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Gravitational Radiation from a Kerr Black Hole. I
—— Formulation and a Method for Numerical Analysis ——
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A class of new inhomogeneous equations governing gravitational perturbations of the Kerr
geometry is presented. It is shown that, contrary to the case of the Teukolsky equation, the
perturbation equations have short-range potential and no divergent source terms for large
distance. Using one of such equations which seems to be the simplest, we have computed the
spectrum and the energy of gravitational radiation induced by a test particle of mass y¢ falling
along the z-axis into a Kerr black hole of mass M(> ) and angular momentum Ma(a< M). It
is found that the total energy radiated is 0.0170xc® (¢/M) when @=0.99M, which is 1.65 times
larger than that when =0, i.e., the Schwarzschild case.’

§1. Introduction

Gravitational perturbations of the Schwarzschild and the Kerr black holes
have been one of the most important subjects for study; since their knowledge
may give us essential information about the physics of black holes. In the case
of the Schwarzschild geometry, following the Regge-Wheeler formalism,”
Zerilli¥ gave the mathematical foundations for the problem including the source
of perturbations. Using his formalism, the gravitational radiation induced by a
test particle or by a dust shell falling into a Schwarzschild black hole has been
studied extensively.®?¥

In the case of the Kerr geometry, Teukolsky® showed that the perturbation
equations for Newman-Penrose quantities are decoupled and separable, which are
finally reduced to the unique radial equation (called the Teukolsky equation).
Detweiler® examined the energy emitted by test particles in circular orbits, by
solving the Teukolsky equation. However, for a test particle of a generic
trajectory in the Kerr geometry, little research has been published; the main
reason is that the Teukolsky equation in its original form has a long-range
potential and a divergent source function for large distance. Chandrasekhar and
Detweiler,” and Detweiler? succeeded in giving several transformations of a
radial wave function which bring the Teukolsky equation into the form of a wave
equation with short-range potential, but they did not make the source function
short-range, probably because their interests are mainly in the homogeneous
equation. Unless the source is short-range, it is impossible in general to compute

the spectrum and the energy induced by a test particle in the actual numerical -
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Gravitational Radiation from a Kerr Black Hole. 1 1789

calculations.
Recently we have shown that, in the case of the Schwarzschild geometry,

the inhomogeneous Bardeen-Press(-Teukolsky) equation can be put into the
form of a wave equation with the Regge-Wheeler potential and with short-range

source.”
In this paper, at first we generalize the above result to the case of the Kerr
geometry and present a class of transformations which bring the (s=—2) in-

homogeneous Teukolsky equation into the form similar to the Regge-Wheeler |

equation. Second, using one of the new perturbation equations which seems to
be the simplest, we compute the spectrum and the energy of radiation induced by
a test particle of mass u falling along the z-axis into a Kerr black hole of mass
M(C>p) and angular momentum Ma(a<M).

In § 2, we derive the desired class of transformations and present the form of
the resulting equations. The proof for the short-rangeness of the equations
belonging to this class is given in Appendix A. One of the new perturbation
equations which seems to be the simplest is explicitly given in Appendix B.

In § 3, we discuss the source term due to the presence of a test particle and
give the explicit form of it in the case of a particle falling straightly along the
Z-axis.

In § 4, solving the perturbation equation given in Appendix B with the source
term given in § 3, we present the spectrum and the energy of radiation for various
values of @. A method used to construct the s=—2 spin-weighted spheroidal
harmonics and to find their eigenvalues is given in Appendix C. A finite differ-
ence method for solving the radial equation is given in Appendix D.

§ 2. Transformation of the Teukolsky equation

As shown by Teukolsky,” the decoupled perturbation equations for the Kerr
geometry (with mass M and angular momentum aM (a<M)) are separable and
the radial (master) equation of spin s (s=0, —1, —2) is given by™

g gt B)_ yig=—.7T, (2-1)
where
v =lBY  SSKA_piipry 2 (2:2)
with
K=(r*+d)w—am, Ad=r*—2Mr+a*,

*) We use the units ¢= G =1 in this paper.
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1790 M. Sasaki and T. Nakamura

and m and <A are the separation constants arising from the azimuthal function
'™ and the angular eigenfunction sZ8%%(8, ¢) (the spin-weighted spheroidal
harmonic), respectively. A prime represents a derivative with respect to 7.
The gravitational perturbations are described by the equation with s=—2 and
the form of the source s T for this case will appear in § 3. Here we only note that
for a test particle falling from infinity with zero velocity, s 7~ »"? (or ~ »*’* when
the orbital angular momentum is vanishing) for »~ +co. This fact, together
with the long-range nature of sV, is the origin of difficulty.

Detweiler succeeded in giving a transformation of the s=—2 Teukolsky
equation, Eq. (2-1), into a similar form with a short-range (real) potential,”

2 d < 1 dxd >_ — .
A4 AV Ua(¥)xa Ty, (2-3)
where xa is related to R™ and dR/dr by

xd:ad(r)RJrﬁ‘Lz”—)%, (2-4)

in terms of certain functions a« and B«. Unfortunately, however, not only that
the new potential derived by him does not reduce to the Regge-Wheeler (or

Zerilli) potential in the limit ¢~ 0, but also the new source behaves worse than the

original source at »~ 1o,

In this section, we derive a class of transformations of R in which a new
equation, even in the presence of source, is of short-range nature and its potential
reduces to the Regge-Wheeler potential for a=0 (i.e., Schwarzschild limit).

Let us first consider the case when source is absent, so that R satisfies the
equation

a(Lr)-vr=0. (2+5)

The general transformation of R which preserves the form of the linear wave
equation is given by '

x:a(r)R+%R', (2-6)

where @ and B are arbitrary functions. By taking the first and second deriva-
tives of Eq. (2-6) with respect to » and using Eq. (2-5) one finds that x satisfies
the equation

A2<%x’>’~AFx’— Ur=0, (2-7)

*) Hereafter we consider only the case s=—2 and omit the suffix s in every quantity.
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F=L
Y
oo ) o)

= a(va/ +%>——§<a’ +2‘,§2~ V).

As usually done, it is useful to introduce a new function X,

Vv

X= 7 ,

and a new radial coordinate 7*,

2 2
dr="12 4

Then, Eq. (2:7) is rewritten as

where

with

|
2
Zr{g_g Z’,ig ~Ux=0,
cr . AF
j*72+a2y
g7 44U 2, dG AGF
U_(7’2+02)2+G+d7’* r*+a?

4’ 74}

G=- 7’2+a2+(72+a2)2 :

1791

(2-8a)

(2-8b)

(2-8¢c)

(2-9)

(2-10)

(2-11)

(2-12a)

(2-12b)

(2-12¢)

Note that, since »* varies from —c0 to +o° when 7 varies from the horizon (»
=y, =M-+v M?—a*) to the infinity (»=+o0), the short-rangeness of Eq. (2-11)
implies the condition & = O(#*™*) and ‘U = (iK/(7*+ a*))*+ O(#*™ ") (#>2) when
r*— too; if this condition is guaranteed, the asymptotic forms of the solutions
of Eq. (2-11) become

exp(* iwr™) for »*— +o0
Xoc[

exp(i z'(a)— 2742 )r*) for »*— —co |

Now we impose the conditions that Eq. (2-11) should be of short-range nature
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1792 M. Sasaki and T. Nakamura

and should reduce to the Regge-Wheeler equation in the limit ¢—0. For this
purpose, consider a transformation of the form
A [ A7) -
X gh ]— h]' 7’2+02 y (2 13)

where J.=(d/dr)*i(K/4) and f, g and A are unspecified functions of r at the
moment. Equation (2-13) reduces to the transformation derived by Chandra-
sekhar,'” which gives the Regge-Wheeler equation, if f— {A(A+2)—12:iwM}}, ¢
—const and %~—const when 2— 0. (Actually the value of f is irrelevant; it should
become a constant merely as in the cases of g and 4.) By equating Egs. (2-6) and
(2-13) and using Eq. (2-5), the functions @ and 8 are expressed in terms of f, g
and % as

=B [y ()] )

= fao , (2-14a)
—oazp2 [ 1 dg 1, ( _gh
B=fANr"+a ){Ag -< rz+a2>+ghj_< rz+a2)}
= fbo (2-14b)
which, by a direct calculation, lead to
_ —iK . A+ a?) ( , ) .
@ ="z ot 3iK +A+ ST AL ( -‘L~72+a,) nY (2-15a)
Y L AP+ E . RN .
,Bo—d{ 2ik + 4+ 4 \(72+az)2) } (2-15b)

It is now straightforward though a bit tedious to show that the short-range
condition imposed on & and ‘U in Eq. (2-11) is satisfied, provided that f, g and
h are regular functions with no zero-points and #F=const+ O{(» '), ¢ =const
+ O(»7?) and A=const+ O(#?) when »— +oc0 (y*— +0o0) and are O(1) when »—
v+ (#*— —0o0). The proof is given in Appendix A.

Thus, there is a tremendous freedom in the choice of the functions f, g and
h. However, it seems that either of the following choices; (a) #=g= h=const,
or (b) f=h=const and g =(*+ a%)/#*, is simple enough for the actual numerical
use. As an example, the explicit forms of & and ‘U for the choice (b) are given
in Appendix B.

Now we consider the case when source is present. In order to incorporate
this case, we first note that the inverse transformation of Eq. (2:6) in case of the
homogeneous equation is given by

R=%{<a +%—>x—§x'}. (2’- 16)
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Second, we refer to the previous result of the Schwarzschild case.¥ There we
assumed that R is related to x by

AZ 2
R:7]+]+<—2—x>, (2-17)
and that the equation for x has the Regge-Wheeler form*
AZ(%X’>,+(WZ_U1)X:S- (2-18)
In the absence of source, it is easy to show that Eq. (2-17) is just Eq. (2-16) for

a=10 with the choice f={A(A+2)—12:iwM} " and g=h=1for @ and 8. We note
that y=f in this case. Then, in the presence of source, Eq. (2:17) can be written

in the form
(o e e,

where S is related to T by
AZ 2
r=-4:1.7(%55). (2-20)

As a natural generalization of Egs. (2-18) and (2-19) to the Kerr case, we
adopt the assumption that x satisfies the equation

2 Gx Y —aFx - Uz=5, (2:21)
and that R is related to x and S by
R=L(a+£ )Ly + s} (2-22)

with @ and g given by Egs. (2-14). Inserting Eq. (2-22) into Eq. (2-1) and using
Eq. (2-21), we obtain

) e RN

At the first glance, it is not clear yet whether Eq. (2:23) can be expressed as
simple as by Eq. (2:20) so that S is well-behaved. However if one notes that ao
and B of Egs. (2+14) can be reexpressed as

a= V-2 ot s (TN A ()]
(2-24a)

*) In Ref. 9), we expressed this equation in the form of Eq. (2-11) with & =0 andl/ being the Regge-
Wheeler potential.
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1794 M. Sasaki and T. Nakamura

- i r’+a®’\ g (72+ a .
fo= =g o )+ 5 (), (2-24b)
Eq. (2-23) reduces to
_ (r*+a*) /S )] .
r=—# 1 (555 (2-25)
This is a desirable form. Introducing a new function W defined by
(r*+a>)fs - (K ) .
W=t ex p(zfd dr), (2-26)

we can simplify Eq. (2-25) further to

(WW'y =~ }" Texp( fddr) (2-27)

This equation can be integrated to find W with the correct boundary condition by
the technique developed in Ref. 9). We note that in general W ~ »"% at »~ +co.

Finally, changing the function x and the coordinate » into X and #*, respec-
tively, as defined by Egs. (2-9) and (2-10), we arrive at an equation of the form
manageable for numerical use,*

d ,,2 J “UX=%, (2-28)
where % is defined by
y:(—ﬁ%w eXD<—if§dr>. (2-29)

Because of the factor 4 and the fact W ~ ' at »~ + o0, it is apparent that. % is
indeed short-range.

§3. The source term induced by a test particle
falling along the z-axis

The general form of the source T in the Teukolsky equation is shown in a
book by Breuer'” by means of the Geroch-Held-Penrose (GHP) formalism.'? It
is*®

T=4fd!2dtp‘5(ﬁ)“(Bz'+B N\Z82(0, §) e (3-1)

*) It may be worthwhile to note that Eq. (2:28) can be written in the form (d%/dy*— U)X~y
where d@7=(2(7*+&)/d)dr,-U=Ujy* and =% /y*. From numerical analysis, however, adopting the
coordinate 7 leads only to more complication.

**) In this section, a prime denotes a GHP operation but not a derivative. A bar denotes complex
conjugation.
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where
B =(8" =47 —F)(V»' —20")T,i— (8 — T) Tun}, (3-2a)
By =(p —40' =0’ N(3' =27)T,y—( V' —0") Ty}, (3-2b)

and Z% (6, ¢) is a spheroidal harmonic of spin weight s=—2. Tun, T,,; and
T = are the tetrad components of the source energy momentum tensor and their
GHP types are (p, g)=(—2,2), (—2,0) and (—2, 2), respectively. p, o', r and 7’
are given by

p=—(r—iacos )", o' =—p°pd/2,

r=1iapp sin 6/v2, T'=—{ap*sin 8/vV2 . (3:3)

The operators P’ and 0’, when operating on a scalar of type (p, q), are given by
b =L2 (74 a)o— 20, + ade+ LLLL ~ A po+a0) ], (3-4a)

el 1 p—gq
3’ = ,/Q[ Za sin 60¢+ 0 sin08’+ 2

and are of type (—1, —1) and (—1, 1), respectively.
The energy momentum tensor of a test particle of mass £(< M) is given by

P v
T””(x):#fdr%%8“’(x—z(r))

cot B+ ppia sin 6’], (3-4b)

= # v
= ] da— A2 51— 1(r)6P(2—2(r), (3-5)
where t is the proper time of the particle and ¢t=#(») and £=.2(r) represent a
geodesic trajectory. In principle, as in Ref. 9), one may expand the appropriate
tetrad components of Eq. (3+5) in terms of spheroidal harmonics of their respec-
tive spin weights and substitute them into Eq. (3-1) through Egs. (3-2) in order to
find the explicit expression of 7 for generic trajectories of the particle. How-
ever, in this paper, we only consider the simplest case in which a test particle is
falling -straightly along the z-axis.

First, note that the integrand of Eq. (3-1) contains no functions of # and ¢
except €™ and their delta functions. Thus, the derivative operators 9: and
0s appearing in the operator 3" (Eq. (3-4b)) may be replaced by —iw and im,
respectively, and 8~ becomes

6’:—%Is+pr', (3+6)

where s=(p—q)/2 and L s is defined by
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1796 M. Sasaki and T. Nakamura

Iszao-i—sir’:ze-”awsin f+scot . (3-7)

This operator .L's (as well as £’ s* defined by Eq. (3-12) below) is introduced by
Teukolsky and Press.’® We then have

(3" =47 =T N3 — T) Tun
=L L1~ (To+p)iasin Olo[Lo—(20+5)iasin O] Ton . (3-8)
Furthermore, since pia sin 8 =p'0s0, the r.h.s. of Eq. (3-8) reduces to '
£ r[ ksG] (3-9)
Inserting this into Eq. (3-1) gives
=2 fdQite 2% L | e L5 T)] | (310)

where indices of the spheroidal harmonic are supressed for simplicity. Perform-
ing integrations by parts twice with respect to dd, we obtain

. = + 3 _
T= —Zfa'.the'“"(% T,.,,>,[’l [-p%.[’f(%z)] , (3-11)
where ./'s* is defined by'?
,fs*=aa—si;na+aw sin 8+ scot 4. (3-12)

The tetrad component Tn» is given by

Toan= T’“’n;. Ny

:“ldi/‘jm( ‘ZZ; "")25("W”a‘z’(g—mr)), (3-13)

where the components of n. are
_Po (a1 -2
ne="5-(—4, =(p#)", 0, da sin*0), (3-14)

in the usual Boyer-Lindquist coordinates. Up to now, Eq. (3:11) with Tu» given
by Eq. (3:13) is general except that the source T includes only the term con-
tributed by Tna.

Now we specialize Eq. (3-11). In the case of the straight trajectory along z-
axis, one has =0 and Trr simplifies to

_driael A cat drt Vs, seg- .
Ton =l (L DS (1= 132 = 2(r)),  (315)
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where the fact pg =|7—ia| *=(7*+a*)'isused. Then after a simple calculation
by using some properties of spin-weighted spheroidal harmonics (see Appendix
C), we obtain "

T —%C‘% (75‘_%)2(7’_261) <Zﬁ> e’ (3-16)
where
- C=[LY L2 Z]oom=0=[8Z/sin*Blo=0,m=o0
and

v(r)=t(r)++*.

Inserting Eq. (3-16) into Eq. (2-27) leads to the equation

Hom) LGB e

This equation can be integrated to give

W= lfc { (7’ zwv(r)_+_f de—4 ( (5)) iwv(g)

Giw Un(r) € h(&)
Za)f dé.h(é)f a7 d”( (”)dv(”)> zmv(rl)}, (3'18)
where the function y(#) is defined by
1 dr|{r—1ia
v(r)= 2g(7) ’( r+m) (3-19)

The boundary condition employed in Eq. (3-18) arises from the same argument
given in Ref. 9); i.e., that the solution X of Eq. (2-28) satisfies the outgoing wave
condition at 7*— +co should lead to the correct (outgoing wave) boundary
condition of R (for details, see Ref. 9)).

The integral (3-18) is well-defined and when it is inserted into Eq. (2-29), we
easily find that the new source function.¥ is sufficiently short-range.

§4. Numerical results

In this section, we use the perturbation equation with the choice of & and‘lJ
given in Appendix B. The source term is given by Eqs. (2-29) and (3-18). A
method of determining A: and Z&%”(6, ¢) is given in Appendix C. In addition to
c= G=1, we normalize the mass unit as M=1. We assume the test particle has
zero-velocity at infinity. Then its geodesic trajectory is determined by the
equations
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1798 M. Sasaki and T. Nakamura

AL~ — J2r] (P4 ) (4-1)

and

%Z(rz—kaz)/d. (4-2)

Since the perturbation is axi-symmetric in the present case, we have m =0, and
the relevant radial equation becomes

[d*z

This should be solved under the boundary condition;

ek, @, a, ) | Xi=F 10, 0, 0, 77). (4°3)

Mw)e ™" for »*— —co

XY w)e™” for »*— 400 .

’

X, r*>:[ (4-4)

Once X is known, the radial function (R:(w, »*)) of the Teukolsky equation for
y*—o0 is found as

10 X?* () 3 i
[/h(/lz + 2) —~12iw— 126126()2]

Rz(a), 7’*): -

_R?ut(a))ra iwr* . (4.5)

Then the two independent polarization modes of the metric, 4+ and /i, are given
by

zcu(r —)

h++ihx:—— 2ﬂf dw 3} SE(0) R (w), (4-6)

where S7#“(8) is a spheroidal function whose definition is given in Appendix C.
We define the 2‘-pole components of 4+ and hx by

he=VET [ do 3 1t (@)-2 Yio(8) 70
and
Ioe=v27 [ deo 3 1o @)z Yol 0) 7", (4°7)

where - Yio(8) are s=—2 spin weighted spherical harmonics. The energy
spectrum for each mode of polarization becomes

dE,= 4‘/ dww? Ep{lh+l(w)lz+|h+l(*w)!2} f dw 2( s )t

and
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aE =T [ dwe? SIhL@)P i~ o)) = [Cao(4E2) )
Only with this definition of the 2‘-pole components, the total energy spectrum
(dE*/dw). agrees with the sum of two modes, (dE./dw).+(dEx/dw): for each
1.¥ We have solved Eq. (4-3) under the boundary condition of Eq. (4-4) by using
a finite difference method, details of which is given in Appendix D. In the present
numerical analysis, we compute up to /=6, which is sufficient to converge the
summation in Eq. (4-6). We have computed %4+ and %« for =0, 0.35, 0.5, 0.7, 0.85
and 0.99. For each value of ¢ and /, @ ranges from 0.02 to 1.4 with dw=10.02.
In Fig. 1, we show the total energy spectrum ((dE*"/dw).) for a=0.99 by solid
lines and that for ¢=0 by dashed lines. For the /=2 component, the energy
spectrum peaks at @=0.37 for a=0.99, while at w=0.3 for 4=0. This is due to
the fact that the resonant frequency increases with the increase of «.!¥ A local
maximum is present at @=10.65 for ¢=0.99, which is absent for ¢=0. This peak
comes from the fact that when aw+0, [S’_2Yr0dQ2+0evenif [+ For the
[ =3 and 4 components, a rather broad plateau appears near respective maxima

S5/ (95 )/u2

107 107
102} 1072}
1073 1031
104} §

104}

10750 7L

MY

106 - 10©
0. 0.2 04 0.6 0.8 w o. 0.2 04 0.6 0.8 w
Fig. 1. The total energy spectra for 2‘-poles (/ Fig. 2. The 2‘-pole energy spectra for + mode
=2, 3,4). Solid and dashed lines correspond (solid lines) and x mode (dashed lines) when
to the 2=0.99 and ¢=0 cases, respectively. a=0.99.

*) Had we chosen the definition of the 2%-pole components by replacing -» Yio(8) with S&(8) in
Egs. (4:7), not only this statement would fail but also the very meaning of multipole moments would
be altered. )
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for ¢=0.99 and their spectra are lower than those of a=0 for small w. The
second peak for /=3 of 2=0.99 appears due to the same reason as that for /=2
of a=0.99 '

In Fig. 2, we show the 2‘-pole (/=2, 3, 4) energy spectra of + and X modes for
a=0.99 by solid and dashed lines, respectively. For /=2, the energy spectra of
both + and X modes peak at almost the same w. However, for /=3 and 4, the
energy spectra of X mode peak at considerably lower @ than those of + mode,
though peaks themselves are rather broad.

In Fig. 3, we show the relative enhancement in the total energy radiated as a
function of a for each /. Each curve can be well fitted by a quadratic function
of . Enhancement of the radiation decreases for each a with the increase of /.
When 2=0.99, the total radiation energy is 1.65 times larger than that when ¢=0
(i.e., Schwarzschild case).

For the Schwarzschild case, Davis et al.¥ found that the total energy con-
tributed by each multipole falls off quickly with / obeying the empirical relation
(dE)ixe . In Fig. 4, we show the [-dependence of radiation energy in each
mode of polarization for various values of 4. It is clear that this relation holds
irrespective of @ and of polarization.

The reason for this /-dependence is as follows: Take the ¢=0.99 case, for

JE/E)y g1
JE/p?

10‘2[

06

04|
103}
02}
0%
T T T T a
0. 02 04 0.6 0.8 0.99
Fig. 3. The enhancement of each 2‘-pole radiation 105
(I=2,3,-,6)as a function of « The ordinate
is (4E*(a)/4E*(a=0)—1).
6|
Fig. 4. The energy radiated in each mode of polariza- 10
tion and in each multipole for different values of a.
Circles and triangles represent the + mode for a
=0.99 and a=0, respectively. Squares and loz- 167 ) ) ) ]
6

enges represent the rmode for@=0.99 and ¢=0.35, 2 3 4 5
respectively.
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example. Then (dE"'/dw). peaks at frequency given approximately by

w*=0.19/, (4-9)
which is near the resonant frequency.'® In Figs. 5(a) and (b), we show .%: and
Re(*U +@*) when w=w!™* for /=2 and 4, respectively.” From Figs. 5(a) and
(b), it is found that ¥ for —20<7*<20 can be expressed approximately as

max %

exp(iw?™* »*)
leC (7’*+2)2+25 . (4'10)

Let Xm(w, 7*) and Xou(w, »*) be the solutions of the homogeneous version of
Eq. (4:3) under the condition as
Xin(w, r*)oc g™ for »*— —co
and
Xout(w, r*)oc g for y*— +oco (4-11)

respectively.
Using Xin and Xout, we can express X{"(w) as

xe(w)e< [~ ar' i Xn(w, r) W, (4-12)
where
_ dXout dXin
W‘Xln d?’* Xout d?’* . (4'13)

18—\ _Re(+wd
"

L (@)

Fig. 5(a) The source term.%: and Re(-U + w?) (b) The same as (a) for /=4 of ¢=0.99.
when w= 7™ for /=2 of ¢=0.99. |.¥.|, Re(
%) and Im(.¥.) are normalized by the
maximum value of |.% . Re(U +w?) and
®* are normalized by the maximum value of
Re(‘U + w?).

*) 1t is found that Im(U) is negligibly small compared with Re(U + w?). It is also found that <F
is very small. Therefore, besides %, only Re(*U+ w?) plays an important role in the (JE).oc e~
relation.
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When o= o™, since w?*<Re(‘U +@?) for »*=0, Xin and Xou are expected to be
slowly varying functions near »*=—2 where | ¥.| takes appreciable values.
Therefore we may approximate Eq. (4°12) by

20 oo
X?"‘(a))oc_/_-zodr*fz%_/:wdr*jfloce—l ) (4-14)

This leads to ,
(dE); o< g™t . (4-15)

Thus, since the behavior of &: (Eq. (4-10)) is essential for deriving
Eq. (4-15), we find that the important determinant of the radiation is again the
phase factor of the source function as emphasized in Ref. 4), and we surely ex-
pect a different /-dependence for a different choice of sources.
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Appendix A

Here we show that the transformation defined by Egs. (2-14) implies the
short-rangeness of Eq. (2-11).

First we consider the function . From Eqgs. (2-8a), (2-8¢c) and (2-12a), it is
clear that, if 7 is regular and y =const+ O(#™ ') for »*—= +oo(y—o0) and y= O(1)
for »*—> —oco(r—ry), I satisfies the short-rangeness condition. In order to
examine the behavior of 7, we express @, and f of Egs. (2:-15) as

1K

&'o:A_“A‘B,

Bo=4B (A-1)
where A and B are defined by

A=3iK'+A+ 4P, (A-2a)

B=—2iK+4'+4Q (A-2b)

with
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Inserting Eqgs. (A-1) into the expression (2-8c) ef ¥ and using Eqgs. (A-2) and the
explicit form of V, one finds

y=f*7 with r=A’+AB —BA +B(BP—AQ). (A-3)

For »*— —oo (r— r4), it is apparent from Eq. (A-3) that y = O(1) if £, g and k are
0(1). For 7*— +oo (r— +0), a bit more work is necessary: If we assume ¢
and % are const+ O(772), P and @ become

P=6r"24 0(r™%), Q=—4r""+0(r?). (A-4)
Then we have
A=6iwr+A+6+ O(+™"),
A =6iw+ O(r?),
B=—2iwr*—2r+ O(1),
B'=—4iwr—2+ O(r™%). (A-5)

By substituting the expressions (A-4) and (A-5) into Eq. (A-3), it is easy to find
that yo=const+ O(#~'). Thus in addition to the condition for g and %, if f
=const+ O(»7*) one has y=const+ O(»").

Next, we consider the functionU. From Egs. (2+12), one easily sees that the
third and fourth terms in the r.h.s. of Eq. (2-12b) are already of short-range, and
the part of ‘U we have to analyze becomes

Urv=(4dU+47 ) +a*)2. (A-6)

Further, since

G )- o )4

4 f
A A+B’>
iK+4 +A( A%
:[ o(1) for #*— —oo | A
—wr*+ O(7r7%) for »*— +oo | (A7)

we find, from Egs. (2:-8b) and (A -6), that it is sufficient to examine the function
L'Uzz(AUrf'A,z)(7’2‘f‘az)“2, (A'Sa)

where

U= V+7),—<2a/+%) (A-8b)

Moreover, since
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Ai(Za/ +£>’—A—2<2aro +%>

B 4 Bo
L9 NN L 2(A+BY)
=i+ 4| (L) + (L 5+ HAE]
=0(1) for »*— *oo, (A-9)
the part of ‘U to be examined finally becomes
CU3:AU2(72+‘Z2)'2’ (A-10a)
where
Ay B A ,
= V+i (200+ A>+ i (A-10b)

Let us now eValuate Eq. (A-10b). Inserting Eq. (A-1) into Eq. (A-10b) and
vusing Eq. (A-2), we obtain

Up= V+4%)—+2B'+%(2A+B’—QB)'. (A-11)

Then, from the explicit form of V (Eq. (2-2)), Eq. (A+11) reads
_ UK)* , i1 ' ARY
V===~ +A+4+4'Q+4 2Q+B(2A+B QB)'{. (A-12)
From this expression for U, it is easy to see
. 2
Uv=YEY L 00y for rio oo, (A-13)

which in turn means
Us=UK)(#+ )2+ 0(d(r*+ a*)7?)
=K+ a2+ 0(r*72) for »*— toco . (A-14)

This completes the proof.

As a final remark, we note that if either B (Eq. (A+2b)) or 7o (Eq. (A-3)) has
a zero-point, the functions & and/or ‘U become singular. Concerning B, if one
chooses g and % to be real, a zero-point appears at a super-radiant mode (0<w
< am/2Mr+ and 0> > am/2Mr.), which may have some physical meaning. As
for 7, the position of zero-points (if they ever exist) is generally unknown.
However, since these singularities seem to appear for very special choices of a,
w, [ and m, we may not worry about them in practice.
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Appendix B
In this appendix, we present the functions & and“U with the following choice
of f, g and h;
f=h=1 and g=(r+a*)r2. (B-1)

In this case, the functions P and @ introduced in Eqs. (A-2) are given by P=67"2
and Q= —4r"", respectively, and we have

A=3iK' +A+64dr7?
B=—2iK+4 —4d4d+7". (B-2)
Then, from Eq. (A-3) we obtain
vo=cotcir'+cr?teritor?, (B-3)
where the constants ¢: (=0, 1, 2, 3, 4) are given by
Co=—12iMw+A(A+2)—12w( > w— am),
a=8i{3dw—A(d*w—am)},
2= —24iM(dPw— am)+12{ -2 i*w— am)?},

c3=24ia*(d’w— am)—24Md*

c1=124" . (B-4)
Since f=const, F' (Eq. (2-8a)) is given by
__10;:_ ‘6‘17’3"‘26‘27’2+3C37’+4C4
F= %o rlcor*+ar*+c2r®*+csr+cs) (B-5)
and U (Eq. (2-8b)) has the form
r2 7
U=U.—4 -—F{—z‘K+A'+L/II}B—)}, (B-6)
where Eq. (A-7) is used and U: (defined by Eq. (A-10b)) is written as
_(UK) 44" | 84 (a?w—
o=t Bt a4 B Haemam) | (B-7)

Finally, inserting Eq. (B+6) into Eq. (2-12b) and using Eq. (2-12¢) lead to the
expression

a7_ 4
U—(’,z+az)2(U2+Gl+E), (B'8)

where G: and Fi are given by
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2
61:_24"’2%02(74’—2A+‘%5>, (B-9a)
Flz—F{—inLd( rzjaﬁAgB )} (B-9b)

Thus, Egs. (2-12a) and (B-8), together with Eqs. (B+2), (B-5), (B+-7) and (B-9),
provide the functions & and ‘U, respectively, in the desirable forms.

Appendix C

In this appendix, we present a method of determining the eigenvalues and the
eigenfunctions of Eq. (C-1) below (the s= —2 spin weighted spheroidal harmo-
nics; Zf#(6, ¢)). Since we are concerned only with the axi-symmetric gravita-
tional perturbation in this paper, we restrict ourselves to discuss the case s=—2
and m=0. However, the method can be extended to a general case easily.

The function Z{%’ obeys the equation,

[si; 7 3%- sin 6—3%-1- & w? cos?o

+4aw cos 0—4 cot*0+A—2— Iw? | S(6) =0, (C-1)
where
SE(0)=v2rn Zi .
From Eq. (C-1), it is easily shown that
#2(0)cc(sin 0)*? for 6—0 and 7. (C-2)

The regularity of S#* demands that we should take + sign in Eq. (C-2). Then
we define f£* by

FE4(0)=Si(0)/sin® . (C-3)

The function f#“(#) obeys the equation

[aa—;z+5§?§g a—%+(azw2 cos®6 + 4 aw cos 6+A—4—a2w2)]fza”(t9):0 .

(C-4)

Now we approximate Eq. (C-4) by a finite difference equation. Let us introduce
g: as

&zﬁ(i—nzde(i—n. (i=1,2,,2N+1) (C-5)
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By defining (f#*)' = f£“(0:), the finite difference version of Eq. (C-4) is given by

(faw)z+l+(faw)z l_z(flam) _f_,:COS 01 (flaw)z+l_(faw)x 1
(40)* sin 6: 240

+( P w? cos?bi +4aw cos O: +A—4— P W) f£°) =0
for 1=2,---,2N , (C-6)

2(f"“’);+A‘6—J—)2(ﬂ“"') D+ daw+A—4— )N fF) =0

for 7=1(8=0),

and

Z(faw)l ! Z(flam)i +(a2w2_4aw+/1_4_aza)Z)(flam)i:O

(46)?
for (=2N+1 (8=r). (C-7)
Then Eq. (C-4) is approximated by the matrix equation
2N+1
! =0 ™ (flaw)l (flam)l
ok 0
oN+1y | O =4 =0. (C-8)
0 Kk
(1 (fzaw )2N+1 (flaw )2N+1

Equation (C-+8) has a non-trivial solution only when det A= g(4, aw)=0. As the
matrix A is tri-diagonal, its determinant is easily computed even for large N such
as N =100, which is typically adopted.

We first set two trial values of A as A% and A% (<A¥). If, for example,

g(A%, aw)>0 and g(A?, aw)<0

an eigenvalue A should exist in the interval [A%, A*]. Therefore, we repeat this
procedure until [A%*—A% becomes small enough. Once the eigenvalue A is ob-
tained, the corresponding eigenfunction can be obtained by setting, for example,
(f#°)'=1 and solving Eq. (C-8). Once the eigenfunction is obtained, its normali-
zation is easy to perform.

For the aw=0 case, A:=([/+2)({—1) and the eigenfunction f.°(8) is well
known.! To ensure validity of our method, we computed eigenvalues and
eigenfunctions for the aw=0 case and found that the agreement is satisfactory.
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Appendix D

In this appendix, we present a method of solving Eq. (4-3). We set the range
of »* by 7mm= »"= rmax where »mm and rmax are defined by

7min=Min(—47z/w, —50) (D-1)
and
rmax = Max(207/w, 250).

We define 7:* as

ok * . ( 7max — 7min) - .
ri*=rmnt+(i—1) ON+1) - (¢=1,2,---,2N+1) (D-2)
We approximate Eq. (4-3) by a matrix equation similar to Eq. (C-8) using the
boundary condition (Eq. (4-4)) at #*= »mm and #*= 7mex. Then the matrix has
the form v

++(0 X! ytl
ok ok 0
(O xx I = (D-3)
0 * %k % .: S
Q** Xlzzv+1 y%N-H

In this case, since the determinant of the matrix is non-vanishing, the solution X,
is obtained by inverting the matrix, which is rather easy to perform even for N
=2500 adopted in the present numerical calculations. Note that in this case the
elements of the matrix as well as. % are complex numbers. But this causes no
difficulty.
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