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Abstract. We determine the gravitational multipole moments Ja,, n = 1, 5, of the sun using a model of the interior
structure and of solar rotation obtained from helioseismic inversions. The differential rotation of the convective
zone and the underlying transition zone make only a small (~0.5%) contribution to the quadrupole moment Js

which is found to have a value ~2.21 x 1077,
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1. The external gravitational field of the Sun

In the case of axial symmetry the external gravitational
potential of the sun, ®(r, §), can be expressed in the form

GM e’} R 2n+1
¢=-==1- 2 Jon <_@> P (cos 9)1 (1)

r

where the Js, are the gravitational multipole moments,
r the distance from the centre of the sun and 6 the an-
gle to the axis of symmetry (the rotation axis). We here
determine the multipole moments using the solar inter-
nal structure and rotation determined by inverting the
observed oscillation frequencies.

2. The gravitational field inside the Sun

The equations governing the equilibrium of a rotating star
(neglecting any circulation currents) are

VP =—pVo+pQ’s
V3¢ = 47Gp (2)

where P is the pressure, p the density, ¢ the grav-
itational potential, € the angular velocity and s =
(rsin®,rcos#,0) the vectorial distance from the rotation
axis. With axial symmetry all variables are independent
of . To these equations should be added the thermal
equation which determines the mean structure and any
meridional circulation currents and, for equilibrium mod-
els, the angular velocity distribution (cf. Roxburgh 1964a).
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However for slow rotation it is sufficient to consider the ef-
fect of rotation as a small perturbation, in which case the
multipole moments are determined solely by the spher-
ically symmetric hydrostatic structure (P(r), p(r), é(r))
of the non rotating model, and the given angular ve-
locity (Roxburgh 1964b). For the spherically symmetric
solar structure we use the seismic model determined by
Marchenkov et al. (2000) from a fully non-linear one-
dimensional helioseismic inversion, and for the angular
velocity Q(r,6) that determined by Kosovichev (1998)
from an inversion using the odd splitting coefficients. For
comparison we also use a standard solar reference model
(Model S of Christensen-Dalsgaard et al. 1996) obtained
from stellar evolution theory.

Since the ratio of centrifugal force to gravity is small
we solve Eqs. (2) by perturbation analysis writing

P(T, 9) = p()(?“) +p1 (7“, 9)7 ¢(T, 9) = ¢o (T) + ¢ (7“, 9) (3)

where |p1/po] < 1, |d1/do] < 1, with ¢, po the val-
ues in the unperturbed, non rotating, state and ¢, p; the
perturbations.

Eliminating the pressure by taking the curl (rot) of the
first of Eqgs. (2), and retaining only terms of first order in
the perturbations gives

curl(po Vo1 + p1Vo — pof2®s) =0
V261 = 47Gp;. (4)

Eliminating p; gives the equation for the perturbation ¢;

L 1doa(Vn) 1 dpo 001
47G r dr 00 r dr 06
_ A(Ppo) . 09%
=T SIHGCOSGer()W sin“ 6. (5)
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To solve this equation we expand ¢1(r,0) in terms of
Legendre Polynomials Py, (cos @)

$1 = h10(r) + Y don(r)Pan(cos ) (6)

n=0

and express the right hand side of Eq. (5) in terms of
associated Legendre polynomials Py, (cos 6)

A(?po) 0%
TT sin @ cos 6 — pOW sin” 6
= Asn(r) Py, (cos 0) (7)
n=2

where the As, (r) are readily determined from the known
variation of po(r) and (r,0) using the orthogonality of
the associated Legendre polynomials. On equating coef-
ficients of Py, (cos®) we obtain the set of equations for
the ¢2n(’l‘)

1 1 dgo ( 1 d {ng%n} n(n+1)¢>2n>

2

r2 dr

4nG r dr dr T
Ldpo
———— o, = —Aa,(1).
rdr 2 2n (1) (8)

These are subject to the boundary conditions that the ¢o,
are regular at » = 0 and that at r = R they match onto
the external potential given in Eq. (1) which requires

2n

Pon(r) <" as r — 0,
n 2 1
T—dji _|_7( nt )(bzn =0 at r=R. 9)

Given po(r),d¢o/dr from the unperturbed model, these
equations can be solved to determine the ¢s,, and hence
the multipole moments Ja, = ¢2,(R)Re/G M.

If Q is a function of radius only, Eq. (8) reduces to that
given in Roxburgh (1964b):

L 1dgo |1 d [ 5dg2) 6¢2
A7G r dr |r2 dr " dr 72
1 d
=-r—(po Q3.

TdT(Po )

3 (10)

3. Dimensionless variables

It is convenient to introduce the dimensionless variables
r 473 p

= — U:
x Y MT’

V- dlogp
Re

~ dlogr’
_ Ro 5 _ o RO

QQn—(anGM@aw = GM,

in terms of which Eq. (8) becomes

1 d mgdan _n(n+1)+UV
2?2 dx dz 2

where the ag, (1) are given by

Yon = 7(1271(1') (12)

2 2
(U‘/w2 + Uxaa%) sin @ cos 0 — Uaa% sin® 6

= Z aon Py, (cos ). (13)
n=2
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4, Solar structure and rotation

Many authors have determined the internal hydrostatic
structure of the sun by inversion techniques using the mea-
sured values of the solar p-mode oscillation frequencies;
here we use the inverted model determined by Marchenkov
et al. (2000) using the full non-linear sucessive Born ap-
proximation inversion technique. Likewise several authors
have determined the solar diferential rotation from the
measured rotational splitting of the frequencies; here we
use the results of Kosovichev (1998) which are given in
the convenient form:

Qx, 0
% = By (x) + Bs(z) (1 — 5 cos? §)

s
+Bs(z) (1 — 14 cos? 0 + 21 cos* §) (14)
where in units of nHz and
By (x) =435 0<z<0.71
Bi(z) = 435+ 51.29(z — 0.71) 0.71 < z < 0.983
Bi(x) = 435 + 882.53(1 — x) 0983 <z <1
Bs(z) = 11[1 4+ erf{20(xz — 0.69)}]
Bs(z) = —1.75[1 + er f{20(z — 0.69)}] (15)

where erf(x) is the error function. The coefficients given
in Kosovichev (1998) have been adjusted slightly to
give B; continuous and Bs the correct sign.

5. Results

The coefficients as,(z) were determined using this model
by evaluating w(z,0) and hence the left hand side of
Eq. (13) on 6 = jn/12, j = 1,5, and then inverting to
give the ag, (), n = 1,5. The resulting equations for the
1o, Were then solved subject to the appropriate boundary
conditions. The external multipole moments are given by
Jon = yon(xs) where x = x4 is the solar surface.

Two solar models were used in the calculations:
bsun: the inverted model of Marchenkov et al. (2000).

ssun: the solar model S of Christensen-Dalsgaard et al.
(1996) determined by using a stellar evolution code in-
cluding diffusion, but with polynomial smoothing in the
very central core (z < 0.005).

The results are given in Table 1.

Table 1. Solar multipole moments for (r, 6).

model J2 J4 JG J8
bsun [2.208 x 107 7|—4.46 x 107°|—2.80 x 107'°|1.49 x 10~ '*
2.206 x 1077|—4.44 x 107°|—2.79 x 107 '°[1.48 x 10!

ssun

For comparison the value of Jy for uniform rotation
was also determined, taking the constant value to be
435 nHz — the value given by Kosovichev for the solar
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interior. This gave the values

2.220 x 10~ 7
2.217 x 1077,

bsun
ssun

6. Comment on the results

The results for the two models are in good agreement —
as was to be expected since there are no major differences
between the inverted model and model S (the main dif-
ferences being in the layers just below the convective zone
and in the inner core). The value of J for non-uniform
rotation (~2.21 x 1077) is close to the value obtained
by Pijpers (1998) (=2.18 x 10~7) using a seismically de-
termined rotation profile (r, 8), and also in close agree-
ment with the value obtained by Paterno et al. (1996)
(~2.15 x 1077). They are considerably larger than the
value of a5 x 1078 found in earlier work (Roxburgh 1964);
this is to be expected since the simple model of the sun
used in 1964 was much more centrally condensed that cur-
rent models determined either by inversion of the observed
solar oscillation frequencies, or from current evolutionary
models. The value obtained is considerably larger than the
value of 1.60 x 10~7 obtained by Godier & Rozelot (1999).

The inclusion of the differential rotation makes
only a small difference (=0.5%) to the value of Js.
This is as expected. In the convective envelope and
transition layer below the envelope, the departure of
the rotation from its uniform value is nowhere large,
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the departure of the spherically averaged rotation is even
smaller, and the mass and inertia of the envelope are small.
We do not find the large variation by a factor of 3 in Jy
reported in Godier & Rozelot (1999).

The value of J; obtained here ~—4.4 x 10~? is com-
parable with the values obtained by Ulrich and Hawkins
(1981) using a simple theoretical model in which the ro-
tation was assumed constant on cylinders within the con-
vective zone and uniform in the radiative core.

We note that the value of Jy determined here is suffi-
ciently small so as not to play any significant role in the
advance of the perihelion of Mecury, therefore supporting
the prediction of the General Theory of Relativity.
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