, we find the coefficients θi
for the quantum deformed Schwarzschild black hole as

θ0 = 1

2
(β + η) , (27)

θ1 = 3π

32(1 + θ2
0 )

(10 + a2), (28)

θ2 = 1

θ0(1 + θ2
0 )3

{
8

3
D2θ8

0 +
(

64

3
D2 − 16D

)
θ6

0

+
(

88

3
D2 − 32D + 16

)
θ4

0

+
[

16

3
D2 − 16D − 225

128
π2 + 32

]
θ2

0

−16

3
D2 − 225

256
π2 + 16

+
[

2θ4
0 +

(
2 − 45π2

256

)
(2θ2

0 + 1)

]
a2

− 9

1024
π2(2θ2

0 + 1)a4
}

, (29)

where

D = DLS

DOS
, (30)

and

η =
√

4 + β2. (31)

It is clear that θ0 is as the same as the one of the Schwarzschild
black hole [65], not affected by any quantum deforma-
tion. The quantum deformation shows its effects from the
first-order term θ1, so that if the astrometry can detect it,
it would be possible to distinguish the quantum deformed
Schwarzschild black hole from the Schwarzschild black hole.
But telling its difference from the renormalization group
improved Schwarzschild black hole and the asymptotically
safe black hole demands extremely higher and very challeng-
ing accuracy. When the quantum deformation vanishes, i.e.,
a = 0, θ1 and θ2 go back to those of the Schwarzschild black
hole [65].

3.3 Magnification

The magnification μ can also be expanded in terms of ε as
[65]

μ = μ0 + εμ1 + ε2μ2 + O(ε3). (32)
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With the solution of θ (26), the coefficients μi can be found
as

μ0 = θ4
0

θ4
0 − 1

, (33)

μ1 = − 3θ3
0

32(θ2 + 1)3 π(10 + a2), (34)

μ2 = θ2
0

(θ2
0 + 1)5(θ2

0 − 1)

{
8

3
D2θ8

0

+4
(

12D2 − 8D − 8
)

θ6
0

+
(

272

3
D2 − 64D + 675

128
π2 − 64

)
θ4

0

+16
(

3D2 − 2D − 2
)

θ2
0 + 8

3
D2

−
[

4θ6
0 −

(
135

128
π2 + 8

)
θ4

0 − 4θ2
0

]
a2

+ 27

512
π2θ4

0a
4
}

. (35)

Similarly, the leading term of the magnification μ0 is not
affected by the quantum deformation, which starts to appear
in the first-order term μ1. When the quantum deformation
vanishes, i.e., a = 0, μ1 and μ2 reduce to their corresponding
values for the Schwarzschild black hole [65].

3.4 Time delay

The time function T (R) (16) can be expanded in terms of
h = m• r−1

0 as

T (R) = T0 + r0T1h + r0T2h
2 + O(h3), (36)

where

T0 =
√
R2 − r2

0 , (37)

T1 =
√

1 − ξ2

1 + ξ
+ 2 log

(
1 + √

1 − ξ2

ξ

)

, (38)

T2 = − (4 + 5ξ)
√

1 − ξ2

2(1 + ξ)2

+3

8
(π − 2 arcsin ξ)(10 + a2), (39)

with

ξ = r0

R
. (40)

The quantum deformation only affects the second-order term
T2, leaving the geometric term T0 and the Shapiro delay term
T1 unchanged as the same as those of the Schwarzschild
black hole [65]. If a = 0, T2 returns to the value for the
Schwarzschild black hole [65].

The time delay τ is defined as the difference between the
travel time of a photon from the source to the observer with

and without the gravitational lensing that reads [65]

cτ = T (Rsrc) + T (Robs) − DOS

cosB . (41)

Rescaled by the time τE which is defined as

τE = 4m•
c

, (42)

the dimensionless time delay can be found in terms of ε as

τ̂ = τ

τE

= 1

2

[
1 + β2 − θ2

0 − log

(
DOL

4DLS
θ2

0 ϑ2
E

)]

+ 3π

32θ0
ε(10 + a2) + O(ε2), (43)

where the quantum deformation begins to play a role from
the first-order term of ε. When a = 0, the time delay τ̂ has
the same form as the one of the Schwarzschild black hole.
Since the quantum deformed Schwarzschild black hole and
the Schwarzschild black hole share the same leading term of
the time delay, distinguishing them by measuring the time
delay requires the accuracy at least up to the first-order term
of ε.

3.5 Relations among positions and magnification

In this work, we adopt the convention in Ref. [65] that the
angular position of the lensed image is set to be positive.
When the image is on the same side of the source with respect
to the lens, it is called the positive-parity image with the posi-
tion angle β > 0 denoted by the symbol of “+”; otherwise,
the image on the other side is the negative-parity one with
β < 0 denoted by the symbol of “−”.

3.5.1 Relations of images positions

Taking β > 0 and β < 0, we can find the positions of
positive- and negative-parity images θ± as

θ±
0 = 1

2
(η ± |β|) , (44)

θ±
1 = 3π

16 (η ± |β|) η

(
10 + a2

)
, (45)

θ±
2 = 1

η3 (η ± |β|)4

{[
64

3
D2β8 + 128

3
D(8D − 3)β6

+64

3

(
79D2 − 48D + 6

)
β4

+
(

8576

3
D2 − 2304D − 225

16
π2 + 768

)
β2

+2560

3
D2 − 1024D − 675

16
π2 + 1024

]

+
[

16β4 +
(

96 − 45

16
π2

)
β2 + 128 − 135

16
π2

]
a2
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− 9

64

(
β2 + 3

)
π2a4

}

± η|β|
η3 (η ± |β|)4

{[
64

3
D2β6 + 128

3
(7D − 3)Dβ4

+64

3

(
53D2 − 36D + 6

)
β2

+3328

3
D2 − 1024D − 225

16
π2 + 512

]

+
(

16β2 + 64 − 45

16
π2

)
a2 − 9

64
π2a4

}
, (46)

which lead to the following relations

θ+
0 θ−

0 = 1, (47)

θ+
0 − θ−

0 = |β|, (48)

θ+
1 + θ−

1 = 3

32
π

(
10 + a2

)
, (49)

θ+
1 − θ−

1 = − 3

32η
π |β|

(
10 + a2

)
, (50)

θ+
2 − θ−

2 = |β|
[

8D2 − 16 + 225

256
π2

+
(

45

256
π2 − 2

)
a2 + 9

1024
π2a4

]
. (51)

The zero-order term θ±
0 and the relations between them are

not affected by the quantum deformation, which starts to play
a role from the next-to-leading-order terms. The first- and
second-order terms θ±

1 and θ±
2 and their relations θ+

1 + θ−
1

and θ+
1 − θ−

1 are all influenced by the quantum deformation.
When such a deformation disappears, i.e., a = 0, these terms
and their relations reduce to those of the Schwarzschild black
hole [65].

3.5.2 Relations of magnification

According to the magnification (32), its values for the
positive- and negative-parity images μ± can be found as

μ±
0 = 1

2
± β2 + 2

2|β|η , (52)

μ+
1 = μ−

1 = − 3

32

π

η3 (10 + a2), (53)

μ±
2 = ± 1

η5|β|
[

8

3
D2β4 +

(
176

3
D2 − 32D − 32

)
β2

+192D2 − 128D + 675

128
π2 − 128

−
(

4β2 − 135

128
π2 + 16

)
a2 + 27

512
π2a4

]
, (54)

which have the relations

μ+
0 + μ−

0 = 1, (55)

μ+
0 − μ−

0 = β2 + 2

|β|η , (56)

μ+
1 − μ−

1 = 0, (57)

μ+
2 + μ−

2 = 0. (58)

The quantum deformation affects the first- and second-
order terms μ±

1 and μ±
2 but leaves the zero-order term μ±

0
unchanged. Even though, the combinations of them listed
above are immune to any quantum deformation. Whena = 0,
these magnification and their relations all go back to those
of the Schwarzschild black hole [65].

3.5.3 Total magnification and centroid

In the weak deflection gravitational lensing, if the positive-
and negative-parity images can not be resolved, then the total
magnification and the centroid of these two images will be
the observables. The total magnification is defined as

μtot = |μ+| + |μ−| = μ+ − μ−

= β2 + 2

|β|η + 2ε2μ+
2 + O(ε3). (59)

The leading term of μtot depends only on the angular position
of the source, while the quantum deformation begins to affect
the total magnification from the second order of ε. For its first-
order term, Eq. (57) ensures that it will never appear in the
total magnification. Hence, any difference in the total magni-
fication between the quantum deformed Schwarzschild black
hole and Schwarzschild black hole has to be told by measur-
ing its second-order term, which is very challenging for cur-
rent ability of photometry. When the quantum deformation
vanishes, i.e., a = 0, the total magnification reduces to the
value for Schwarzschild black hole [65].

The centroid �cent is defined as the weighted average of
the magnification by the two lensed images’ positions, and
it reads as

�cent = θ+|μ+| − θ−|μ−|
|μ+| + |μ−| = θ+μ+ + θ−μ−

μ+ − μ− , (60)

which can be found in terms of ε as

�cent = |β|(β2 + 3)

β2 + 2
+ |β|ε2

(β2 + 2)2η2

[
8

3
D2β6

+
(

104

3
D2 − 16D

)
β4

+
(

272

3
D2 − 64D + 32

)
β2

−64

3
D2 + 128 − 675

128
π2
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+
(

4β2 + 16 − 135

128
π2

)
a2

− 27

512
π2a4

]
+ O(ε3). (61)

Similar to the total magnification, the leading term of the
centroid �cent is not affected by the quantum deformation
and its first-order term cancels out. The quantum deforma-
tion only has its influence on the second-order term of the
centroid. When it vanishes, �cent returns to the one of the
Schwarzschild black hole [65].

3.5.4 Differential time delay

The time delay of one lensed image is not observable since
the travel time of an unlensed photon is unknown. Instead,
the differential time delay between the positive- and negative-
parity images can be measured in practice. The definition of
differential time delay �τ̂ is

�τ̂ = τ̂+ − τ̂−

=
(

1

2
|β|η + log

η + |β|
η − |β|

)

+ 3

32
πε(10 + a2)|β| + O(ε2). (62)

While its leading term is immune to the quantum deforma-
tion, its first-order them is affected. When a = 0, the differ-
ential time delay �τ̂ reduces to the one of the Schwarzschild
black hole [65].

As shown in the aforementioned results, the quantum
deformation affects the first-order terms of the image posi-
tion, the magnification and the differential time delay of the
lensed images, while it only changes the second-order terms
of the total magnification and the centroid. Therefore, it is
easier to distinguish the quantum deformed Schwarzschild
black hole from the Schwarzschild black hole by detecting
the deviations of the image position, the magnification and
the differential time delay. As a comparison, the quantum
effect of the renormalization group improved Schwarzschild
black hole merely has its influence on the second-order terms
of the image position, the magnification and the differential
time delay in its weak deflection gravitational lensing [113],
while the asymptotically safe black hole will have completely
the same observables as those of the Schwarzschild black
hole. It suggests that, based on measuring the observables
of the weak deflection gravitational lensing, the quantum
deformed Schwarzschild black hole would be much more
easily told difference from the Schwarzschild black hole than
the renormalization group improved Schwarzschild black
hole, whereas the asymptotically safe black hole is indis-
tinguishable from the Schwarzschild black hole.

3.6 Practical observables

In the realistic astronomical observations, the practical
observables of the weak deflection gravitational lensing
include the angular separation Ptot , the difference of the angu-
lar positions �P , the total flux Ftot, the difference of the flux
�F , the centroid Scent and the differential time delay �τ of
the lensed images [66]. These practical observables can be
obtained from the scaled quantities (β, θ, μ, τ̂ ), where the
flux of a lensed image is the magnified one of the source,
i.e., F = |μ|Fsrc. Keeping the leading contributions of the
quantum deformation, we find the practical observables of
the weak deflection gravitational lensing by the quantum
deformed Schwarzschild black hole as

Ptot = ϑ+ + ϑ−

= E + 3

32
εϑEπ

(
10 + a2

)
+ O(ε2), (63)

�P = ϑ+ − ϑ−

= |B|
[

1 − 3

32
επ

ϑE

E
(

10 + a2
)

+ O(ε2)

]
, (64)

Ftot = F+ + F−

= Fsrc

|B|E
(
B2 + 2ϑ2

E

)
+ O(ε2), (65)

�F = F+ − F−

= Fsrc

[

1 − 3

16
επ

ϑ3
E

E3

(
10 + a2

)]

+ O(ε2), (66)

Scent = ϑ+F+ − ϑ−F−

F+ + F−

= |B|
B2 + 2ϑ2

E

(
B2 + 3ϑ2

E

)
+ O(ε2), (67)

�τ = DOLDOS

cDLS

{
1

2
|B|E + ϑ2

E log

(E + |B|
E − |B|

)

+ 3

32
επ |B|ϑE

(
10 + a2

)
+ O(ε2)

}
, (68)

where

E =
√
B2 + 4ϑ2

E . (69)

In order to indicate the effects of the quantum deforma-
tion on these observables of the weak deflection gravita-
tional lensing, we define their deviations from those of the
Schwarzschild black hole as

δPtot = Ptot − Ptot|a=0 = 3π

32
εϑEa

2 + O(ε2), (70)

δ�P = �P − �P|a=0 = − 3π

32E ε|B|ϑEa
2 + O(ε2),

(71)

δrtot = 2.5 log10

(
Ftot

Ftot|a=0

)
= O(ε2), (72)
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δ�r = 2.5 log10

(
�F

�F |a=0

)

= − 15π

32 log(10)
ε
ϑ3

E

E3 a
2 + O(ε2), (73)

δScent = Scent − Scent|a=0 = O(ε2), (74)

δ�τ = �τ − �τ |a=0

= DOLDOS

cDLS

3π

32
ε|B|ϑEa

2 + O(ε2), (75)

where the quantities about the fluxes are converted into
the magnitude of brightness by the astronomical conven-
tion. Ptot, �P , �F and �τ are at the order of O(ε),
while δrtot and Scent are at the order of O(ε2), meaning
that these two deviations are much harder to detect and
far beyond the reach of current capabilities. For compari-
son, the deviations of the observables in the weak deflection
gravitational lensing by the renormalization group improved
Schwarzschild black hole are at the order of O(ε2) or higher
[113], whereas these deviations for the asymptotically safe
black hole are even smaller. It suggests that the quantum
deformed Schwarzschild black hole would be most eas-
ily distinguished than the renormalization group improved
Schwarzschild black hole and the asymptotically safe black
hole.

3.7 Example of Sgr A*

We take the supermassive black hole, Sgr A*, as the lens
with the mass m•,SgrA∗ = 4.28 × 106 M	 and the distance
DOL,SgrA∗ = 8.32 kpc [128] and calculate the values of these
observables for 10−2 < β < 10 and on the domain D (8)
which is determined based on the observed shadow of M87*
(see Sect. 4.1 for details). The left panel of Fig. 2 shows the
angular separation Ptot, the position difference �P , the flux
difference �F and the differential time delay �τ between
the two lensed images in the weak deflection gravitational
lensing by the quantum deformed Schwarzschild black hole
for Sgr A*. Its right panel demonstrates the deviations of
these observables δPtot, δ�P , δ�r and δ�τ from those of
the Schwarzschild black hole.

The angular separation between the two lensed images
Ptot ranges from about 1.4 to 7.3 milliarcsecond (mas). It
increases with the angular position of the source β, but it
is not sensitive to the change of the quantum deformation.
With currently angular resolution about 3 mas for GRAV-
ITY [129], it would be possible to resolve the positive- and
negative-parity images in the weak deflection gravitational
lensing if Ptot could reach about 7 mas for a large β. That
ensures the feasibility to detect other observables. Its devi-
ation from the one of the Schwarzschild black hole δPtot

changes from 0 to 3.5 microarcsecond (µas). In contrast
to Ptot, δPtot significantly depends on the quantum defor-

mation and is hardly affected by β. δPtot is below the cur-
rently astrometric accuracy of GRAVITY about 10–20 µas
[129] and, therefore, it is not presently possible to distin-
guish the quantum deformed Schwarzschild black hole from
the Schwarzschild black hole by measuring such an observ-
able. The difference of the angular positions of the two lensed
images �P varies from about 0.01 to 7.0 mas. It grows as β,
but is barely changed by the quantum deformation. It would
also be possible to resolve �P by GRAVITY at best condi-
tions. Its deviation from the one of the Schwarzschild black
hole δ�P ranges from −3.4 to 0 µas, below the astromet-
ric accuracy of GRAVITY. However, with further improve-
ment [130], the upgraded GRAVITY+ might have sufficient
ability to detect the small changes of δPtot and δ�P in the
near future. The normalized fluxes difference between the
lensed images �F/Fsrc is very close to 1 for a large β and
decrease to about 0.993 for a small β. It is almost immune
to the quantum deformation. This suggests that the fluxes of
positive- and negative-parity images are quite different when
β ∼ 10, indicating the faintness of the negative-parity image.
Its deviation from the one of the Schwarzschild black hole
δ�r changes from about −1.3×10−3 to 0 mag. When β � 1,
δ�r is significantly affected by the quantum deformation and
is well within the current ability of space-borne photometry
[131] as long as the flares of Sgr A* are quiescent. The differ-
ential time delay between the lensed images �τ ranges from
a few tens of seconds to about 1.3 h. It grows with respect
to β and is barely changed by the quantum deformation. Its
deviation from the one of the Schwarzschild black hole δ�τ

can reach its peak of about 4 s when β ∼ 10 and the quan-
tum deformation is a ∼ 1.5. Since a typical dataset of Sgr A*
and S2 observed by GRAVITY contains 30 exposures with
an individual integration time of 10 s [132,133], �τ might
be able to measure whereas δ�τ is mildly shorter than the
individual integration time and, thus, undetectable.

In summary, we find that (1) the angular separation Ptot,
the angular difference �P , the fluxes difference �F and the
time delay �τ are possible to detect with current technology;
(2) the quantum deformed Schwarzschild black hole might
be distinguished from the Schwarzschild black hole by mea-
suring the δ�r during a quiet state of Sgr A* with a dedicated
space telescope; and (3) it would also be feasible by detecting
δPtot, δ�P and δ�τ with GRAVITY+ in the near future.

For comparison, the absolute deviations of these observ-
ables for the renormalization group improved Schwarzschild
black hole are smaller than those of the quantum deformed
Schwarzschild black hole by about 2–3 orders of magnitude:
|δPtot,RG| < 53 nanoarcsecond (nas), |δ�PRG| < 24 nas,
|δrtot,RG| < 31 µmag, |δ�rRG| ∼ O(ε3), |δScent,RG| <

10 nas and |δ�τRG| < 3 ms [113]. The absolute devia-
tions for the asymptotically safe black hole are even smaller
by about 4–5 orders of magnitude: |δPtot,AS| < 0.6 nas,
|δ�PAS| < 0.4 nas, |δrtot,AS| < 0.6 µmag, |δ�rAS| <

123



  627 Page 10 of 19 Eur. Phys. J. C           (2021) 81:627 

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101
β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

0.0 0.5 1.0 1.5
a

10−2

10−1

100

101

β

1.5

3.0

4.5

6.0

P
to

t(
m

as
)

0.0

0.8

1.6

2.4

3.2

δP
to

t(
μ
as

)

1.5

3.0

4.5

6.0

Δ
P

(m
as

)
−3.2

−2.4

−1.6

−0.8

0.0

δΔ
P

(μ
as

)

0.9940

0.9955

0.9970

0.9985

Δ
F

/
F
sr
c

−1.2

−0.9

−0.6

−0.3

0.0

δΔ
r(

10
−
3
m

ag
)

0.3

0.6

0.9

1.2

Δ
τ
(h

)

0

1

2

3

4

δΔ
τ
(s

)

Fig. 2 Color-indexed practical observables in the weak deflection
gravitational lensing by the quantum deformed Schwarzschild black
hole and their deviations from those of the Schwarzschild black hole
are showed with respect to the source position β and the quantum defor-

mation a for Sgr A*. From top to bottom, the left panel demonstrates
Ptot , �P , �F and �τ ; and the right panel displays δPtot , δ�P , δ�r
and δ�τ

0.5 µmag, |δScent,AS| < 0.3 nas and |δ�τAS| ∼ O(ε4).
Therefore, among these quantum black holes, the quantum
deformed Schwarzschild black hole might be most easily
distinguished from the Schwarzschild black hole through the

weak deflection gravitational lensing, while the renormaliza-
tion group improved Schwarzschild black hole and asymp-
totically safe black hole would be much harder to tell their
difference in the future.
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4 Strong deflection gravitational lensing

In the strong deflection gravitational lensing, the light ray
passes the vicinity of the quantum deformed Schwarzschild
black hole. The closest distance between the photon and the
black hole r0 is comparable with its gravitational radius.
When a photon approaches the photon sphere of the black
hole, its deflection angle diverges. Therefore, it can loop
around the black hole before reaching the observer, produc-
ing infinite number of relativistic images, which is a unique
feature not present in the weak deflection gravitational lens-
ing.

4.1 Photon sphere and shadow

The photon sphere is the unstable circular orbit of a photon.
Its radius rm is defined as the largest non-negative root of the
following equation [72,134]

A′(r)
A(r)

= C ′(r)
C(r)

. (76)

where ′ denotes the differentiation against r . The quantum
deformed Schwarzschild black hole has the photon sphere
with the radius as

rm =
√

3

2

√

a2• + 3m2• + m•
√

2a2• + 9m2•. (77)

When the quantum deformation vanishes, i.e., a• = 0, it
returns to the one of the Schwarzschild black hole rm,Sch =
3m•. For convenience, we define the dimensionless quantity

xm = rm

m•
=

√
3

2

√
a2 + 3 +

√
2a2 + 9, (78)

where a is the dimensionless quantum deformation and
defined in Eq. (6). Figure 3a shows xH and xm with respect to
the quantum deformation a. This photon sphere would cast a
shadow. The radius of the shadow of the quantum deformed
Schwarzschild black hole is

rsh = rm√
Am

, (79)

where and hereafter a subscript “m” stands for the evaluation
of a quantity at r = rm. We also define a dimensionless
quantity xsh = rsh m−1• . Figure 3b, c show xsh and the ratio
of xsh to the event horizon radius xH, respectively. It is clear
that both xm and xsh increase with the growth of a, while the
ratio decreases as a that agrees with the statement of Ref.
[58].

The direct image of the shadow of M87* by EHT [2],
which is consistent with the prediction by GR within 17% at
the 68-percentile level, provides a way to probe the strong
gravitational field region of a black hole and constrain the
theories of gravitation [125]. Following the approach of Ref.
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x
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(b)

0 1 2 3 4
a

2.2

2.4

2.6

x
sh

/
x
H
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Fig. 3 From top to bottom, it shows the (dimensionless) radii of the
photon sphere xm, the shadow xsh and their ratio for the quantum
deformed Schwarzschild black hole with respect to the quantum defor-
mation a. The red dashed line marks the upper bound on a given by the
EHT observation

[125] and making use of Eq. (79), we can obtain the pre-
liminary bound on the quantum deformation based on the
observed size of M87*’s shadow as (see the red dashed line
in Fig. 3)

D = {a | 0 < a < 1.53}.

It is worth mentioning that although the spin of the black
hole and its inclination are not taken into account, their com-
bined effects on the size of the shadow and the circularity
of its shape are no more than 4 and 7%, respectively [135].
Therefore, we expect that such a bound on the dimension-
less quantum deformation a is valid at least for the leading
order and the EHT observation can be used to test the non-
rotating quantum deformed Schwarzschild black hole suffi-
ciently. For the exact quantum deformation a• = a m•, it
depends on the mass of the black hole so that a• might have
very different values for various black holes even though all
of them have the same a.

4.2 Observables

With the method of the strong deflection limit [73], the deflec-
tion angle in the strong deflection gravitational lensing can
be found as

123



  627 Page 12 of 19 Eur. Phys. J. C           (2021) 81:627 

α̂(ϑ) = −ā log

(
ϑDOL

um
− 1

)
+ b̄

+O[(u − um) log(u − um)], (80)

with

ā =
√

2

AmC ′′
m − A′′

mCm
, (81)

b̄ = −π + ā log

[
(1 − Am)2

A′2
m

(
C ′′

m

Cm
− A′′

m

Am

)]

+2
∫ 1

0

⎡

⎣ 1 − Am

A′
zCz

√
AmC

−1
m − AzC

−1
z

− ā

z

⎤

⎦ dz, (82)

and

z = A(r) − Am

1 − Am
, (83)

where ′′ denotes the second derivative against r and a quantity
with subscript z means its dependence on z.

If it is assumed that the observer and source are far away
from the lens and that the source, lens and observer are nearly
aligned, the lens equation in the scenario of the strong deflec-
tion gravitational lensing can be simplified as [136]

B = ϑ − DLS

DOS
�α̂, (84)

where �α̂ = α̂ − 2nπ and n is the number of loops that the
photon takes around the black hole. Combining the logarith-
mic divergence of the deflection angle (80) and the lens equa-
tion (84), we can find that the angular separation between the
relativistic images decreases exponentially with n, making
them difficult to be resolved.

In the strong deflection gravitational lensing, the travel
time taken by a photon from the source to the observer can
be obtained by Eq. (16). With the assumption that the closest
approaches between two photons and the lens are, respec-
tively, r0,1 and r0,2, the differential time delay between these
two relativistic images can be found as [137]

T1 − T2 = T̃ (r0,1) − T̃ (r0,2) + 2
∫ r0,2

r0,1

1

A(r)
dr. (85)

Making use of the same method for dealing with the deflec-
tion angle (80), the time function T̃ (r) can also be obtained
as [137]

T̃ = −ã log

(
u

um
− 1

)
+ b̃

+O[(u − um) log(u − um)], (86)

where

ã = āum, (87)

b̃ = −π + ã log

[
(1 − Am)2

A′2
m

(
C ′′

m

Cm
− A′′

m

Am

)]

+2
∫ 1

0

[
1 − Am

A′
z

√
Am

Az

(√
AmCz

AmCz − AzCm
− 1

)

− ã

z

]
dz. (88)

When the first relativistic image (n = 1) can only be
resolved and other images (n ≥ 2) are packed together,
the observables in the strong deflection gravitational lens-
ing are the angular radius of the photon sphere (shadow) θ∞
as well as the angular separation s and magnitude difference
�r between the first relativistic image and the packed others
[73]

θ∞ = um

DOL
, (89)

s = θ∞ exp

(
b̄

ā
− 2π

ā

)
, (90)

�r = 5π

ā log 10
. (91)

If the first and second relativistic images can be separated,
their differential time delay can be found as [137]

�T2,1 = �T 0
2,1 + �T 1

2,1, (92)

where the perimeter term �T 0
2,1 and the exponential term

�T 1
2,1 are

�T 0
2,1 = 2πum, (93)

�T 1
2,1 = 2

√
2āum exp

(
b̄

2ā

)

×
[

exp
(
−π

ā

)
− exp

(
−2π

ā

)]
. (94)

In order to show the contribution of the exponential term to
the total time delay, we define the ratio η2,1 as

η2,1 = log10

(
�T 1

2,1

�T2,1

)

. (95)

The deviations of these observables in the strong deflection
gravitational lensing by the quantum deformed Schwarzschild
black hole from those of the Schwarzschild black hole can
be worked out as
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δθ∞ = θ∞ − θ∞|a=0, (96)

δs = s − s|a=0, (97)

δ�r = �r − �r |a=0, (98)

δ�T2,1 = �T2,1 − �T2,1|a=0, (99)

δη2,1 = η2,1 − η2,1|a=0. (100)

4.3 Example of Sgr A*

Taking the supermassive black hole in the Galactic Center,
Sgr A*, as a quantum deformed Schwarzschild black hole
with the mass m•,SgrA∗ = 4.28 × 106 M	 and the distance
DOL,SgrA∗ = 8.32 kpc [128], we estimate its observables in
the strong deflection gravitational lensing on the domain D
(8). The left panel of Fig. 4 shows its angular radius of the
shadow θ∞, angular separation s and brightness difference
�r between the first relativistic image and the packed others,
differential time delay �T2,1 between the first and the second
relativistic images and the ratio η2,1 (see the left-y axes); it
also indicates the deviations of these observables from those
of the Schwarzschild black hole (see the right-y axes).

The angular radius of the shadow θ∞ increases with the
quantum deformation and changes from about 26 to 31 µas,
which might be able to be observed with EHT [2]. Its devi-
ation from the one of the Schwarzschild black hole δθ∞
is no more than 5 µas, which is below the current ability,
making it impossible to distinguish the quantum deformed
Schwarzschild black hole from the Schwarzschild black hole
by measuring δθ∞. The angular separation between the first
relativistic image and the packed others s decreases with the
quantum deformation a from about 33 to 20 nas. Its absolute
deviation from the one of the Schwarzschild black hole δs
is less than about 14 nas. Both s and δs are far beyond the
reach of techniques in the near future. The brightness differ-
ence between the first relativistic image and the packed others
�r grows with the quantum deformation from about 6.8 to
7.5 mag and its deviation from the one of the Schwarzschild
black hole δ�r is no more than 0.8 mag. Although �r and
δ�r are well within the current ability of photometry, nei-
ther of them can be measurable because the angular separa-
tion between them s is too tiny to resolve. The differential
time delay between the first and second relativistic images
�T2,1 increases with respect to the quantum deformation
from 11.6 to 13.6 min, while its deviation from the one of
the Schwarzschild black hole δ�T2,1 is less than 2 min. Both
of them are shorter than the typical time span of an observa-
tional session of EHT, which is typical hours, and therefore
cannot be detected. The ratio of the exponential term to the
total time delay η2,1 decreases with the quantum deformation
a from 1.5 to 1.0% and its absolute deviation from the one
of the Schwarzschild black hole δη2,1 is no more than 0.5%.
The inaccessibility of the differential time delay makes η2,1

and δη2,1 unmeasurable as well.

In summary for the case of Sgr A*, we find that (1) it
is possible to measure the angular size of the shadow θ∞
cast by the quantum deformed Schwarzschild black hole
with EHT; (2) none of other observables of the relativistic
images, including the angular separation s, the brightness
difference �r and the time delay �T2,1, can be measured in
the near future; and (3) it is currently impossible to distin-
guish the quantum deformed Schwarzschild black hole from
the Schwarzschild black hole by measuring these observables
in the strong deflection gravitational lensing.

For comparison, the renormalization group improved
Schwarzschild black hole and the asymptotically safe black
hole might have comparable and detectable angular size
of their shadows as the one of the quantum deformed
Schwarzschild black hole, while the absolute deviations of
them from the one of the Schwarzschild black hole are no
more than 4 µas [113] and 1.5 µas [107], respectively. The
angular separations between the first relativistic image and
the packed others for these two black holes can reach about
174 nas [113] and 87 nas, respectively, both of which are
significantly bigger than the one of the quantum deformed
Schwarzschild black hole, even though they are still too tiny
to detect. It makes other observables relevant to the relativis-
tic images undetectable for these two black holes as well.
Therefore, in the case of Sgr A* as the lens, we find that
these three kinds of the quantum-corrected black holes share
almost the same detectability: it is currently impossible to dis-
tinguish them from the Schwarzschild black hole and from
each other by the strong deflection gravitational lensing.

4.4 Example of M87*

Taking the supermassive black hole M87* as a quan-
tum deformed Schwarzschild black hole with the mass of
m•,M87∗ = 6.5 × 109 M	 and the distance of DOL,M87∗ =
16.8 Mpc [7], we estimate its observables in the strong deflec-
tion gravitational lensing on the domainD (8).The right panel
of Fig. 4 shows its angular radius of the shadow θ∞, angu-
lar separation s, brightness difference �r , differential time
delay �T2,1 and ratio η2,1 (see the left-y axes) and their
deviations from those of the Schwarzschild black hole (see
the right-y axes). All of the curves for M87* have the same
shape as those of Sgr A*, whereas some of them have very
different ranges since these two black holes have very dif-
ferent masses and distances even for a given dimensionless
quantum deformation a.

For M87*, its apparent size of the shadow θ∞ changes
from about 20 to 23 µas, while its deviation from the one of
the Schwarzschild black hole δθ∞ is no more than 3.5 µas.
The angular separation s decreases from about 25 to 15 nas
and its absolute deviation from the one of the Schwarzschild
black hole δs is less than 10 nas. The differential time delay
�T2,1 and its deviation from the one of the Schwarzschild
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Fig. 4 The observables in the strong deflection gravitational lensing
by the quantum deformed Schwarzschild black hole and their devia-
tions from those of the Schwarzschild black hole are shown for Sgr
A* (left panel) and M87* (right panel) on the domain D. From top to
bottom, the angular radius of the shadow θ∞, the angular separation s

and brightness difference �r between the first relativistic image and
the packed others, the differential time delay �T2,1 between the first
and the second relativistic images and the ratio η2,1 are demonstrated
in the left-y axes and the deviations of these observables from those of
the Schwarzschild black hole are indicated in the right-y axes

black hole can reach 14 and 2 days, respectively, both of
which are significantly longer than those of Sgr A* due to
M87*’s much bigger mass. However, neither of them are able
to be measured since the angular separation between the first

image and second one is too tiny to resolve. The brightness
difference �r and the time delay ratio η2,1 are the same as
those of Sgr A*.
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In summary for M87*, we find that (1) it is possible to
observe the apparent size of its shadow, (2) it is far beyond
the reach of current techniques to measure other observables
and all of the deviations due to extremely smallness of the
angular separation s; and (3) it is impossible to distinguish
the quantum deformed Schwarzschild black hole from the
Schwarzschild black hole since all of the deviations of its
observables are inaccessible.

For comparison in the case of M87*, the renormalization
group improved Schwarzschild black hole and the asymptot-
ically safe black hole have comparable angular size of their
shadows as the one of the quantum deformed Schwarzschild
black hole, while the absolute deviations of them from the
one of the Schwarzschild black hole are no more than 3 µas
[113] and 1 µas [107], respectively. The angular separations
between the first relativistic image and the packed others for
these two black holes can reach about 105 nas [113] and 40
nas, respectively, but are still too tiny to detect, which makes
other observables inaccessible. Thus, it is still impossible
to distinguish these three kinds of quantum-corrected black
holes from the Schwarzschild black hole and from each other
through the strong deflection gravitational lensing by M87*.

5 Conclusions and discussion

In this work, we investigate the weak and strong deflection
gravitational lensing by the quantum deformed Schwarzschild
black hole. For the weak deflection gravitational lensing, we
work out its weak deflection angle and lensing observables,
such as the image positions, magnification and time delay
between the two lensed images. Taking Sgr A* as the lens, we
estimate their observability and find that it is possible to mea-
sure the angular separation, the angular difference, the fluxes
difference and the time delay between the lensed images with
current technology. The quantum deformed Schwarzschild
black hole might be distinguished from the Schwarzschild
black hole by measuring the deviation of the fluxes differ-
ence from the one of the Schwarzschild black hole during a
quiet state of Sgr A* with a dedicated space telescope and by
detecting the deviations of the angular separation, the angu-
lar difference and the time delay with GRAVITY+ in the
near future. For the strong deflection gravitational lensing,
we obtain its observables, including the apparent radius of the
shadow, the angular separation and the brightness difference
between the first and the packed other images, and the time
delays between the first and second relativistic images. After
taking Sgr A* and M87* as the lenses, we assess the pos-
sibility for detecting these observables and their deviations
from those of the Schwarzschild black hole. We find that it is
possible to measure the apparent size of the shadows cast by
these two supermassive black holes, while no other observ-
ables and none of their deviations are well within the reach

of current techniques. Therefore, it is presently infeasible to
distinguish the quantum deformed Schwarzschild black hole
from the Schwarzschild black hole by the observables in the
strong deflection gravitational lensing. Nevertheless, we can
still obtain a preliminary bound on the (dimensionless) quan-
tum deformation as 0 < a < 1.53 based on the apparent size
of M87*’s shadow observed by EHT.

The observability of the quantum deformed Schwarzschild
black hole is also intensively compared with those of the
renormalization group improved Schwarzschild black hole
and the asymptotically safe black hole. Contrary to the case
of the quantum deformed Schwarzschild black hole, it is not
possible to distinguish the renormalization group improved
Schwarzschild black hole and the asymptotically safe black
hole from the Schwarzschild black hole through the weak
deflection gravitational lensing by Sgr A*. Meanwhile, these
three kinds of quantum black holes cannot be distinguished
from the Schwarzschild black hole and from each other
through the strong deflection gravitational lensing by Sgr
A* and M87*. Therefore, we find that it is most likely to
test the quantum deformed Schwarzschild black hole by the
weak deflection gravitational lensing in the foreseen future
among these black holes.

In the Universe, black holes rotate. In fact, the observa-
tion by EHT disfavors a non-rotating black hole of M87* [2].
Gravitational lensing by a spinning quantum deformed black
hole will be an interesting topic, however, to our best knowl-
edge, the metric for such a rotating black hole with quantum
fluctuations is still absent. Even so, we might catch a glimpse
that its gravitational-lensing signatures would be very differ-
ent from those presented in this work since the spin can make
the caustic shifted and distorted based on previous studies
in other scenarios [138–154]. Meanwhile, the interpretation
of the apparent size and shape of M87* observed by EHT
depends heavily on a bank of the general relativistic mag-
netohydrodynamics of plasma around the Kerr black hole
[6], which adopts many untested assumptions about accretion
flow and emission physics [155]. Any deviation in the space-
time caused by the quantum effects would not be told from
the violation of these astrophysical assumptions. The photon
ring [156] around M87* might provide a robust test, which,
however, needs very challenging space-based interferometry
[157–159]. Thus, we cannot constrain the quantum deforma-
tion based on the M87*’s shadow in a self-consistent manner
for now, but the preliminary bound on it we obtain in this work
might still be able to provide a hint of it with the same order-
of-magnitude as the real one. Considering that it would not
be easy to distinguish the quantum deformed Schwarzschild
black hole from the Schwarzschild black hole, the timelike
geodesic motions around it, such as precessing [160–166]
and periodic [167–175] orbits, might be other important way
to investigate its quantum effects.

123



  627 Page 16 of 19 Eur. Phys. J. C           (2021) 81:627 

Acknowledgements This work is funded by the National Natural Sci-
ence Foundation of China (Grant nos. 11573015 and 11833004).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This paper is a
theoretical work and all of the data are adopted by the related refer-
ences.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Renormalization group improved
Schwarzschild and asymptotically safe black holes

The metric of renormalization group improved Schwarzschild
black hole reads [41]

A(r) = [B(r)]−1

= 1 − 2m•
r

(
1 + �

m2•
r2 + γ�

m3•
r3

)−1

, (A.1)

C(r) = r2, (A.2)

where γ and � are two positive constants related to the iden-
tification of cutoff of the distance scale and from the nonper-
turbative renormalization group theory. Its expanded form in
the weak field approximation is

A(r) = 1 − 2
m•
r

+ 2�
m3•
r3 + 2γ�

m4•
r4 + O

(
m5•
r5

)

,

(A.3)

B(r) = 1 + 2
m•
r

+ 4
m2•
r2 + (−2� + 8)

m3•
r3

+ (−2γ� + 8� + 16)
m4•
r4 + O

(
m5•
r5

)

. (A.4)

It is clear that the quantum improvement starts to appear in
the third-order term in A(r) and B(r).

The metric of the asymptotically safe black hole reads
[107]

A(r) = [B(r)]−1 = 1 − 2m•
r

(
1 + �

m3•
r3

)−1

, (A.5)

C(r) = r2, (A.6)

where � is a positive constant no more than 32/27. Its
expanded form in the weak field approximation is

A(r) = 1 − 2
m•
r

+ 2�
m4•
r4 + O

(
m7•
r7

)
, (A.7)

B(r) = 1 + 2
m•
r

+ 4
m2•
r2 + 8

m3•
r3

+ (16 − 2�)
m4•
r4 + (32 − 8�)

m5•
r5

+ (64 − 24�)
m6•
r6 + O

(
m7•
r7

)
. (A.8)

The quantum correction � starts to play a role in the fourth-
order term in A(r) and B(r).
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