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ABSTRACT
In this paper, we study the strong gravitational lensing of gravitational waves (GWs) from a
statistical perspective, with particular focus on the high frequency GWs from stellar binary
black hole coalescences. These are most promising targets for ground-based detectors such as
Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) and the proposed
Einstein Telescope (ET) and can be safely treated under the geometrical optics limit for GW
propagation. We perform a thorough calculation of the lensing rate, by taking account of effects
caused by the ellipticity of lensing galaxies, lens environments, and magnification bias. We
find that in certain GW source rate scenarios, we should be able to observe strongly lensed GW
events once per year (∼1 yr−1) in the aLIGO survey at its design sensitivity; for the proposed
ET survey, the rate could be as high as ∼80 yr−1. These results depend on the estimate of GW
source abundance, and hence can be correspondingly modified with an improvement in our
understanding of the merger rate of stellar binary black holes. We also compute the fraction
of four-image lens systems in each survey, predicting it to be ∼30 per cent for the aLIGO
survey and ∼6 per cent for the ET survey. Finally, we evaluate the possibility of missing some
images due to the finite survey duration, by presenting the probability distribution of lensing
time delays. We predict that this selection bias will be insignificant in future GW surveys, as
most of the lens systems (∼90 per cent) will have time delays less than ∼1 month, which will
be far shorter than survey durations.

Key words: gravitational lensing: strong – gravitational waves.

1 IN T RO D U C T I O N

The four signals of gravitational waves (GWs) from binary black
hole systems, GW150914 (Abbott et al. 2016c), GW151226
(Abbott et al. 2016d), GW170104 (Abbott et al. 2017b), and
GW170608 (Abbott et al. 2017a) detected by Advanced Laser
Interferometer Gravitational Wave Observatory (aLIGO) during
its first and second observing runs (O1, O2), marked the com-
mencement of GW astronomy. More recently, with the Advanced
Virgo detector becoming operational, we had the first joint detec-
tion GW170814 (Abbott et al. 2017c) and the first binary neutron
star (BNS) signal GW170817 (Abbott et al. 2017d). These obser-
vations provide us a new opportunity to study astrophysics and
cosmology.

Since Wang, Stebbins & Turner (1996) proposed the possibil-
ity of observing several strongly lensed GW events in the con-
text of aLIGO type detectors, gravitational lensing of GWs has

� E-mail: lshuns@nao.cas.cn

been widely discussed over the past two decades. Such discus-
sions involve diffraction effects in lensed GW events (Nakamura
1998; Takahashi & Nakamura 2003), the waveform distortion
caused by the gravitational lensing (Cao, Li & Wang 2014; Dai &
Venumadhav 2017), the influence on the statistical signatures of
black hole mergers (Dai et al. 2017) as well as the potential for
studying fundamental physics (Collett & Bacon 2017; Fan et al.
2017) and cosmology (Sereno et al. 2011; Liao et al. 2017; Wei
& Wu 2017). Nevertheless, in spite of the broad range of topics
discussed so far, the field of gravitational lensing of GWs is still
worth an extensive exploration in order to fully understand the phe-
nomenon and how to employ it to investigate the Universe.

One crucial question we have to answer before a further explo-
ration of gravitational lensing of GW occurs is ‘how many lensed
GW events are expected to be observed?’ Indeed, several discus-
sions on this aspect already exist in the literature. For example,
Sereno et al. (2010) studied lensed GW events from the merging
of massive black hole binaries in the context of the LISA mis-
sion; Biesiada et al. (2014) considered the observational context for
the Einstein Telescope (ET); and more recently, Ng et al. (2017)
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revisited the LIGO lensing rate. However, all the studies mentioned
so far adopt the simplest lens model, which treats the lens mass
distribution as axisymmetric.

In this paper, we present some extensions to the calculation of the
lensed GW rate, making allowances for the ellipticity of the lens, the
lens environment (as an external shear), and for magnification bias.
This treatment not only provides a more precise prediction about
the lensing rate, including more statistical properties, but also can
serve as a useful tool for cosmological study (e.g. Chae 2003). We
concentrate on the ground-based GW detectors, specifically aLIGO
and the proposed ET. Nevertheless, the strategy developed here is
general and can be easily extended to address other similar GW
surveys as long as the geometrical optics approximation to GW
propagation is valid.

The estimate of source rate dominates the prediction for the lensed
event rate. Here, we consider GWs from the coalescence of stellar
binary black holes as the only sources, since they are the main
signals received by ground-based detectors (Dominik et al. 2013;
Abbott et al. 2016a). In order to obtain the source rate, we use a
similar approach as in Cao, Lu & Zhao (2017) to estimate the merger
rate of stellar binary black holes, and then use the GW detection
theory developed by Finn (1996) to translate the intrinsic merger
rate into the detectable source rate.

Another essential factor that can affect the observation of lensed
events is the lensing time delay, as an image with time delay com-
parable to the survey’s duration has a high probability of being
missed by the detector. We assess this selection bias by computing
the distribution function of time delays corresponding to the lens
properties adopted in this paper.

Our paper is organized as follows. In Section 2, we describe
the approach to lensing rate calculation and the assumption of
lens properties. We present our results in Section 3 and sum-
mary in Section 4. Throughout this paper, we adopt geometric
units with G = c = 1 and assume a Lambda cold dark mat-
ter universe with (�M, ��) = (0.3, 0.7) and a Hubble parameter
H0 = 70 km s−1 Mpc−1.

2 TH E O R E T I C A L M O D E L

In this section, we present our lens model (Section 2.1) and our GW
detection model (Section 2.2). With the theory of lensing statistics
(Section 2.3), we then derive the formulae to calculate the expected
lensing rate in Section 2.4. The theory developed in this section
is general and can be used to estimate strong gravitational lensing
rates in any ground-based GW surveys so long as the geometrical
optics approximation (see below) is valid.

2.1 Lens modelling

When the lens mass is larger than ∼105 M�(f/Hz)−1 where f is
the frequency of the incident waves, the propagation of GWs is
analogous to that of light. This is known as the geometrical optics
approximation to GW propagation (Takahashi & Nakamura 2003).
Since we here concentrate on the macrolensing by galaxies (M �
1010 M�) of high frequency GWs (f � 10 Hz), this condition is
always satisfied. Hence, it is a reasonable approximation in the con-
text of this paper to neglect the wave effect and adopt the standard
optical gravitational lens theory to study the gravitational lensing
of GWs.

As it is broadly reckoned that the strong lensing probability is
dominated by early-type galaxies (Turner, Ostriker & Gott 1984;
Möller, Kitzbichler & Natarajan 2007, and references therein), we

only consider early-type galaxies as lensing objects. The singular
isothermal ellipsoid (SIE) is adopted to model the mass distributions
of the lensing galaxies. For the SIE convergence in Cartesian coor-
dinates (x,y), we adopt the form developed by Keeton & Kochanek
(1998):

κ(x, y) = 1

2

λ(q)
√

q√
x2 + q2y2

, (1)

where q is the projected minor-to-major axis ratio, and λ(q), the so-
called ‘dynamical normalization’, depends on the three-dimensional
shape of lensing galaxies (Chae 2003).

Furthermore, we consider the influence from the lens environ-
ment as an external shear γ whose lens potential is given by
(Kochanek 1991; Witt & Mao 1997, and references therein)

φshear = γ

2
(x2 − y2) cos 2θγ + γ xy sin 2θγ

= 1

2
(x2 − y2)γ1 + xyγ2, (2)

where (γ 1, γ 2) are the two components of the shear in Carte-
sian coordinates, and (γ, θγ ) are the corresponding amplitude
and direction components in polar coordinates. The connec-
tions between these two coordinate systems are: γ1 = γ cos 2θγ ,

γ2 = γ sin 2θγ .
More detailed discussions of the lens model can be found in

Appendix A.

2.2 GW modelling

An estimate of the GW event rate density is required for calculat-
ing the expected number of lensed events. This involves the the-
ory of GW detection, which has been discussed by many authors
(Finn & Chernoff 1993; Finn 1996; Flanagan & Hughes 1998; Tay-
lor & Gair 2012). Here, we mainly follow the framework developed
by Finn (1996).

For Gaussian and stationary noise, the optimal matched filtering
signal-to-noise ratio (S/N) ρ is defined as (e.g. Flanagan & Hughes
1998)

ρ2 = 4
∫ ∞

0
df

|h(f )|2
Sn(f )

, (3)

where Sn(f) is the one-sided power spectral density of the detector’s
noise, and h(f) is the Fourier transform of the detector’s response to
the GWs.

The GW generated by an inspiralling binary system can be ap-
proximately described by a quadrupolar formula (Newtonian order)
with the frequency twice the binary’s orbital frequency. This wave-
form model does not meet the empirical requirement coming from
the analysis of GW data, but is accurate enough for our statistical
purpose. The amplitude given by the quadrupolar formula can be
written as (Taylor & Gair 2012)

|h(f )| = 1

DL

(
5

24

)1/2 (M5
z

π4

)1/6 (
�

4

)
f −7/6, (4)

where DL is the luminosity distance and

Mz ≡ (1 + z)M0 = (1 + z)
(m1m2)3/5

(m1 + m2)1/5
(5)

is the observed (redshifted) chirp mass with M0 the intrinsic chirp
mass, and � is the orientation function:

� ≡ 2[F 2
+(1 + cos2 i)2 + 4F 2

× cos2 i]1/2, (6)
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with

F+ ≡ 1

2
(1 + cos2 θ ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ,

F× ≡ 1

2
(1 + cos2 θ ) cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ (7)

describing the detector’s responses to the different GW polariza-
tions. Obviously, � depends only on the sky position and relative
orientation of the source to the detector (θ , φ, i, ψ).1 which are un-
correlated and uniformly distributed. A reasonable approximation
of the probability distribution of � is given by (Finn 1996)

P�(�) =
{

5�(4 − �)3/256 if0 < � < 4

0 otherwise.
(8)

Combining equation (3) with equation (4), the S/Ncan be written
as (Finn 1996; Taylor & Gair 2012)

ρ = 8�
R0

DL

( Mz

1.2 M�

)5/6 √
ζ (fmax), (9)

where

R2
0 ≡ 5

192π

(
3

20

)5/3

x7/3 M2� (10)

is the detector’s characteristic distance parameter, with

x7/3 ≡
∫ ∞

0

(π M�)2

(πf M�)7/3Sn(f )
df , (11)

and

ζ (fmax) ≡ 1

x7/3

∫ 2fmax

0
df

(π M�)2

(πf M�)7/3Sn(f )
(12)

is the dimensionless function reflecting the overlap between the GW
signal generated by the inspiral stage and the detector’s effective
bandwidth: ζ (fmax) is unity if 2fmax is larger than the upper bound
frequency of the detector’s bandwidth (i.e. the GW signal from the
inspiral stage completely covers the detector’s effective bandwidth),
and is less than unity if the inspiral terminates within the detector’s
bandwidth.

The argument fmax is the redshifted orbital frequency at which the
quadrupolar formula is no longer applicable (the binary finishes the
inspiral and starts to merge). It is plausible to choose the entering of
the innermost circular orbital (ICO) as the end of the inspiral stage.
For binaries with equal-mass, this can be described as (Taylor &
Gair 2012)

fmax = fICO

1 + z
= 785 Hz

1 + z

(
2.8 M�

M

)
, (13)

where M is the total mass of the binary. For binaries with unequal
mass, fICO also depends on the mass asymmetry. In our simula-
tion, we ignore this small correction, and make exclusive use of
equation (13). We calculate ζ (fmax) for the typical total mass in
our source sample (M = 10 M�) and find it to be close to unity
(∼0.98). Hence for simplicity, we adopt ζ (fmax) = 1 in the following
calculations.

1 θ and φ correspond to the usual spherical coordinates that describe the
direction to the source, while i and ψ give the source’s orientation with
respect to the detector (see Finn 1996, Section II-C for a detailed discussion).

The distribution of the GW event rate in the observer’s frame
with z,M0, and ρ is given by (Finn 1996)

d3Ṅ

dzdM0dρ
= dV c

dz

Rmrg(M0; z)

(1 + z)
Pρ(ρ|z,M0), (14)

where dVc is the differential comoving volume and the factor
1/(1 + z) accounts for the time dilation. Rmrg(M0; z) is the intrinsic
merger rate density with respect to the chirp mass M0 at redshift z.
Our model to estimate this density is presented in Appendix B. The
distribution Pρ(ρ|z,M0) can be calculated by combining equations
(8) and (9):

Pρ(ρ|z,M0) = P�(�)
∂�

∂ρ

∣∣∣∣∣
M0,z

= P�[�ρ]
�ρ

ρ
, (15)

where �ρ is rearranged from equation (9):

�ρ = ρ

8

DL

R0

(
1.2 M�
Mz

)5/6 1√
ζ (fmax)

. (16)

By marginalizing over M0 in equation (14), we can obtain the
differential GW event rate with S/N ρ at redshift z:

�(ρ; z) =
∫

dM0
d3Ṅ

dz dM0dρ
. (17)

The GW event rate for a particular detector of threshold ρ0 is
given by

Ṅs(> ρ0) =
∫ ∞

0
dzs

∫ ∞

ρ0

dρ �(ρ; zs), (18)

and the corresponding differential rate is

dṄs(> ρ0)

dz
=

∫ ∞

ρ0

dρ �(zs, ρ). (19)

2.3 Lensing statistics

In the context of lensing statistics, the most important parameter
is the so-called optical depth, or the differential lensing probability
(e.g. Turner et al. 1984; Chae 2003; Huterer, Keeton & Ma 2005):

p(ρ; zs) = 1

4π

∫ zs

0
dV c

∫ ∞

0
dσv �(σv)

×
∫

dq pq (q)

“
dγ pγ (γ, θγ )

× B(ρ; zs) σ�(σv, z�, zs, γ , q), (20)

which describes the differential probability for a given source with
S/N ρ at redshift zs to be lensed.

The first integral takes into account the comoving volume be-
tween the observer and the source. It is required for calculating the
total number of lensing galaxies.

The second integral gives the number density of lensing galax-
ies in comoving volume, where �(σ v) is the velocity distribution
function of lensing galaxies. In the context of lensing statistics, the
modified Schechter function (Choi, Park & Vogeley 2007)

�(σv) = φ∗

(
σv

σ∗

)α

exp

[
−

(
σv

σ∗

)β
]

β

�(α/β)

1

σv

(21)

is often used to fit the velocity distribution function, where (φ∗, σ ∗,
α, β) = (8.0 × 10−3h3 Mpc−3, 161 km s−1, 2.32, 2.67).
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The third integral is over the distribution pq(q) of the pro-
jected axis ratio q. We adopt a Gaussian distribution to describe
pq(q), with a mean of 0.7, and standard deviation of 0.16. The
distribution is truncated at q = 0.2 and 1.0. This is consis-
tent with the observations (Jorgensen, Franx & Kjaergaard 1995;
Sheth et al. 2003).

The fourth integral is two-dimensional, where pγ (γ, θγ ) denotes
the distribution of external shear γ . Following Huterer et al. (2005),
we assume the amplitude γ follows a log-normal distribution with
mean ln 0.05 and standard deviation 0.2 (note: the mean and stan-
dard deviation are not the values for γ itself, but of the underlying
normal distribution it is derived from). The direction θγ is assumed
to be random.

The bias factor B(ρ; zs) describes an enhancement of the rep-
resentation of events due to the magnification caused by the lens
(magnification bias):2

B(ρ; zs) = �edρ

�ddρ
=

∫ ∞
0 dμ pμ(μ) �(ρ/

√
μ; zs)dρ/

√
μ

�(ρ; zs)dρ

=
∫ ∞

0
dμ

pμ(μ)√
μ

�(ρ/
√

μ; zs)

�(ρ; zs)
. (22)

Note that
∫ ∞

0 dμ pμ(μ) = 1 is required, in order to combine the
bias factor into optical depth naturally.

The choice of the magnification factor μ is demanded for
multiple-image systems in calculation of the bias factor. For dou-
ble (two-image) lenses, we adopt the magnification factor of the
fainter image as μ, so that both images are magnified above the
threshold. For quadruple (four-image) lenses, we adopt the mag-
nification factor of the third brightest image, hence at least three
images are magnified above the threshold. Also, this choice en-
sures the detection of the first lensed image to arrive, since the
third brightest image is generally expected to arrive first (Oguri &
Marshall 2010).

We calculate the cross-section σ � in angular dimensions, that
results in the normalization factor 1/4π in equation (20). It is con-
venient to define a dimensionless cross-section σ̂� ≡ σ�/θ

2
E, where

θE ≡ 4πσ 2
v (D�s/Ds) is the angular Einstein radius with Ds, D�s de-

noting the angular distances to the source and between the lens
and the source, respectively. Due to the feature of isothermal lens
models that the dependence on zs, z�, σ v is contained in θE, the
dimensionless cross-section σ̂� depends only on (γ , q). And the
optical depth now can be rearranged to a more practical form:

p(ρ; zs) = 1

4π

[∫ zs

0
dV c

∫ ∞

0
dσv �(σv) θ2

E(σv, z�, zs)

]

×
[∫

dq pq (q)

“
dγ pγ (γ, θγ ) B(ρ; zs) σ̂�(γ , q)

]
.

(23)

The two parts separated by square brackets are independent, and
can be integrated separately.

As for the problem of determining the region of cross-section,
we handle double and quadruple lenses separately. 3 This treatment
gives us the fraction of quadruple lenses. For double lenses, the
condition that the fainter image is magnified above threshold ρ0 is
taken to define the region of cross-section. This treatment guarantees
the theoretical detectability of multiple images.

2 In gravitational lensing of GWs, the amplification in S/N is
√

μ, since we
directly observe the waveform instead of intensity.
3 The naked cusp lenses are ignored in this paper, since they seldom happen
at galaxy-scale lenses (Oguri & Marshall 2010).

2.4 Expected lensing rate

The expected lensing rate for a particular detector of threshold ρ0

can be calculated as

Ṅ�(> ρ0) =
∫ ∞

0
dzs

∫ ∞

ρ0

dρ p(ρ; zs) �(ρ; zs). (24)

In theory, by substituting equations (17) and (23) into equation
(24), we can obtain the lensing rate as a function of threshold ρ0.
In practice, it is numerically more friendly if some rearrangements
or reductions are undertaken. Hence we introduce a more practical
form for calculation of the expected lensing rate:

Ṅ�(> ρ0) =
∫ ∞

0
dzs

∫ ∞

ρ0

dρ

∫
dq pq (q)

“
dγ pγ (γ, θγ )

×
“

du f (ρ, q, γ , u; zs), (25)

and the last integral which combines the dimensionless cross-
section σ̂�, the bias factor B(ρ; zs), and the differential GW event
rate �(ρ; zs) is performed over the determined cross-section region
u. While

f (ρ, q, γ , u; zs) = g(zs)√
μ

�(ρ/
√

μ; zs), (26)

where

g(zs) = 1

4π

[∫ zs

0
dV c

∫ ∞

0
dσv �(σv) θ2

E(σv, z�, zs)

]
(27)

is the integral which combines the velocity distribution function
�(σ v) and the angular Einstein radius θE.

For the differential rate, it is convenient to write the function as

dṄ�(> ρ0)

dzs
= g(zs) h(> ρ0; zs), (28)

where

h(> ρ0; zs) =
∫ ∞

ρ0

dρ

∫
dq pq (q)

“
dγ pγ (γ1, γ2)

×
“

du√
μ

�(ρ/
√

μ; zs). (29)

3 R ESULTS

In this section, we present our prediction of the strongly lensed
GW event rate (Section 3.1). We take aLIGO operating at its de-
sign sensitivity and the ET utilizing its ‘xylophone’ configuration
as illustrations. We calculate the lensing rate as a function of the
characteristic distance R0 (see below) to give a more general predic-
tion for ground-based detectors with arbitrary sensitivity. In Sec-
tion 3.2, we illustrate the probability distribution of lensing time
delays to assess the detectability of multiple images in a finite
duration.

3.1 Event rate

The lensing rate is strongly dependent on the estimate of the GW
event rate, which, in turn, depends on the estimate of the merger
rate of stellar binary black holes. As an illustration, we use a simple
recipe analogous to that in Cao et al. (2017) to compute the merger
rate (see Appendix B for further details). Fig. 1 shows our results
on the merger rate density distribution as a function of cosmic time
(redshift). The two different lines represent estimates obtained by
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Figure 1. Merger rate density of stellar binary black holes as a function
of cosmic time (redshift). The red solid and black dashed lines represent
results obtained by using the SFR function from Strolger et al. (2004) and
from Madau & Dickinson (2014), respectively.

using observationally determined star formation rate (SFR) func-
tions from Strolger et al. (2004) (red solid line) and from Madau
& Dickinson (2014) (black dashed line). The discrepancy between
these two results is noticeable at high redshift. This contradiction
accounts for all the disparities in the following results. Despite the
simplicity of our model, our results are comparable to those esti-
mated through more sophisticated population synthesis models (see
the comparison in Cao et al. 2017).

The GW detector’s sensitivity is described by a characteristic
distance R0, which depends only on the detector’s noise power
spectral density Sn(f) (see equation 10). Generally speaking, the
larger R0, the farther a detector can observe. For aLIGO, we use the
data ‘ZERO_DET_high_P.txt’ from Shoemaker (2010) as the Sn(f)
for each interferometer operating at the design sensitivity. Since
aLIGO consists of two interferometers with equal configurations
and closely parallel orientations (one at Hanford, WA, and the other
at Livingston, LA), we can treat aLIGO as a whole with the charac-
teristic distance

√
2 times larger than that of each signal interferom-

eter (Finn 1996). For the ET, which uses 3rd-generation technology
and the ‘xylophone’ configuration, we adopt R0 = 1591 Mpc (Taylor
& Gair 2012).

Once the intrinsic merger rate of stellar binary black holes and
the characteristic distance of the detector are determined, we can
obtain the unlensed and lensed GW event rates through equations
(18) and (25), respectively. The threshold ρ0 is set to be eight, that
means a signal is identified as detected when its S/N is above eight.
Table 1 summarizes our results for the unlensed and lensed GW
event rates in various detectors.

We predict that the unlensed GW event rates are ∼103 yr−1 for
aLIGO at its design sensitivity (R0 = 155.4 Mpc) and ∼105 yr−1 for
ET (R0 = 1591 Mpc). For comparison, we use the same strategy to
compute the GW event rate at aLIGO’s O2 run (R0 = 63.7 Mpc,
ρ0 = 13, ζ = 0.4 ∼ 1.0)4 and obtain 15 ∼ 75 yr−1, which is consis-

4 The threshold ρ0 is set according to GW170104, which has the lowest S/N
among aLIGO’s O2 detections. The lower limit of ζ factor (see equation 12)
is calculated using the total mass of GW170814, which has the largest mass
among aLIGO’s O2 detections.

Table 1. Prediction for the unlensed and lensed GW event rates in various
surveys. We use two different characteristic distance R0 to identify the
detectors (155.4 Mpc for a LIGO; 1591 Mpc for ET) and two different SFR
functions to estimate the GW source rate (Strolger et al. 2004 and Madau &
Dickinson 2014). We adopt the threshold ρ0 = 8 for all surveys.

Detectors SFR functions Ṅs(>ρ0) Ṅ�(>ρ0) Fraction
(yr−1) (yr−1) (quad)

aLIGO Strolger et al. 2004 5.4 × 103 1.20 0.30
Madau & Dickinson 2014 5.1 × 103 0.84 0.26

ET Strolger et al. 2004 1.4 × 105 79.4 0.06
Madau & Dickinson 2014 9.6 × 104 38.6 0.06

Figure 2. The differential rate of unlensed and lensed GW events (top panel)
and the fraction of quadruple lenses (bottom panel) as a function of source
redshift for aLIGO (R0 = 155.4 Mpc). The red solid and black dashed lines
represent results obtained by using the SFR function from Strolger et al.
(2004) and from Madau & Dickinson (2014), respectively. The threshold of
S/N is set to be eight.

tent with the current aLIGO detection rate. The improved sensitivity
and the lower threshold of S/N account for the much higher expected
source rate at aLIGO’s design sensitivity compared with that of the
O2 run.

Based on these estimates of the GW event rate, we find that grav-
itational lensing of GWs is promising for both aLIGO at its design
sensitivity and the proposed ET. More specifically, when the SFR
function from Strolger et al. (2004) is adopted, both detectors have
the largest expected numbers of lensed events (aLIGO ∼1 yr−1 and
ET ∼80 yr−1). For the SFR function adopted from Madau & Dick-
inson (2014), the number in ET declines dramatically to ∼40 yr−1

due to the lower source rate expected at high redshift. The number in
aLIGO drops only slightly and is still close to 1 yr−1, since aLIGO is
insensitive to the event rate at high redshift. Furthermore, we com-
pute the fraction of quadruple lenses in each survey. Our calculation
indicates that the quadruple fraction is approximately 30 per cent for
aLIGO events and 6 per cent for ET events. The higher quadruple
fraction in aLIGO corresponds to the larger magnification bias.

In Fig. 2 (top panel), we plot the differential rates of unlensed
and lensed GW events as a function of source redshift for aLIGO
detector. The two different lines represent the results calculated by
adopting the SFR functions from Strolger et al. (2004) (red solid
line) and from Madau & Dickinson (2014) (black dashed line).
Roughly speaking, when the magnification bias is negligible, we
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Figure 3. The differential rate of unlensed and lensed GW events (top
panel) and the fraction of quadruple lenses (bottom panel) as a function of
source redshift for ET (R0 = 1591 Mpc). The red solid and black dashed
lines represent results obtained by using the SFR function from Strolger et al.
(2004) and from Madau & Dickinson (2014), respectively. The threshold of
S/N is set to be eight.

have a scaling relationship between the differential rates of un-
lensed and lensed events, dṄ�/dzs ∝ z3

s · dṄs/dzs, since the optical
depth satisfies p(zs) ∝ z3

s . This scaling roughly matches the slope
in Fig. 2 at low redshift. At high redshift, the trend of the lensed
events is dominated by the magnification bias. In the bottom panel,
we show the fraction of quadruple lenses as a function of source red-
shift. The rising quadruple fraction results from the increase in the
magnification bias. Fig. 3 is the same as Fig. 2 but for ET detector.

We also calculate the most probable redshifts of the lensed
sources (from 16 per cent to 84 per cent) and find it ranges from
∼1.1 to ∼2.7 for aLIGO events and from ∼1.5 to ∼3.7 for ET
events based on the SFR function from Madau & Dickinson (2014).
If the SFR function from Strolger et al. (2004) is adopted, the red-
shifts are slightly higher due to the higher estimates of source rates
at high redshift (see Fig. 1), ranging from ∼1.2 to ∼3.3 for aLIGO
events and from ∼1.8 to ∼5.7 for ET events.

We demonstrate the rate of lensed GW events as a function of
the characteristic distance in Fig. 4. The notation for the different
lines is the same as above. As expected, the larger R0, the larger
number of lensed events a detector can observe. This result indicates
that any detectors more sensitive to aLIGO are expected to observe
several strongly lensed events per year. The declining tendency
of the quadruple fraction in the bottom panel is again due to the
decrease in the magnification bias.

3.2 Distribution of time delays

A prediction for the time delay distribution is required in order to
assess the detectability of multiple images during a finite duration
GW survey. We achieve this goal through a semi-analytic tech-
nique based on Monte Carlo sampling (see Mao 1992 for a similar
calculation for gamma-ray bursts).

The specific procedure is as follows. First, we randomly generate
a sample of 107 lens systems at a given source redshift. The lens
objects are considered to be uniformly distributed on the sky, and
the lens properties are distributed as described in Section 2.3. Then,
we solve each lens system to see if it has multiple images, and for
those with multiple images, we calculate their time delays through

Figure 4. The lensed event rate (top panel) and the fraction of quadruple
lenses (bottom panel) as a function of characteristic distance. The red solid
and black dashed lines represent results obtained by using the SFR functions
from Strolger et al. (2004) and from Madau & Dickinson (2014), respec-
tively. The vertical cyan and magenta lines show R0 corresponding to aLIGO
and ET, respectively. The horizontal line sets the threshold for expectable
rate (1 event per year). The threshold of S/N is set to be eight.

equation (A7). By grouping these lens systems according to their
time delays, we obtain the distribution of time delays. Since we do
not set a threshold of S/N in this calculation, the distribution derived
here considers all the lens systems satisfying the lens properties
described in Section 2.3, not just those observable by a particular
survey.

Fig. 5 shows the cumulative distribution function of the time
delay for four representative source redshifts, zs = 0.5, 1.5, 3.5, and
10.5, respectively. For double lenses (top left-hand panel) with a
typical source redshift (zs = 1.5), 90 per cent of the systems have
time delays less than ∼1 month. Even for the systems with a high
source redshift (zs = 10.5), nearly 80 per cent have time delays less
than 1 month. Almost all the systems have time delays less than 10
months. This result indicates that the selection bias raised by the
lensing time delay is insignificant, since the data-taking phases of
GW detectors in the future will have durations well beyond most
lens systems’ time delays. 5

For quadruple lenses, we calculate time delays for three indepen-
dent image pairs, in order of the arrival time: between the first and
the second images [top right-hand panel; quad(12)], between the
first and the third images [bottom left-hand panel; quad(13)], and
between the first and the fourth images [bottom right-hand panel;
quad(14)]. The result shows that for a typical time delay (zs = 1.5),
90 per cent of the systems have time delays between the first and
the last images shorter than ∼0.4 month, which implies missing
any images due to the finite observation duration is unlikely. It is
worth pointing out that the time delays between image pairs in
quadruple lenses are typically shorter than those in double lenses.
This feature implies a possible bias with quadruple lenses being
over-represented in a finite survey.

5 For example, the first and second runs (O1, O2) of aLIGO lasted for
approximately 4 months and 9 months, respectively.
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Figure 5. The cumulative distribution function of time delay for various image pairs. From the left- to right-hand panels and top to bottom panels, the four
panels show the results for the time delay between the first and the second images for double lenses; and the time delays between the first and the second
images [quad(12)], the first and the third images [quad(13)], the first and the fourth images [quad(14)] for quadruple lenses, respectively. Here, the images are
named in order of arrival, i.e. 1 indicates the first arrival, 2 is the second arrival, etc. In each panel, four representative source redshifts are shown, i.e. zs = 0.5
(orange solid line), 1.5 (blue dash-dotted line), 3.5 (red dashed line), and 10.5 (black dotted line). The cyan dashed line indicates the 90 per cent cumulative
probability for GW sources with zs = 1.5.

4 SU M M A RY A N D D I S C U S S I O N

In this paper, we have investigated the statistical properties of the
strong gravitational lensing of GWs from stellar binary black hole
coalescences in the context of ground-based detectors. By taking
more realistic lens and source properties into account, we make a
prediction for the rate of lensed GW events. Moreover, we calculate
the probability distribution of lensing time delays to assess the
selection bias due to the finite duration of a survey. Our main results
can be summarized as follows.

We predict that aLIGO operating at its design sensitivity is ex-
pected to detect several lensed GW events (approximately 1 event
per year). The ET prediction is much higher (approximately 40 ∼ 80
events per year) due to its much-higher sensitivity. The results are
dominated by double lenses, with an expected quadruple fraction
of ∼30 per cent for aLIGO events and ∼6 per cent for ET events.
According to the SFR function from Madau & Dickinson (2014),
the most probable redshifts of the lensed GW sources range from
∼1.1 to ∼2.7 for aLIGO events and from ∼1.5 to ∼3.7 for ET
events. We emphasize the strong dependence between the predicted
lensing rate and the source rate. This dependence leaves space for
further improvement of the lensing rate prediction.

Specifically, the estimate of the merger rate density is calibrated
to the current observations of stellar binary black hole GW sources
by aLIGO and VIRGO, i.e. a mean rate density of ∼103 Gpc−3 yr−1

in the local Universe. However, the current constraint on this mean
rate density has a large uncertainty as shown in Abbott et al. (2017b),
and it could range from 40 to 213 Gyr−1 yr−1 assuming a power-
law distribution for the primary black hole masses. Considering
this uncertainty, the strongly lensed GW event rate should be in the
range of about a factor of 0.4 to 2.1 of the estimates listed above
(a factor of ∼5 uncertainty). Note also that the merger rate density
estimated from the simple model presented in this paper seems to be
smaller than some estimates by using binary population synthesis
models (see discussion in Cao et al. 2017). This may suggest that
the strongly lensed GW event rate, especially for ET, may be even
larger than the estimates obtained here.

Furthermore, we have developed a general calculation formalism
of the lensing rate, not restricted to any specific detectors. The re-
sult indicates that any ground-based detectors more sensitive than
aLIGO are anticipated to observe several lensed GW events per
year (see Fig. 4). Detectors need not be a single instrument with
unprecedented sensitivity such as ET but can be a network of in-
terferometers such as aLIGO together with Virgo. As networks of
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GW detectors become routine in the near future (e.g. Abbott et al.
2016b, for a review of the commissioning roadmap), the detec-
tion of lensed GW events is expected even before ET becomes
operational.

We have evaluated the chance of missing some images in a finite
observation period, by examining the probability distribution of the
lensing time delays. We find most lens systems involved in this
study have time delays less than ∼1 month (see Fig. 5). Since GW
surveys in the future will have a duration much longer than a month,
we expect the selection bias raised by the finite observation time
should be small. Nevertheless, we emphasize that the time delays
of quadruple lenses are systematically smaller than those of double
lenses due to the smaller impact parameters in quadruple systems
(the source is closer to the centre of the lens galaxy). This feature
may result in a slightly higher fraction of quadruple lenses in a finite
observation period.

In a real GW survey, other factors besides the finite duration
may cause the absence of some images from detection, such as
unexpected glitches in the detector, detector downtime for im-
provement and so on. Most of these effects can be eliminated
by building up a network of several detectors (see Abbott et al.
2017d, for a treatment of the glitch in a real GW observa-
tion). This implies another advantage of joint detection in GW
astronomy.

There are also some systematic errors due to the uncertainty of
the velocity distribution function of lensing galaxies (equation 21).
In this work, we adopt the modified Schechter function with pa-
rameters from Choi et al. (2007) based on the SDSS DR3 data,
while other authors using different data bases obtain somewhat dif-
ferent parameters (see Montero-Dorta, Bolton & Shu 2017, for a
recent comparison). Also, different strategies for sample selection
and function modelling can affect the shape of the velocity distri-
bution function (see e.g. Sohn, Zahid & Geller 2017). Furthermore,
the velocity distribution function is expected to evolve with time
at high redshift, though the details of this evolution are somewhat
uncertain (see e.g. Bezanson et al. 2011). All these factors may
introduce uncertainties to the results.

In this paper, we only consider GWs arising from stellar binary
black hole coalescences. Although these sources as a whole dom-
inate the high-band GW events, there are other types of double
compact objects that can generate GWs, such as the inspiral of
neutron star-neutron star or black hole-neutron star binaries. These
sources are especially intriguing in multimessenger observations, as
these systems are believed to be associated with kilonovae and can
produce electromagnetic counterparts (see e.g. Metzger & Berger
2012, for a theoretical study and Abbott et al. 2017e for a real ob-
servation). In consideration of these systems’ enormous potential
for physical and cosmological research (see e.g. Collett & Bacon
2017; Wei & Wu 2017), a further statistical study involving these
systems is warranted.
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A P P E N D I X A : L E N S TH E O RY

In this appendix, we present further details of the lens theory based
on the SIE model with external shear, which is used in this paper.
We refer the interested reader to Schneider, Ehlers & Falco (1992);
Schramm (1990); Kochanek (1991); Keeton & Kochanek (1998),
and references therein for thorough discussions.

Bearing in mind the two-dimensional nature of the lensing cal-
culation, we adopt (x, y) and (xs, ys) as position vectors in the lens
plane (the ‘thin lens’ approximation) and source plane, respectively.
Using equations (1) and (2), the first derivatives of the lens potential
φ( = φSIE + φshear) are shown as (e.g. Keeton & Kochanek 1998)

φx = bI (q)

e
arctanh

[
ex

ψ

]
+ xγ1 + yγ2,

φy = bI (q)

e
arctan

[
ey

ψ

]
− yγ1 + xγ2, (A1)

where bI (q) = λ(q)
√

q, ψ =
√

x2 + q2y2, and e =
√

1 − q2 is
the eccentricity of lensing galaxies. The second derivatives are

φxx = bI (q)

ψ

y2

x2 + y2
+ γ1,

φyy = bI (q)

ψ

x2

x2 + y2
− γ1,

φxy = −bI (q)

ψ

xy

x2 + y2
+ γ2. (A2)

Generally, the lens equation

xs = x − φx(x, y)

ys = y − φy(x, y) (A3)

is a system of non-linear equations. Directly employing numerical
calculation to solve equation (A3) could be time-consuming. Intro-
ducing the polar coordinates x = rcos α, y = rsin α, (A3) becomes(
ys + φSIE

y

)
[(1 − γ1) cos α − γ2 sin α]

= (
xs + φSIE

x

)
[(1 + γ1) sin α − γ2 cos α] , (A4)

and

r = (
ys + φSIE

y

)
/ [(1 + γ1) sin α − γ2 cos α]

= (
xs + φSIE

x

)
/ [(1 − γ1) cos α − γ2 sin α] , (A5)

with

φSIE
x = bI (q)

e
arctanh

[
e cos α√

cos(α)2 + q2 sin(α)2

]
,

φSIE
y = bI (q)

e
arctan

[
e sin α√

cos(α)2 + q2 sin(α)2

]
. (A6)

Now we can numerically solve the one-dimensional equation (A4)
to obtain the polar angle α, then substitute α into equation (A5) to
obtain the radius r.

The time delay τ and magnification μ are given by (e.g. Schneider
et al. 1992)

τ = (1 + z�)
D�Ds

Dls

θ2
E

{
1

2

[
(x − xs)

2+(y − ys)
2
]−φ(x, y)

}
, (A7)

and

μ = (1 − φxx − φyy − φ2
xy + φxxφyy)−1, (A8)

where z� is the redshift of the lens, and D�, Ds, D�s denote the
angular distances to the lens, the source and between the lens and
the source, respectively. The angular Einstein radius is given by
θE ≡ 4πσ 2

v (D�s/Ds).

A P P E N D I X B : B I NA RY B L AC K H O L E M E R G E R
R AT E

In this appendix, we describe the approach we use in computing
the merger rate of binary black holes. We consider only stellar
binary black boles formed from isolated massive binary stars in
galaxies. These are the most promising sources of GWs that can be
detected by ground-based GW surveys. The approach is similar to
that presented in Cao et al. (2017) and Dvorkin et al. (2016).

Generally, the birth rate per unit volume of single black holes
with mass M• at the cosmic time t is given by

Rbirth(M•; t) =
∫

dm� φ(m�)

×
∫

dZ ψ̇(Z; t) δ
[
m� − g−1(M•, Z)

]
. (B1)

Here φ(m�) is the initial mass function of the star with the Chabrier
initial mass function (Chabrier 2003) being adopted, ψ̇(Z; t) is
the SFR per unit volume with metallicity Z at cosmic time t, and
δ is Dirac-δ function. The relation between the mass of a stellar
remnant black hole and the mass of its progenitor star is given by
M• = g(m�, Z). We adopt the version obtained by Spera, Mapelli &
Bressan (2015).

We assume that ψ̇(Z; t) can be separated into two independent
functions, one is the total SFR function at redshift z and the other
is the metallicity distribution function at that redshift. For the total
SFR function, we adopt the observationally determined functions
from Madau & Dickinson (2014) and from Strolger et al. (2004). For
the metallicity distribution function, we adopt the mean metallicity
given by Belczynski et al. (2016).

Assuming that a fraction (feff) of black holes exist as the primary
components6 of binaries, which can merge within the Hubble time,
the merger rate density of stellar binary black holes is then given
by

Rmrg(M•,1, q; z) = feff

∫
dtd Rbirth(M•,1; z) Pt (td) Pq (q). (B2)

Here Pt(td) is the probability distribution of the time delays td be-
tween the formation of stellar binary black holes and merger. We
adopt the form Pt (td) ∝ t−1

d (O’Shaughnessy, Kalogera & Belczyn-
ski 2010; Belczynski et al. 2016; Lamberts et al. 2016) and assume
the minimum and maximum values of td are 50 Myr and the Hub-
ble time, respectively. Pq(q) is the probability distribution of the
mass ratio q = M•, 2/M•, 1 and is assumed to be independent of the
black hole mass. We assume Pq(q) ∝ q over the range from 0.5 to
1, which seems to be consistent with binary population synthesis
results (Belczynski et al. 2016; Cao et al. 2017). The parameter feff

is determined by adopting the constraint on the mean detection rate
of 103 Gpc−3 yr−1 given by the current aLIGO detection (Abbott
et al. 2017b) to calibrate the merger rate density at z ∼ 0 obtained
from the model.

6 The primary component of a binary has mass (M•, 1) larger than that (M•, 2)
of the secondary one.
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The merger rate density with respect to chirp mass M0 at redshift
z can be obtained as

Rmrg(M0; z) =
“

dM•,1 dq Rmrg(M•,1, q; z)

× δ(M0 − Mq,M•,1 ), (B3)

where Mq,M•,1 = q3/5M•,1/(1 + q)1/5 is the chirp mass of a black
hole binary with primary black hole mass M•, 1 and the mass
ratio q.

By marginalizing over M0 in equation (B3), we can obtain the
merger rate density at redshift z:

Rmrg(z) =
∫

dM0 Rmrg(M0; z). (B4)
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