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1 Introduction

The passage of a finite pulse of radiation or other forms of energy through a region of
spacetime produces a gravitational field which moves nearby detectors. The final positions
of a pair of nearby detectors are generically displaced relative to the initial ones according
to a simple and universal formula [1-11]. This effect is known as gravitational memory.
Direct measurement of the gravitational memory effect may be possible in the coming
decades, see e.g. the recent work [12, 13].

According to Bondi, Metzner, van der Burg and Sachs (BMS) [14, 15], the classical
vacuum in general relativity is highly degenerate. The different vacua are related by the so-
called ‘supertranslations’, which are spontaneously broken ‘BMS symmetries’. In quantum
language, these vacua differ by the addition of soft (i.e zero-energy) gravitons. In this paper
we will show that the passage of radiation through a region induces a transition from one
such vacuum to another. An explicit formula (involving moments of the radiation energy
flux) is derived for the BMS supertranslation which relates the initial and final vacua.
Moreover, relative positions and clock times of a family of detectors stationed in the vacuum
are shown to be related by the same supertranslation. This observation provides a concrete
operational meaning to BMS transformations.

The relative spatial displacement of nearby detectors following from the radiation-
induced BMS transformation is precisely the standard gravitational memory. We find that



certain families of nearby detectors undergo, in addition to the standard spatial mem-
ory displacement, a relative time delay. It would be of interest to investigate potential
experimental consequences.

Recently it has been shown [16] that the the observable consequences of BMS symmetry
are embodied in the soft graviton scattering amplitudes which they universally determine.
Herein we show that the Weinberg formula [17] for soft graviton production is essentially a
rewriting of the formula for gravitational memory, establishing compatibility of [16] with the
current work. However, while it is quite difficult to imagine a real experiment which directly
measures soft gravitons, there is already a sizable literature on observation of gravitational
memory. Hence the memory effect provides both a conceptually and observationally useful
reformulation of BMS symmetry.

This paper is organized as follows. Section 2 establishes notation and briefly reviews
BMS supertranslations. In section 3 we show that a finite duration radiation pulse crossing
null infinity can be viewed as a domain wall mediating a transition between two inequiv-
alent vacua of the gravitational field. Our central formula (3.7) is derived, involving the
convolution of the radiative energy flux with a Green function, for the specific supertrans-
lation which relates the initial and final vacua. Section 4 considers the effects of this
transition on two types (inertial and fixed-angle) of detectors, and show that it can be un-
derstood as a supertranslation acting on the detector worldlines and clocks. This is shown
to reproduce the spatial gravitational memory effect. It further elucidates a clock desyn-
chronization effect with potentially observable consequences for (fixed-angle) detectors. In
section 5 we show that the gravitational memory formula, in the form given by Braginsky
and Thorne [3] is, after a change of variables and notation, identical to Weinberg’s soft
graviton formula. In section 6 we point out that black holes are not invariant under su-
pertranslations and therefore, in tension with the standard lore, carry an infinite amount
of hair which encodes memories of how they were formed. Appendix A contains details on
subleading corrections to large-radius geodesics. Appendix B demonstrates compatibility
of our results with the interesting recent analyses by Tolish et al. [10, 11] of a specific
example of the memory effect.

The existence of a connection between gravitational memory and BMS symmetry is
known and has been discussed periodically: see for example [18, 19]. We expect the
relation between asymptotic symmetries and memory to extend to other systems such as
gauge theories. In particular in gauge theories the passage of charge through Z* should be
remembered by angle-dependent gauge transformations on charged detectors.

2 BMS review

The metric of an asymptotically flat spacetime in retarded Bondi coordinates takes the
asymptotic form

ds® = —du® — 2dudr + 2r*y.zdzdz

12 "B 2 4 1 Cude? + rCssdZ? + D*Chududz + D*Cozdudz + ... (2.1)
T



where v,z = ﬁ is the unit metric on S2, D, is the v-covariant derivative and subleading
terms are suppressed by powers of . The Bondi mass aspect mp and C,, are related by
the constraint equation G, = 87GT, % onZ"

1

dump = 4 [DIN** + DIN7| — Ty,
1
Tyu = ~N..N* + 47@G lim [r*T). (2.2)
4 r—00

where N,, = 0,C,. is the Bondi news, TM is the matter stress tensor and T, is the
total energy flux through a given point on Zt. The asymptotic form of the metric (2.1) is
preserved by infinitesimal supertranslations [14, 15]

u—u— f r—r—D*D.,f,
z—>z+%DZf, 2—>2+%D2f, f=f(z2), (2.3)
whose generating vector fields we denote
(= [+ D*D-f0, — +(D*[o: + D*[2.). (2.4)
The Lie derivative action on the asymptotic data is

Lymp = fOymp,
L;C,, = fN,, — 2Df. (2.5)
According to BMS [14, 15] two spacetimes related by supertranslations should be regarded

as physically inequivalent in the sense that they correspond to different points in the phase
space.

3 BMS vacuum transitions

Consider spacetimes which, prior to some retarded time u; on ZT, are asymptotically well-
approximated by Schwarzschild with

mp = M; = constant, C,, =0, (3.1)
while for u > uy they are also nearly asymptotically Schwarzschild?
mp = My = constant, C.. # 0. (3.2)

During the intermediate interval u; < v < uy the Bondi news and/or total radiation flux
Ty is nonzero on Z7.3 Christodoulou and Klainerman [20] considered spacetimes of this
type with My = 0, where u; and uy must be taken early and late enough to capture most of
the long time tails. For nonzero M} the late time geometry could for example be a stable
star or black hole.

n particular we have corrections 4%QCZZC'“alualr 4+ 7.:2C,.C**dzdz which contribute to the Einstein
equations at the same order.

*We exclude for simplicity cases with nonzero initial or final ADM momentum.

3Generic spacetimes may have long time radiation tails outside this interval, but for our purposes making

the radiation flux outside the interval arbitrarily small is good enough.



Figure 1. Remembrance of things passed. We consider a transit of radiation through a set of
detectors in the vicinity of the future null infinity ZT. Detectors are located at large 7o and
inserted at different points on the sphere S? separated by distance L. Change in the vacuum
state is detected by the net displacement AL. The new vacuum is related to the old one by the
supertranslation C(z, z).

The initial and final regions of Z* before u; and after uy are in the vacuum in the
sense that N,, = 0: the radiative modes are unexcited. According to BMS, the vacuum is
not unique. It is characterized by any u-independent C,, obeying

D2C,, — D*C.; = 0. (3.3)
The general solution to this equation is
C.. = —2D*C(z, 2). (3.4)

Comparison with (2.5) implies that the different vacua are related by supertranslations
under which C' — C'+ f. The supertranslation which relates the initial and final vacua can
be determined by integrating the constraint (2.2) over the transition interval u; < u < uy.
Defining

Asz = zz(uf) - CZZ(’U,Z), AmB = Mf - Mi7 (35)
and using (3.3) one finds
uf

D?>AC* = 2/ du Ty + 2Amp. (3.6)

Uj



Note that the second term just subtracts the constant zero mode of the first.* The super-
translation AC' which produces such a AC.,, is obtained by inverting D2D2:

uf
AC(z,z) = 2/d2z'7Z/5/G(z,z; 27 (/ du Ty (2',2') + AmB> (3.7)
where
_ o 1.,0 . 2 © . 9 0(z,7) |z — 2|2
G(z,7z,7,7) = ——sin® 5 log sin 50 sin 5 = 05270125
D?D2G(2,%,7,7) = —7.20%(z = 2/) 4+ -+ . (3.8)

If we plug (3.8) into (3.7) and act with D2D? using 9.0: log |z — z;|> = 21 6 (2 — 2) the
delta function piece produces the r.h.s. of (3.6) while the remaining terms integrate to zero
due to the energy-momentum conservation. C(z, Z) is unique up to the 4 global spacetime

translations
61(1 — 22) + coz + 32 + C32

1+ 2z

fgtobal = co + (3.9)

which do not affect C,..

This discussion could be generalized to allow for initial and final momentum, or mul-
tiple vacuum transitions induced by multiple well-separated radiation intervals.

To summarize, the passage of radiation through Z* changes the vacuum by a BMS
transformation. The BMS transformation relating the initial and final vacuum is given
in (3.7) by an integral of the total radiation flux over the transition interval.

4 Gravitational memory

In this section we will relate the BMS transformation of the vacuum to the gravitational
memory effect. Towards this end we introduce two families of observers or detectors at large
r. The first, which we refer to as BMS (or fixed-angle) detectors, travel along worldlines
at fixed radius and angle:

Xpus(s) = (s,70, 20, 20), (4.1)

where 7o is large. The assertion that BMS diffeomporhisms are physically nontrivial is
equivalent to the statement that it is meaningful to discuss observations at a fixed value
of z near Z7. Such observations are convenient as they behave simply under the action of
BMS. The second family of detectors are inertial ones moving along geodesics

O2XE (5) + TH 05X 0 (8)0s X o (s) = 0. (4.2)

geo geo geo

At large ro the BMS detectors are nearly inertial. One may readily check (see ap-
pendix A) that

u,r u,r 1 zZ V4 1
Xps(8) = Xgio(s) + O(ro)’ Xins(s) = Xgeols) + O<Tg> (4.3)
0

4Had we allowed for net momentum loss as well as energy loss the right hand side would also contain a
term subtracting the angular momentum ¢ = 1 mode.



The truly inertial detectors however do not remain at fixed r or z, so over a long period
of time u > ry the radius can become small. Hence we must consider only retarded time
lapses which are parametrically less than rq.

The relevant type of detector — BMS or inertial — depends on the application in
question. For example the eLisa detectors move on geodesic orbits and so are perhaps
best modeled by inertial detectors. On the other hand the LIGO detector are at fixed
separations on the earth and are not geodesic. It would be interesting to understand what
type of detector array is well-approximated by BMS detectors.

4.1 BMS detector memory

Let us now consider what happens to the BMS detector worldlines in the setup of the
previous section when they encounter a pulse of radiation passing to ZT. Let us denote
the initial positions of a pair of nearby detectors, detector 1 and detector 2, by z; and zs.
They are initially separated by a finite distance

B 21”0|5Z|

= — 0z = — 4.4
1+2121 ’ i T ( )

where we take dz to be order % and subleading corrections to L are suppressed. As 21
are fixed in (4.1), but the metric undergoes a transition described by (3.5), the radiation
induces a change in the proper distance between the detectors. Computing the new distance
between z; and zo using the metric (2.1) gives

1+22)° L
AL = T—OAC’zz(zl,El)é,ZQ +cc = (—i_glzl)r
0

)
=57 (ACZZ(zl, Zl)é + c.c.) , (4.5)

0z

where AC,,(z1, 1) is given according to (3.7) in terms of the energy flux as

s _ =/ /52 uf
AC,.(2,5) = % / Py —— q Jj,j,;ﬁ —_r ( /u du T2, 7) + AmB) (4.6)
This is precisely the standard formula for gravitational memory [1, 4, 5, 8].

Not only will the distances between BMS detectors be shifted, but if they are equipped
with initially synchronized clocks they will no longer be synchronized after passage of the
radiation. This can be checked by sending a light ray from detector 1 to detector 2,
stamping it with the time at detector 2 and then returning it to detector 1. If the clocks
remain synchronized, the time stamp from detector 2 will be exactly midway between the
light emission and reception times at detector 1. A light ray emitted from z; will travel to
7o in a retarded time interval §1ou obeying

27“872552'52 + r9AC,. 0202 + D*AC..010udz — ((512u)2 +c.c. =0. (4.7)

On the other hand, on the return trip, the change in z has the opposite sign so the retarded
time interval do1u obeys

27‘8’ng5252 4+ 19AC,,0202 — D*AC,,001udz — (521u)2 +c.c. =0. (4.8)



The difference is®
019U — 091w = D*AC,,0z + c.c.. (4.9)

Since this is nonzero the clocks are not synchronized.

An alternate way of computing the memory and clock desynchronization is as follows.
The proper distance and time delay observed in the above mentioned experiments are
invariant under all diffeomorphisms, including BMS transformations. We may therefore
eliminate all AC,, terms in the late time metric by the inverse of the BMS transforma-
tion (3.7) which by construction obeys

2D%f = AC,., (4.10)

so that f = —AC This will have the effect of resetting all the clocks and relabeling the
positions of the family of BMS observers by (2.3). To see that this agrees with the previous
analysis let ( = §20, + 0Z0z denote the initial separation vector between the detectors.
Using (2.4) the action of the supertranslation (2.3) on this separation is

L¢ = _% (D.féz+ Dzf6%) 0, — % (D2D?féz + DID? f6%) O,
1+ 2z

2z

+ (7 D2f6z + 2ZDzf + (1 + zz)Dzsz]62> 0, +cc. (4.11)
T

To compare to the original coordinate system we evaluate the norm of the vector at

(24 1D?f,z+ LD?f). The proper distance changes by
AL = %Aczz(zl, 71)02° + c.c. (4.12)

which agrees, as it must, with (4.5). The extra terms that appear in (4.11) cancel against
the change of the metric of the flat space evaluated at the shifted point.

To compare the time delay of the two detectors two effects must be taken into account.
First the transformation of u — u — f resets the clocks by a relative amount D, fdz + c.c..
A second effect arises because the relative radius changes by

or = —D?D*f6z + c.c. (4.13)

Due to the presence of the term 2dudr in the metric, this implies a difference proportional
to dr in the time lapses for light rays traveling from detector 1 to detector 2 and the reverse.
Adding these two effects, and using

D, D:|D*f = —D.f, (4.14)

one finds
O1ou — do1u = D*AC,, 0z + c.c., (4.15)

as expected.

In conclusion the effects of a radiation pulse passing through Z* on a family of BMS
observers is characterized by the induced supertranslation (3.7). They may be equivalently
described as leaving the worldlines unchanged and supertranslating the metric, or leaving
the metric unchanged and supertranslating the observers. In either case they imply the
familiar gravitational memory effect as well as clock desynchronization.

5The total elapsed time is, to leading order in 7o, d12u + do1u = 2L.



4.2 Inertial detector memory

Most discussions of gravitational memory involve inertial (rather than BMS) detectors
moving on geodesics (4.2) that are nearly, but not exactly, worldlines of constant (r, z) and
varying u. According to (4.3) , the difference between the two worldlines is suppressed by
powers of r. It immediately follows that the spatial gravitational memory formula (4.5)
applies equally at large r to either BMS or inertial detectors.

The situation is more subtle for the relative time delay. In that case, we found above
that there are two contributions which cancel at leading order, and the final result (4.15)
is the sum of the subleading terms for each contribution. These subleading terms are
in fact sensitive to the difference between the BMS and inertial worldlines. Direct com-
putation reveals that, for inertial observers, the relative time delay actually vanishes at
the order (4.15), as we show in appendix A. In Bondi coordinates, this cancelation looks
miraculous. However it is in fact a consequence of the equivalence principle, which implies
the existence of Fermi normal coordinates in which the connection vanishes everywhere
along the worldlines of two neighboring geodesics. It follows there can be no discrepancy
of order L in the proper times and (4.15) hence must be cancelled by subleading geodesic

corrections.

5 Memory and soft theorems

Recently it has been shown [16, 21] that Weinberg’s soft graviton theorem [17] is equivalent
to — or more precisely is the Ward identity of — BMS invariance of the quantum gravity
S-matrix. In the preceding we have seen that the gravitational memory effect captures
the consequences of BMS symmetry. In this section we show how to directly understand
the relation between the memory effect and the soft theorem without an interpolating
discussion of BMS symmetry.

Weinberg’s soft graviton theorem [17] is a universal relation between (n — m + 1)-
particle with one final soft graviton and (n — m)-particle quantum field theory scattering
amplitudes given by

3}11{6 -Am—i-n—i-l (p17 . p’nvpllv . p;nv (Wk7 E,UJ/>)
= V871G S e Apin (P1, - - - Pri P, - - D) + OW?), (5.1)

where
m n / / T
PjipPjv pjupju
S = — E - , (5.2)
j=1 kepj i k-
In this expression k = (w,wk) with k2 = 1 is the four-momentum and € the

transverse-traceless polarization tensor of the graviton. The superscript TT" denotes the
transverse-traceless projection (as detailed in [22]) and pu, v indices refer to asymptotically
Minkowskian coordinates with flat metric 7,,,.

Here we explicate the relation between memory and soft theorems in the general context
considered by Braginsky and Thorne [3]. They analyzed the possible detection of “burst



memory waves” produced by the collision and scattering of large massive objects such as
stars or black holes. They found that such collisions resulted in a net difference in the
transverse traceless part of the asymptotic metric at Zt given by

TT

- 1 G n p/, p/. m DinDi
ARTT () = — ]/ = IRTIv IRy ) 5.3
o (F) ro V 27 ;kp; = k-pj (53)

Here we have n (m) incoming (outgoing) objects with asymptotic momenta pj, (pj,)-
k=(1, /;;) is the null vector pointing from the collision region to null infinity, and serves as
a coordinate on the S? at Z+. Equation (5.3) was derived by solving the linearized Einstein
equation with a retarded propagator. The gravitational memory of the collision is then
simply constructed from (5.3) via (4.5).

Evidently there are strong similarities between (5.3) and (5.2). To make it more
manifest we note the Fourier transform of hfg (w,E) on ZT can be written, using the
stationary phase approximation at large r [21, 23]

TT N .. iwu, TT %
by (w, k) = 4mi lim r/du e hy, (u,rk), (5.4)

r—00

Assuming that hZVT (U,T‘E) approaches finite but different values at u — oo and large
r = 1o it then follows” that (5.3) is proportional to the coefficient of the pole in w

ARIT(R) = lim (—iwh}ff(w, E)) : (5.5)

4mirg w—0

Next we note that to linear order, the expectation value of the asymptotic metric
fluctuation produced in the process of n — m scattering obeys

wA e ;/,... /7wk76
lim whlfVT(% k)" = lim m~+n+1 (Pl Pn; Py : Pm g W))
w—0 w—0 Am+n(p1,...pn;p1,...pm)
= V81Ge" lim WS, (wk)
w—0
"

m p p n p/' p/‘

_ ns juPjv jputjv

= V8rGe E ko g = . (5.6)
j=1 J j=1 J

Inserting this into (5.5) we then see that this is equivalent as claimed to the Braginsky-
Thorne result (5.3).8

®This is equation (1) of [3] written with the normalization hy,, = \/3;?(%“/ — Nuv), in the mostly plus

(= +...+) signature and in covariant gauge.
"In the formulas above we assume that wr > 1 when taking the limits.
8Notice that while the usual scattering amplitude computations involve infrared divergences the memory

formula (4.6) is formulated in terms of physical and thus manifestly finite quantities. In particular if one
imagines the evolution of state |¥) in the theory of quantum gravity formula (4.6) should be understood
as the relation between the expectation values (V|AC:.(z, 2)|¥) and (V|Tyu(z, Z)|¥). These expectation
values when formulated in terms of scattering amplitudes are cross section-like observables, namely the



|My,C. = —2D2C)

|M;, C.. = 0)

Figure 2. Supertranslation hair of black holes. We consider formation of a black hole by infalling
matter. During the process radiation is necessarily created and leaks to future null infinity, where
it mediates the transition to a new vacuum state. When the black hole settles down the state at
It is characterized by the supertranslation hair C(z, 2).

6 Measuring black hole hair

One often hears that black holes have no hair. This statement does not take into account
the subtleties associated with asymptotic structure at Z. In particular, as we discussed in
section 3, a supertranslation maps the Schwarzschild solution to a physically inequivalent
configuration. Hence black holes have a lush infinite head of supertranslation hair. This
may bear on the information puzzle.

The present discussion clarifies the nature of supertranslation hair and how it can be
measured classically. Let us consider, as a special case of the Braginsky-Thorne construc-
tion, N incoming stars which collide and collapse into a black hole. We station an array of
evenly-spaced detectors near future null infinity. The relative positions of these detectors
will shift due to the memory effect as given in (5.3) and (4.5). Hence the detector positions
can record an infinite amount of data about how the black hole was formed. Black hole
formed by different initial star configurations will carry different supertranslation hair.
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observables that involve the square of the amplitude |.A|2 integrated over the phase space with the proper
weights. As usual in quantum mechanics to compute the expectation values one has to repeat the experiment
many times. In the consideration of this section we considered the classical version of this experiment. In
this case we imagine that we consider one realization of the process and both the initial and final states are
fixed. For this situation the expectation values above become (¥|n*)(n*|O|¥) and by canceling the overall
factor (¥|n*) we get the relation between scattering amplitudes. In the case of the memory formula this
relation becomes nothing but the soft theorem.

,10,



A Corrections to geodesics and Fermi coordinates

Let us consider an asymptotic time-like observer with the velocity v* in the Bondi retarded
coordinates. Its four-velocity is given by

Z)  1(1+z2)* 1(1+4 22)%
oM — <17m3(7;;z,z)’_8( t;z) DZng(U,Z,Z),—S(J;QZZ)Dzsz(ua%f))- (A1)

Notice that for the first two components we work to the % order and for the last two to
the %2 The reason for this will become clear below. This four-vector describes a geodesic
vV T = O(T%), VPV v = O(T%) For the norm we have vv, = —1 4 O().

Equally well (by choosing different initial conditions) we could have chosen the four-
velocity to be

) )

ot = (1+ mB(UO,Z,Z) ’I?’LB(U,Z,Z) _mB(u()asz)

r r

1(1+22)4 ) )
_S(TQ)DZ[CE’Z(U’ Z, Z) — sz(U(), z, Z)],

1(1 7)4
_8(_‘;’;’2;)[chzz(u,z,2) — Dzsz(uo,z,z)]). (A.2)

In (A.1) we set u-independent initial values to zero. We do the same thing below since we
are interested in the vacuum-to-vacuum transitions described in the bulk of the paper.

If we integrate over u for a long enough time the corrections are not small since the
correspondent integrals diverge. Below we always assume 7 to be large enough (and the
measurement time to be small enough) so that the corrections are small.

We also consider the orthonormal spatial basis

1(14 22)% 1(1+4 22)*
nt = (— 1,1 - @, 8(+ZZ)Dz0zz’ HMDZCZZ>’

r r2 8 72
b 070711+22,_11+22(1+22)202z ,
ro 2 ro 2 4r
B 11422 (1+22)2Cs 11422
wo_ 1 : , A.
m (O’O’ 2 4r r 2 (A-3)

1

All of these are parallel transported along v to leading order in  so that we have

vV el = O(T%) and are orthogonal to v, namely v el = O(T%) They are also normalized
in the usual way n.n =1+ O(T%), m.m =%+ O(T%), n.m =n.Jn =m.m = m.m = O(T%)
Physically, these vectors describe a set of gyroscopes that is carried by an observer.
Based on this we can introduce Fermi normal coordinates which are the coordinates
that describe physics that the observer experiences in the vicinity of his location. Namely
introducing e}y = v¥, ef = n#, e = m#*, e" = m* we introduce corresponding coordinates

z!' such that the metric takes the form

ds® = —da? + da? + dadz + O(2?) (A.4)

— 11 —



and the leading corrections are related to Rgpeq = Ruypaegeg e’c)eg [24, 25] where the Rie-
mann tensor is evaluated along the geodesic (7). The equations for geodesics take the form

)2

For the case in hand the only contribution at the % order comes from R,op; = %@%sz

(1422)2
8r

analysis was done in [4].

02C3; which describe the ordinary gravitational memory. The same

and Rjo[)j =

It is clear in Fermi coordinates that there is no relative time shift linear in = unless
the original observer is accelerated. This is the case for BMS observers and it is the source
of time desynchronization linear order in .

We can also analyze the nearby geodesic directly in Bondi coordinates as explained
in the main body of the paper. The result of course does not depend on the coordinate
system we used.

B Massive particle decay

It is instructive to compare our results to those of Tolish et. el. [10, 11] . The starting
point of their work is the geodesic deviation equation for a small perturbation around the

flat space
d*D
dtzﬂ = _Rtutl/Dyv
AD, = M,,D". (B.1)

For the cases considered in [11], symmetries imply that

Rtutv - W(G,ﬁy - ¢u¢u) (B-Q)

where 0" and ¢ are the unit vector fields on the sphere.
In the Bondi coordinates we have for the tensor M;w =00, — 00

~ 2

~ 2 z
Z M- =
2’ 2 (14 22)2

z
Mzz = T 9 —- B.3
(14 22)2 z (B-3)

Consider now the following situation. A particle at rest of mass M decays into a
massless particle with energy F moving in the z-direction and the particle of mass M’
moving in the —z-direction. On the sphere it correspondsto z =z =0for Zand z = Z = 00
for —Z. The contribution of the massless particle is [11]

E 2 .

E .
MNV = 7(1 -+ cos H)MMV = ?m uy (B4)

whereas for the massive one [11]
E? sin 62 -1 |pl*sin6* . (B.5)

M,,6 = — — M T
m Mr1— £ (1—cosf) e pY 4 [pleosd Y

— 12 —



where p® = M — E, |p| = E by energy-momentum conservation. In the formulae above we
set G = 1.

We now would like to reproduce the same formulas using the soft theorem which states
that the memory is given by the soft factor?

TT
1 2G P plv)
M, = -V32rGhll = — LV = B.7
124 9 v v r ; (pzn> Z (pfn) ) ( )
where we adopted field theoretical normalization h,, = \/ﬁ (9w — M) and n = (1,1)

is the unit four-vector in the direction of observation. Plugging the momenta in the for-
mula above reproduces the result of [11]. For massless particles in the (z, z) coordinates
it becomes

4G Zi—z (14 22)?

M. = T Zz: Ei 2 — % (1 + 2’7;22')(1 + 22)3 ' (BS)
In the example above we have z; = z; = 0. Notice also that the (z, z)-dependent kernel that
appeared in (B.8) is identical to the one that appeared in (4.6) . Indeed, as pointed out
in [7] the Christodoulou memory effect can be thought as a generalization of the usual soft
factor where instead of a finite set of particles approaching infinity we imagine arbitrary
energy flux of gravitational radiation. Any fixed energy scattering can produce at most
finite number of massive particles. It means that a generic final state can be thought
as the finite number of massive particles plus arbitrary complicated profile of radiation.
The memory due to the radiation is captured by (4.6), whereas for massive particles the
contribution to the memory is simply given by (B.7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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