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1
The N-body problem

1.1 Introduction

The main purpose of this book is to provide algorithms for direct N -
body simulations, based on personal experience over many years. A brief
description of the early history is included for general interest. We concen-
trate on developments relating to collisional direct integration methods
but exclude three- and four-body scattering, which will be discussed in
a separate chapter. In the subsequent section, we introduce some basic
concepts which help to understand the behaviour of self-gravitating sys-
tems. The topics covered include two-body relaxation, violent relaxation,
equipartition of kinetic energy and escape. Although the emphasis is on
collisional dynamics, some of the theory applies in the large-N limit that
is now being approached with modern hardware and improved numerical
techniques. After these theoretical considerations, we turn to the prob-
lem at hand and introduce the general principles of direct integration as
a beginner’s exercise and also describe the first N -body method.

1.2 Historical developments

Numerical investigations of the classical N -body problem in the modern
spirit can be said to have started with the pioneering effort of von Hoerner
[1960]. Computational facilities at that time were quite primitive and it
needed an act of faith to undertake such an uncertain enterprise.∗ Looking

∗ The story of how it all began is told in von Hoerner [2001]. Also of historical interest
is the early study of gravitational interactions between two model galaxies based
on measuring the intensity of 37 light bulbs at frequent intervals [Holmberg, 1941].
Finally, a general three-body integration by Strömgren [1900, 1909] was carried out
by hand, albeit for only part of an orbit. More than 100 years ago he anticipated that
the method of ‘mechanical integration’ may be extended to deal with four or more
bodies and be of considerable importance for the theory of stellar systems.

1



2 1 The N -body problem

back at these early results through eyes of experience, one can see that the
characteristic features of binary formation and escape are already present
for particle numbers as small as N = 16, later increased to 25 [von Ho-
erner, 1963]. In the beginning, integration methods were to a large extent
experimental and therefore based on trial and error. This had the bene-
ficial effect of giving rise to a variety of methods, since every worker felt
obliged to try something new. However, by Darwinian evolution it soon
became clear that force polynomials and individual time-steps† were im-
portant ingredients, at least in the quest for larger N [Aarseth, 1963a,b].

The basic idea of a force fitting function through the past points is to
enable a high-order integration scheme, with the corresponding intervals
satisfying specified convergence criteria. Consistent solutions are then en-
sured by coordinate predictions before the force summation on each par-
ticle is carried out. At the same time, the lack of a suitable method for
dealing with persistent binaries inspired the introduction of a softened
interaction potential Φ = −Gm/(r2 + ε2)1/2, for the separation r with
ε the softening parameter, which reduces the effect of close encounters.
This potential gives rise to a simple expression for the force between two
particles. Hence a large value of the softening scale length ε describes the
dynamics of a so-called ‘collisionless system’, whereas smaller values may
be used to exclude the formation of significant binaries. Although the ap-
plication was to galaxy clusters, some general results on mass segregation
were obtained for N = 100 and a mass spectrum [Aarseth, 1963a,b].

Later the integration method was improved to third order [Aarseth,
1966a] and eventually became a fourth-order predictor–corrector scheme
[Aarseth, 1968], which survived for some considerable time and was widely
used. The subsequent study of star clusters by Wielen [1967] was actu-
ally based on a fifth-order polynomial with special error control [Wielen,
1974]. This work compared the extrapolated half-life of simulated star
clusters with observations and concluded that median life-times of about
2×108 yr could be accounted for. The nature of the numerical errors is of
prime concern in such work and will be considered in a later chapter. In
this context we mention that exponential error growth was demonstrated
by Miller [1964] in an important paper where the short time-scale was
emphasized. This fundamental feature was highlighted in a code compar-
ison study for a collapsing 25-body system [Lecar, 1968]. In fact, these
results led many people to question the validity of N -body simulations
and this took many years to dispel.

At that time, the lack of computational facilities dictated a strategy
of performing a few calculations at the largest possible value of N or

† The method of individual time-steps was originally suggested by A. Schlüter [private
communication, 1961].
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undertaking a systematic study of smaller systems. The latter choice was
made by van Albada [1968] and yielded considerable insight into funda-
mental processes involving binary formation and exchange, as well as the
energy of escaping particles. Thus it was demonstrated that a dominant
binary containing the heaviest components in systems with up to 24 mem-
bers sometimes acquires more than 100% of the total initial energy. Some
interesting properties of long-lived triples were also presented for the first
time, including evidence for the so-called ‘Kozai cycle’ of induced inner
eccentricity (to be discussed later). Small systems are notoriously difficult
to integrate but here a special fourth-order predictor–corrector method
proved highly accurate, at the expense of two force evaluations per step
in order to ensure convergence. The same time-step was used for all the
particles; however, this becomes expensive above N � 10 and the scheme
of individual time-steps was never implemented.

By concentrating on just one system and using a dedicated computer, it
proved possible to reach N = 250 [Aarseth, 1968]. Because of a favourable
mass spectrum with two dominant (i.e. factor of 5 in mass) bodies, the
final binary acquired some 150% of the initial total energy. The softening
was still a factor of 10 below the small final semi-major axis, thereby
justifying this device which does place a lower limit on binary separation.

The early trend towards greater realism led to the study of two new
effects. Since open star clusters move in nearly circular Galactic orbits,
the external tidal field can be added to the equations of motion using lin-
earized terms. The first such pure N -body implementation was presented
by Hayli [1967, 1969, 1970, 1972]. This work showed the characteristic be-
haviour of low-energy escaping stars passing near the Lagrange points L1

and L2. Again an original method was used called the ‘category scheme’
[cf. Hayli, 1967, 1969, 1974]. It was never fully developed but has some
similarities to the popular Hermite method (to be discussed later).

A second effect relating to open clusters is the perturbation by inter-
stellar clouds. The first attempt for N = 25 [Bouvier & Janin, 1970] expe-
rienced some technical problems in the boundary treatment, which goes
to show that even intuitive selection procedures can be misleading. More-
over, distant particles exaggerated the predicted disruption time based on
the change in total energy.‡ In this case the integration method was again
of fourth order with two force evaluations per step.

Among other integration schemes that have served a useful purpose we
mention explicit Taylor series based on higher force derivatives. In the
context of the N -body problem this idea was implemented by successive
differentiations of the Newtonian acceleration [Gonzalez & Lecar, 1968;
Lecar, Loeser & Cherniack, 1974]. Although quite accurate, a high-order

‡ This problem was studied more extensively by Terlevich [1983, 1987].



4 1 The N -body problem

expansion is too expensive to be practical for N ≥ 10. On the positive
side, the initialization of higher derivatives for standard force polynomials
employs the explicit derivative approach to good effect.

In the late 1960s, several efforts were made to take advantage of the two-
body regularization formulated by Kustaanheimo & Stiefel [1965; here-
after KS]. It became clear that special treatments of energetic binaries
are desirable in order to study the long-term evolution of point-mass sys-
tems. One brave attempt to avoid the apparent complications of the KS
method for N -body applications was based on the variation of parame-
ters method [Aarseth, 1970]. The dominant central binary that usually
emerges was represented by the osculating (or instantaneous) two-body
elements. Apart from some problems due to secular perturbations, this
method worked quite well.§ It also had the advantage of permitting un-
perturbed solutions which speed up the calculation. On the debit side,
the method must be replaced by direct integration for significant pertur-
bations. Still, much useful experience of algorithmic decision-making was
gained by this application of celestial mechanics.

The impetus for introducing KS regularization was inspired by the
beautiful three-body solution illustrated graphically by Szebehely & Pe-
ters [1967]. However, the Hamiltonian development of Peters [1968a,b] for
the three-body problem bypasses the problem of evaluating the changing
energy of the dominant two-body motion by an explicit calculation of the
N(N − 1)/2 regular terms, which is too expensive in the general case.
This was eventually solved by introducing an additional equation of mo-
tion for the change in the two-body energy due to perturbations. Thus
by the time of IAU Colloquium 10 on the N -body problem in 1970 two
general codes were presented which included KS regularization [Aarseth,
1972b; Bettis & Szebehely, 1972]. Sadly, the latter proved too expensive
for large systems since it employed a high-order Runge–Kutta integrator
and was not developed further. However, it did prove itself in an investi-
gation of high-velocity escapers in small systems [Allen & Poveda, 1972].

On the personal front, the next few years saw some interesting appli-
cations. One collaboration adopted hierarchical initial conditions inspired
by fragmentation theory [Aarseth & Hills, 1972], which led to some en-
ergetic interactions. It is now well established that very young clusters
show evidence of subclustering. Another effort examined the depletion
of low-mass stars and concluded that the preferential effect was some-
what less than expected on theoretical grounds [Aarseth & Wolf, 1972].
The question of energetic binaries halting core collapse was also dis-
cussed [Aarseth, 1972a]. It was shown that a central binary may acquire a

§ The treatment of mixed secular terms was later improved by Mikkola [1984a] who
introduced the variation of the epoch.
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significant fraction of the total energy even for systems with N = 500; a
calculation that took some 500 hours to complete [Aarseth, 1974]. It is
noteworthy that the dominant binary acquired 50% of the total energy
after only 12 crossing times (defined in the next section). Finally, a small
contribution contained the first simulation of what we now call primordial
binaries [Aarseth, 1975], which has become a major industry.¶

The 1970s brought about two important technical developments which
are still being used. First we mention the Ahmad–Cohen [1973] neighbour
scheme. The basic idea here is to represent the force acting on a particle by
a sum of two polynomials, with the neighbour contribution being updated
more frequently. Although there are programming complications due to
the change of neighbours, the method is truly collisional and speeds up
the calculation significantly even for quite modest values of N . Before the
advent of the HARP special-purpose computer (to be described later), this
algorithm facilitated the simulation of larger cluster models with N � 104

where the gain may be a factor of 10.
The second innovation occurred by a happy combination of circum-

stances which resulted in a three-body regularization method [Aarseth &
Zare, 1974]. This was achieved by the introduction of two coupled KS
solutions which permit two of the particle pairs to approach each other
arbitrarily close, provided this does not take place simultaneously. It turns
out that the third interaction modifies the equations of motion in a way
that still maintains regularity, as long as the corresponding distance is not
the smallest. Following this development, the global formulation by Heg-
gie [1974] was a notable achievement, especially since it was generalized
to the N -body problem.

It is perhaps surprising that, for practical purposes, the algorithm based
on two separable KS solutions is preferable to the global regularization for
N = 3. However, the treatment of just four particles in a similar way had
to wait for a technical simplification, eventually conceived by Mikkola
[1985a].‖ In the event, the Ahmad–Cohen method was combined with
standard KS as well as the unperturbed three- and four-body regulariza-
tion methods to form the embryonic NBODY 5 code towards the end of the
1970s. Right from the start, the KS treatment was generalized to an arbi-
trary number of simultaneous particle pairs, necessitating a considerable
amount of automatic decision-making.

A comparison of the multiple regularization methods has been carried
out for N = 3 and N = 4 [Alexander, 1986], whereas a general review
of integration methods for few-body systems is also available [Aarseth,
1988a]. An early study of core collapse for N = 1000 illustrated the

¶ The study of initial hard binaries was urged in the thesis of Heggie [1972b].
‖ The early history of multiple regularization has been recorded by Mikkola [1997b].
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usefulness of the new techniques [Aarseth, 1985b]. Finally, we mention
a pioneering development of a hybrid code which combined the Fokker–
Planck method with direct integration and KS regularization [McMillan
& Lightman, 1984a,b].

We end this historical review by noting that ideas for increasing the
speed of the calculation were discussed at an early stage [Aarseth & Hoyle,
1964]. At that time an increase in the particle number from 100 to 300
seemed to be the practical limit based on an argument that gave the
computing time proportional to N3 for a given degree of evolution. This
analysis also anticipated subsequent developments of introducing a colli-
sionless representation in order to reach much larger values of N . It was
estimated that a shell method with up to five spherical harmonics would
allow N � 5000 to fit the current maximum memory of 64 K.

Modern times have seen some significant advances, both as regards
software and hardware. The N -body problem has matured and we are
now entering an exciting new area. In this spirit we leave history behind
and will attempt to discuss a variety of relevant N -body developments in
subsequent chapters.

1.3 Basic concepts

In this book, we are primarily interested in applications of the original
Newton’s Law of Gravity, as opposed to a modified expression including
softening. The equations of motion for a particle of index i in a system
containing N particles then take the form

r̈i = −G
N∑

j=1; j �=i

mj(ri − rj)
|ri − rj |3 . (1.1)

For convenience, we use scaled units in which G = 1 and define the
left-hand side of (1.1) as the force per unit mass, Fi. Given the initial
conditions mi, ri,vi for the mass, coordinates and velocity of each parti-
cle at some instant t0, the set of 3N second-order differential equations
(1.1) then defines the solutions ri(t) over the time interval (−∞,∞). Al-
ternatively, the complete solutions are also specified by 6N first-order
equations that must be solved in a self-consistent manner, and the latter
procedure is in fact usually chosen in practice.

It has been known since Newton’s days that the N -body problem de-
fined by (1.1) only admits exact solutions for the case of two interacting
particles. All that is known with certainty beyond this is that there exist
ten integrals of the motion. For completeness, let us introduce these fun-
damental relations which are often used as a check on accuracy. The total
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energy and angular momentum (E and J) of the system are defined by

E =
1
2

N∑
i=1

miv2
i −

N∑
i=1

N∑
j>i

Gmimj

|ri − rj | , (1.2)

J =
N∑

i=1

ri ×mivi . (1.3)

The two terms of (1.2) represent the total kinetic and potential energy,
respectively. Multiplying (1.1) by mi and performing a summation, we
obtain

N∑
i=1

mir̈i = 0 (1.4)

by symmetry. Integrating, we find that in the absence of any external
forces the centre of mass of the system moves with constant velocity, thus
providing an additional six conserved quantities. The demonstration that
the total energy and angular momentum are also constant can be left as
an exercise [see e.g. Roy, 1988, pp.113–115 for proofs]. We define T,U,W
as the total kinetic, potential and external energy, with U < 0. The basic
energy relation then takes the more general and compact form

E = T + U +W , (1.5)

which is convenient for discussions. Another quantity useful for numerical
algorithms is the Lagrangian energy,

L = T − U , (1.6)

although the positive sign convention for U is often chosen here.
From the above, it follows that a good numerical scheme for conserva-

tive systems needs to maintain satisfactory values for the ten constants of
the motion during all times of interest. Unfortunately, errors are always
present in any step-wise scheme (as in the simplest numerical computa-
tion), hence we speak about the deviation from the initial values instead.
Since the total energy is the difference between two large numbers, T
and |U |, experience has shown that this is the most sensitive quantity for
monitoring the accuracy. However, if we are unlucky, the errors might still
conspire in such a way as to cancel and thereby render energy conservation
meaningless. Yet, the general tendency is for such errors to be systematic
and hence more readily identified. In order to make progress beyond the
basic scheme outlined above, we shall simply take a positive attitude to-
wards obtaining numerical solutions and delay a fuller discussion of this
difficult subject until later.
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The crossing time is undoubtedly the most intuitive time-scale relat-
ing to self-gravitational systems. For a system in approximate dynamical
equilibrium it is defined by

tcr = 2RV/σ , (1.7)

where RV is the virial radius, obtained from the potential energy by
RV = GN2m̄2/2|U |, and σ is the rms velocity dispersion. In a state of
approximate equilibrium, σ2 � GNm̄/2RV, which gives

tcr � 2
√

2 (R3
V/GNm̄)1/2 , (1.8)

with m̄ the mean mass, or alternatively tcr = G(Nm̄)5/2/(2|E|)3/2 from
E = 1

2U . Unless the total energy is positive, any significant deviation from
overall equilibrium causes a stellar system to adjust globally on this time-
scale which is also comparable to the free-fall time. The close encounter
distance is a useful concept in collisional dynamics. It may be defined by
the expression [Aarseth & Lecar, 1975]

Rcl = 2Gm̄/σ2 , (1.9)

which takes the simple form Rcl � 4RV/N at equilibrium.
Since much of this book is devoted to star clusters, it may be instruc-

tive to introduce some basic parameters for clusters to set the scene for
the subsequent numerical challenge. A rich open star cluster may be
characterized by N � 104, m̄ � 0.5M� and RV � 4 pc, which yields
tcr � 5 × 106 yr. Many such clusters have ages exceeding several Gyr,
hence a typical star may traverse or orbit the central region many times,
depending on its angular momentum. Another relevant time-scale in N -
body simulations is the orbital period of a binary. Let us consider a typical
close binary with separation a � RV/N . With a period of � 700 yr this
would make some 7000 orbits in just one crossing time. Thus, in general,
if a = fRV/N there would be � N/f3/2 Kepler orbits per crossing time.

The subject of relaxation time is fundamental and was mainly formu-
lated by Rosseland [1928], Ambartsumian [1938, 1985], Spitzer [1940] and
Chandrasekhar [1942]. The classical expression is given by

tE =
1
16

(
3π
2

)1/2
(
NR3

Gm

)1/2
1

ln(0.4N)
, (1.10)

where R is the size of the homogeneous system [Chandrasekhar, 1942].
For the purposes of star cluster dynamics, the half-mass relaxation time
is perhaps more useful since it is not sensitive to the density profile.
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Following Spitzer [1987], it is defined by∗∗

trh = 0.138

(
Nr3h
Gm

)1/2
1

ln(γN)
, (1.11)

where rh is the half-mass radius and Λ = γN is the argument of the
Coulomb logarithm. Formally this factor is obtained by integrating over
all impact parameters in two-body encounters, with a historical value of
γ = 0.4. Some of the most important subsequent determinations are due
to Hénon [1975] and Giersz & Heggie [1994a], who obtained the respective
values 0.15 and 0.11 for equal masses, with the latter derived from nu-
merical measurements. Although this factor only enters through the term
ln(γN), it can still make a significant difference in numerical comparisons
which are now becoming quite reliable when using ensemble averages. As
the second authors point out, the corresponding value for a general mass
spectrum is reduced considerably. From the numerical example above we
then have trh � 3 × 108 yr for rh � 4 pc and an equal-mass system with
N = 1 × 104 stars of half a solar mass. In comparison, trh � 3 × 1010 yr
for a globular cluster with N � 106 and rh � 25 pc.

An alternative viewpoint on the derivation of the two-body relaxation
time is promoted in the review by Spurzem [1999]. Based on the pio-
neering work of Larson [1970] which was continued by Louis & Spurzem
[1991] and Giersz & Spurzem [1994], the collisional term in the Fokker–
Planck description can be developed to yield unambiguous expressions for
the classical types of relaxation discussed here. Now the relaxation time
emerges naturally as the consequence of the interaction of two distribu-
tion functions and the choice of their form as well as that of the Coulomb
logarithm uniquely determines the nature of the different processes. Thus
instead of assuming the usual small angle deflections of the orbit, it is
inferred directly that the Coulomb integral starts at an angle of 90◦.

The expression (1.11) gives an estimate of the time for the rms velocity
change arising from small angle deflections at the half-mass radius to
become comparable to the initial velocity dispersion. It serves as a useful
reference time for significant dynamical changes affecting the whole cluster
even though there is no corresponding numerically well-defined quantity.
The assumption of approximate equilibrium with the above definition of
the crossing time leads to the relation [Spitzer, 1987]

trh
tcr

� N

22 ln(γN)
, (1.12)

which shows that close encounters become less important for increasing
particle number since the potential is smoother. Hence if the relaxation

∗∗ Also see Spitzer & Hart [1971a] for an alternative derivation.
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time for an equal-mass system exceeds the time interval of interest by a
significant factor, the use of the collisionless approximation which neglects
close encounters may be justified. However, the approach to the collision-
less regime is slow and in any case the central relaxation time may be
much shorter.

An equivalent formulation of the relaxation time in terms of the de-
flection angles suffered by a test star yields comparable values to (1.10)
[Williamson & Chandrasekhar, 1941]. This expression has in fact been
tested numerically for different velocities [Lecar & Cruz-González, 1972]
and particle numbers N ≤ 2500 [Aksnes & Standish, 1969], providing
agreement with theory on the assumption of independent individual en-
counters.

The concept of dynamical friction was introduced by Chandrasekhar
[1942] who elucidated the tendency for a star to be decelerated in the
direction of its motion. This refinement reconciled the predicted escape
rate with the possible presence of some old open clusters. However, the
analysis was not extended to the case of massive stars which later merited
considerable interest with the emphasis on mass segregation in stellar
systems. In the case of a slow-moving body of mass m2 � m̄ but within
20 % of the total mass, the frictional force can be written in the simplified
form [Binney & Tremaine, 1987]

dv2

dt
= −4π ln ΛG2ρm2

v3
2

[
erf(X) − 2X√

π
exp(−X2)

]
v2 , (1.13)

where ρ is the background density and X = v2/(2σ)1/2.
Rich star clusters are usually centrally concentrated, with an extended

halo. The majority of central stars are strongly bound and therefore expe-
rience changes in their orbital elements on shorter time-scales than given
by (1.11). A corresponding mean relaxation time can be derived by inte-
grating the general expression [e.g. Chandrasekhar, 1942] for a given clus-
ter model. This was done a long time ago for polytropic models, increasing
the classical value by a factor of 4 in the case of n = 5 [King, 1958]. On
the other hand, the central relaxation time can be much shorter for real-
istic models with high central densities. This runaway process called core
collapse (and its aftermath) has fascinated theoreticians and will be dis-
cussed further in another chapter. Let us just remark that the formation
of a bound halo, together with a small fraction of escaping particles, is
a direct consequence of this process by virtue of energy conservation. In
short, the evolution takes place because there is no equilibrium.

So far we have mainly considered equal-mass systems, which are more
amenable to analytical treatment and have therefore attracted more at-
tention. However, the general case of a mass spectrum is more relevant for
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star cluster simulations. The time-scale associated with some aspects of
mass segregation is probably better determined than the relaxation times
above. Analysis of a two-component system dominated by light particles
gave rise to the equipartition time for kinetic energy [Spitzer, 1969]

teq =
(v̄2

1 + v̄2
2)3/2

8(6π)1/2G2ρ01m2 lnN1
, (1.14)

where ρ01 is the central density of the N1 light stars of mass m1. It is
envisaged that the heavy particles of mass m2 lose kinetic energy through
encounters with lighter particles of mass m1 and spiral inwards.

The expression above holds, provided that the heavy particles do not
form a self-gravitating system, in which case standard relaxation takes
over. The equipartition condition is expressed in terms of the correspond-
ing total masses as M2/M1 < β(m1/m2)3/2, where β � 0.16 for large mass
ratios. After a phase of contraction the heavy particles begin to form a
self-gravitating system and the evolution rate slows down. To the extent
that the expression (1.14) is applicable, it can be seen that the presence
of a mass spectrum speeds up the early evolution. Hence, in general, we
have that teq � tEm̄/m2 for the case of two unsegregated populations with
comparable velocity dispersions [Spitzer, 1969]. Comprehensive theoreti-
cal discussions of time-scales and evolution processes in rich star clusters
can be found in several reviews [Meylan & Heggie, 1997; Gerhard, 2000].
However, we emphasize that as yet there is no consistent theory of the
relaxation time for a realistic IMF.

Although most old clusters are in a state of approximate virial equilib-
rium, this may not be the case for very young clusters. Non-equilibrium
initial conditions are often chosen in simulations in order to model systems
with significant mass motions. Some early simulations that employed a
spherical shell model demonstrated that collisionless systems reach overall
equilibrium on a relatively short time-scale [Hénon, 1964, 1968]. The con-
cept of violent relaxation [Lynden-Bell, 1967] was introduced to describe
galaxy formation but is equally relevant for star clusters. Before making
some general comments, let us write the virial theorem in the traditional
scalar form [Chandrasekhar, 1942, p.219; Fukushige & Heggie, 1995]

d2I/dt2 = 4T + 2U + 4A− 4W , (1.15)

where I is the moment of inertia and A represents the angular momentum
contribution, ΩzJz, for cluster motion in the Galactic plane with angular
velocity Ωz. Hence in this case the virial ratio is defined by

Qvir = (T +A)/|U − 2W |) . (1.16)
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Setting A = 0 and W = 0 for simplicity and choosing initial velocities,
collapse takes place if Qvir < 0.5, with enhanced mass motions for small
values.

A qualitative description of the collapse phase may be made by consid-
ering the energy per unit mass of a particle,

Ei = 1
2v

2
i + Φi , (1.17)

with velocity vi and potential Φi. In the extreme case of starting from
rest, all the particles move inwards on radial orbits. These orbits are
perturbed by neighbouring particles, acquiring angular momentum. This
leads to a dispersion in the collapse times, even for a homogeneous sys-
tem. Consequently, the early arrivals are decelerated in their outward
motion, whereas the late-comers experience a net acceleration. Follow-
ing the bounce, the core–halo system may also have a significant fraction
of particles with positive energy that subsequently escape. The initial
collapse therefore leads to a considerable redistribution of the binding
energies and the system undergoes violent relaxation. An early investiga-
tion of homogeneous N -body systems starting from rest [Standish, 1968a]
showed that about 15% of the particles gained enough energy to escape. A
variety of one-dimensional experiments made at the time also confirmed
that an equilibrium distribution is only reached for the inner part [Lecar
& Cohen, 1972].

A much more careful analysis is needed to provide a detailed description
of even the simplest collapsing system and is beyond the present scope
[Aarseth, Lin & Papaloizou, 1988]. However, it is worth emphasizing that
such systems can be studied by numerical methods, which may be used to
test theoretical ideas. In the present context, violent relaxation is assumed
to be collisionless and is therefore only applicable in the limit of large N .
However, the general process is also effective in systems with N = 500
which are in fact subject to mass segregation at the same time [Aarseth
& Saslaw, 1972; Aarseth, 1974].

Following on from non-equilibrium systems, the analogy with an eccen-
tric binary illustrates some aspects relating to the virial theorem. Consider
a plot of the virial ratio, Qvir, for collapsing systems that shows several os-
cillations of decreasing amplitude about the equilibrium value Q̄vir = 0.5
[Standish, 1968a].†† However, small fluctuations are still present even af-
ter many crossing times. This behaviour can be understood by examining
an isolated binary. Taking the ratio of kinetic and potential energy leads
to the simple expression

Qvir = 1 − R(t)/2a , (1.18)

†† We are not concerned with the excess of kinetic energy due to escaping particles.
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where R(t) is the instantaneous separation. Hence an eccentric binary
exhibits a varying virial ratio which depends on the phase and eccentricity.
Now let such an energetic binary be part of the system. Even if its energy
is constant, the contribution to the virial ratio may dominate the whole
system near an eccentric pericentre. Needless to say, this feature is not of
dynamical significance and because of the special treatment of binaries in
the present formulation, such contributions are not included here.

Star clusters orbiting the Galaxy are subject to an external tidal field
which tends to increase the disruption rate. In this connection we intro-
duce the classical concept of tidal radius [von Hoerner, 1957; King, 1962].
The simple picture of the tidal radius is that stars that move outside this
distance escape from the cluster on a relatively short time-scale. However,
actual orbit calculations show that the situation is more complicated even
for clusters in circular orbits [Ross, Mennim & Heggie, 1997; Heggie, 2001].
In the case of globular clusters, the process of tidal shocks also needs to
be modelled [Ostriker, Spitzer & Chevalier, 1976; Spitzer, 1987].

According to theory, close encounters act to maintain a Maxwellian ve-
locity distribution in equilibrium systems. Thus after one relaxation time,
a fraction Qe � 0.007 should exceed the escape velocity in an isolated
system [Chandrasekhar, 1942] and then be replenished. When discussing
escape from stellar systems, we distinguish between ejection due to one
close encounter [Hénon, 1969] and evaporation, caused by the cumulative
effect of many weak encounters. From general considerations, the former
outcome declines in importance with increasing N for systems dominated
by single stars, whereas the presence of binaries complicates the issue.
Although the process of escape is fundamental, the complexity of the in-
teractions is such that only general statements can be made, especially
when different masses are involved. For example, classical theory states
that equipartition of kinetic energy will be achieved on a time-scale teq
which is comparable to trh for N � 100 and modest mass ratios. A mo-
ment’s reflection is enough to show that this argument is fallacious.

In self-gravitating systems the central escape velocity is some factor,
fe ≥ 2, times the rms velocity, where the actual value depends on the
density profile. Consequently, the equipartition conditionmv2 = const can
only be satisfied for modest mass ratios, beyond which escape invariably
occurs. What actually happens is that the lighter particles occupy a larger
volume and hence their relaxation time increases. A better way to look
at energy equipartition is to compare mv̄2 for certain mass groups at
similar central distances, rather than globally. In any case, the tendency
for massive particles to be preferentially concentrated in the central region
is a direct consequence of the equipartition process, whereby the loss of
kinetic energy leads to inward spiralling [Aarseth, 1974]. These simple
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considerations show that although theoretical concepts are very useful
for a general understanding of dynamics, numerical solutions can often
obtain a more consistent picture, albeit for limited particle numbers.

1.4 The first steps

The well-known saying about learning to walk before you can run is highly
appropriate for the aspiring N -body simulator, since much play is made
of making runs. Hence we start our Odyssey at the most primitive stage
in order to illustrate the main principles involved for performing direct
numerical integrations.

In order to obtain numerical solutions, we proceed by advancing all
coordinates and velocities using sufficiently small intervals, re-evaluating
the accelerations by the summation (1.1) after each increment. At the
most primitive level we can relate the solutions at time t to the previous
solution at time t0 by a Taylor series expansion to lowest order as

vi(t) = Fi∆t+ vi(t0) ,
ri(t) = 1

2Fi∆t2 + vi(t0)∆t+ ri(t0) , (1.19)

where ∆t = t− t0 is a suitably chosen small time interval and Fi is evalu-
ated by (1.1) at t = t0. From dimensional considerations, we require that
|vi|∆t � rh for meaningful results. A complete solution then involves
advancing (1.19) simultaneously for all the particles until some specified
condition has been satisfied. This step-by-step method (standard Euler)
is clearly very laborious since each force summation includes O(N) opera-
tions and ∆t needs to be small in order to maintain a reasonable accuracy.
However, it does contain the basic idea of obtaining self-consistent solu-
tions for the set of coupled differential equations (1.1).

Numerical solutions of equations (1.19) are readily obtained for the
two-body problem. Choosing a circular binary, we find a relative error of
the semi-major axis per orbit of ∆a/a � 8× 10−3 when averaged over ten
initial periods. Here the time-step was chosen according to 2πηR3/2 from
Kepler’s Law, with η = 0.0002, which gives 5000 steps for each revolution.

The errors reduce dramatically by going to the improved Euler method.
First provisional coordinates are predicted in the usual way by

r̃i(t) = 1
2Fi∆t2 + vi(t0)∆t+ ri(t0) , (1.20)

whereupon the new force, Fi(t), is obtained from (1.1). We define the
average force during the interval ∆t as

F̄i = 1
2 [Fi(t) + Fi(t0)] . (1.21)
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The average force is then used to calculate the final values of vi(t) and
ri(t) according to (1.19). Now we obtain ∆a/a � −6 × 10−9 per revolu-
tion, whereas η = 0.002 gives ∆a/a � −6 × 10−6, which is considerably
more accurate than the standard Euler method above for ten times as
many steps. Eccentric orbits require more integration steps because of
the smaller pericentre distance and also produce somewhat larger errors.
Thus in the case of the improved Euler method an eccentricity e = 0.75
leads to ∆a/a � −4 × 10−5 per revolution with η = 0.002.

This simple exercise demonstrates an important aspect about numerical
integrations, namely that the accuracy may be improved significantly by
making better use of existing information at small extra cost. In view of
the expensive summation (1.1) for large N , it is worth emphasizing that
the improved scheme also uses only one force evaluation per step. This
desirable property is exploited in the more sophisticated developments
discussed below and in the next chapter.

After illustrating the general principles of direct N -body integration,
it may be appropriate to present the basic integration method of von
Hoerner [1960] since it is not available in the English literature. For his-
torical reasons, we retain the original notation which does not use vectors.
Denoting the coordinates and velocity of a particle i by xαi and uαi, re-
spectively, with α = 1, 2, 3, the coupled equations of motion for a system
of equal masses take the form

dxαi

dt
= uαi ,

duαi

dt
= −Gm

N∑
j=1; j �=i

xαi − xαj

r3ij
, (1.22)

where rij is the mutual separation. The original derivation adopted the
scaling Gm = 1 for equal-mass systems but in any case the following
discussion is general.

The new time-step is determined from the closest particle pair by taking
the harmonic mean of the travel time, τ1 = Dm/Vm, and free-fall time,
τ2 = Dm(2Dm)1/2, according to

h2 =
Dm(2Dm)1/2

µ
[
1 + Vm(2Dm)1/2

] . (1.23)

Here Dm is the minimum separation, Vm the corresponding relative ve-
locity and µ is an accuracy parameter. Consider the system at an epoch
t0 = 0, with h1 the previous step. Moreover, let u1 and x1 denote the
velocity at −1

2h1 and coordinates at t0, respectively, where the subscripts
have been omitted for clarity. Assuming a linear dependence over the
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interval [−h1, h2], we write the force as

b = b1 + a1t , (1.24)

where a1 = (b1 − b0)/h1 is the divided force difference over the previous
interval, [−h1, 0]. After some algebra we obtain the predicted velocity and
coordinates

u0
2 = u1 + k0b1 + k2a1 ,

x0
2 = x1 + h2u

0
2 + k1a1 , (1.25)

with the coefficients k0 = 1
2(h2 + h1), k1 = 1

24h
3
2 and k2 = 1

8(h2
2 − h2

1).
The solution can be improved after calculating the new force, b2, at

t = h2. This is achieved‡‡ by writing a parabolic force fitting function as

b = b1 + a1t+ d2(h1t+ t2)/(h2 + h1) . (1.26)

Setting b = b2 at the end of the interval h2 simplifies to

d2 = (b2 − b1)/h2 − a1 . (1.27)

The contributions from the last term of (1.26) can now be included to
yield the corrected solutions for u2 at t = h2/2 and x2 at t = h2,

u2 = u0
2 + k3d2 ,

x2 = x0
2 + k5d2 , (1.28)

where§§ k3 = 1
24(h2

2 + 2h2h1 − 2h2
1) and k5 = 1

12h2(h2
2 + h2h1 − h2

1).
The employment of a leapfrog method gives rise to enhanced stability

for a given integration order [cf. Hut, Makino & McMillan, 1995]. How-
ever, the question of the initial velocity requires special attention. Thus
it is advantageous to choose a conservative initial step, h1, and integrate
backwards an interval ∆t = −1

2h1 before beginning the calculation. The
subsequent few time-steps, h2, may then be restricted to grow by a small
factor to ensure convergence of the force polynomials. Special care is also
needed for evaluating the total energy, since the velocities are known at
t− 1

2h2 and it is desirable to attain the highest accuracy consistently. Thus
for the purpose of calculating the kinetic energy at the end of the current
time-step, h2, the predicted velocity is obtained by integrating (1.26) over
[h2/2, h2] and adding u2 which finally gives

u = u2 + b1h2/2 + 3a1h
2
2/8 + d2h

2
2(3h1/8 + 7h2/24)/(h2 + h1) . (1.29)

‡‡ The so-called ‘semi-iteration’ was also proposed by A. Schlüter [cf. von Hoerner, 1960].
§§ Corrected for a typographical error in the last term of k3.
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Table 1.1. Integration errors with von Hoerner’s method.

N Steps t/tcr µ ∆E/E ∆Jz amin

16 6200 5 6 1 × 10−4 2 × 10−7 0.046
16 8800 5 10 9 × 10−6 3 × 10−8 0.080
16 18 000 10 6 2 × 10−4 4 × 10−7 0.022
25 10 000 5 10 1 × 10−6 1 × 10−8 0.029
25 16 000 5 20 5 × 10−8 1 × 10−9 0.086
25 127 000 10 20 7 × 10−6 2 × 10−9 0.007

Unless there are long-lived binaries with short period, test calculations
generally give satisfactory energy errors when using µ = 10.

It is instructive to compare von Hoerner’s method for the two-body
example discussed above. The eccentric orbit with e = 0.75 and η = 0.002
now gives ∆a/a � −1.3×10−5 per revolution for the case of semi-iteration.
This improves to � −3×10−7 when the corrector (1.28) is included. Hence
the first N -body method is superior to the improved Euler method for
the same number of steps per orbit.

A more general comparison test has also been performed. The initial
conditions are generated in the same way as the original paper, which
employed virialized velocities inside a homogeneous sphere of radius 1
and m = 1. All the calculations are carried out with standard double
precision. Table 1.1 gives some characteristic values of relative energy er-
rors and change in the angular momentum about the z-axis for intervals
of 0.2tcr. All deviations are measured with respect to initial values and
the last column shows the smallest semi-major axis. Although the rela-
tive energy errors are satisfactory in these examples, the presence of a
highly eccentric binary introduces a noticeable systematic orbital shrink-
age which is expensive to counteract with the present basic treatment.

The device of including the semi-iteration (or corrector) without recal-
culating the force improves the solutions by almost one full order. It was
also adopted in subsequent formulations¶¶ based on high-order force poly-
nomials [cf. Wielen, 1967, 1972; Aarseth, 1968] with N ≤ 250, whereas
the original calculations were performed with up to 16 equal-mass par-
ticles. The choice of accuracy parameter µ = 6 led to maximum relative
energy errors ∆E/E � 4 × 10−3 for t � 9 tcr in spite of only about ten
figure machine accuracy combined with a relatively low order. However,
the very first general N -body simulation already produced some interest-
ing information on topics such as relaxation time, binary formation and
escape that have stood up to the test of time.

¶¶ Already included in a third-order polynomial scheme for N = 100 [Aarseth, 1966a].


