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Even-Parity Perturbation

Hideo Iguchi,∗) Tomohiro Harada∗∗) and Ken-ichi Nakao∗,∗∗∗)

Department of Physics, Kyoto University, Kyoto 606-8502, Japan
∗Department of Physics, Osaka City University, Osaka 558-8585, Japan

(Received August 24, 1999)

A naked singularity occurs in the generic collapse of an inhomogeneous dust ball. We
study the even-parity mode of gravitational waves from a naked singularity of the Lemâıtre-
Tolman-Bondi spacetime. The wave equations for gravitational waves are solved by numerical
integration using the single null coordinate. The result implies that the metric perturbation
grows when it approaches the Cauchy horizon and diverges there, although the naked sin-
gularity is not a strong source of even-parity gravitational radiation. Therefore, the Cauchy
horizon in this spacetime should be unstable with respect to linear even-parity perturbations.

§1. Introduction

The singularity theorems reveal that the occurrence of singularities is a generic
property of spacetime in general relativity. 1) - 3) However, these theorems state noth-
ing about the detailed features of the singularities themselves; for example, we do
not get information from these theorems about whether or not the predicted singu-
larity is naked. Here, “naked” means that the singularity is in principle observable.
A singularity is a boundary of spacetime. Hence, in order to obtain a solution of
hyperbolic field equations for matter, gauge fields and spacetime itself in the causal
future of a naked singularity, we need to impose a boundary condition on it. How-
ever, we do not yet know physically reasonable boundary conditions for singularities,
and hence to avoid this difficulty, the cosmic censorship hypotheses (CCH) proposed
by Penrose 4), 5) are often adopted in the analysis of physical phenomena involving
strong gravitational fields.

Unfortunately no one has ever succeeded in the proof of any version of the CCH.
There is no precise statement of CCH which can be readily proved at this time.
Given this situation it is worth trying to obtain counterexamples. Much effort has
been made to search for naked singularity formation in gravitational collapse.

In the Lemâıtre-Tolman-Bondi (LTB) spacetime, 6), 7) a naked shell-focusing sin-
gularity appears from generic initial data for spherically symmetric configurations
of the rest mass density and a specific energy of the dust fluid. 8) - 11) The initial
functions in the most general expandable form have been considered. 12) The matter
content in this spacetime may satisfy even the dominant energy condition. These
results are summarized as follows: In this spacetime, a naked singularity appears

∗) E-mail: iguchi@tap.scphys.kyoto-u.ac.jp
∗∗) E-mail: harada@tap.scphys.kyoto-u.ac.jp

∗∗∗) E-mail: knakao@sci.osaka-cu.ac.jp

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/53/1925630 by U

.S. D
epartm

ent of Justice user on 17 August 2022



54 H. Iguchi, T. Harada and K. Nakao

from generic initial data for spherically symmetric configurations of the rest mass
density and a specific energy of the dust fluid. Shapiro and Teukolsky numerically
studied evolution of collisionless gas spheroids with fully general relativistic simula-
tions. 13) They found some evidence that prolate spheroids with sufficiently elongated
initial configurations, and even with some angular momentum, may form naked sin-
gularities. Ori and Piran numerically examined the structure of self-similar spherical
collapse solutions for a perfect fluid with a barotropic equation of state. 14), 15) They
showed that there is a globally naked singularity in a significant part of the space
of self-similar solutions. Joshi and Dwivedi analytically investigated the self-similar
spherically symmetric collapse of a perfect fluid with a similar equation of state. 16)

Harada numerically investigated spherical collapse of a perfect fluid without the
assumption of self-similarity. 17) A spherical cloud of counterrotating particles was
investigated by the present authors. 18) The spherical gravitational collapse of an
imperfect fluid which has only a tangential pressure has also been considered. 19) - 23)

Further, the naked singularity produced by the gravitational collapse of radiation
shells 24) and of more general matter 25) were investigated. As for the non-spherically
symmetric collapse case, Joshi and Krolak revealed that a naked singularity appears
also in the Szekeres spacetime with irrotational dust matter. 26) The global visibility
of this singularity was recently analyzed. 27)

In this paper we investigate whether a naked singularity, if such exists, is a strong
source of gravitational radiation, and we attempt to understand the dynamics and
observational meaning of the naked singularity formation. As noted above, several
researchers have shown that the final fate of gravitational collapse is not always
a singularity covered by an event horizon. In this case with a small disturbance
of spacetime, very short wavelength gravitational waves, which are created in the
high density region around a singularity, may propagate to the observer outside the
dust cloud because of the absence of an event horizon. If this is true, extremely high
energy phenomena which cannot be realized in any high energy experiment on Earth
can be observed. Moreover, information regarding the physics of so-called ‘quantum
gravity’ may be obtained. Also, these waves may be so intense that they destroy
the Cauchy horizon. In this paper we consider the generation of gravitational waves
during the collapse of a spherical dust ball with a small disturbance of the density
profile, i.e. perturbations of LTB spacetime.

Nakamura, Shibata and Nakao 28) have suggested that a naked singularity may
emit considerable gravitational wave radiation. This was proposed using an estimate
of gravitational radiation from a spindle-like naked singularity. They modeled the
spindle-like naked singularity formation in gravitational collapse using a sequence of
general relativistic, momentarily static initial data for a prolate spheroid. It should
be noted that the system they considered is different from that considered in this
article and that their result is controversial. There are numerical analyses that may
support or may not support the results of Nakamura, Shibata and Nakao for prolate
collapse 13) and for cylindrical collapse. 29), 30)

Due to the non-linear nature of the problem, it is difficult to analytically solve
the Einstein equation. Therefore, numerical methods will provide the final tool.
However, its singular behavior makes accurate numerical analysis very difficult at
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Gravitational Radiation from a Naked Singularity. II 55

some stage. In this article, we investigate even-parity linear gravitational waves from
the collapse of an inhomogeneous spherically symmetric dust cloud. Even for the
linearized Einstein equation we must perform numerical integration. However, in
contrast to the numerical simulation of the full Einstein equation, high precision is
guaranteed for the numerical integration of the linearized Einstein equation, even in
regions with extremely large spacetime curvature. Furthermore, the linear stability
of known examples of naked singularity formation is necessary as a first step to
understand the general dynamics near naked singularity formation.

Recently, Iguchi, Nakao and Harada 31) (INH) studied odd-parity metric pertur-
bations around a naked singularity in the LTB spacetime. In INH, it was found that
the propagation of odd-parity gravitational waves is not affected by the collapse of a
dust cloud before the formation of the event horizon, even if there appears a central
naked singularity. The same authors extended their study to consider the generation
of gravitational waves from the dust collapse including matter perturbation. 32) They
showed that gauge-invariant variables diverge only at the center, and they do not
propagate to the outside. For an odd-parity perturbation the evolution of the mat-
ter perturbation decouples from the evolution of the metric perturbation, while the
even-parity matter perturbation couples to the metric part. Therefore an even mode
seems to be more essential. To investigate the generation of gravitational waves in
LTB spacetime we should analyze even-parity perturbations. Here we investigate
the behavior of the even-parity quadrupole metric and matter perturbations in the
marginally bound LTB background. We numerically calculate the time evolutions
of the gauge invariant metric variables. We show that some of metric perturbation
variables and the Weyl scalar diverge at the Cauchy horizon but that derived the
energy flux does not.

This paper is organized as follows: In §2 the basic equations are derived; in §3
the numerical results are presented; in §4 we discuss the numerical results; and in
§5 we summarize our results. We adopt geometrized units in which c = G = 1. The
signature of the metric tensor and sign convention for the Riemann tensor follow
Ref. 33).

§2. Basic equations

We consider the evolution of even-parity perturbations of the LTB spacetime to
linear order. The background LTB spacetime describes the dynamics of an inhomo-
geneous spherically symmetric dust ball. Using the synchronous comoving coordinate
system, the line element of the LTB spacetime can be expressed in the form

ds̄2 = ḡµνdx
µdxν ≡ −dt2 +A2(t, r)dr2 +R2(t, r)(dθ2 + sin2 θdφ2). (2.1)

The energy-momentum tensor for the dust fluid is

T̄µν = ρ̄(t, r)ūµūν , (2.2)

where ρ̄(t, r) is the rest mass density and ūµ is the 4-velocity of the dust fluid. In
the synchronous coordinate system, the unit vector field normal to the spacelike
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56 H. Iguchi, T. Harada and K. Nakao

hypersurfaces is geodesic, and there is a freedom concerning which timelike geodesic
field is adopted as the hypersurface unit normal. Using this freedom, we can always
set ūµ = δµ

0 , since the 4-velocity of the spherically symmetric dust fluid is tangent
to an irrotational timelike geodesic field.

Then the Einstein equations and the equation of motion for the dust fluid reduce
to the following simple equations:

A =
R′√

1 + f(r)
, (2.3)

ρ̄(t, r) =
1
8π

1
R2R′

dF (r)
dr

, (2.4)

Ṙ2 − F (r)
R

= f(r). (2.5)

Here f(r) and F (r) are arbitrary functions of the radial coordinate, r, and the
overdot and prime denote partial derivatives with respect to t and r, respectively.
From Eq. (2.4), F (r) is related to the Misner-Sharp mass function, 34) m(r), of the
dust cloud in the manner

m(r) = 4π
∫ R(t,r)

0
ρ̄(t, r)R2dR = 4π

∫ r

0
ρ̄(t, r)R2R′dr =

F (r)
2

. (2.6)

Hence Eq. (2.5) might be regarded as the energy equation per unit mass. This means
that the other arbitrary function, f(r), is recognized as the specific energy of the
dust fluid. The motion of the dust cloud is completely specified by the function F (r)
(or equivalently, the initial distribution of the rest mass density, ρ̄) and the specific
energy, f(r). When we restrict our calculation to the case that the symmetric center,
r = 0, is initially regular, the central shell focusing singularity is naked if and only
if ∂2

r ρ̄|r=0 < 0 is initially satisfied for the marginally bound collapse, f(r) = 0. 35), 36)

For collapse that is not marginally bound, there exists a similar condition as an
inequality for a value depending on the functional forms of F (r) and f(r). 10), 35), 36)

Next we give a brief introduction to the gauge-invariant formalism of Gerlach and
Sengupta 37), 38) for even-parity perturbations around the most general spherically
symmetric spacetime. We consider the general spherically symmetric spacetime with
the metric

gµνdx
µdxν ≡ gab(xd)dxadxb +R2(xd)γAB(xD)dxAdxB (2.7)

and stress-energy tensor

tµνdx
µdxν ≡ tab(xd)dxadxb +

1
2
t A
A R2(xd)γAB(xD)dxAdxB, (2.8)

where γABdx
AdxB = dθ2 + sin2 θdφ2. Here, lower-case Latin indices refer to radial

and time coordinates, while capital Latin indices refer to θ and φ.
The even-parity perturbations are

hµν =

(
hab(xd)Y ha(xd)Y:B

sym K(xd)R2γABY +G(xd)R2ZAB

)
(2.9)
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Gravitational Radiation from a Naked Singularity. II 57

for metric and

δTµν =

(
∆tab(xd)Y ∆ta(xd)Y:B

sym ∆t3(xd)R2γABY +∆t2(xd)ZAB

)
(2.10)

for matter, where Y ≡ Y m
l (xD) are the scalar spherical harmonics and ZAB =

Y:AB + l(l+1)
2 Y γAB . Here covariant derivatives are distinguished as follows:

γAB:C ≡ 0, gab|c ≡ 0. (2.11)

For convenience of expression, we introduce

va ≡ R,a/R (2.12)

and
pa ≡ ha − 1

2
R2G,a. (2.13)

A set of even-parity gauge-invariant metric perturbations is defined as

kab ≡ hab − (pa|b + pb|a), (2.14)

k ≡ K +
l(l + 1)

2
G− 2vapa. (2.15)

A set of even-parity gauge-invariant matter perturbations is defined as

Tab ≡ ∆tab − tab|cpc − t c
a pc|b − t c

b pc|a, (2.16)

Ta ≡ ∆ta − t c
a pc −R2(t A

A /4)G,a, (2.17)
T 3 ≡ ∆t3 − (pc/R2)(R2t A

A /2),c + l(l + 1)(t A
A /4)G, (2.18)

T 2 ≡ ∆t2 − (R2t A
A /2)G. (2.19)

The perturbed Einstein equations are expressed only in gauge-invariant perturba-
tions as Eqs. (3·13) of Ref. 38). We give these equations in Appendix A.

In this paper we restrict our numerical investigation to the quadrupole mode in
the marginally bound background. We derive the perturbed equations in that case.
Note that, from Eq. (2.3), the background metric variable A is equal to R′. Also, we
can easily integrate Eq. (2.5) and obtain

R(t, r) =
(
9F
4

)1/3

[t0(r)− t]2/3, (2.20)

where t0(r) is an arbitrary function of r. The formation time of the naked singularity
is t0 = t0(0). Using the freedom for the scaling of r, we choose R(0, r) = r. This
scaling of r corresponds to the following choice of t0(r):

t0(r) =
2

3
√
F
r3/2. (2.21)

The energy density ρ̄ is perturbed by adding the scalar term δρY , while the
4-velocity ūµ is perturbed by adding the term

δuµ = (V0(xd)Y, V1(xd)Y, V2(xd)Y,A). (2.22)
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58 H. Iguchi, T. Harada and K. Nakao

The normalization for the 4-velocity yields the relation ūµδuµ = 0. This relation
implies that V0 vanishes exactly. Then there are only three matter perturbation
variables,

T00 = δρ(t, r), (2.23)
T01 = ρ̄V1(t, r), (2.24)
T0 = ρ̄V2(t, r). (2.25)

The others exactly vanish:

T11 = T1 = T 3 = T 2 = 0. (2.26)

Now we can write down the perturbed Einstein field equations for the background
LTB spacetime. The resulting linearized Einstein equations are given in Appendix
A.

We have obtained seven differential equations, (A.7)–(A.13), for seven variables
(four metric and three matter). The right-hand sides of four of these equations
vanish exactly. Then we can obtain the behavior of the metric variables through the
integration of them. We transform these equations into more favorable forms. From
Eq. (A.4),

k00 =
1
R′2k11. (2.27)

Using this relation and the remaining equations whose r.h.s. vanish, we obtain evo-
lution equations for gauge-invariant metric variables as

−q̈ +
1
R′2 q

′′ =
4
R2

q +
(

2
RR′ +

R′′

R′3

)
q′ + 3

Ṙ′

R′ q̇ + 4

(
Ṙ

R
− Ṙ′

R′

)
k̇

+
2
R′3

(
−Ṙ′′ − 2R′2Ṙ

R2
− R′′Ṙ

R
+

2R′Ṙ′

R
+

2R′′Ṙ′

R′

)
k01

+
2
R′3

(
−Ṙ′ +

R′Ṙ
R

)
k01

′, (2.28)

k̈ = − 2
R2

q − q′

RR′ +
Ṙ

R
q̇ − 4

Ṙ

R
k̇ +

2
RR′

(
−Ṙ′

R′ +
Ṙ

R

)
k01, (2.29)

˙k01 = −Ṙ′

R′ k01 − q′, (2.30)

where q ≡ k − k00. If we solve these three equations for some initial data and for
the appropriate boundary conditions, we can follow the full evolution of the met-
ric perturbations. When we substitute these metric perturbations into Eqs. (A.7),
(A.8) and (A.10), the matter perturbation variables δρ, V1 and V2, respectively, are
obtained.
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Gravitational Radiation from a Naked Singularity. II 59

We can also investigate the evolution of the matter perturbations from the lin-
earized conservation equations δ(Tµν

;ν) = 0. They reduce to

(
δρ

ρ̄

).

=
1

ρ̄R2R′

(
R2ρ̄

R′ (k01 + V1)

)′
− 6

R2
V2 − k̇ − 3

2

(
k̇ − q̇

)
, (2.31)

V̇1 = −1
2
(
k′ − q′

)
, (2.32)

V̇2 = −1
2
(k − q) . (2.33)

Integration of these equations gives us the time evolution of the matter perturbations.
We can check the consistency of the numerical calculation by comparison of these
variables and those obtained from Eqs. (A.7), (A.8) and (A.10).

To constrain the boundary conditions in our numerical calculation, we should
consider the regularity conditions at the center. These conditions are obtained from
requiring that all tensor quantities be expandable in non-negative integer powers
of locally Cartesian coordinates near the center. 39) The detailed derivation of these
conditions is too complicated to be presented here. We simply quote the results.
The regularity conditions for the metric perturbations are

k ∼ k0(t)r2, q ∼ q0(t)r4, k01 ∼ k0(t)r3. (2.34)

For the matter perturbations, the regularity conditions at the center are

δρ ∼ δρ0(t)r2, V1 ∼ V10(t)r, V2 ∼ V20(t)r2. (2.35)

Therefore all the variables we need to calculate vanish at the center.

§3. Numerical method and results

We numerically solved the wave equations (2.28)–(2.30). Following the method
of previous papers, 31), 32) we transformed the wave equation (2.28) into the out-going
single-null coordinate system. In this section, we present this coordinate transforma-
tion and explain our background and initial data of the perturbations. In the later
half of this section, we give our numerical results.

3.1. Numerical method

In the previous section it was shown that the perturbation variables q, k and
k01 vanish at the center. A careful treatment of the differential equations may be
required near the center for proper propagation through the center. Hence we define
the new variables

q̃ = qR′7/R4, k̃ = kR′4/R2, k̃01 = k01R
′5/R3. (3.1)

These new variables are not identically zero at the regular center and do not diverge
when they approach the central singularity because of the suppression factor R′. We
rewrite Eqs. (2.28)–(2.30) in terms of these new variables.
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60 H. Iguchi, T. Harada and K. Nakao

Next we perform a coordinate transformation for Eq. (2.28) from the syn-
chronous comoving coordinate system (t, r) to the single-null coordinate system
(u, r̃), where u is the outgoing null coordinate and r̃ = r. We perform the nu-
merical integration of this equation along two characteristic directions. Therefore
we use a double-null grid in the numerical calculation. Whereas we integrate Eqs.
(2.29) and (2.30) along the direction r = const. (Detailed explanations of the single-
null coordinate used in our calculation is given in INH.) As a result, we obtain the
first order differential equations

1
α

d

du
X = a1X + a2W + a3Z + a4k̃ + a5q̃, (3.2)

Ẇ = b1X + b2W + b3Z + b4k̃ + b5q̃, (3.3)
Ż = c1X + c2W + c3Z + c4k̃ + c5q̃, (3.4)
˙̃
k = d1X + d2W + d3Z + d4k̃ + d5q̃, (3.5)

∂r̃q̃ = e1X + e2W + e3Z + e4k̃ + e5q̃, (3.6)

where we have introduced X and W , which are defined by Eqs. (3.6) and (3.5),
respectively, and

Z ≡ k̃01 − R

R′ q̃. (3.7)

α is given by

α ≡ 1
u̇
. (3.8)

The derivatives in Eqs. (3.2) and (3.6) are given by

d

du
= ∂u +

dr̃

du
∂r̃ = ∂u − α

2R′∂r̃ =
α

2
∂t − α

2R′∂r, (3.9)

∂r̃ = −u′

u̇
∂t + ∂r = R′∂t + ∂r. (3.10)

The coefficients a1, a2, · · · are shown in Appendix B. Equations (3.2) and (3.6) are
integrated along the double-null grid. We integrate Eq. (3.2) using the scheme of an
explicit first order difference equation, and we use the trapezoidal rule to integrate
Eq. (3.6). Equations (3.3)–(3.5) are integrated along the timelike directions r = const
using a first order difference method. We interpolate variables to estimate the right-
hand sides of Eqs. (3.3)–(3.5) at the same radial coordinate r on the previous out-
going null slice.

We adopt the initial rest mass density profile

ρ(r) = ρ0

1 + exp
(
−1

2
r1
r2

)
1 + exp

(
rn−rn

1

2rn−1
1 r2

) , (3.11)

where ρ0, r1 and r2 are positive constants, and n is a positive even integer. As a
result the dust fluid spreads all over the space. However, if r � r1, r2, then ρ(r)
decreases exponentially, so that the dust cloud is divided between the dense core

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/103/1/53/1925630 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Gravitational Radiation from a Naked Singularity. II 61

Table I. Parameters of initial density profiles and damped oscillation frequencies, where M = 1.

final state ρ0 r1 r2 n damped oscillation frequency

(a) globally naked 1 × 10−2 0.25 0.5 2 —

(b) locally naked 1 × 10−1 0.25 0.5 2 0.36+0.096i

(c) black hole 2 × 10−2 2 0.4 4 0.36+0.093i

region and the envelope, which can be considered as the vacuum region. We define
a core radius

rcore = r1 +
r2

2
. (3.12)

If we set n = 2, there appears a central naked singularity. This singularity becomes
locally or globally naked, depending on the parameters ρ0, r1 and r2. However, if
the integer n is greater than 2, the final state of the dust cloud is a black hole for all
parameter values. Then we consider three different density profiles connected with
three types of the final state of the dust cloud, globally and locally naked singularities
and a black hole. The outgoing null coordinate u is chosen so that it agrees with the
proper time at the symmetric center. Corresponding parameters are given in Table
I. Using this density profile, we numerically calculated the total gravitational mass
of the dust cloud M . In our calculation we adopted the total mass M as the unit of
the variables.

We give the numerical results from the initial conditions for the perturbations

X =
∂r̃ q̃ − (e3Z + e5q̃)

e1
, (3.13)

W = −d5q̃, (3.14)

Z = 4
R

ṘR′ q̃, (3.15)

k̃ = −(3R′b1 + b5 − b2d5)q̃
b4

, (3.16)

q̃ =

(
1 +

(
r

r3

)2
)− 5

2 R2

Ṙ2
b4, (3.17)

on the initial null surface. Here ˙̃
k vanishes on this surface and Ẇ and Ż are dimin-

ished near the center. We chose r3 = 0.3rcore. The main results of our numerical
investigation do not depend on the detailed choice of the initial conditions.

3.2. Results

First we observe the behavior of the metric variables q, k, k01 and the Weyl scalar,
which corresponds to out-going waves,

Ψ4 ≡ Cµνρσn
µm̄νnρm̄σ (3.18)

= − 3
32

√
5
π
sin2 θ

k01 − (k − q)R′

R2R′ , (3.19)
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where

nµ =
(
1
2
,− 1

2R′ , 0, 0
)
, (3.20)

m̄ν =
(
0, 0,

1√
2R

,− i√
2R sin θ

)
, (3.21)

outside the dust cloud. The results are plotted in Fig. 1. We can see that the met-
ric variables q, k01 and the Weyl scalar Ψ4 diverge when they approach the Cauchy
horizon. The asymptotic power indices of these quantities are about ∼ 0.88. On the
other hand the metric quantity k does not diverge when it approaches the Cauchy
horizon. The energy flux is computed by constructing the Landau-Lifshitz pseu-
dotensor. We can calculate the radiated power of gravitational waves from this. The
result is given in Appendix C. For the quadrupole mode, the total radiated power
becomes

P =
3
8π

k2. (3.22)

The radiated power of the gravitational waves is proportional to the square of k.
Therefore the system of spherical dust collapse with linear perturbations cannot be
expected as a strong source of gravitational waves.

Fig. 1. Plots of perturbed variables q, k, k01 and the Weyl scalar Ψ4 at constant circumferential

radius R. The results for R = 1, R = 10, R = 100, and R = 200 are plotted. The solid lines

represent the results for R = 1, the dotted lines for R = 10, the dashed lines for R = 100, and

the long dashed lines for R = 200. u = u0 corresponds to the Cauchy horizon.
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Gravitational Radiation from a Naked Singularity. II 63

Fig. 2. Plots of perturbed variables q, k and k01 near the center. The values for ∆t = t0 − t =

10−1, 10−2, 10−3, 10−4, 0 are plotted. The solid lines represent the results for ∆t = 0, the long

dashed lines for ∆t = 10−1, the dashed lines for ∆t = 10−2, the dotted lines for ∆t = 10−3, and

the dotted dashed lines for ∆t = 10−4.

Second we observe the perturbations near the center. The results are plotted
in Figs. 2 and 3. In these figures we plot the perturbations at t − t0(0) = −10−1,
−10−2, −10−3, −10−4 and 0. Before the formation of the naked singularity, the
perturbations obey the regularity conditions at the center. Each line in these figures
displays this dependence if the radial coordinate is sufficiently small. In this region,
we can also see that all the variables grow according to power-laws on the time
coordinate along the lines of r = const. The asymptotic behavior of perturbations
near the central naked singularity is summarized as follows:

q ∝ ∆t−2.1r4, k ∝ ∆t−1.4r2, k01 ∝ ∆t−1.0r3,

δρ

ρ̄
∝ ∆t−1.6r2, V1 ∝ ∆t−0.4r, V2 ∝ ∆t−0.4r2,

where ∆t = t0(0)− t. On the time slice at ∆t = 0, perturbations behave as

q ∝ r−0.09, k ∝ r−0.74, k01 ∝ r0.92,
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δρ

ρ̄
∝ r−1.4, V1 ∝ r0.25, V2 ∝ r1.3.

On this slice k and δρ/ρ̄ diverge and q diverges weakly when they approach the
central singularity. On the other hand, k01 and V2 go to zero and V1 vanishes slowly.

In cases of a locally naked singularity and black hole formation, we expect to
observe damped oscillation in the asymptotic region outside the dust cloud, as in
the odd parity case. The results are plotted in Fig. 4. These figures show that
damped oscillations are dominant. We read the frequencies and damping rates of
these damped oscillations from Fig. 4 and give them in terms of complex frequencies
as 0.36 + 0.096i and 0.36 + 0.093i for locally naked and black hole cases, respec-
tively. These results agree well with the fundamental quasi-normal frequency of the
quadrupole mode (2Mω = 0.74734 + 0.17792i). 40)

The numerical accuracy of our calculations was checked with the equations that
were not used for the derivation of Eqs. (2.28)–(2.30), e.g., Eq. (A.10). We define

Fig. 3. Plots of perturbed variables δρ, V1 and V2 near the center. The values for ∆t =

10−1, 10−2, 10−3, 10−4 and 0 are plotted. The solid lines represent the results for ∆t = 0,

the long dashed lines for ∆t = 10−1, the dashed lines for ∆t = 10−2, the dotted lines for

∆t = 10−3, and the dotted dashed lines for ∆t = 10−4.
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Fig. 4. Plots of perturbed variables q at constant circumferential radius R = 100 in the locally

naked and black hole cases. q is normalized with respect to its maximum value, and the origin

of the time variable is adjusted to coincide with the time when q is maximum.

Fig. 5. Maximum relative errors on the last null slice.
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the maximum relative error E as

E ≡

∣∣∣− 2 R3

R′8X + 2 R2

R′4W + R3

R′6

(
6 R′′

R′2 − 3
R − 7 Ṙ

R + 8 Ṙ′
R′
)
Z

− R3

R′7∂r̃Z + R2

R′4

(
4 Ṙ

R − 6 Ṙ′
R′
)
k̃ + 16πρ̄V2

∣∣∣
Σ|each term of numerator| . (3.23)

We calculated this quantity on the last null surface where the matter variable V2 is
obtained from the integration of Eq. (2.33) using a method similar to that used for
Eqs. (3.3)–(3.5). The results are displayed in Fig. 5. Except the region of small r (say,
r < 3× 10−4), this value is less than 0.01. Both the numerator and denominator of
Eq. (3.23) vanish at the center. Therefore it seems difficult to estimate the numerical
errors from Eq. (3.23) when r is small.

§4. Discussion

In this section we consider the physical interpretation of our numerical results
for even-parity perturbations. The divergence behavior of the perturbations implies
that the linear perturbation analysis near the Cauchy horizon is invalid. This fact
shows that aspherical effects are important in the naked singularity formation.

To consider where these effects are important and what would happen in this
region, we should discuss our results more carefully. The perturbations grow accord-
ing to power-laws and diverge only at the Cauchy horizon. Therefore, except for the
region very near the Cauchy horizon, the perturbations are finite and small when we
choose sufficiently small initial values. This means that the central region can reach
an extremely high density before the breakdown of the linear perturbation analy-
sis. While in the region of spacetime just before the Cauchy horizon, the aspherical
property becomes important for the dynamics of the spacetime. Our results suggest
that the Cauchy horizon is unstable and that a singularity appears along it.

The naked singularity of the LTB spacetime is considered as a massless singu-
larity. Gravitational waves, even if they have finite energy, would affect the naked
singularity. To investigate this effect we should consider back-reaction of the gravi-
tational waves.

For the case of collapse that is not marginally bound, the condition of the ap-
pearance of the central naked singularity is slightly different from that in the above
case, 35), 36) and hence there is a possibility that the behavior of perturbations in this
case is different from that in the marginally bound case. However, it is well known
that the limiting behavior of the metric with t → t0(r) is common to all cases: 41)

R ≈
(
9F
4

)1/3

(t0 − t)2/3 , A ≈
(
2F
3

)1/3 t′0√
1 + f

(t0 − t)−1/3 . (4.1)

Thus we can conjecture that the results of the perturbation analysis for non-marginal
collapse would be similar to the results for the marginally bound case.
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§5. Summary

We have studied the behavior of even-parity perturbations in the LTB spacetime.
We have numerically solved the linearized Einstein equations for gauge-invariant
variables in the case of the quadrupole mode and marginally bound background. We
have constructed a numerical code which solves the perturbation equations on an
out-going single null coordinate. For the globally naked case, the perturbed variables
q, k01 and the Weyl scalar Ψ4 grow as powers of (u0−u) outside the dust cloud, where
the power index is approximately −0.88. Then the Cauchy horizon of this spacetime
is unstable with respect to linear even-parity perturbations. On the other hand,
the perturbed variable k is finite just before the crossing of the Cauchy horizon.
The energy flux, which is proportional to the square of k, is also finite. Therefore
inhomogeneous aspherical dust collapse is not expected to be a strong source of
gravitational wave bursts.

We have investigated the asymptotic behavior of perturbations near a central
naked singularity. If the radial coordinate is sufficiently small, the dependence on it
is determined by the regularity conditions at the center. Our numerical results show
this dependence. The time dependence is an inverse power-law in ∆t. At the time of
naked singularity formation, q, k and δρ/ρ̄ diverge when they approach the central
singularity, while k01, V1 and V2 do not.

For the cases of locally naked and black hole formation, there appear the damped
oscillations outside the dust cloud. This is consistent with the fundamental quasi-
normal frequency of the quadrupole mode of a Schwarzschild black hole.

Acknowledgements

We would like to thank T. Nakamura for helpful and useful discussions. We
are also grateful to H. Sato and colleagues in the theoretical astrophysics group at
Kyoto University for useful comments and encouragement. This work was partly
supported by Grants-in-Aid for Scientific Research (No. 9204) and Creative Basic
Research (No. 09NP0801) from the Japanese Ministry of Education, Science, Sports
and Culture.

Appendix A
Linearized Einstein Equations

The linearized Einstein equations for the spherically symmetric background pre-
sented by Gerlach and Sengupta are

2vc
(
kab|c − kca|b − kcb|a

)
−
[
l(l + 1)
R2

+G c
c +G A

A + 2R
]
kab

−2gabv
c
(
ked|c − kce|d − kcd|e

)
ged + gab

(
2vc|d + 4vcvd −Gcd

)
kcd

+gab

[
l(l + 1)
R2

+
1
2

(
G c

c +G A
A

)
+R

]
k d

d + 2
(
vak,b + vbk,a + k,a|b

)
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−gab

[
2k,c

|c + 6cck,c − (l − 1)(l + 2)
R2

k

]
= −16πTab, (A.1)

k,a − kac
|c + kc

c|a − vak
c

c = −16πTa, (A.2)

−
(
k,c

|c + 2vck,c +G A
A k

)
+
[
kcd

|c|d + 2vckcd
|d + 2(vc|d + vcvd)kcd

]
−gab

[
kc

c|d
|d + vckd

d|c +Rk c
c − l(l + 1)

R2
k

]
= −16πT 3, (A.3)

k c
c = −16πT 2, (A.4)

where R is the Gaussian curvature of the 2-dimensional submanifold M2 spanned
by xa. Here

Gab ≡ −2
(
va|b + vavb

)
+ gab

(
2v |a

a + 3vav
a − 1

R2

)
, (A.5)

G A
A ≡ 2

(
v |a
a + vav

a −R
)
. (A.6)

For marginally bound LTB spacetime, the linearized quadrupole Einstein equa-
tions are

4
R2

q +
1

RR′ q
′ +

Ṙ

R
q̇ − 6

R2
k +

(
2

RR′ −
R′′

R′3

)
k′ −

(
2
Ṙ

R
+

Ṙ′

R′

)
k̇ +

1
R′2 k

′′

+ 2

(
Ṙ

R2R′ −
ṘR′′

RR′3 +
Ṙ′

RR′2

)
k01 + 2

Ṙ

RR′2 k01
′ = −8πδρ, (A.7)

−Ṙ

R
q′ +

R′

R
q̇ +

(
2
Ṙ

R
− Ṙ′

R′

)
k′ + k̇′ − 3

R2
k01 = −8πρ̄V1, (A.8)

2
R′2

R2
q − R′

R
q′ − R′2Ṙ

R
q̇ + 4

R′2Ṙ
R

k̇ +R′2k̈ − 2
R′Ṙ
R2

k01 − 2
R′

R
˙k01 = 0, (A.9)

−2Ṙ
′

R′ q − q̇ + 2
Ṙ′

R′ k + 2k̇ +
R′′

R′3k01 − 1
R′2k01

′ = −16πρ̄V2, (A.10)

q′ + ˙k01 +
Ṙ′

R′ k01 = 0, (A.11)

(
R2R′′

R′3 − 2
R

R′

)
q′ −

(
2RṘ + 3

R2Ṙ′

R′

)
q̇ − R2

R′2 q
′′ −R2q̈

+4

(
RṘ+

R2Ṙ′

R′

)
k̇ + 2R2k̈ + 2

(
RR′′Ṙ
R′3 − RṘ′

R′2

)
k01

−2RṘ

R′2 k01
′ + 2

(
R2R′′

R′3 − R

R′

)
˙k01 − 2

R2

R′2
˙k′01 = 0, (A.12)
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−k00 +
1
R′2k11 = 0. (A.13)

Here we have used Eq. (A.13) to eliminate k11 in Eqs. (A.7)–(A.12).

Appendix B
Coefficients of Differential Equations

The coefficients of Eqs. (3.2)–(3.6) are

a1 =
1
R

− Ṙ

R
− 4

R′′

R′2 +
5
2
Ṙ′

R′ , (B.1)

a2 = 2
R′3

R2

(
RṘ′ −R′Ṙ

)
, (B.2)

a3 = 3
R′2Ṙ2

R2
− 3

R′ṘṘ′

R
, (B.3)

a4 = −4R
′4Ṙ2

R3
+ 12

R′3ṘṘ′

R2
− 8

R′2Ṙ′2

R
, (B.4)

a5 = −3R
′

R
− 1

4
R′Ṙ2

R
+

1
2
ṘṘ′, (B.5)

b1 = − 1
R′4 , (B.6)

b2 = −8Ṙ
R

+ 8
Ṙ′

R′ , (B.7)

b3 = 0, (B.8)

b4 = −7Ṙ
2

R2
+ 28

ṘṘ′

RR′ − 20
Ṙ′2

R′2 , (B.9)

b5 = − 3
R′3 − 4

Ṙ

R′3 − 9
2
Ṙ2

R′3 + 4
RṘ′

R′4 + 4
RṘṘ′

R′4 , (B.10)

c1 = − 1
R′2 , (B.11)

c2 = 0, (B.12)

c3 = −5Ṙ
R

+ 6
Ṙ′

R′ , (B.13)

c4 = 0, (B.14)

c5 = −1 + Ṙ

R′ , (B.15)

d1 = 0, (B.16)
d2 = 1, (B.17)
d3 = 0, (B.18)
d4 = 0, (B.19)

d5 =
R
(
1 + Ṙ

)
R′3 , (B.20)
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e1 =
1
R
, (B.21)

e2 = 0, (B.22)

e3 = 2
R′

R2

(
R′Ṙ−RṘ′) , (B.23)

e4 = 0, (B.24)

e5 = 7
R′′

R′ − 3
R′

R

(
1 + Ṙ

)
+ 5Ṙ′. (B.25)

Appendix C
Power of Gravitational Radiation

In this appendix we calculate the radiated power of the gravitational waves in an
attempt to grasp the physical meaning of the gauge-invariant quantities. 42) To relate
the perturbation of the metric to the radiated gravitational power, it is useful to
specialize to the radiation gauge, in which the tetrad components h(θ)(θ)−h(φ)(φ) and
h(θ)(φ) fall off asO(1/R), and all other tetrad components fall off asO(1/R2) or faster.
Note that in vacuum at large distance, the spherically symmetric background metric
is identical to the Schwarzschild solution, where hereafter we adopt the Schwarzschild
coordinates,

ds2 = −
(
1− 2M

R

)
dτ2 +

(
1− 2M

R

)−1

dR2 +R2
(
dθ2 + sin2 θdφ2

)
. (C.1)

The relation between the line elements Eq. (2.1) and Eq. (C.1) is given by the transfer
matrix:

dτ =
1

1− (∂tR)2r
{dt+ (∂rR)t(∂tR)rdr}, (C.2)

dR = (∂tR)rdt+ (∂rR)tdr. (C.3)

In this gauge, the metric perturbations in Eq. (2.9) behave as

hab = O

(
1
R2

)
, (C.4)

ha = O

(
1
R

)
, (C.5)

K = O

(
1
R2

)
, (C.6)

G =
g(τ −R∗)

R
+O

(
1
R2

)
, (C.7)

where
R∗ = R+ 2M ln

(
R

2M
− 1

)
+ const, (C.8)

and the out-going wave condition is respected. Then, the gauge-invariant metric
perturbations (2.14) and (2.15) are calculated as

kττ = g(2)R+O(1), (C.9)
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kτR = −g(2)R+O(1), (C.10)
kRR = g(2)R+O(1), (C.11)

k = −g(1) +O

(
1
R

)
, (C.12)

where g(1) denotes the first derivative of g with respect to its argument.
In this radiation gauge, the radiated power P per unit solid angle is given by the

formula derived by Landau and Lifshitz 41) from their stress-energy pseudo-tensor,

dP

dΩ
=

R2

16π

[(
∂h(θ)(φ)

∂τ

)2

+
1
4

(
∂h(θ)(θ)

∂τ
− ∂h(φ)(φ)

∂τ

)2
]
. (C.13)

For the axisymmetric mode, i.e. m = 0, the above formula is reduced to

dP

dΩ
=

1
64π

(g(1))2Al(θ), (C.14)

where

Al(θ) ≡ 2l + 1
4π

sin4 θ

(
d2Pl(cos θ)
(d cos θ)2

)2

. (C.15)

By using the gauge-invariant quantities and integrating over all solid angles, the
formula for the power of the gravitational radiation is obtained in the following
form:

dP

dΩ
=

1
64π

k2Al(θ), (C.16)

P =
1

64π
Blk

2, (C.17)

where

Bl ≡ (l + 2)!
(l − 2)!

. (C.18)
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