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Summary. It has been noted that all rotating stars are unstable to the radi-
ation of gravitational waves by non-radial stellar modes. However small the
rate of stellar rotation, for each set of modes (for example the p-modes)
there is always a critical azimuthal wavenumber m ¢, such that modes with
m > mg;; are unstable. Using a scalar theory of gravitation we calculate the
growth rate of the instability explicitly in the slow-motion regime. We find
that the instability grows on astronomically interesting timescales only for
neutron stars with rotational periods < a few milliseconds. We indicate why
general relativity is likely to yield the same conclusion. We speculate briefly
on a situation in which an accreting neutron star can radiate a large fraction
of the accretion luminosity as gravitational waves.

1 Introduction

Some attention has focused recently on an instability found to exist in the General Theory
of Relativity which shows in particular that all rotating stars are unstable (Friedman &
Schutz 1975; Bardeen et al. 1977; Friedman 1977). The nature of the instability is relatively
easy to understand. Consider a particular stellar mode of frequency w and with an azimuthal
wavenumber m. If the star rotates slowly with angular velocity 2 the mode is split into two
modes, with frequencies differing by ~ 2m &2, one of which travels forwards (in the sense of
rotation) relative to the star, and the other backwards. If mQ < « the modes rotate in the
same sense relative to the star as they do in an inertial frame. The effect of gravitational
radiation on these modes is to radiate positive (negative) angular momentum from the
forward (backward) travelling mode and so to damp them both. If, however, we increase 2
sufficiently (or, equivalently, if we consider modes of sufficiently high m) such that mQ 2 w
we may find that the mode moving backwards relative to the star is now moving forwards
relative to an inertial frame. The effect of gravitational radiation is now to remove positive
angular momentum from the mode. Since the mode moves backwards relative to the star its
response to this (in linear theory) is to grow.

Such instabilities are not limited to the effects of gravitational radiation — for example
the sound waves produced by a water wave which moves backwards relative to the stream,
yet forwards relative to the air have a similar effect. They occur, therefore, in studies of the
Kelvin—Helmbholtz instability (see, e.g. Gill 1965).
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We have noted that for a given star with £ # 0, modes with sufficiently high m are
susceptible to the instability, and that therefore all rotating stars must display this instability
(Bardeen et al. 1977). This does not mean, contrary to the assertion by Thorne (1977), that
the modes with the largest m are the most unstable. Estimates of the growth timescale 7, for
the modes have been given in the literature (Bardeen et al. 1977, Friedman & Schutz 1977)
and may be written as

c 2m+1
Tg ~ Td (-—) (1.1)
v
where 74 is the dynamical timescale of the star and v is, for example, its surface rotational
velocity (v = a2 where q is the stellar radius).

Computation of the growth timescale using general relativity is difficult, not just because
of algebraic complexity but also because of the intrinsic non-linearity of that theory. For
this reason we have considered the same problem using scalar gravity. Since the problem is
now linear we can write down a complete solution for the slow motion regime (Section 2).
We indicate in the Appendix why we are confident that the solution of the general relativis-
tic problem will lead to a similar functional form of solution, albeit with different numerical
coefficients. We find that (1.1) is a reasonable approximation when am 2 < c¢. We consider
the implications of our findings in Section 3 and show that only for neutron stars spinning
with periods P < a few milliseconds is the instability of physical importance. Accreting
neutron stars can be spun up by accreted material. We speculate that spin up is curtailed by
the growth of this instability. We consider a particular example in which a substantial frac-
tion of the accretion luminosity is radiated away as gravitational waves.

2 Scalar gravity

The equations for the fluid are the standard inviscid Navier—Stokes equations

Dv 1

—=——Vp Wy (2.1)
Dt p

D

2 = Giv(ov) 22)
Dt

Dt p Dt '

Here v is the fluid velocity, p the pressure, p the density, ¥ a constant specific heat ratio and
¥ the scalar gravitational potential. We take ¥ to satisfy the scalar wave equation

2

v? ! w“4G 24
\1/—;—257;- nGp. (24)

We perturb the equations about a stationary configuration which rotates with constant
angular velocity Q. For simplicity, we take the equilibrium configuration to have coincident
pressure and density surfaces. We assume that the perturbed quantities, which we denote by
dashes, vary as expliot +im¢}. We use the Lagrangian displacement g, which is related to
the Eulerian velocity variation v' by v =i(c +mQ)E. Equations (2.1)—(2.3) then give
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o' = — div(oE) @.5)
TP, P
p=—0p —E-(Vp—— Vp) (2.6)
o o
l !
(0 +mQ)PE +2i(0 +mQ) @ xE =—-Vp' +Z vp —vy’. @.7)
P p
Equation (2.4) becomes
O.2
V2y'+— ' =4nGp'. (2.8)
c

Since we are looking for a growing mode we shall assume o to have a small negative
imaginary part. We then seek solutions of the perturbed wave equation which vanish at
infinity. We multiply (2.7) by p&* (* denotes complex conjugate) integrate over all space
and do several integrations by parts, making use of (2.5) and (2.6). We then multiply (2.8)
by —¥'4nG, integrate over all space, and add the resulting equation to that obtained from
(2.5)—(2.7). This yields an equation of the form

—d’A+0B=C 2.9)

where each of A, B and C are real. Note that convergence of the integrals is assured only
when o has a negative imaginary part.
We write

A=A+ W
where
o= [p|EPdr
and
1y 2dr
4nGc?

We find

B=2 [ pE* -[iQx E —mQE]dr

and
c=m292fp|g|2dr—f7p|div§|2dr—f(g-Vp)divz*dr—f(g*-Vp)divng
| d
- [ &I E %)= ~2ma [ @xE) Epar

IWI2
476G

+ f\,!/ div(o§ )d'r+f11/'* dw(pE)a’*r—J~

We also write

C=C0—W1+W2
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where
VY |2dr
AL
4nG
V¥ |2dr
W2 = —
4nG

and by definition W satisfies Poisson’s equation

V2 =41Gp'.
We then rewrite (2.9) as
—02A0+UB=C0+02Wﬁ W1+W2. (210)

We now write 0 = 0o — iy and assume 7y < 0y. In the non-radiating case (c - °°) the real part
of (2.10) becomes

—0'(2)140 + UoB = Co.
We have therefore,

B ~C, B?
0'0=—+ —_ 4

24, N 4, 443 .

2.11)

Corrections to this from the W-terms are of order ¢! and we may neglect them. Further-

more, to the same order of accuracy, Ao, B and C, can be evaluated with the eigenfunctions

for ¢™' = 0. The imaginary part may be written

- WUO =1
+ Ag\/— Co/Ao + B 443

(2.12)

At first sight, this equation appears to be of little use since it does not appear to contain 7.
However since we expect Y' « exp(—r/c) for large r, we note that the integral W o |y |,
Thus for small vy we may write

= lim (| y| W). 2.13
I Y I iAo\/— Co/A() + 32/414% Y0 ( )

We note at this juncture that for self-consistency the right-hand side of (2.13) must be
positive. For this we require that the sign of 0 is not the same as that of the square root (for
the appropriate choice of its sign). This is possible only if Cy > 0, which is just the secular
stability criterion evaluated in the inertial frame. We also remark that (2.12) is just a state-
ment of the physical fact that the wave energy permeating all space is minus the mode
energy (which is negative), as indeed it must be for such a mode which has grown at the
expense of radiation.

We now evaluate v for a rotating star. The solution of (2.8) which satisfies the appropri-
ate boundary conditions at r =0 and r = e is
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, 241\ (=m)! im
y'=Y 4G ( ) PI" (1) exp(img) x f f {F,(r) f F() ') 2
Lm i+ m)'
~i- 6 | "B @) EG) [ ewriwrra)
0 r ‘
X P (u') exp(—ime") du’ d¢' (2.14)
where
M=cosf
Fy(r)=r""2Jp4y ), (orfc)
and

G,(r) = 7-1/2.,_(“.1/2)(07'/0).

Here P;" (u) is the Legendre polynomial and J,(z) is the Bessel function. At large distances
(r > cl/o) this becomes,

A+1\(—m)!  (mc\? -
v~ Z4wG( )( i (-—) P (4) exp(im) x f f { f F) o' @) r2ar
0

Lm (+m)! \20

x P (u') exp(—im@')du' d¢' x r™' exp [—i ((-’—r —-%(1+ l)n)]. (2.15)
c

Thus we find that

lim ooly|W= 7202(2:;1)(1_m)' lfffﬁ(f)-llﬂ/z( )'3/21’ ()

7-0 I +m)!

x exp(—im¢')dr du’ d¢ (2.16)

This, together with (2.13), gives us a general formula for . As an example let us consider
the oscillations of a homogeneous, incompressible sphere of density po and radius a. In this
case we have

E=V [r'P[" () exp(im¢)]

and

p'(t)=pod (' —a)£,(r 1, ¢).
Evaluating (2.16) we find

T2 Gpol [J41/2(00a/c)]?
V= Co/A, + BY4A3

Y= (2.17)

Confidence in (2.17) is obtained by noting that the case of an incompressible rotating cylin-
der of constant density, the dispersion relation can be obtained explicitly. For small v this
gives

2Gpom [Jm(an/C)]2

(.18)
V= Co/Ao+ BYAAS

’Y:
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which is closely analogous to (2.17). We note that for large m,
lool ~ Im|Q and ~+/—Co/Ao+B* 443~ 0o+ |m|S2.

3 Application

The growth time of the instability 7, is a rapidly decreasing function of v/c where v =4 is
the rotational velocity of the stellar surface. For this reason, the objects for which the
instability is most likely to be important are neutron stars (the only objects more compact
than these are black holes, which are known to be stable (see, e.g. Thorne 1977). We take
the f-modes of a Newtonian homogeneous star as being representative, and we assume that
the eigenfrequencies, o, are well approximated by

26MI(I - 1)

2=
O +m) ==y

G.1)

This implies a shift of m Q on the purely spherical modes. For instability we require that

26MI(I—-1)
=z .
aQl+1)

202 3.2)

Since I > |m | and since 7, is a rapidly increasing function of /, we consider the most rapidly
growing modes, that is, those for which / = m. Equation (3.2) may then be written

(@

For neutron stars we take GM/ac? = 0.2. Equation (2.8) then gives the growth time approxi-
mately as

Tg = Ta [Jir12(0/c)] 2 (34)

where [ satisfies (3.3) and for neutron stars we take 74 = 107*s. Note that this formula corre-
sponds to (1.1) when amQ < c. The growth time is shown as a function of ¢/v in Table 1.
The rapidity of the increase of 7g as a function of ¢/v (or rotation period) is well illustrated.
The most rapidly spinning neutron star known (the Crab pulsar with rotation period of
33 ms) has c/v ~ 160 and a growth timescale to the instability which is truly astronomical!

Table 1.
clv m 75 ()
4 3 4.0
5 5 2.7 %103
6 7 1.2 x107
7 10 1.8 x10'?
8 13 1.3 x101®
160 5x103 exp (4.8 Xx10%)

The growth rate of the instability 7g is tabulated as a function of ¢/v where v=aQ is the rotational
velocity of the stellar surface. The critical azimuthal wavenumber, 71, above which all modes are unstable

is also shown. For a given ¢/v, 7g i a rapidly increasing function of m so that the fastest growing mode
is the one for the value of m shown in the table.
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For the modes considered we see that for neutron stars spinning with periods P 2 1.5 ms,
the instability is of no physical importance. A similar calculation can be made for the
p-modes, and although the growth times will differ from those for the f-modes the conclu-
sion that for neutron stars spinning with periods 2 a few milliseconds the instability is of no
importance is still valid. Moreover since, when the gravitational radiation is calculated
properly according to the general theory of relativity, the functional form for 7, is unlikely
to be altered, the same conclusion probably holds in general.

Although the instability is of no importance for any known object in the Universe, we
speculate briefly on a situation in which the instability may play a role. Consider a non-
magnetic neutron star which is accreting matter from an accretion disc on a timescale
Ty =M/M. The neutron star is spun up until it reaches a rotation period for which the
timescale on which it accretes angular momentum ~ 7,(@3Q2/GM)"? is equal to the time-
scale on which it can radiate it away ~ 7,. For an accretion luminosity of L, ~ 10%erg/s,
we find 7, ~ 108yr and, from Table 1, the equilibrium rotation period is ~ 1% ms. The
fastest growing mode has /2 ~ 10. In this situation the star radiates gravitational radiation
with a luminosity Lg ~ (*Q%/GM)"2L, ~ 3 x 10¥7erg/s at a frequency of ~ 6 x 10*Hz.
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Appendix: generalization to other wave fields

We have calculated the growth rate for the case of scalar gravity. The procedure can be
generalized to other wave fields including general relativity. The algebra is tedious and we
just present the results, which will be seen to be physically reasonable.

It turns out that the expression for the growth rate can be generalized to the form

vy =— lim [YU]/{24 * 6o/— C/A + B*/44%)} (A.1)
70

where U is the total energy in waves. In the case of general relativity we write the metric

tensor

8o = Nag t Hap
where

Bog =hSH + g,
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We also choose the gauge so that

3/ax* (™ h,g) = 0

where

Mo = Mok — %o hig,

(see, e.g. Weinberg 1972).
Then the gravitational wave energy can be written (Misner, Thorne & Wheeler 1973)

2

z [ Apg 121PP 099 — %5 | Bipg P9 17) dr

64 G
and thus
Y. [1epg PP 0% — | BpgnP9 17 d7 - 0o c?
7= m +321G A~ C/A + BYJ4A>
The ﬁpq satisfy the equations
V2h,, +0%h,, = 1—6-;59 Spc-

The difficulty of non-linearity now manifests itself by the fact that the Sy contains the
h,. However, the lowest order contribution to each Sp« value inside the light cylinder can
be evaluated as: (7,7 =1-3)

Seo=p"; So;=(ovilc)
viv;il o' 1 3¢ 0 %29 71
S,-,-=[M] +2s [ LA ° 1+

21 27 anGerlox ad ax"axf] 2 G 2

where ¢ is the standard Newtonian potential which satisfies Poisson’s equation.

Each of the hpK contributes an integral to the growth rate similar to the scalar gravity
case. In fact if we ignore all hp,( but Ago we get precisely the scalar gravity result. The other
hpk contribute terms of comparable magnitude. This can be seen both by examining the
gauge condition and by inspecting the resulting integrals directly. We thus expect the only
difference between this case and the scalar gravity case to be reflected in a numerical coeffi-
cient.

[6V?0 + %(Ve)']
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