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Abstract
The modified Newtonian dynamics (MOND) has been proposed as an
alternative to the dark matter paradigm; the philosophy behind is that there
is no dark matter and we witness a violation of the Newtonian law of dynamics.
In this paper, we interpret the phenomenology sustaining MOND differently,
as resulting from an effect of ‘gravitational polarization’, of some cosmic fluid
made of dipole moments, aligned in the gravitational field, and representing
a new form of dark matter. We invoke an internal force, of non-gravitational
origin, in order to hold together the microscopic constituents of the dipole. The
dipolar particles are weakly influenced by the distribution of ordinary matter;
they are accelerated not by the gravitational field, but by its gradient or tidal
gravitational field.

PACS numbers: 95.35.+d, 95.30.Sf

1. Introduction

The observed discrepancy between the dynamical mass and the luminous mass of bounded
astrophysical systems is generally attributed to the existence of an invisible form of matter,
coined as the missing mass or dark matter. The nature of the dark matter particles is unknown
but extensions of the standard model of particle physics provide a number of candidates [1].
The dark matter triggers the formation of large-scale structures by gravitational collapse and
predicts the scale dependence of density fluctuations. Simulations suggest some universal dark
matter density profile around ordinary matter distributions [2]. An important characteristic of
dark matter, required by the necessity of clustering matter on small scales, is that it should
be cold or non-relativistic at the epoch of the galaxy formation. However, the dark matter
hypothesis has some difficulties [3] in naturally explaining the flat rotation curves of galaxies,
one of the most persuasive evidences for the existence of dark matter, and the Tully–Fisher
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empirical relation [4] between the observed luminosity and the asymptotic rotation velocity
of spiral galaxies.

On the other hand, the modified Newtonian dynamics (MOND) has been proposed by
Milgrom [5–7] as an alternative to the dark matter paradigm. It imputes the mass discrepancy
not to the presence of some additional non-baryonic matter, but to the failure of the Newtonian
law of gravity in an appropriate regime—a drastic change of paradigm. MOND involves a
single parameter a0 as a constant acceleration scale, which delineates the specific MOND
regime, corresponding to accelerations much smaller than a0, from the Newtonian regime, for
which the accelerations are much larger. Several relativistic extensions of MOND, assuming
the existence of extra fields associated with gravity, besides the spin-2 metric field of general
relativity, have been proposed [13, 14]. Such extensions have culminated in the scalar–vector–
tensor theory of Bekenstein and Sanders [15–17].

MOND has been very successful at fitting the flat rotation curves of galaxies, and at
naturally recovering the Tully–Fisher relation (see [8–12] for reviews). Intriguingly, the
numerical value of a0 that fits the data is close to the Hubble scale, a0 ≈ cH0. MOND
may have also some observational problems. There are some counter-examples of galaxies
where MOND does not seem to account for the observed kinematics [18], and, most
importantly, the mass discrepancy at the scale of clusters of galaxies is not entirely explained by
MOND [19, 20].

In this paper and the next one [21] (hereafter paper II), we take the view that MOND does
not represent a violation of the fundamental law of gravity, but, rather, provides us with an
important hint on the (probably unorthodox) nature of the elusive dark matter. More precisely,
we interpret the phenomenology behind MOND as resulting from an effect of gravitational
polarization, of some cosmic fluid made of dipole moments, and representing a new form of
dark matter. The dipole moments get aligned in the gravitational field produced by ordinary
masses, thereby enhancing the magnitude of the field and yielding MOND. Such an effect
is the gravitational analogue of the usual electrostatic effect of polarization of a dielectric
medium in an applied electric field [22].

In the present paper we imagine, as a model for the dipole, a doublet of particles, one
having a positive gravitational mass, the other having a negative and opposite gravitational mass
and both particles being endowed with positive inertial masses. The gravitational behaviour
involving masses of this type is governed by a negative Coulomb law—like masses attract and
unlike masses repel [23]. As a result the dipole moment cannot be stable. Even if we neglect
the repulsive gravitational force between the two particles, they will accelerate apart from
each other in an exterior gravitational field produced by ordinary matter. We shall therefore
invoke an internal force, of non-gravitational origin, between the two particles constituting the
dipole, to bound them in a gravitational field. The MOND acceleration scale a0 will appear to
be related to the properties of this internal ‘microscopic’ force at short distances. We find that
the motion of the dipolar particles violates the equivalence principle, and is driven by the tidal
gravitational field of ordinary matter, rather than the gravitational field itself. In this sense the
dark matter is only weakly influenced by the distribution of ordinary matter.

Summarizing, in our approach the dark matter is described by a ‘digravitational’ medium,
which is subject to polarization in a gravitational field, and is otherwise essentially static (an
‘ether’). An alternative interpretation of this dark matter is by the gravitational analogue of
a plasma in electromagnetism, i.e. composed of positive and negative gravitational masses,
and oscillating at the natural plasma frequency. In a gravitational field the mean position
of the masses is displaced from equilibrium and the plasma acquires a dipolar polarization.
The observational predictions of the present (non-relativistic) model are the same as for
MOND.



Gravitational polarization 3531

In paper II we shall propose a relativistic model of dipolar particles, based on an action
principle in general relativity. This model will be consistent with the equivalence principle, and
as a result the dynamics of dipolar particles, even in the non-relativistic limit, will be different
from that of the present quasi-Newtonian model. The present paper and paper II provide
two distinct models, both of them suggest a close connection between the phenomenology of
MOND and some form of gravitationally polarized dipolar dark matter.

Section 2 investigates the formal analogy between the MOND equation and the
electrostatics of nonlinear media. Sections 3 and 4 introduce a microscopic quasi-Newtonian
description of the gravitational dipole moment. In section 5, we derive the expression of the
non-gravitational internal force in the MOND regime. In section 6, we present an alternative
though equivalent formulation of the dipolar medium in terms of a polarized gravitational
plasma.

2. Analogy with electrostatics

The MOND equation, in the variant derivable from a non-relativistic Lagrangian [13], takes
the form of the modified Poisson equation

∂i

[
µ

(
g

a0

)
gi

]
= −4πGρ, (1)

where ρ denotes the density of ordinary matter, gi = ∂iU is the gravitational field in the
non-relativistic limit (so that ai = gi is the acceleration of ordinary matter) and U is the
gravitational potential1. In equation (1) the Milgrom function µ depends on the ratio g/a0,
where g = |gi | is the norm of the gravitational field and a0 is the constant acceleration
scale. The MOND regime corresponds to the limit of weak gravity, much below the scale
a0, i.e. g � a0; in this limiting regime we have µ(g/a0) ≈ g/a0 [5–7]. When g � a0, the
function µ(g/a0) asymptotes to one, and we recover the usual Newtonian law. Sometimes
we shall consider the formal ‘Newtonian’ limit g → ∞; however we always assume that the
gravitational field is non-relativistic. Various forms of the function µ have been proposed (cf
[24]), but most of them appear to be rather ad hoc.

Taking the MOND equation (1) at face, we note a striking analogy with the usual equation
of electrostatics describing the electric field inside a dielectric medium, namely ∂iD

i = ρe,
where the electric induction Di is proportional to the electric field Ei (at least for not too
large electric fields): Di = µeε0E

i . Here µe = 1 + χe is the dielectric coefficient and χe

denotes the electric susceptibility of the dielectric medium, which depends on the detailed
microscopic properties of the medium (see, e.g. [22]). In nonlinear media the susceptibility is
a function of the norm of the electric field, χe(E) with E = |Ei |. The electric polarization is
proportional to the electric field, and is given by �i

e = χeε0E
i . The density of electric charge

due to the polarization is ρ
pol
e = −∂i�

i
e. Generically we have χe > 0, which corresponds to

the screening of electric charges by the polarization charges, and reduction of the electric field
inside the dielectric.

In keeping with this analogy, let us interpret the MOND function µ entering equation (1)
as a ‘digravitational’ coefficient, and write

µ = 1 + χ, (2)

1 Spatial indices i, j are raised and lowered using the Euclidean metric δij ; the summation convention is used
throughout.
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where χ would be a coefficient of ‘gravitational susceptibility’, parametrizing the relation
between some ‘gravitational polarization’, say �i , and the gravitational field:

�i = − χ

4πG
gi. (3)

Since we have seen that the MOND function (2) depends on the magnitude of the gravitational
field, µ(g/a0), the same is true of the so-defined gravitational susceptibility, χ(g/a0), in a close
analogy with the electrostatics of nonlinear media. Hence we expect that χ should characterize
the response of some nonlinear digravitational medium to an applied gravitational field. The
mass density associated with the polarization would then be given by the same formula as in
electrostatics,

ρpol = −∂i�
i. (4)

With these notations, equation (1) can be rewritten as

�U = −4πG(ρ + ρpol). (5)

In such a rewriting of MOND, we see that the Newtonian law of gravity is not violated, but,
rather, we are postulating the existence of a new form of matter, to be called dark matter,
which contributes in the normal way to the right-hand side (RHS) of the Poisson equation (5).
The dark matter consists of polarization masses with the volume density ρpol given by (4).

3. Sign of the susceptibility coefficient

For the moment we have restated the MOND equation in the form (4)–(5) and proposed a
formal interpretation. To check this interpretation, let us view the digravitational medium as
consisting of individual dipole moments πi with the number density n, so that the polarization
vector reads

�i = nπi. (6)

We suppose that the dipoles are made of a doublet of sub-particles, one with a positive mass +m

and one with a negative mass −m, the masses which we are referring here are the gravitational
masses of these particles, i.e. the gravitational analogue of the electric charges, mg = ±m.
Clearly the exotic nature of this dark matter shows up here, when we suggest the notion of
negative gravitational masses. If the two masses ±m are separated by the spatial vector di ,
pointing in the direction of the positive mass, the dipole moment is

πi = mdi. (7)

Let us further suppose that the two sub-particles are endowed with inertial masses which are
positive, and given by mi = m. The dipole moment thus consists of an ordinary particle, say
(mi,mg) = (m,m), associated with an exotic particle, (mi,mg) = (m,−m).

The ordinary particle will always be attracted by an external mass distribution made of
ordinary matter; however, the other particle (mi,mg) = (m,−m) will always be repelled by
the same external mass. In addition, the two sub-particles will repel each other. We see
therefore that the gravitational dipole is unstable, and we shall invoke a non-gravitational
force to sustain it. We also expect that the external gravitational field will exert a torque on
the dipole moment in such a way that its orientation has the positive mass +m oriented in the
direction of the external mass, and the negative mass −m oriented in the opposite direction.
We thus find that πi and �i should both point towards the external mass, i.e. be oriented in the
same direction as the external gravitational field gi . From equation (3) we therefore conclude
that the susceptibility coefficient χ , in the gravitational case, must be negative:

χ < 0. (8)
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This corresponds to an ‘anti-screening’ of the ordinary mass by the polarization masses, and
enhancement of the gravitational field in the presence of the digravitational medium. This
simply results from the fact that, in contrast to electrostatics, alike gravitational charges or
masses always attract. Result (8) is nicely compatible with the prediction of MOND; indeed
we have 0 � µ < 1 in a straightforward interpolation between the MOND and Newtonian
regimes, hence −1 � χ < 0. The stronger gravitational field predicted by MOND may thus
be naturally interpreted by a process of anti-screening by polarization masses.

4. Microscopic model for the dipole

To give more substance to the model, suppose that some interaction F i between the two
constituents of the dipole is at work, and let the dipole moment be embedded into the
gravitational field gi = ∂iU . The equations of motion of the sub-particles (mi,mg) = (m,m)

and (m,−m), having positions xi
+ and xi

− respectively, are

m
d2xi

+

dt2
= mgi(x+) − F i(x+ − x−), (9)

m
d2xi

−
dt2

= −mgi(x−) + F i(x+ − x−). (10)

The internal force F i is proportional to the relative separation vector di = xi
+ − xi

−, namely

F i = F
di

d
. (11)

The norm of F i is a function of the separation distance, F = F(d) where d = ∣∣xi
+ − xi

−
∣∣, and

is expected to also depend on the magnitude of the gravitational field, g = |gi |. The force F i

is assumed to be attractive, F > 0 (hence it is non-gravitational). This force is indispensable
if we are looking for configurations in which the constituents of the dipole remain at constant
distance from each other. For simplicity, we suppose that the gravitational force between the
two sub-particles, i.e. Fg = −Gm2/d2, which is repulsive, is negligible or included in the
definition of F.

Next we introduce the centre of inertial masses, xi = (
xi

+ + xi
−
)/

2, and transform the
system of equations (9)–(10) into an equation of motion for the ‘dipolar particle’,

2m
d2xi

dt2
= πj∂ijU + O(d2), (12)

and an evolution equation for the dipole moment,

d2πi

dt2
= 2mgi − 2F i + O(d2). (13)

In both equations (12) and (13), we neglect terms of the order of the square of the separation
distance d, assuming that d � |xi |. On the RHS of (12)–(13), gi and ∂ijU are evaluated at
the position of the centre-of-mass xi . The torque produced by the forces acting on the two
sub-particles on the RHS of (9)–(10) is given by

Ci = εijkπjgk + O(d2). (14)

This torque will tend to align the dipole moment with (and in the same direction of) the
gravitational field.

The prominent feature of the equation of motion (12) is the violation of the equivalence
principle by the dipolar particle, as a result of the fact that the particle’s inertial mass is 2m
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while its gravitational mass is zero. Note that equation (12) has a structure different from the
equation we obtain in the non-relativistic limit of the relativistic model of paper II—indeed,
contrarily to the present quasi-Newtonian model, the relativistic model is consistent with the
equivalence principle (see paper II for discussion). While the inertial and passive/active
gravitational masses of the dipolar particle are given here by Mi = 2m and Mp = Ma = 0,
the relativistic model of paper II will have Mi = Mp = 2m and Ma = O(c−2) in the non-
relativistic limit c → ∞. This represents a fundamental difference between the two models. In
addition, of course, since the present model is Newtonian it does not a priori allow (in contrast
to paper II) us to answer questions related to cosmology or the motion of relativistic particles.
However, despite these differences, we shall recover in paper II the main characteristics of the
mechanism of gravitational polarization.

From equation (12) the dipolar particle is expected to accelerate slowly in a given
gravitational field, as compared to an ordinary particle. More precisely, we find that the
particle is not directly subject to the gravitational field, but, rather, to its gradient, namely
the tidal gravitational field ∂ijU . In the potential U ∼ 1/R (respectively the MOND analogue
U ∼ ln R), the acceleration is typically of the order of 1/R3 (respectively 1/R2).2 The
observational consequence is that the dark matter consisting of a fluid of dipole moments is
necessarily cold, and even ‘colder’ than ordinary non-relativistic matter. This property may
be consistent with the observation of galactic structures. Thus, the dipolar dark matter appears
as a medium whose dynamics are weakly influenced by the distribution of ordinary galaxies.

On the other hand, the evolution equation (13) shows that a situation of equilibrium, where
the distance d between the pair of particles remains constant, is possible. The equilibrium is
realized when the internal force F i exactly compensates for the gravitational force3,

F i = mgi + O(d2). (15)

Note that here as everywhere else, gi represents the total gravitational field, the sum of
the contributions due to the ordinary masses and the polarization masses. Because F i is
proportional to di , equation (11), we see that when the equilibrium holds, the dipole moment
is in the direction of the gravitational field, πi = mdi ∝ gi . The polarization vector �i = nπi

is aligned with the gravitational field and the medium is polarized. Hence, the equilibrium
condition (15) provides a mechanism for verifying the crucial equation (3).

Let us now get information on the susceptibility coefficient χ as a function of g = |gi |.
From equation (3) and the relation � = nmd [see (6)–(7)], we get

χ = −4πGmn
d

g
. (16)

The condition (15) implies that d is necessarily a function of g, say d = d(g), obtained by
inversion of the relation F(d) = mg or, rather, since as we have seen the force should also
depend on g, of the relation F(d, g) = mg. Thus, χ is a certain function of g, depending
on the properties of the internal force F i , and we are able, in principle, to relate the MOND
function µ = 1 + χ to the internal structure of the dipolar particles. We obtain

µ

(
g

a0

)
= 1 − 4πGmn

d(g)

g
. (17)

Note that such a function is expected to be a complicated function of g, because it is made of the
inverse of F(d, g) = mg, and especially because it depends on the spatial distribution of the

2 This type of coupling to the tidal gravitational field is well known; for instance it corresponds to the non-relativistic
limit of the coupling between the spin and the Riemann curvature tensor, for particles with spin moving on an arbitrary
background [25, 26].
3 In section 6 we shall be more precise about what is meant by equilibrium condition; see equation (32).
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dipole moments, characterized by their number density n. The distribution of n is determined
by the gravitational field via the equation of motion (12), together with the Eulerian continuity
equation ∂tn + ∂i(nvi) = 0, where vi = dxi/dt . However, as we have seen, the motion of
the dipolar particle is sensitive in the first approximation only to the tidal gravitational field.
Thus, a reasonable approximation is probably to consider that the velocity field vi remains
small; hence the number density n is nearly constant and uniform. In the following we shall
neglect the tidal gravitational fields, and shall treat n as a constant.

5. Internal force law

In the limit g → 0, we enter the deep MOND regime—a nonlinear regime characterized by
µ = g/a0 + O(g2).4 Comparing with equation (17), we deduce that the dipole separation d
should behave in terms of the gravitational field in the MOND regime like

d = g

4πGmn

[
1 − g

a0
+ O(g2)

]
. (18)

Thus, in the first approximation, d is found to be proportional to the gravitational field (recall
that n is assumed to be constant); this means that using F = mg the force must be dominantly
proportional to d. More precisely, we find that the force law F(d) that is necessary to account
for the MOND phenomenology is

F(d) = 4πGm2nd

[
1 +

4πGmn

a0
d + O(d2)

]
. (19)

Interestingly, this force becomes weaker when the particles constituting the dipole moment
get closer. As we see from (19), the MOND acceleration scale a0 happens to parametrize, in
this model, the expansion of the internal force at short distances, i.e. d → 0 (in the regime
where g → 0).

Equation (19) represents the value of the force at equilibrium, i.e. when (15) is satisfied,
and it depends on the number n of particles. However, the internal force F i itself—not
necessarily at equilibrium—is defined by the equations of motion (9)–(10) for a single
dipole moment without reference to n, and in this sense is intrinsic to the dipole moment.
Nevertheless, it seems unusual that the equilibrium force (19) should depend on the surrounding
density n of the medium. In section 6, we shall show that this force is actually the one
corresponding to a harmonic oscillator describing the oscillations of a ‘gravitational plasma’
at its natural plasma frequency. The dependence on n of equation (19) will then appear
to be that involved into the usual expression [22] of the plasma frequency, as given by
equation (29).

In addition, we want to recover the usual Newtonian gravity when g � a0, and we see
from equation (17) that it suffices that d(g)/g → 0 when g → ∞. There is a large number
of possibilities; many force laws F(d) do it in practice. For instance we can adopt d ∝ g1−ε

with any ε > 0, which corresponds to the power force law F(d) ∝ dα with α = 1/(1 − ε),
and we see that any powers α, except those with 0 � α � 1, are possible. In the discussion
below we shall choose ε > 1 in order to ensure that d → 0 in the Newtonian regime. The
particular case ε = 3/2 gives back the 1/d2 type force law. In this case we can adopt for the
susceptibility function

χ = −
(

a0

g

)3/2 [
1 + O

(
1

g

)]
. (20)

4 For simplicity we assume a power-law expansion when g → 0.
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0

max
  d

d

2
a

g = F
m

Figure 1. The dipolar separation distance d as a function of g. The equilibrium condition F = mg

is satisfied. Such a graph is valid when the number density n of dipole moments is constant. More
generally, for non-constant n, the physically meaningful analogue of d would be the polarization
� = nmd (cf figure 4 in paper II).

This corresponds to the dipolar separation

d = a0

4πGmn

(
a0

g

)1/2 [
1 + O

(
1

g

)]
, (21)

and internal force

F = ma0

( a0

4πGmnd

)2
[1 + O(d2)]. (22)

Note that because the expression (22) is positive, it represents a Coulombian force, i.e. attractive
between unlike masses.

Since d tends to zero in both the Newtonian and MOND regimes, we see that the function
d → F(d) is actually two-valued. We have already noted that F depends not only on d but
also on g; the expression of the force (19) is valid in the MOND regime where g → 0, while
equation (22) holds in the Newtonian regime where g → ∞. An alternative (but rather ad hoc)
choice, encompassing both types of behaviour, is provided by the susceptibility function
χ = −e−g/a0 . In this case we have

d = g

4πGmn
e−g/a0 , (23)

and the force law F(d) at equilibrium is obtained by substituting g = F/m on the RHS and
looking for the two-valued inverse.

The generic form of the distance function d(g) is illustrated in figure 1. From the figure we
comment on the physical picture one might have in mind. In the absence of gravitational fields,
i.e. in the absence of ordinary matter, the dipole moments do not exist (at least classically)
since their separation d is zero. Indeed, when g = 0 we have d = 0 by equation (18).
The dipolar ether does not produce any noticeable effect. Suppose that some external mass,
made of ordinary matter, is steadily approached. The dipole moments start feeling a weak
gravitational field and they become active. According to equation (18) and figure 1, the dipoles
open up and get aligned in the gravitational field in order to maintain the equilibrium (15). The
medium is polarized, we are in the MOND regime, and the gravitational field is dominated
by the contribution of the polarization masses. Further approaching the ordinary mass, the
dipolar separation d eventually reaches a maximal value. From (18) we find, approximately,

dmax ≈ a0

16πGmn
, (24)

which is reached for g ≈ a0/2. If at that point we continue to increase the gravitational field
(putting nearer the external mass), d will begin to decrease and the dipole moments will close
up. Finally, for strong gravitational fields, the dipole moments become inactive again (indeed
d = 0 when g → ∞). The gravitational field is dominated by the contribution of the ordinary
matter, and we recover the Newtonian regime.
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6. Gravitational plasma

The medium of dipolar dark matter described above can also be interpreted, in an alternative
formulation, as a polarizable ‘gravitational plasma’ consisting of the two species of particles
(mi,mg) = (m,±m). Such formulation will essentially be equivalent to the previous one, but
is simpler and more appealing physically.

Suppose that the two types of particles (m,±m) are in equal numbers so that the plasma
is globally neutral. There is an equilibrium point where the plasma is locally neutral, so the
number densities of the two particle species are equal, at each point, to some common constant
and uniform value n. As it stands the equilibrium is unstable because the gravitational force
between unlike masses is repulsive. To ensure a stable equilibrium we must postulate like
in equations (9)–(10) some restoring non-gravitational force F i , acting between the masses
mg = ±m, and superseding the gravitational force. We introduce some associated internal
field f i such that

F i = −mf i, (25)

and assert that this field obeys a Gauss law in the non-relativistic limit,

∂if
i = −4πGm

χ
(n+ − n−). (26)

The number densities of the particles species (m,±m) are denoted by n±. Here we have
introduced the susceptibility coefficient χ to represent a dimensionless coupling constant
characterizing the internal interaction. Note that since χ is negative, equation (8), the force
law (26) is attractive between unlike particles and repulsive between like ones. Furthermore,
supposing that the plasma is bathed by an external gravitational field gi , constant and uniform
over some region of consideration5, we expect that the coupling constant should reflect the
presence of this gravitational field, and we assume a dependence on its norm g, namely
χ = χ(g).

Let xi
+ and xi

− (in short xi
±) be the displacement vectors of the masses from the equilibrium

position characterized by the density n. The particles are accelerated by the internal field f i

and by the applied external gravitational field gi . The equations of motion have already been
given in equations (9)–(10) and now read

m
d2xi

±
dt2

= ±m(f i + gi). (27)

Consider a small departure from equilibrium, corresponding to small displacement vectors xi
±.

The density perturbations are given by n± = n
(
1 − ∂ix

i
±
)

to first order in the displacements
xi

±. Using equation (26), we readily integrate for f i and inject the solution into (27). In this
way we find that xi

+ + xi
− = 0 (the centre of inertial masses is at rest—neglecting tidal fields),

together with the following harmonic oscillator for πi = mdi where di = xi
+ − xi

−,

d2πi

dt2
+ ω2πi = 2mgi. (28)

Actually this computation is the classic derivation of the plasma frequency [22] which is found
for the case at hand to be

ω =
√

−8πGmn

χ
. (29)

5 We adopt the frame associated with the plasma’s equilibrium configuration. The gravitational field gi is defined in
that frame.
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The frequency depends on the density n of the plasma at equilibrium and on the strength of
the internal interaction which is encoded into the coupling constant χ . The solution we get
for the internal field is

f i = − ω2

2m
πi �⇒ F i = ω2

2
πi, (30)

so we can check that equation (28) is equivalent to our previous equation (13) (recall that here
gi is considered to be constant and uniform). The particles oscillate around some non-zero
mean position that is determined by the ambiant gravitational field as

〈πi〉 = 2m

ω2
gi. (31)

The mean value of the force is

〈F i〉 = mgi, (32)

and coincides with the equilibrium condition postulated in equation (15).
This result (31) is classical but can easily be recovered from standard quantization of the

harmonic oscillator (28). The spectrum of ‘plasmons’ is discrete (k ∈ N) with energy levels
shifted by the gravitational field [27],

Ek =
(

k +
3

2

)
h̄ω − mg2

2ω2
. (33)

The eigenstates are
∣∣ψp1p2p3

〉 = ∣∣φp1

〉∣∣φp2

〉∣∣φp3

〉
where k = p1 + p2 + p3; the eigenvalues have

degeneracy (k + 1)(k + 2)/2. The one-dimensional eigenstate function φpi
(πi) = 〈

πi
∣∣φpi

〉
is

of the form ϕpi

(
πi − 2m

ω2 gi
)

where (Hp being the Hermite polynomial)

ϕp(ρ) = 1

2
p

2
√

p!

( ω

πh̄m

)1/4
Hp

(√
ω

h̄m
ρ

)
e− ω

2h̄m
ρ2

. (34)

The expectation value 〈πi〉 = 〈
ψp1p2p3

∣∣πi
∣∣ψp1p2p3

〉
does not vanish due to the presence of the

gravitational field; it can be computed using
∫ +∞
−∞ dππ

∣∣ϕp

(
π − 2m

ω2 g
)∣∣2 = 2m

ω2 g and the result
agrees with (31).

We analyse the effect of the mean dipole moment vector (31) on the equation for the
gravitational field gi (now supposed to be generated by external sources). More precisely we
argue that the mean value is really a quantum expectation value as we have just proved, so that
by adopting a ‘semi-classical’ approach this expectation value 〈πi〉 should have a direct effect
as the source for the classical gravitational field gi . The polarization readily follows from the
expression of the plasma frequency (29) as

�i = n〈πi〉 = − χ

4πG
gi, (35)

so that we recover equation (3) exactly. Note that the constant density n of the plasma at
equilibrium is equal to the density of dipole moments. The polarization is automatically
proportional to the gravitational field. This is an attractive feature of the present formulation
based on a gravitational plasma; there is no need to invoke a mechanism to align �i with gi .
Following the same reasoning as in section 2, the polarization (35) gives rise to the density
of polarization masses (4), which is added to the RHS of the Poisson law, equation (5). The
MOND equation (1) readily follows.

Let us comment on the field equation (26) for the supposedly fundamental internal
interaction f i . In the absence of gravity we have χ = −1; hence equation (26) becomes
that of a negative Poisson equation corresponding to a negative Newtonian force (with ‘anti-
gravitational’ constant −G). On the other hand, in strong gravity (g/a0 → ∞) we have
χ → 0 and we see that the strength of the internal field f i becomes infinite. Therefore the
plasma gets locked in its undisturbed equilibrium state for which πi = 0 (strictly speaking
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this is true if gχ → 0 when g → ∞). In this limit the dipolar medium is inactive; there
is no induced polarization and the Newtonian law holds. Note that there is clearly some
amount of fine tuning in the present model (and the one of paper II). Namely the function
χ(g) is not determined from first principles within the model but is tuned to agree with the
phenomenology of MOND. In particular χ(0) = −1 is not ‘explained’ in the model but comes
from astronomical observations. Similarly χ(∞) = 0 is imposed in order to recover the
Newtonian regime where it is observed to be valid.

To conclude, the phenomenology of MOND suggests the existence of a polarization
mechanism at work at the scale of galactic structures, and which could be viewed as the
gravitational analogue of the electric polarization of a dielectric material. The dark matter
would consist of the polarization masses associated with some gravitational dipole moments
aligned with the gravitational field of ordinary masses. We find that the properties of the
dipolar dark matter are governed by the internal non-gravitational force linking together the
constituents of the dipolar medium. The formulation of this medium in terms of an oscillating
gravitational plasma polarized in the gravitational field is particularly attractive. In paper II
we shall show how the notion of dipolar particle can be made compatible with the framework
of general relativity.
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