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An analysis is presented of the emission of gravitational waves by a star in nonradial
pulsation. This analysis, rigorous to first order in the pulsation amplitude and to all
orders in G and ¢, exhibits damping of the pulsation as the waves are emitted (gravita-

tional radiation reaction).

There is a long-standing uncertainty and con-
troversy in general relativity over radiation
damping: A number of people have analyzed the
emission of gravitational waves by binary star
systems and have reached varying conclusions
about the amount of energy radiated and the ef-
fect of the radiation on the emitting bodies. Some
analyses predict damping of the orbital motion?;
others predict “antidamping”?; and still others
predict that the orbital motion is unaffected.®*
Even those analyses which agree qualitatively
usually disagree quantitatively. Why is there
such great discrepancy? Because of the follow-
ing: (i) The analyses make use of approximation
methods (usually involving 6-function idealiza-
tions of the stars) which are of uncertain validity;
(ii) the calculations are enormously complicated
and are full of potential sources of error; (iii) the
final mathematical answers emerge in such com-
plicated form that their physical meaning is diffi-
cult to discern.

The purpose of this Letter is to present an anal-
ysis of gravitational radiation damping which is
much simpler and more reliable than previous
analyses. The new analysis differs from previ-
ous work in these major respects: (i) Instead of
studying binary star systems where radiation
damping is extremely small, it treats a neutron
star in nonradial pulsation where radiation damp-
ing is extremely large; (ii) instead of idealizing
the radiating star as a 6-function singularity and
working solely with the vacuum field equations,
it employs a realistic stellar model and solves
simultaneously for the fluid motions, the near-
zone oscillations in the gravitational field, and
the far-zone gravitational waves; (iii) instead of
doing a perturbation expansion about flat, empty
space-time, it expands about the strongly curved
space-time of the fully relativistic, unperturbed
stellar model; (iv) the approximation methods on
which it relies are not complex and uncertain,
rather they are the well-understood methods by
which one studies the quantum mechanical leak-
age of a particle out of a potential well.
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The main result of the analysis is a solution
for the nonradial oscillations of a star, valid to
first order in the amplitude, in which gravitation-
al waves flow out radially, in which the fluid mo-
tions exhibit gradual damping (5% « cos(at)e~t/T),
and in which the power carried by the waves and
the rate of decrease of pulsation energy, calcu-
lated independently, are found to be equal.

The equations of motion for a star in nonradial
pulsation have been worked out recently by Thorne
and Campolattaro (paper I)® and extended by Price
and Thorne (paper II).® For pulsations of spheri-
cal harmonic indices ! and m and parity 7= (~1)l,
the gravitational field takes the form
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This line element corresponds to a particular,
uniquely defined choice of coordinates. Here v
and A are the functions of » which characterize
the unperturbed star; le(é’, ¢) is the ordinary
scalar spherical harmonic; and H,, H,, H, K are
functions of ¥ and ¢ which describe the perturba-
tion in the gravitational field. The stellar pulsa-
tion is described not only by the gravitational am-
plitudes H,, H,, H,, and K, but also by amplitudes
W and V for the radial and tangential displace-
ments of the fluid
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Equations (1) and (2) and the analysis which fol-
lows are accurate to first order in the amplitudes
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Of the six perturbation functions only K, W, V
represent true dynamical degrees of freedom.
H,, H, H, are fixed in terms of K, W, V by certain
initial-value equations. The stellar pulsation and
the emission of gravitational waves are governed
by hyperbolic differential equations (the perturbed,
dynamical Einstein field equations) of the form

(@%/at2\{k, W, Vi=2{K, W, V}, (3)

plus certain boundary conditions. Here £ is a
particular third-order, linear differential opera-
tor in 7 [cf. paper I, Eq. (14); also paper II, Eq.
(6a)].

By a combination of analytical and numerical
techniques, the equations of motion (3) have been
solved for several realistic models of neutron
stars. The method of analysis is similar to, but
differs slightly from, the method proposed in pa-
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plex normal modes
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The complex eigenfunctions satisfy the eigenvalue
equation

£{Kw, W, Vw}=--w2{Kw, W, Vw}. (5)

Far from the star (radiation zone) the eigensolu-
tion represents a mixture of ingoing and outgoing
gravitational waves
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which takes the alternative form, in a better be-
haved coordinate system (“radiation gauge”; cf.
paper II)
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(all other physical components of hwuv) =0(1/7%) or smaller. (7)
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Here M is the star’s mass in “geometrized units
(¢c=G=1). This approximates at large 7 the ca-
nonical form for a weak gravitational wave in flat
space.”

We concentrate attention on the “poles of the
S matrix”—i.e., on those complex frequencies w
=0+i/7 at which the ingoing amplitude C(I) van-
ishes. For realistic stellar models these poles
lie very close to the real frequency axis (see end
of this paper for a concrete example). Conse-
quently, on the real frequency axis near a partic-
ular pole one has

D= aeP(w-o-i/7),
iB

0)_ .0

cO) ¢l *=qe ' (w-0+i/T). (8)

(The latter equality results from the fact that

real w implies real K ,.) Here @ and 8 are real
constants which characterize the residue at the
pole of the S matrix. By combining Eqs. (6) and

l (8), one obtains

K =2a[(w-0)2+1/72]V2

X Re expliw[r + 2M In(r -2M)]
+i(B-zm) +itan " (w-0)7]}, (9)

which is valid far from the star (* >M and »
>R) in physical space and near the pole (lw

—0| <0) on the real frequency axis of frequency
space. Equation (9) assumes that near the star’s
center the fluid amplitude has been normalized
to some fixed value, independent of w.

The eigenfunctions (7), (9) represent analytical-
ly the amplitude of a standing gravitational wave
in a spherical cavity of infinite radius with the
star at its center, for a real frequency w near the
star’s resonant frequency 0. One calculates the
eigenfunctions for the corresponding fluid motion
and for the near-zone gravitational field by inte-
grating numerically the eigenequations (5).
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One’s greatest interest is not in these idealized
standing-wave modes, but in realistic pulsations
with purely outgoing waves. As in quantum theo-
ry, so also here, one builds the realistic solu-
tions by a suitable superposition of standing-
wave modes with real frequencies near the pole
of the S matrix lw-0l| <«o. The required super-
position can be constructed analytically inside
the star and in the radiation zone, but must be
constructed numerically in the near-field zone.
The superposition, suitably constructed (see Ap-
pendix C of paper II), yields a solution of Ein-
stein’s equations which represents the following:

At time =0 the star is set pulsating by some
unspecified agent. The pulsation is confined ini-
tially to the star’s interior and to the near zone;
in the radiation zone the gravitational field is
that of Schwarzschild augmented, perhaps, by a
small amount of angular momentum due to rota-
tional motions of the fluid. After the time /=0
gravitational waves flow out from the near zone
into the radiation zone, and the star’s pulsations
begin to damp. Behind the wave front, after the
decay of a few transients, the stellar pulsations
and gravitational waves are described by the
real part of the complex normal mode at the pole
of the S matrix [real part of Egs. (4), (6), and (7)
with w=0+i/7and C)=0]. Consequently, the
angular frequency of pulsation of the star as mea-
sured by a distant observer is 0, the real part of
the frequency at the pole of the S matrix, and the
damping rate is 1/7, the complex part of that fre-
quency.

The location of the poles of the S matrix have
been calculated numerically for the quadrupole
pulsation of several realistic neutron-star mod-
els. For all models examined the poles lie in
the upper half of the complex frequency plane (7
>0), corresponding to damping rather than anti-
damping. The pulsation periods T=27/0 are
typically between 10™* and 1072 sec; and the
damping times 7 are typically between 0.3 and 3
sec. The energies radiated for initial amplitudes
(16%1/7) of 0.1 are roughly 10 erg (~0.1% of the
rest mass of the star). These results are in
qualitative agreement with calculations based on
linearized general relativity®—which calculations
we had no a priori right to trust.

The method used to locate the poles of the S
matrix and obtain the above results involved a
calculation of the standing-wave eigenfunctions
[numerical integration of Eq. (5) for real w], fol-
lowed by a comparison of Eq. (9) with the resul-
tant gravitational wave amplitude K. As pre-
dicted by Eq. (9), K, showed a number of reso-
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nances corresponding to poles of the S matrix.
The resonances are exhibited most clearly in
terms of the ratio

EM/E W const/[(w-0)2+ (1/7)?],

where Eyy is the energy in one wavelength of the
standing gravitational waves far from the star,
as diagnosed from Isaacson’s® stress-energy
tensor, and Ep; is the pulsation energy of the
star. (See Fig. 1 for an example.) The resonant
frequency was o, and the resonance half-width
was 1/17l. The sign of 7 and also checks on the
values of 0 and | 7| were obtained by examining
the resonant change with w of the phase of K,
(Eq. 9)].

A check on the accuracy of the numerical inte-
grations and on the entire formulation of the
problem was provided by energy conservation
—an aspect of general relativity which played no
other role in the analysis: For a realistic pulsa-
tion formed by superposing standing-wave modes
with w =~ 0, the energy carried off by the gravita-
tional waves was compared with the energy of
pulsation of the fluid. It was found that energy is
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FIG. 1. Resonances in the quadrupole (=2) standing-
wave normal modes for a H-W -W neutron star [for a
discussion of the H-W-W neutron-star models, see
B. K. Harrison, K. S. Thorne, M. Wakano, and J. A,
Wheeler, Gravitational Theory and Gravitational Col-
lapse (University of Chicago Press, Chicago, Il.,
1965)] of central density 6x10%5 g/cm?, Corresponding
to each value of the angular frequency w there are four
independent standing-wave modes (m=-2, =1, 0, +1,
+2). Plotted as a function of w is the ratio of the total
pulsation energy Ep; of the matter in the star to the en-
ergy Ep in one wavelength of the standing gravitation-
al waves. This ratio is the same for all four modes
(degeneracy in m). The energy ratio shows sharp res-
onances at frequencies near the (complex) poles of the
S matrix [cf. Eq. (10)]. This figure is based on numer-
ical computations of paper III (Ref, 11).
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conserved at all times in this realistic problem
if and only if the constant appearing in formula
(10) for the standing-wave modes is equal to 0/
4n 7. Happily, the numerical calculations con-

firm this equality (cf. Fig. 1).

The detailed results of the numerical work and
a discussion of its astrophysical implications
will be presented elsewhere (paper III'?).

Much of the analytic work reported here was
carried out in collaboration with Campolattaro
(paper I) and Price (paper II). The analysis was
also influenced strongly by discussions with
S. Chandrasekhar, C. W. Misner, and J. A.
Wheeler. B. A. Zimmerman provided valuable
assistance with the numerical calculations. Part
of the work was performed while I was participat-
ing in the International Research Group in Rela-
tivistic Astrophysics at the Institut d’Astrophys-
ique in Paris, France (summer 1967). I thank
Professor Evry Schatzman for his kind hospitality
there.
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We show that the resonance-dominance approximation for the low-energy part of finite-
energy sum rules for the C =+1,I =0 ¢t-channel 7N and KN elastic amplitudes reproduces
correctly properties of the P’ trajectory and residue functions. The Pomeranchukon is
fully accounted for by the low-energy background. The Gell-Mann ghost-eliminating
mechanism is favored for the P’ trajectory.

Finite-energy sum rules! (FESR) enable one to
relate the phenomenological Regge description of
high-energy scattering amplitudes to the proper-
ties of low-energy resonances or background am-
plitudes. The resonance-dominance approxima-
tion for the low-energy region has been success-
ful in computing various properties of trajecto-
ries other than the Pomeranchukon?; while in the
case of C=+1,I=0 {-channel amplitudes it is dif-
ficult to separate the contributions of the P and

P’ trajectories in a straightforward manner. It
was recently proposed® that this difficulty can be
removed if we assume that the Pomeranchukon

is mostly “built” (in the FESR sense) from the
nonresonating “background” part of the low-ener-
gy amplitude while all other “ordinary” trajec-
tories, including P’, are mainly generated by

the low-energy resonances and can be appropri-
ately analyzed in terms of the resonance-domi-
nance approximation.* This hypothesis has al-
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