535
Progress of Theoretical Physics, Vol. 82, No. 3, September 1989
Gravitational Radiation from Coalescing Binary Neutron Stars. I
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We have performed numerical simulations of coalescence of a binary system consisting of two
neutron stars using a Newtonian hydrodynamics code, which is constructed adopting LeBlanc’s
method for a transport term with .tensor artificial viscosity terms 4o express shock waves. We use
a Cartesian coordinate system (x, v, 2) and take typically a 141X141X141grid. The code passed
various test-bed problems. Calculation is started when two neutron stars just contact with each
other. We use a polytropic equation of state with y=2 to express high density matter and the
amount of gravitational waves is estimated using a quadrupole formula. For the coalescence of two
neutron stars of each mass 1.4 M,, the total energy radiated during the first 1.9 msec can be 2.7% of
the rest mass, which is much larger than any estimates of the burst sources of the gravitational waves.
The luminosity in the final stage of our calculation is still high.. This fact indicates that simulation
including the back reaction is urgent to know the final destiny. Wave patterns as well as energy
‘spectra of gravitational waves are also shown.

§1. Introduction

Coalescence of a binary system consisting of two neutron stars or black holes has

been considered to be one of the strongest sources of the gravitational radiation.
Several analyses have been performed to estimate the total energy of the gravita-
tional waves emitted in process of the coalescence. Gilden and Shapiro® calculated
the head-on collision of two neutron stars using a Newtonian hydrodynamics code and
obtained the typical efficiency (4E/M) being 0.1% for colliding 1.4 M, neutron stars.
This efficiency is comparable to the result for the head-on collision of two black holes
(<£0.1%) by Smarr? and for the formation of rotating black holes (<0.1%) by Stark
and Piran® using fully general relativistic codes. These results suggest that the total
energy radiated from an axially symmetric system is at most 0.19§ of the rest mass.
However it was only axially symmetric systems that were considered in these calcula-
tions. _

Nakamura, Oohara and Kojima?® studied extensively the efficiency of the emission
of the gravitational waves from a test particle falling into a Schwarzschild or a Kerr
black hole. They found the efficiency for an axially symmetric system is generally
much smaller than that for a non-axially symmetric system because of the phase
cancellation effects. Extrapolating their results of perturbation calculations to
non-axisymmetric coalescence of two identical black holes, the efficiency increases at
least to 0.3% and can reach 99§ depending on spin and orbital angular momenta of
black holes. As for the coalescence of a binary neutron star, Clark and Eardley®
studied the evolution of a binary system consisting of two neutron stars of mass

1.3 M, and 0.8 M, and estimated the gravitational waves emitted in the stable mass
stripping phase. They showed that the total energy of the gravitational waves is 6
X 10°% ergs, which is 1.5% of the rest mass. .

Up to the present, 10 binary pulsars are observed. Two of them have a large
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eccentricity and a large mass companion (~1.4 M,), while the rests have a small
eccentricity and a small mass companion (<0.4 M,). In particular, PSR1913+16 has
been observed precisely and it is believed to consist of two neutron stars of mass 1.445
M, and 1384 M,® Two neutron stars in PSR1913+16 will coalesce in ~108y
because of the emission of gravitational waves. The binary millisecond pulsar PSR
0021—72A,” which has been recently discovered, will coalesce in a much shorter time
~10°y. Under the assumption of a steady state, the frequency in coalescence of
binary neutron stars is estimated at ~10 events/year within the distance of 100 Mpc.
Therefore they can be important sources of gravitational waves.

Another kind of coalescence of neutron stars is theoretically expected to exist.”’
If the core of the progenitor of Type II supernova has a large angular momentum, the

centrifugal force will be important in some stages of the collapse into a final neutron

star. The core radius where the centrifugal force is comparable to the gravitational
force is proportional to the square of the angular momentum. When the size of the
core decreases to this radius the core contracts principally along the rotational axis
and then a thin disk will be formed. Such a thin disk is known to be gravitationally
unstable irrespective of the equation of state” and fragments into several pieces in a

free fall time scale. Each fragment looks like a neutron star and is called a proto

neutron star. Proto neutron stars will coalesce again to form a single neutron star
owing’to the emission of gravitational waves. If the number of fragments is two, the
system is essentially the same as a binary like PSR1913+16 in the final coalescence
stage. A time profile of neutrino events,® a sub-millisecond pulsar'® and the exis-
tence of a Jupiter-like secondary'” suggest that this kind of process really occurred in
SN1987A. If the scenario like this applies to all of Type II supernovae, the frequency
in the events of burst emission of gravitational waves within the distance of 10 Mpc
increases to ~30 events/year. Then it is urgent to estimate the amount, the wave
pattern and the spectrum of the gravitational waves emitted in coalescence of a
binary system of two neutron stars.

In this paper we present results of three-dimensional numerical simulations for
coalescence of binary systems consisting of two neutron stars using a Newtonian
hydrodynamic¢s code. The emitted gravitational waves are estimated using the
quadrupole formula. In § 2 we describe formulation and numerical methods. In § 3
" results of simulations are presented and § 4 is devoted to discussion and astrophysical
implications of the results.

§2. Formulation and numerical methods

The basic equations we use are the three-dimensional hydrodynamics equatioris
given by ‘

dp | dov’ _ : . )
ot T o 0 @-1)

dov’ | dpv'v’ _ 9P 9¢
ot oz oxr ‘o

(2-2)
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P=(y—1)pe @4
and

Ap=4nGp (2-5)

where all the variables have usual meanings. To express a hard equation of state, we
use a polytropic equation of state with y=2. We put initially two spherical neutron
stars of mass Mo and radius 7 at y= =1 on the y-axis, which means that we start
calculation when two neutron stars just contact with each other. As.for the initial
velocity we assume that

ve=—138, Vy=2x82 and .Q 0.5 aq, : (2-6)

GMo
7

where ¢ is a parameter specifying the total angular momentum of the system. Here
the system is assumed to be rigidly rotating with respect to the origin x=y=z=0.
- For y=2, the pressure is expressed as

P=Kp?*, ' 2-7)

where K is constant at £=0. Then K is determined from the equilibrium solution as

2
g=21C (2-8)

If we take the units of

__Gs _ -1 v .

‘where pc and Cs are respectively the density and the sound velocity at the center of
each star, then the system is characterized by only one parameter ¢. This meansthat
we can derive various solutions for different M, from one solution with a given ¢ by
means of the scaling law. For comparison with results of fully general relativistic
calculations in future, however, we adopt the following units,

GM,

e —15km, T- GM

M=M,, L=

°©=5X10"%sec. (2-10)

To express the neutron star appropriately, we fix =6 in our units, which means the
radius of the neutron star is 9 km irrespective of mass M. ,

We will estimate the amount of gravitational radiation emitted using the quad-
rupole formula, which requires the third time derivatives of the quadrupole moment.
However it is not so easy to maintain a good accuracy in performing three times a
direct numerical differentiation of the quadrupole moment obtained from numerical
results. Instead of the direct method, we adopt the following two methods.”” First
we reduce the first time derivative of the quadrupole moment to
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DgZ/p(xivj+xjvi)dV, ' (2-11)

using the continuity equation. Performing twice a numerical differentiation of this

quantity, we obtain the third time derivative. We call the energy flux obtained using

this method FLUX1. Furthermore with the aid of the equation of motion, the second
time derivative of the quadrupole moment can be written as

.Ii,-:/{va"v"-l-?)P&-j— ( 8¢

Although the integrand in Eq. (2-12) contains ¢, we do not need to integrate up to
infinity because o is multiplied to the potential terms. A numerical differentiation of
Eq. (2-12) gives the third time derivatives. We call the energy flux obtained using
this method FLUX2. Note that we use the traceless part of the third time derivatives
of Dj; to calculate the Juminosity. In general cases FLUX2 is not noisy while FLUX1
has noisy fluctuations around a smooth curve of FLUX2 as shown in Nakamura and
‘Oohara.'® As a test of these methods, we calculated the flux emitted in collapse of
homogeneous ellipsoid and compared the results with the semi-analytic ones.!*®
(See Appendix B.) This fluctuation is caused by the truncation error of the numerical
method and hence we use only FLUX2 in this paper.

We adopt a Cartesian coordinate system (zx,y,z) for three-dimensional
hydrodynamics code. For the hydrodynamics code with the finite difference method,
one of the major problems is how to treat the advection terms. LeBlanc has recently
proposed a simple second order method for advection.’® (Details of this method will
be described in Appendix A.) Both a box type and a Gaussian type density distribu-
tion are successfully transported with his method and hence we adopt LeBlanc’s
method for the advection terms. To express shock waves we use the tensor artificial
viscosity terms given by

k i 7 n V A
A SR U @19

gf )}dV. (2-12)

We use P;=P5;+ Qs for the pressure tensor instead of the gas pressure P. This
artificial viscosity terms with LeBlanc’s transport term expresses a one-dimensional
shock tube problem as well as a point explosion quite accurately. We solve the
Poisson équation using an ICCG method described by Oohara and Nakamura. D We
have performed an extensive series of test-bed calculations, which will be descrlbed
briefly in Appendix B. :

§3. Results

We take a 141X141X 141 grid. We performed six simulations with ¢=0.0, 0.25,
0.35, 0.5, 0.70 and 0.8. A typical CPU time per one time step is about 2 seconds on
Hitachi S820/80. We performed the numerical calculation for each model until
£=>550 in our units and the total CPU time needed for one model is typically 40000
seconds. We set Mo=0.7 M, for all models and the total mass is 1.4 M,, which means
that each model corresponds to a binary formed in the rapidly rotating core collapse
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in Type II supernova. However as was pointed out in the previous section, a simple
scaling of the various physical quantities gives the results for Mo=1.4 M, from the
present numerical simulations.

We show in Figs 1(a)~(j) the contours of density and the velocity vectors on x-,
y-z and z-x planes for g=0.5. Solid lines are drawn at intervals of a tenth of the
maximum density. Inner and outer dashed lines indicate respectively 19/20 and 1/20
of the maximum density. Figure 1(a) is the almost initial stage when two neutron
stars just contact with each other. At ¢=6 (Fig. 1(b)) two stars rotate in about 30
degrees and the coalescence begins in the central region on account of the tidal
gravitational force. The views of y-z and z-x planes show that an expanding motion
along z-axis appears in the coalescing region. At t=36 (Fig. 1(c)) the coalescence
seems to be completed in the central region temporarily. The rate of contraction in
the central region is greater than in the outer region and then the angular velocity of

the central part is made larger by the conservation of angular momentum. Conse- -

quently the shape of the density contour in the inner part rotates in advance of the
outer part. In the views of ¥-z and z-x planes, we see the expansion along the z-axis
and the contraction along z- and y-axes. At =52 (Fig. 1(d)), however, the central
part begins to expand again. " The contraction in the previous stage makes the
centrifugal force increase and the centrifugal force overcomes the gravity in this
stage. This expansion causes the decrease in the angular velocity. Then the con-
tours of density have almost the same phase. At the same time the jet motion along
the z-axis becomes small. The expansion continues at the time of Fig. 1(e). Finally
each neutron star appears again at t=72 (Fig. 1{(f)). The motion in y-z and z-x
planes seems to be stopped temporarily. - In the next stage (Fig. 1(g)) the coalescence
starts again because of the decrease in the centrifugal force and the contraction along
z-axis begins again. At =96 (Fig. 1(h)) the coalescence stops temporarily but at ¢
=112 (Fig. 1(i)) the central part expands again. After this kind of oscillation con-
tinues several times, the system settles down to be a rotating bar shown in Fig. 1(j) at
t~300. The final stable configuration is not due to the viscosity but to the re-
distribution of the angular momentum of each fluid element since the specific angular

momentum is not conserved in a non-axially symmetric system. Although the shape

in the cross section of the x-y plane is a bar, the oscillation along the z-axis still
continues. The formation of bar appears in all the models except for ¢=0. In
general the larger is the angular momentum, the larger is the size of the bar.

We show the second time derivatives of quadrupole moment in Fig. 2 for ¢=0.5.
Solid, dashed and dotted lines in the upper figure show respectively Dz_z,: Dyy and Dy,

while D is shown in the lower figure. Both Dz and Dy. vanish on account of the
symmetry. Before =300, all of D are irregular according to the transient phenom-
ena before the formation of the final rotating bar. After =300, however, Dy, Dy
and D,y oscillate with almost the same frequency but different phases. This is caused
by the fact that the motion in the ‘z-y plane is governed by a rotating bar. The
oscillation of D, on thg other hand, reflects the expansion and contraction of the
matter along the z-axis shown in Fig. 1. The angular frequency of this oscillation
(~0.08) is different from the rotation frequency in the z-v plane (~0.1). The wave
form of the gravitational radiation is obtained from the second derivative of the
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Fig. 2. Time profile of the second derivative of the quadrupole moment Dy for ¢=05. The solid,
dashed and dotted lines in the upper figure show Dz, Dyy and Doy, respectively. The lower figure
is of Da.

quadrupole moment. We show the wave form observed on the z-axis in Fig. 3, Wheré
=Dz D)
¥ xx V7

hx:%ﬁzy . . - (3'1)

The wave pattern consists of two parts; 1) the transient oscillation and rotation at #
<300 and 2) the regular pattern at #>300.

In Fig. 4 we show the energy spectra for ¢=0.25, 0.35, 0.5 and 0.8. The spectrum
for ¢=0.5 has two peaks at ®=0.08 and w=0.1, which correspond to the frequency of
the rotation of the bar and the oscillation along the z-axis, respectively. Two peaks
also appear for ¢=0.8. However for ¢=0:35 or 0.25 two frequencies of the oscillation
are almost the same and then only one peak appears in the energy spectrum. In
Fig.5weshow theenergy flux and the central density p. asfunctionsoftime. Thecentral
density p. begins to increase when the coalescence starts but the increase stops at ¢
~50 (Fig. 1(d) and (e)). At #=90 (Fig. 1(g)), o. starts to increase again. After several
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Fig. 3. Wave forms of /. and %« observed on the z-axis for q=0.5.

cycles of such an oscillation, a variation of p. becomes rather regular. This is also
caused by the regular oscillation along the z-axis. The variation of flux is not the
same as that of the density. Nevertheless the flux gets to its local maximum when the
increase of the central density stops except for some cases. This means that a lot of
gravitational waves will be emitted when the motlon is turned from collapse to
expansion by the centrlfugal force or the pressure.

" The dependence of the total energy radiated up to =550 on the angular momen-
tum parameter ¢ is shown in Fig. 6. The largest energy (3.19X107° in our units) is
emitted for ¢=0.35." This value means that the energy emitted up to 2.75 msec is 5.7
"X 10% ergs or 0.23% of the rest mass for the coalescence of two neutron stars of each
mass 0.7 M,. '

§4. Discussion
In every case except for g=0, the luminosity of the gravitational waves gets

regular after a certain time since the bar like star is formed and is rotating almost
rigidly. Thus we judged that we need not continue our calculation further. In
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Fig. 4. Power spectra of 7 observed on the z-axis for ¢=0.25, 0.35, 0.5 and 0.8.

reality the system should not settle down to a steady state on account of the loss of
the energy and the angular momentum. If the angular momentum is lost, the system
gets smaller because of the decrease in the centrifugal force. However it is not
obvious whether the angular velocity of the bar increases or decreases, since the
moment of inertia also decreases at the same time. If the effect of the decrease in the
moment of inertia overcomes the loss of the angular momentum, the angular velocity
will increase. Since the luminosity of the gravitational waves is proportional to the
square of the moment of inertia and the sixth power of the angular velocity, it is
possible for the luminosity to increase with the loss of the angular momentum. In a
decay of a binary system consisting of two point particles, the moment of inertia and
the angular velocity are proportional to a® and a~*? respectively, where « is the
separation of the particles, and hence the luminosity will increase as @ ® with the loss
of the angular momentum. This fact points out that calculations including the effect
of back reaction are needed to know the final destiny of the system.

In the framework of the quadrupole formula, the radiation reaction potential is
given by the fifth time derivatives of the quadrupole moment.'” A simple method of
taking into account the radiation reaction is to calculate the fifth derivatives and
including them in the equations of motion though there are some theoretical questions,
such as the gauge conditions and the existence of a lot of time constants, about
applying such a simple reaction potential to our system. If we solve two more
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Fig.5. Luminosity (FLUX2) and central density o. as functions of time ¢ for ¢=0.5. The upper figure
shows log (FLUX2) and the lower figure does pc.

Poisson equations, it is possible to estimate accurately the fifth time derivatives of the

quadrupole moment. First, let us consider the time derivative of Eq. (2-12). With

the aid of the equation of motion, the continuity and the energy equations, all the time
derivatives except for ¢ are converted to the spatial derivatives. We will thus obtain
a smooth third derivatives of Dy, if- ¢ is calculated accurately. The quantity ¢ obeys

- A =47Gp
=—47Gdiv(pv) . (4-1)

Here we used the continuity equation to eliminate the time derivative ¢ from the
source term. Solving this Poisson equation, we obtain the accurate values of Dy
"To calculate the fourth derivatives we repeat the above procedure. Time de-
rivatives can be eliminated from the source term in the Poisson equation for ¢ also
with the aid of the equation of motion. We tried to estimate the fifth time derivative
of the quadrupole moment using this method. A comparison was made for the
collapse of the homogeneous ellipsoid between the results obtained using this method
and those obtained from solving ordinary differential equations, which will be shown
in Appendix B, and we confirmed the results are satisfactory. Then we performed
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Fig. 6. Total energy of the gravitational waves emitted as a function of the angular momentum
parameter g.

several preliminary computations with back reaction potentials. No numerical in-
stabilities appeared. Thus simulations using finer grids are urgent. However need-
less to say we need much more CPU time since we solve three Poisson equations for
each time step.

The most accurate method of performing a simulation of the coalescence of a
binary system consisting of neutron stars is to construct a fully general relativistic
code, in which the back reaction is included. We are now extending the
hydrodynamics code presented in this paper to the general relativistic code making
use of the three-dimensional metric code constructed for the pure gravitational
waves."

Finally we apply our results for ¢=10.35 to the coalescence of the binary neutron
star system with each mass 1.4 M, and each radius 9 km. From the scaling law
discussed in § 2, the total energy radiated scales as M*®. Thus 1.3X10% ergs is
radiated as the gravitational waves in the first 1.93 msec. This value amounts to
2.7% of the rest mass of the system. As a demonstration we show in Fig. 7 the wave
pattern from a hypothetical source of a coalescing binary of each mass 1.4 M, in the
Virgo cluster (10 Mpc). The non-dimensional amplitude of the gravitational wave %
becomes 1.2 X107%, which may be detected with next generation gravitational wave
detectors in 1990’s.
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Fig. 7. Wave forms %+ and %y emitted in coalescence of two neutron stars of mass 1.4 M, with ¢=05

observed at the point of distance »=10 Mpc, latitude §=30° and longitude ¢=60".

M(<J)

Fig. 8. The mass M(J) with specific angular momentum less than or equal to J as a function of J.

The solid line indicates M(J) at #=0, at which the central density ocis 1.2X107* in our unit. The
dotted line and the dashed line indicate M(J) at =42 and 50, respectively, at which p.=1.2x107®
and 1.2x107", )
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Fig. 9. Flux, central density and time derivatives of the quadrupole moment as functions of time for
collapse of a triaxial homogeneous ellipsoid with initial semi-axes @1=12, ¢2=10 and @3=7. The
solid and the dotted line in (a) are semi-analytic results for the flux of the gravitational waves and
the central density, respectively. The solid, the dotted and the dashed line in (b) are for the third,
the fourth and the fifth derivatives of the quadrupole moment D... The circles show the results
obtained from the numerical simulation.
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Appendix A
—— Method of Solving the Hydrodynawmic Equation —

To integrate the hydrodynamics equation, we discretize Eqs. (2:1)~(2-3) as
follows. Defining 4-dimensional vectors @ and F as

0
p. zJ _|_ a¢ ’
Q=1 ov'] , F= 8 x| (A1)
pe 5 0v’
PZJ a’r]

then Egs. (2:1)~(2+3) can be written as

0Q 0 _ .
where Py is the pressure tensor including the artificial viscosity given by Eq. (2:13).
For transfer in the x-diréction, the gradient of @ and the velocity on each cell face at
n-th time step are given by

09\ Qe Qe Qlir— Q1
— = , (A-3)
0x /i~112.4.k Xi— Xi-1 Axi-ip
Uz IIZJk_pz IkaZ le+.OkaUz‘7k‘ (A'4)

07152t 0% in

We calculate the quantities transferred in the x-direction 4Q%1s,;,. by

AQ?—l/z,j,k :{Qz"z—l,j,k + (V Q);’z—l,j,k(dxi—llz - | vfiq/z,j,kidf)}ﬁwj—kdt . (A . 5)

Axi1

if 'Ufi’{/z,j,k >0 or

Q=@ — 7 Qlsadis =0 sal A 224 (A-6)

if vF%2,5,.<0, where

(V Q) 0 lf (%)j—l/z,j,k(%):;l/z,j,k < 0 (A . 7)
i,5,k— n n n
min{<%>i—.1/2,j,k ’ (%)i,j,k ’ <%§—>i+1/2,1‘,k} OtherWi‘SC
with
G e (G AR - R § @

For transfer in the y-direction and the z-direction, 4@Q%;—12,» and 4Q%; 512 are given
in like manner. Then the density, momentum and energy density are advanced by
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an—i ZJ BT (AQ‘L+1/2] k AQZZI+1/2,j,k)_(AQlﬂ,j+l/2,k_AQ?’J-—]./z,k)
—(4QF s pr12— AQE s n—112) — FL.0 41 . , (A-9)

In calculating F7;., the derivative of, for example, ¢ at a mesh point (7,7, k) is given
by '

(ﬂ)z = Givtih— Pi-tik | - (A-10)

ox Xi+1— Xi-1

Equation (2-5)-is integrated using ICCG method.'”

Appendix B
—— Code Testing ——

We have performed various tests for our hydrodynamics code. We will show
some of them here and will describe all tests in detail elsewhere. :

The tests we performed include; (1) free transportation of a dust cube of a
homogeneous or Gaussian density distribution. This test proved that the cube is
successfully transported and no backscatter from the outer boundary appears. (2)
Riemann shock tube. We have confirmed the one-dimensional shock tube is expres-
sed by using the scheme described in Appendix A with the artificial viscosity terms
given by Eq. (2-13). (3) Point explosion in the air. This test showed that a three-
dimensional shock is successfully represented in our code and also that a spherically
symmetric system is expressed satisfactorily using a Cartesian coordinate system.'®
(4) Eocal conservation of specific angular momentum for an axially symmetric
collapse. (5) Collapse of a homogeneous ellipsoid. This test included comparison of
third, fourth and fifth time derivatives of the quadrupole moment. In this appendix

_ we show the results of (4) and (5):

We calculated collapse of a rotating dust sphere and checked the conservation of
the specific angular momentum. Figure 8 shows the mass M (J) with specific angular
momentum less than or equal to J:

M= [, _e@av, | (B-1)

(xy<y

where j(x) is the specific angular momentum at a point 2. The solid line in Fig. 8
indicates the initial value Mo(J). The dotted line and the dashed line are respectively
M(J) at +=42 and 50 in our unit, at which the central density increases to about 10 and
1000 times of the initial density. All the lines fall on almost the same line in this
figure, and the relative error

is less than a few percent even at £=50.

As for checking the accuracy of time derivatives of the quadrupole moment, we
calculated collapse of a triaxial homogeneous dust ellipsoid and compared the results
with the semi-analytic ones, which are obtained through integration of ordinary
differential equations.!**® Figures 9(a) and (b) show the comparison of the results
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from the numerical simulation with the semi-analytic ones. The flux of the gravita-
tional waves and the central density computed agree quite well with the semi-analytic
solution until the central density increases by 100 times. This fact means that our
code is satisfactory for the present problem. The third derivatives of the quadrupole
moment are calculated by means of the method described in § 2 and the fourth and the
fifth derivatives are calculated by means of the method mentioned in §4. The
computed values agree in general within 10% with the semi-analytic solutions. The

accuracy for the fifth derivatives up to £=7 is not so good since the values of the fifth

derivatives are very small compared with the values of the fourth derivatives.
However such small components have little effects on the evolution of the system and
the amount of the emitted gravitational waves.
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