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Abstract

The article reviews the current status of a theoretical approach to the problem of the emis-
sion of gravitational waves by isolated systems in the context of general relativity. Part A
of the article deals with general post-Newtonian sources. The exterior field of the source is
investigated by means of a combination of analytic post-Minkowskian and multipolar approx-
imations. The physical observables in the far-zone of the source are described by a specific set
of radiative multipole moments. By matching the exterior solution to the metric of the post-
Newtonian source in the near-zone we obtain the explicit expressions of the source multipole
moments. The relationships between the radiative and source moments involve many non-
linear multipole interactions, among them those associated with the tails (and tails-of-tails)
of gravitational waves. Part B of the article is devoted to the application to compact bi-
nary systems. We present the equations of binary motion, and the associated Lagrangian and
Hamiltonian, at the third post-Newtonian (3PN) order beyond the Newtonian acceleration.
The gravitational-wave energy flux, taking consistently into account the relativistic corrections
in the binary moments as well as the various tail effects, is derived through 3.5PN order with
respect to the quadrupole formalism. The binary’s orbital phase, whose prior knowledge is
crucial for searching and analyzing the signals from inspiralling compact binaries, is deduced
from an energy balance argument.
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Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 5

1 Introduction

The theory of gravitational radiation from isolated sources, in the context of general relativity, is
a fascinating science that can be explored by means of what was referred to in the French XVIIIth
century as l’analyse sublime: the analytical (i.e. mathematical) method, and more specifically the
resolution of partial differential equations. Indeed, the field equations of general relativity, when
use is made of the harmonic-coordinate conditions, take the form of a quasi-linear hyperbolic
differential system of equations, involving the famous wave operator or d’Alembertian (denoted
�), invented by d’Alembert in his Traité de dynamique of 1743.

Nowadays, the importance of the field lies in the exciting possibility of comparing the theory
with contemporary astrophysical observations, made by a new generation of detectors – large-
scale optical interferometers LIGO, VIRGO, GEO and TAMA – that should routinely observe the
gravitational waves produced by massive and rapidly evolving systems such as inspiralling compact
binaries. To prepare these experiments, the required theoretical work consists of carrying out a
sufficiently general solution of the Einstein field equations, valid for a large class of matter systems,
and describing the physical processes of the emission and propagation of the waves from the source
to the distant detector, as well as their back-reaction onto the source.

1.1 Gravitational-wave generation formalisms

The basic problem we face is to relate the asymptotic gravitational-wave form hij generated by
some isolated source, at the location of some detector in the wave zone of the source, to the stress-
energy tensor Tαβ of the matter fields1. For general sources it is hopeless to solve the problem
via a rigorous deduction within the exact theory of general relativity, and we have to resort to
approximation methods, keeping in mind that, sadly, such methods are often not related in a very
precise mathematical way to the first principles of the theory. Therefore, a general wave-generation
formalism must somehow manage the non-linearity of the field equations by imposing some suit-
able approximation series in one or several small physical parameters. Of ourse the ultimate aim
of approximation methods is to extract from the theory some firm predictions for the outcome
of experiments such as VIRGO and LIGO. Some important approximations that we shall use in
this article are the post-Newtonian method (or non-linear 1/c-expansion), the post-Minkowskian
method or non-linear iteration (G-expansion), the multipole decomposition in irreducible represen-
tations of the rotation group (or equivalently a-expansion in the source radius), and the far-zone
expansion (1/R-expansion in the distance). In particular, the post-Newtonian expansion has pro-
vided us in the past with our best insights into the problems of motion and radiation in general
relativity. The most successful wave-generation formalisms make a gourmet cocktail of all these
approximation methods. For reviews on analytic approximations and applications to the motion
and the gravitational wave-generation see Refs. [143, 53, 54, 144, 150, 8, 13].

The post-Newtonian approximation is valid under the assumptions of a weak gravitational field
inside the source (we shall see later how to model neutron stars and black holes), and of slow
internal motions. The main problem with this approximation is its domain of validity, which is
limited to the near zone of the source – the region surrounding the source that is of small extent
with respect to the wavelength of waves. A serious consequence is the a priori inability of the
post-Newtonian expansion to incorporate the boundary conditions at infinity, which determine the
radiation reaction force in the source’s local equations of motion. The post-Minkowskian expansion,
by contrast, is uniformly valid, as soon as the source is weakly self-gravitating, over all space-time.
In a sense, the post-Minkowskian method is more fundamental than the post-Newtonian one; it
can be regarded as an “upstream” approximation with respect to the post-Newtonian expansion,

1In this article Greek indices take the values 0, 1, 2, 3 and Latin 1, 2, 3. Our signature is +2. G and c are Newton’s
constant and the speed of light.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


6 Luc Blanchet

because each coefficient of the post-Minkowskian series can in turn be re-expanded in a post-
Newtonian fashion. Therefore, a way to take into account the boundary conditions at infinity in
the post-Newtonian series is first to perform the post-Minkowskian expansion. Notice that the
post-Minkowskian method is also upstream (in the previous sense) with respect to the multipole
expansion, when considered outside the source, and with respect to the far-zone expansion, when
considered far from the source.

The most “downstream” approximation that we shall use in this article is the post-Newtonian
one; therefore this is the approximation that dictates the allowed physical properties of our matter
source. We assume mainly that the source is at once slowly moving and weakly stressed, and we
abbreviate this by saying that the source is post-Newtonian. For post-Newtonian sources, the
parameter defined from the components of the matter stress-energy tensor Tαβ and the source’s
Newtonian potential U by

ε = max

{∣∣∣∣ T 0i

T 00

∣∣∣∣ , ∣∣∣∣ T ij

T 00

∣∣∣∣1/2

,

∣∣∣∣Uc2
∣∣∣∣1/2

}
, (1)

is much less than one. This parameter represents essentially a slow motion estimate ε ∼ v/c,
where v denotes a typical internal velocity. By a slight abuse of notation, following Chandrasekhar
et al. [40, 42, 41], we shall henceforth write ε ≡ 1/c, even though ε is dimensionless whereas c
has the dimension of a velocity. The small post-Newtonian remainders will be denoted O(1/cn).
Thus, 1/c � 1 in the case of post-Newtonian sources. We have |U/c2|1/2 � 1/c for sources
with negligible self-gravity, and whose dynamics are therefore driven by non-gravitational forces.
However, we shall generally assume that the source is self-gravitating; in that case we see that it
is necessarily weakly (but not negligibly) self-gravitating, i.e. |U/c2|1/2 = O(1/c). Note that the
adjective “slow-motion” is a bit clumsy because we shall in fact consider very relativistic sources
such as inspiralling compact binaries, for which 1/c can be as large as 30% in the last rotations,
and whose description necessitates the control of high post-Newtonian approximations.

The lowest-order wave generation formalism, in the Newtonian limit 1/c → 0, is the famous
quadrupole formalism of Einstein [68] and Landau and Lifchitz [97]. This formalism can also be
referred to as Newtonian because the evolution of the quadrupole moment of the source is computed
using Newton’s laws of gravity. It expresses the gravitational field hTT

ij in a transverse and traceless
(TT) coordinate system, covering the far zone of the source2, as

hTT
ij =

2G
c4R

Pijab(N)
{
d2Qab

dT 2
(T −R/c) +O

(
1
c

)}
+O

(
1
R2

)
, (2)

where R = |X| is the distance to the source, N = X/R is the unit direction from the source to the
observer, and Pijab = PiaPjb − 1

2δijPijPab is the TT projection operator, with Pij = δij −NiNj

being the projector onto the plane orthogonal to N. The source’s quadrupole moment takes the
familiar Newtonian form

Qij(t) =
∫

source

d3x ρ(x, t)
(
xixj −

1
3
δijx2

)
, (3)

where ρ is the Newtonian mass density. The total gravitational power emitted by the source in all
directions is given by the Einstein quadrupole formula

L =
G

5c5

{
d3Qab

dT 3

d3Qab

dT 3
+O

(
1
c2

)}
. (4)

2The TT coordinate system can be extended to the near zone of the source as well; see for instance Ref. [95].
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Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 7

Our notation L stands for the total gravitational “luminosity” of the source. The cardinal virtues
of the Einstein–Landau–Lifchitz quadrupole formalism are its generality – the only restrictions are
that the source be Newtonian and bounded – its simplicity, as it necessitates only the computation
of the time derivatives of the Newtonian quadrupole moment (using the Newtonian laws of motion),
and, most importantly, its agreement with the observation of the dynamics of the Hulse-Taylor
binary pulsar PSR 1913+16 [140, 141, 139]. Indeed the prediction of the quadrupole formalism for
the waves emitted by the binary pulsar system comes from applying Eq. (4) to a system of two
point masses moving on an eccentric orbit (the classic reference is Peters and Mathews [117]; see
also Refs. [71, 148]). Then, relying on the energy equation

dE

dt
= −L, (5)

where E is the Newtonian binary’s center-of-mass energy, we deduce from Kepler’s third law the
expression of the “observable”, that is, the change in the orbital period P of the pulsar, or Ṗ , as a
function of P itself. From the binary pulsar test, we can say that the post-Newtonian corrections to
the quadrupole formalism, which we shall compute in this article, have already received, in the case
of compact binaries, strong observational support (in addition to having, as we shall demonstrate,
a sound theoretical basis).

The multipole expansion is one of the most useful tools of physics, but its use in general
relativity is difficult because of the non-linearity of the theory and the tensorial character of the
gravitational interaction. In the stationary case, the multipole moments are determined by the
expansion of the metric at spatial infinity, while, in the case of non-stationary fields, the moments,
starting with the quadrupole, are defined at future null infinity. The multipole moments have been
extensively studied in the linearized theory, which ignores the gravitational forces inside the source.
Early studies have extended the formula (4) to include the current-quadrupole and mass-octupole
moments [111, 110], and obtained the corresponding formulas for linear momentum [111, 110, 1,
124] and angular momentum [116, 46]. The general structure of the infinite multipole series in the
linearized theory was investigated by several works [126, 127, 119, 142], from which it emerged that
the expansion is characterized by two and only two sets of moments: mass-type and current-type
moments. Below we shall use a particular multipole decomposition of the linearized (vacuum)
metric, parametrized by symmetric and trace-free (STF) mass and current moments, as given by
Thorne [142]. The explicit expressions of the multipole moments (for instance in STF guise) as
integrals over the source, valid in the linearized theory but irrespective of a slow motion hypothesis,
are completely known [101, 39, 38, 57].

In the full non-linear theory, the (radiative) multipole moments can be read off the coefficient of
1/R in the expansion of the metric when R→ +∞, with a null coordinate T −R/c = const.. The
solutions of the field equations in the form of a far-field expansion (power series in 1/R) have been
constructed, and their properties elucidated, by Bondi et al. [32] and Sachs [128]. The precise way
under which such radiative space-times fall off asymptotically has been formulated geometrically
by Penrose [114, 115] in the concept of an asymptotically simple space-time (see also Ref. [76]).
The resulting Bondi–Sachs–Penrose approach is very powerful, but it can answer a priori only a
part of the problem, because it gives information on the field only in the limit where R → +∞,
which cannot be connected in a direct way to the actual behaviour of the source. In particular the
multipole moments that one considers in this approach are those measured at infinity – we call
them the radiative multipole moments. These moments are distinct, because of non-linearities,
from some more natural source multipole moments, which are defined operationally by means of
explicit integrals extending over the matter and gravitational fields.

An alternative way of defining the multipole expansion within the complete non-linear theory
is that of Blanchet and Damour [14, 3], following pioneering work by Bonnor and collaborators [33,
34, 35, 81] and Thorne [142]. In this approach the basic multipole moments are the source moments,
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8 Luc Blanchet

rather than the radiative ones. In a first stage, the moments are left unspecified, as being some
arbitrary functions of time, supposed to describe an actual physical source. They are iterated
by means of a post-Minkowskian expansion of the vacuum field equations (valid in the source’s
exterior). Technically, the post-Minkowskian approximation scheme is greatly simplified by the
assumption of a multipolar expansion, as one can consider separately the iteration of the different
multipole pieces composing the exterior field (whereas, the direct attack of the post-Minkowskian
expansion, valid at once inside and outside the source, faces some calculational difficulties [147, 47]).
In this “multipolar-post-Minkowskian” formalism, which is physically valid over the entire weak-
field region outside the source, and in particular in the wave zone (up to future null infinity), the
radiative multipole moments are obtained in the form of some non-linear functionals of the more
basic source moments. A priori, the method is not limited to post-Newtonian sources, however we
shall see that, in the current situation, the closed-form expressions of the source multipole moments
can be established only in the case where the source is post-Newtonian [6, 11]. The reason is that
in this case the domain of validity of the post-Newtonian iteration (viz. the near zone) overlaps the
exterior weak-field region, so that there exists an intermediate zone in which the post-Newtonian
and multipolar expansions can be matched together. This is a standard application of the method
of matched asymptotic expansions in general relativity [37, 36].

To be more precise, we shall show how a systematic multipolar and post-Minkowskian itera-
tion scheme for the vacuum Einstein field equations yields the most general physically admissible
solution of these equations [14]. The solution is specified once we give two and only two sets of
time-varying (source) multipole moments. Some general theorems about the near-zone and far-
zone expansions of that general solution will be stated. Notably, we find [3] that the asymptotic
behaviour of the solution at future null infinity is in agreement with the findings of the Bondi–
Sachs–Penrose [32, 128, 114, 115, 76] approach to gravitational radiation. However, checking that
the asymptotic structure of the radiative field is correct is not sufficient by itself, because the
ultimate aim is to relate the far field to the properties of the source, and we are now obliged to ask:
What are the multipole moments corresponding to a given stress-energy tensor Tαβ describing the
source? Only in the case of post-Newtonian sources has it been possible to answer this question.
The general expression of the moments was obtained at the level of the second post-Newtonian
(2PN) order in Ref. [6], and was subsequently proved to be in fact valid up to any post-Newtonian
order in Ref. [11]. The source moments are given by some integrals extending over the post-
Newtonian expansion of the total (pseudo) stress-energy tensor ταβ , which is made of a matter
part described by Tαβ and a crucial non-linear gravitational source term Λαβ . These moments
carry in front a particular operation of taking the finite part (FP as we call it below), which makes
them mathematically well-defined despite the fact that the gravitational part Λαβ has a spatially
infinite support, which would have made the bound of the integral at spatial infinity singular (of
course the finite part is not added a posteriori to restore the well-definiteness of the integral, but
is proved to be actually present in this formalism). The expressions of the moments had been
obtained earlier at the 1PN level, albeit in different forms, in Ref. [16] for the mass-type moments
(strangely enough, the mass moments admit a compact-support expression at 1PN order), and in
Ref. [58] for the current-type ones.

The wave-generation formalism resulting from matching the exterior multipolar and post-
Minkowskian field [14, 3] to the post-Newtonian source [6, 11] is able to take into account, in
principle, any post-Newtonian correction to both the source and radiative multipole moments (for
any multipolarity of the moments). The relationships between the radiative and source moments
include many non-linear multipole interactions, because the source moments mix with each other
as they “propagate” from the source to the detector. Such multipole interactions include the fa-
mous effects of wave tails, corresponding to the coupling between the non-static moments with the
total mass M of the source. The non-linear multipole interactions have been computed within the
present wave-generation formalism up to the 3PN order in Refs. [17, 12, 10]. Furthermore, the
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Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 9

back-reaction of the gravitational-wave emission onto the source, up to the 1.5PN order relative to
the leading order of radiation reaction, has also been studied within this formalism [15, 5, 9]. Now,
recall that the leading radiation reaction force, which is quadrupolar, occurs already at the 2.5PN
order in the source’s equations of motion. Therefore the 1.5PN “relative” order in the radiation
reaction corresponds in fact to the 4PN order in the equations of motion, beyond the Newtonian
acceleration. It has been shown that the gravitational wave tails enter the radiation reaction at
precisely the 1.5PN relative order, which means 4PN “absolute” order [15].

A different wave-generation formalism has been devised by Will and Wiseman [152] (see also
Refs. [151, 112]), after earlier attempts by Epstein and Wagoner [70] and Thorne [142]. This
formalism has exactly the same scope as ours, i.e. it applies to any isolated post-Newtonian sources,
but it differs in the definition of the source multipole moments and in many technical details when
properly implemented [152]. In both formalisms, the moments are generated by the post-Newtonian
expansion of the pseudo-tensor ταβ , but in the Will–Wiseman formalism they are defined by some
compact-support integrals terminating at some finite radius R enclosing the source, e.g., the radius
of the near zone). By contrast, in our case [6, 11], the moments are given by some integrals
covering the whole space and regularized by means of the finite part FP. We shall prove the
complete equivalence, at the most general level, between the two formalisms. What is interesting
about both formalisms is that the source multipole moments, which involve a whole series of
relativistic corrections, are coupled together, in the true non-linear solution, in a very complicated
way. These multipole couplings give rise to the many tail and related non-linear effects, which
form an integral part of the radiative moments at infinity and thereby of the observed signal.

Part A of this article is devoted to a presentation of the post-Newtonian wave generation
formalism. We try to state the main results in a form that is simple enough to be understood
without the full details, but at the same time we outline some of the proofs when they present
some interest on their own. To emphasize the importance of some key results, we present them in
the form of mathematical theorems.

1.2 Problem posed by compact binary systems

Inspiralling compact binaries, containing neutron stars and/or black holes, are promising sources
of gravitational waves detectable by the detectors LIGO, VIRGO, GEO and TAMA. The two
compact objects steadily lose their orbital binding energy by emission of gravitational radiation;
as a result, the orbital separation between them decreases, and the orbital frequency increases.
Thus, the frequency of the gravitational-wave signal, which equals twice the orbital frequency for
the dominant harmonics, “chirps” in time (i.e. the signal becomes higher and higher pitched) until
the two objects collide and merge.

The orbit of most inspiralling compact binaries can be considered to be circular, apart from the
gradual inspiral, because the gravitational radiation reaction forces tend to circularize the motion
rapidly. For instance, the eccentricity of the orbit of the Hulse–Taylor binary pulsar is presently
e0 = 0.617. At the time when the gravitational waves emitted by the binary system will become
visible by the detectors, i.e. when the signal frequency reaches about 10 Hz (in a few hundred
million years from now), the eccentricity will be e = 5.3 × 10−6 – a value calculated from the
Peters [116] law, which is itself based on the quadrupole formula (2).

The main point about modelling the inspiralling compact binary is that a model made of two
structureless point particles, characterized solely by two mass parameters m1 and m2 (and possibly
two spins), is sufficient. Indeed, most of the non-gravitational effects usually plaguing the dynamics
of binary star systems, such as the effects of a magnetic field, of an interstellar medium, and so on,
are dominated by gravitational effects. However, the real justification for a model of point particles
is that the effects due to the finite size of the compact bodies are small. Consider for instance the
influence of the Newtonian quadrupole moments Q1 and Q2 induced by tidal interaction between
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10 Luc Blanchet

two neutron stars. Let a1 and a2 be the radius of the stars, and L the distance between the two
centers of mass. We have, for tidal moments,

Q1 = k1m2
a5
1

L3
, Q2 = k2m1

a5
2

L3
, (6)

where k1 and k2 are the star’s dimensionless (second) Love numbers [103], which depend on their
internal structure, and are, typically, of the order unity. On the other hand, for compact objects,
we can introduce their “compactness”, defined by the dimensionless ratios

K1 =
Gm1

a1c2
, K2 =

Gm2

a2c2
, (7)

which equal ∼ 0.2 for neutron stars (depending on their equation of state). The quadrupoles Q1

and Q2 will affect both sides of Eq. (5), i.e. the Newtonian binding energy E of the two bodies, and
the emitted total gravitational flux L as computed using the Newtonian quadrupole formula (4).
It is known that for inspiralling compact binaries the neutron stars are not co-rotating because
the tidal synchronization time is much larger than the time left till the coalescence. As shown by
Kochanek [92] the best models for the fluid motion inside the two neutron stars are the so-called
Roche–Riemann ellipsoids, which have tidally locked figures (the quadrupole moments face each
other at any instant during the inspiral), but for which the fluid motion has zero circulation in the
inertial frame. In the Newtonian approximation we find that within such a model (in the case of
two identical neutron stars) the orbital phase, deduced from Eq. (5), reads

φfinite size − φ0 = − 1
8x5/2

{
1 + const. k

( x
K

)5
}
, (8)

where x = (Gmω/c3)2/3 is a standard dimensionless post-Newtonian parameter ∼ 1/c2 (ω is the
orbital frequency), and where k is the Love number and K is the compactness of the neutron
star. The first term in the right-hand side of (8) corresponds to the gravitational-wave damping of
two point masses; the second term is the finite-size effect, which appears as a relative correction,
proportional to (x/K)5, to the latter radiation damping effect. Because the finite-size effect is
purely Newtonian, its relative correction ∼ (x/K)5 should not depend on c; and indeed the factors
1/c2 cancel out in the ratio x/K. However, the compactness K of compact objects is by Eq. (7) of
the order unity (or, say, one half), therefore the 1/c2 it contains should not be taken into account
numerically in this case, and so the real order of magnitude of the relative contribution of the
finite-size effect in Eq. (8) is given by x5 alone. This means that for compact objects the finite-size
effect should be comparable, numerically, to a post-Newtonian correction of order 5PN or 1/c10

(see Ref. [52] for the proof in the context of relativistic equations of motion). This is a much higher
post-Newtonian order than the one at which we shall investigate the gravitational effects on the
phasing formula. Using k′ ≡ const. k ∼ 1 and K ∼ 0.2 for neutron stars (and the bandwidth of
a VIRGO detector between 10 Hz and 1000 Hz), we find that the cumulative phase error due to
the finite-size effect amounts to less that one orbital rotation over a total of ∼ 16, 000 produced by
the gravitational-wave damping of point masses. The conclusion is that the finite-size effect can in
general be neglected in comparison with purely gravitational-wave damping effects. But note that
for non-compact or moderately compact objects (such as white dwarfs for instance) the Newtonian
tidal interaction dominates over the radiation damping.

The inspiralling compact binaries are ideally suited for application of a high-order post-Newtonian
wave generation formalism. The main reason is that these systems are very relativistic, with
orbital velocities as high as 0.3c in the last rotations (as compared to ∼ 10−3c for the binary
pulsar), and it is not surprising that the quadrupole-moment formalism (2, 3, 4, 5) constitutes a
poor description of the emitted gravitational waves, since many post-Newtonian corrections play
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a substantial role. This expectation has been confirmed in recent years by several measurement-
analyses [48, 49, 72, 50, 135, 121, 122, 96, 59], which have demonstrated that the post-Newtonian
precision needed to implement successively the optimal filtering technique in the LIGO/VIRGO
detectors corresponds grossly, in the case of neutron-star binaries, to the 3PN approximation, or
1/c6 beyond the quadrupole moment approximation. Such a high precision is necessary because of
the large number of orbital rotations that will be monitored in the detector’s frequency bandwidth
(∼ 16, 000 in the case of neutron stars), giving the possibility of measuring very accurately the
orbital phase of the binary. Thus, the 3PN order is required mostly to compute the time evolution
of the orbital phase, which depends, via the energy equation (5), on the center-of-mass binding
energy E and the total gravitational-wave energy flux L.

In summary, the theoretical problem posed by inspiralling compact binaries is two-fold: On the
one hand E, and on the other hand L, are to be deduced from general relativity with the 3PN
precision or better. To obtain E we must control the 3PN equations of motion of the binary in the
case of general, not necessarily circular, orbits. As for L it necessitates the application of a 3PN
wave generation formalism (actually, things are more complicated because the equations of motion
are also needed during the computation of the flux). It is quite interesting that such a high order
approximation as the 3PN one should be needed in preparation for LIGO and VIRGO data analysis.
As we shall see, the signal from compact binaries contains at the 3PN order the signature of several
non-linear effects which are specific to general relativity. Therefore, we have here the possibility of
probing, experimentally, some aspects of the non-linear structure of Einstein’s theory [28, 29].

1.3 Post-Newtonian equations of motion and radiation

By equations of motion we mean the explicit expression of the accelerations of the bodies in terms
of the positions and velocities. In Newtonian gravity, writing the equations of motion for a system
of N particles is trivial; in general relativity, even writing the equations in the case N = 2 is
difficult. The first relativistic term, at the 1PN order, was derived by Lorentz and Droste [98].
Subsequently, Einstein, Infeld and Hoffmann [69] obtained the 1PN corrections by means of their
famous “surface-integral” method, in which the equations of motion are deduced from the vacuum
field equations, and which are therefore applicable to any compact objects (be they neutron stars,
black holes, or, perhaps, naked singularities). The 1PN-accurate equations were also obtained, for
the motion of the centers of mass of extended bodies, by Petrova [118] and Fock [73] (see also
Ref. [109]).

The 2PN approximation was tackled by Otha et al. [105, 107, 106], who considered the post-
Newtonian iteration of the Hamiltonian of N point-particles. We refer here to the Hamiltonian
as the Fokker-type Hamiltonian, which is obtained from the matter-plus-field Arnowitt–Deser–
Misner (ADM) Hamiltonian by eliminating the field degrees of freedom. The result for the 2PN
and even 2.5PN equations of binary motion in harmonic coordinates was obtained by Damour and
Deruelle [56, 55, 67, 51, 52], building on a non-linear iteration of the metric of two particles initiated
in Ref. [2]. The corresponding result for the ADM-Hamiltonian of two particles at the 2PN order
was given in Ref. [63] (see also Refs. [130, 131]). Kopeikin [93] derived the 2.5PN equations of
motion for two extended compact objects. The 2.5PN-accurate harmonic-coordinate equations as
well as the complete gravitational field (namely the metric gαβ) generated by two point masses
were computed by Blanchet, Faye and Ponsot [25], following a method based on previous work on
wave generation [6].

Up to the 2PN level the equations of motion are conservative. Only at the 2.5PN order ap-
pears the first non-conservative effect, associated with the gravitational radiation reaction. The
(harmonic-coordinate) equations of motion up to that level, as derived by Damour and Deru-
elle [56, 55, 67, 51, 52], have been used for the study of the radiation damping of the binary pulsar
– its orbital Ṗ [52]. It is important to realize that the 2.5PN equations of motion have been
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proved to hold in the case of binary systems of strongly self-gravitating bodies [52]. This is via an
“effacing” principle (in the terminology of Damour [52]) for the internal structure of the bodies.
As a result, the equations depend only on the “Schwarzschild” masses, m1 and m2, of the com-
pact objects. Notably their compactness parameters K1 and K2, defined by Eq. (7), do not enter
the equations of motion, as has been explicitly verified up to the 2.5PN order by Kopeikin [93]
and Grishchuk and Kopeikin [79], who made a “physical” computation, à la Fock, taking into
account the internal structure of two self-gravitating extended bodies. The 2.5PN equations of
motion have also been established by Itoh, Futamase and Asada [83, 84], who use a variant of the
surface-integral approach of Einstein, Infeld and Hoffmann [69], that is valid for compact bodies,
independently of the strength of the internal gravity.

The present state of the art is the 3PN approximation3. To this order the equations have
been worked out independently by two groups, by means of different methods, and with equivalent
results. On the one hand, Jaranowski and Schäfer [87, 88, 89], and Damour, Jaranowski and
Schäfer [60, 62, 61], following the line of research of Refs. [105, 107, 106, 63], employ the ADM-
Hamiltonian formalism of general relativity; on the other hand, Blanchet and Faye [21, 22, 20, 23],
and de Andrade, Blanchet and Faye [66], founding their approach on the post-Newtonian iteration
initiated in Ref. [25], compute directly the equations of motion (instead of a Hamiltonian) in
harmonic coordinates. The end results have been shown [62, 66] to be physically equivalent in
the sense that there exists a unique “contact” transformation of the dynamical variables that
changes the harmonic-coordinates Lagrangian obtained in Ref. [66] into a new Lagrangian, whose
Legendre transform coincides exactly with the Hamiltonian given in Ref. [60]. The 3PN equations of
motion, however, depend on one unspecified numerical coefficient, ωstatic in the ADM-Hamiltonian
formalism and λ in the harmonic-coordinates approach, which is due to some incompleteness of
the Hadamard self-field regularization method. This coefficient has been fixed by means of a
dimensional regularization in Ref. [61].

So far the status of the post-Newtonian equations of motion is quite satisfying. There is mutual
agreement between all the results obtained by means of different approaches and techniques, when-
ever it is possible to compare them: point particles described by Dirac delta-functions, extended
post-Newtonian fluids, surface-integrals methods, mixed post-Minkowskian and post-Newtonian
expansions, direct post-Newtonian iteration and matching, harmonic coordinates versus ADM-
type coordinates, and different processes or variants of the regularization of the self field of point
particles. In Part B of this article, we shall present the most complete results for the 3PN equa-
tions of motion, and for the associated Lagrangian and Hamiltonian formulations (from which we
deduce the center-of-mass energy E).

The second sub-problem, that of the computation of the energy flux L, has been carried out by
application of the wave-generation formalism described previously. Following earliest computations
at the 1PN level [149, 30], at a time when the post-Newtonian corrections in L had a purely
academic interest, the energy flux of inspiralling compact binaries was completed to the 2PN order
by Blanchet, Damour and Iyer [18, 77], and, independently, by Will and Wiseman [152], using
their own formalism (see Refs. [19, 27] for joint reports of these calculations). The preceding
approximation, 1.5PN, which represents in fact the dominant contribution of tails in the wave
zone, had been obtained in Refs. [153, 31] by application of the formula for tail integrals given in
Ref. [17]. Higher-order tail effects at the 2.5PN and 3.5PN orders, as well as a crucial contribution
of tails generated by the tails themselves (the so-called “tails of tails”) at the 3PN order, were
obtained by Blanchet [7, 10]. However, unlike the 1.5PN, 2.5PN and 3.5PN orders that are entirely
composed of tail terms, the 3PN approximation also involves, besides the tails of tails, many non-

3Let us mention that the 3.5PN terms in the equations of motion are also known, both for point-particle bina-
ries [85, 86, 113] and extended fluid bodies [5, 9]; they correspond to 1PN “relative” corrections in the radiation
reaction force. Known also is the contribution of wave tails in the equations of motion, which arises at the 4PN
order and represents a 1.5PN modification of the gravitational radiation damping [15].
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tail contributions coming from the relativistic corrections in the (source) multipole moments of the
binary. These have been “almost” completed by Blanchet, Iyer and Joguet [26, 24], in the sense
that the result still involves one unknown numerical coefficient, due to the use of the Hadamard
regularization, which is a combination of the parameter λ in the equations of motion, and a new
parameter θ coming from the computation of the 3PN quadrupole moment. In PartB of this article,
we shall present the most up-to-date results for the 3.5PN energy flux and orbital phase, deduced
from the energy equation (5), supposed to be valid at this order.

The post-Newtonian flux L, which comes from a “standard” post-Newtonian calculation, is in
complete agreement (up to the 3.5PN order) with the result given by the very different technique
of linear black-hole perturbations, valid in the “test-mass” limit where the mass of one of the
bodies tends to zero (limit ν → 0, where ν = µ/m). Linear black-hole perturbations, triggered
by the geodesic motion of a small mass around the black hole, have been applied to this problem
by Poisson [120] at the 1.5PN order (following the pioneering work of Galt’sov et al. [75]), and by
Tagoshi and Nakamura [135], using a numerical code, up to the 4PN order. This technique has
culminated with the beautiful analytical methods of Sasaki, Tagoshi and Tanaka [129, 137, 138]
(see also Ref. [102]), who solved the problem up to the extremely high 5.5PN order.
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Part A: Post-Newtonian Sources

2 Einstein’s Field Equations

The field equations of general relativity form a system of ten second-order partial differential
equations obeyed by the space-time metric gαβ ,

Gαβ [g, ∂g, ∂2g] =
8πG
c4

Tαβ [g], (9)

where the Einstein curvature tensor Gαβ ≡ Rαβ − 1
2Rg

αβ is generated, through the gravitational
coupling κ = 8πG/c4, by the matter stress-energy tensor Tαβ . Among these ten equations, four
govern, via the contracted Bianchi identity, the evolution of the matter system,

∇µG
αµ ≡ 0 =⇒ ∇µT

αµ = 0. (10)

The space-time geometry is constrained by the six remaining equations, which place six independent
constraints on the ten components of the metric gαβ , leaving four of them to be fixed by a choice
of a coordinate system.

In most of this paper we adopt the conditions of harmonic, or de Donder, coordinates. We
define, as a basic variable, the gravitational-field amplitude

hαβ =
√
−g gαβ − ηαβ , (11)

where gαβ denotes the contravariant metric (satisfying gαµgµβ = δα
β ), where g is the determinant of

the covariant metric, g = det(gαβ), and where ηαβ represents an auxiliary Minkowskian metric. The
harmonic-coordinate condition, which accounts exactly for the four equations (10) corresponding
to the conservation of the matter tensor, reads

∂µh
αµ = 0. (12)

The equations (11, 12) introduce into the definition of our coordinate system a preferred Minkowskian
structure, with Minkowski metric ηαβ . Of course, this is not contrary to the spirit of general rel-
ativity, where there is only one physical metric gαβ without any flat prior geometry, because the
coordinates are not governed by geometry (so to speak), but rather are chosen by researchers when
studying physical phenomena and doing experiments. Actually, the coordinate condition (12) is es-
pecially useful when we view the gravitational waves as perturbations of space-time propagating on
the fixed Minkowskian manifold with the background metric ηαβ . This view is perfectly legitimate
and represents a fructuous and rigorous way to think of the problem when using approximation
methods. Indeed, the metric ηαβ , originally introduced in the coordinate condition (12), does exist
at any finite order of approximation (neglecting higher-order terms), and plays in a sense the role
of some “prior” flat geometry.

The Einstein field equations in harmonic coordinates can be written in the form of inhomoge-
neous flat d’Alembertian equations,

�hαβ =
16πG
c4

ταβ , (13)

where � ≡ �η = ηµν∂µ∂ν . The source term, ταβ , can rightly be interpreted as the stress-energy
pseudo-tensor (actually, ταβ is a Lorentz tensor) of the matter fields, described by Tαβ , and the
gravitational field, given by the gravitational source term Λαβ , i.e.

ταβ = |g|Tαβ +
c4

16πG
Λαβ . (14)
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The exact expression of Λαβ , including all non-linearities, reads

Λαβ = − hµν∂2
µνh

αβ + ∂µh
αν∂νh

βµ +
1
2
gαβgµν∂λh

µτ∂τh
νλ

− gαµgντ∂λh
βτ∂µh

νλ − gβµgντ∂λh
ατ∂µh

νλ + gµνg
λτ∂λh

αµ∂τh
βν

+
1
8
(2gαµgβν − gαβgµν)(2gλτgεπ − gτεgλπ)∂µh

λπ∂νh
τε. (15)

As is clear from this expression, Λαβ is made of terms at least quadratic in the gravitational-field
strength h and its first and second space-time derivatives. In the following, for the highest post-
Newtonian order that we consider (3PN), we need the quadratic, cubic and quartic pieces of Λαβ .
With obvious notation, we can write them as

Λαβ = Nαβ [h, h] +Mαβ [h, h, h] + Lαβ [h, h, h, h] +O(h5). (16)

These various terms can be straightforwardly computed from Eq. (15); see Eqs. (3.8) in Ref. [22]
for explicit expressions.

As said above, the condition (12) is equivalent to the matter equations of motion, in the sense
of the conservation of the total pseudo-tensor ταβ ,

∂µτ
αµ = 0 ⇐⇒ ∇µT

αµ = 0. (17)

In this article, we look for the solutions of the field equations (13, 14, 15, 17) under the following
four hypotheses:

1. The matter stress-energy tensor Tαβ is of spatially compact support, i.e. can be enclosed
into some time-like world tube, say r ≤ a, where r = |x| is the harmonic-coordinate radial
distance. Outside the domain of the source, when r > a, the gravitational source term,
according to Eq. (17), is divergence-free,

∂µΛαµ = 0 (when r > a). (18)

2. The matter distribution inside the source is smooth4: Tαβ ∈ C∞(R3). We have in mind a
smooth hydrodynamical “fluid” system, without any singularities nor shocks (a priori), that
is described by some Eulerian equations including high relativistic corrections. In particular,
we exclude from the start any black holes (however we shall return to this question when we
find a model for describing compact objects).

3. The source is post-Newtonian in the sense of the existence of the small parameter defined by
Eq. (1). For such a source we assume the legitimacy of the method of matched asymptotic
expansions for identifying the inner post-Newtonian field and the outer multipolar decompo-
sition in the source’s exterior near zone.

4. The gravitational field has been independent of time (stationary) in some remote past, i.e.
before some finite instant −T in the past, in the sense that

∂

∂t

[
hαβ(x, t)

]
= 0 when t ≤ −T . (19)

4N, Z, R and C are the usual sets of non-negative integers, integers, real numbers and complex numbers; Cp(Ω)
is the set of p-times continuously differentiable functions on the open domain Ω (p ≤ +∞).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


16 Luc Blanchet

The latter condition is a means to impose, by brute force, the famous no-incoming radiation
condition, ensuring that the matter source is isolated from the rest of the Universe and does not
receive any radiation from infinity. Ideally, the no-incoming radiation condition should be imposed
at past null infinity. We shall later argue (see Section 6) that our condition of stationarity in the
past (19), although much weaker than the real no-incoming radiation condition, does not entail
any physical restriction on the general validity of the formulas we derive.

Subject to the condition (19), the Einstein differential field equations (13) can be written
equivalently into the form of the integro-differential equations

hαβ =
16πG
c4

�−1
retτ

αβ , (20)

containing the usual retarded inverse d’Alembertian operator, given by

(�−1
retf)(x, t) ≡ − 1

4π

∫∫∫
d3x′

|x− x′|
f(x′, t− |x− x′|/c), (21)

extending over the whole three-dimensional space R3.
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3 Linearized Vacuum Equations

In what follows we solve the field equations (12, 13), in the vacuum region outside the compact-
support source, in the form of a formal non-linearity or post-Minkowskian expansion, considering
the field variable hαβ as a non-linear metric perturbation of Minkowski space-time. At the lin-
earized level (or first-post-Minkowskian approximation), we write:

hαβ
ext = Ghαβ

1 +O(G2), (22)

where the subscript ”ext” reminds us that the solution is valid only in the exterior of the source, and
where we have introduced Newton’s constant G as a book-keeping parameter, enabling one to label
very conveniently the successive post-Minkowskian approximations. Since hαβ is a dimensionless
variable, with our convention the linear coefficient hαβ

1 in Eq. (22) has the dimension of the inverse
of G – a mass squared in a system of units where ~ = c = 1. In vacuum, the harmonic-coordinate
metric coefficient hαβ

1 satisfies

�hαβ
1 = 0, (23)

∂µh
αµ
1 = 0. (24)

We want to solve those equations by means of an infinite multipolar series valid outside a time-
like world tube containing the source. Indeed the multipole expansion is the correct method for
describing the physics of the source as seen from its exterior (r > a). On the other hand, the post-
Minkowskian series is physically valid in the weak-field region, which surely includes the exterior of
any source, starting at a sufficiently large distance. For post-Newtonian sources the exterior weak-
field region, where both multipole and post-Minkowskian expansions are valid, simply coincides
with the exterior r > a. It is therefore quite natural, and even, one would say inescapable when
considering general sources, to combine the post-Minkowskian approximation with the multipole
decomposition. This is the original idea of the “double-expansion” series of Bonnor [33], which
combines the G-expansion (or m-expansion in his notation) with the a-expansion (equivalent to the
multipole expansion, since the lth order multipole moment scales like al with the source radius).

The multipolar-post-Minkowskian method will be implemented systematically, using STF-
harmonics to describe the multipole expansion [142], and looking for a definite algorithm for the
approximation scheme [14]. The solution of the system of equations (23, 24) takes the form of a
series of retarded multipolar waves5

hαβ
1 =

+∞∑
l=0

∂L

(
Kαβ

L (t− r/c)
r

)
, (25)

where r = |x|, and where the functions Kαβ
L ≡ Kαβ

i1...il
are smooth functions of the retarded time

u ≡ t − r/c [KL(u) ∈ C∞(R)], which become constant in the past, when t ≤ −T . It is evi-
dent, since a monopolar wave satisfies �(KL(u)/r) = 0 and the d’Alembertian commutes with the

5Our notation is the following: L = i1i2 . . . il denotes a multi-index, made of l (spatial) indices. Similarly
we write for instance P = j1 . . . jp (in practice, we generally do not need to consider the carrier letter i or j), or
aL−1 = ai1 . . . il−1. Always understood in expressions such as Eq. (25) are l summations over the l indices i1, . . . , il
ranging from 1 to 3. The derivative operator ∂L is a short-hand for ∂i1 . . . ∂il

. The function KL is symmetric and
trace-free (STF) with respect to the l indices composing L. This means that for any pair of indices ip, iq ∈ L, we
have K...ip...iq... = K...iq...ip... and that δipiq K...ip...iq... = 0 (see Ref. [142] and Appendices A and B in Ref. [14]

for reviews about the STF formalism). The STF projection is denoted with a hat, so KL ≡ K̂L, or sometimes with
carets around the indices, KL ≡ K〈L〉. In particular, n̂L = n〈L〉 is the STF projection of the product of unit vectors
nL = ni1 . . . nil

; an expansion into STF tensors n̂L = n̂L(θ, φ) is equivalent to the usual expansion in spherical

harmonics Ylm = Ylm(θ, φ). Similarly, we denote xL = xi1 . . . xil
= rlnL and x̂L = x〈L〉. Superscripts like (p)

indicate p successive time-derivations.
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multi-derivative ∂L, that Eq. (25) represents the most general solution of the wave equation (23)
(see Section 2 in Ref. [14] for a proof based on the Euler–Poisson–Darboux equation). The gauge
condition (24), however, is not fulfilled in general, and to satisfy it we must algebraically decom-
pose the set of functions K00

L , K0i
L , Kij

L into ten tensors which are STF with respect to all their
indices, including the spatial indices i, ij. Imposing the condition (24) reduces the number of inde-
pendent tensors to six, and we find that the solution takes an especially simple “canonical” form,
parametrized by only two moments, plus some arbitrary linearized gauge transformation [142, 14].

Theorem 1 The most general solution of the linearized field equations (23, 24), outside some
time-like world tube enclosing the source (r > a), and stationary in the past (see Eq. (19)), reads

hαβ
1 = kαβ

1 + ∂αϕβ
1 + ∂βϕα

1 − ηαβ∂µϕ
µ
1 . (26)

The first term depends on two STF-tensorial multipole moments, IL(u) and JL(u), which are
arbitrary functions of time except for the laws of conservation of the monopole: I = const., and
dipoles: Ii = const., Ji = const.. It is given by

k00
1 = − 4

c2

∑
l≥0

(−)l

l!
∂L

(
1
r
IL(u)

)
,

k0i
1 =

4
c3

∑
l≥1

(−)l

l!

{
∂L−1

(
1
r
I(1)iL−1(u)

)
+

l

l + 1
εiab∂aL−1

(
1
r
JbL−1(u)

)}
,

kij
1 = − 4

c4

∑
l≥2

(−)l

l!

{
∂L−2

(
1
r
I(2)ijL−2(u)

)
+

2l
l + 1

∂aL−2

(
1
r
εab(iJ

(1)
j)bL−2(u)

)}
.

(27)

The other terms represent a linearized gauge transformation, with gauge vector ϕα
1 of the type (25),

and parametrized for four other multipole moments, say WL(u), XL(u), YL(u) and ZL(u).

The conservation of the lowest-order moments gives the constancy of the total mass of the source,
M ≡ I = const., center-of-mass position6, Xi ≡ Ii/I = const., total linear momentum Pi ≡ I(1)i = 0,
and total angular momentum, Si ≡ Ji = const.. It is always possible to achieve Xi = 0 by
translating the origin of our coordinates to the center of mass. The total mass M is the Arnowitt-
Deser-Misner (ADM) mass of the Hamiltonian formulation of general relativity. Note that the
quantities M, Xi, Pi and Si include the contributions due to the waves emitted by the source.
They describe the “initial” state of the source, before the emission of gravitational radiation.

The multipole functions IL(u) and JL(u), which thoroughly encode the physical properties of
the source at the linearized level (because the other moments WL, . . ., ZL parametrize a gauge
transformation), will be referred to as the mass-type and current-type source multipole moments.
Beware, however, that at this stage the moments are not specified in terms of the stress-energy
tensor Tαβ of the source: the above theorem follows merely from the algebraic and differential
properties of the vacuum equations outside the source.

6The constancy of the center of mass Xi – rather than a linear variation with time – results from our assumption
of stationarity before the date −T . Hence, Pi = 0.
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For completeness, let us give the components of the gauge-vector ϕα
1 entering Eq. (26):

ϕ0
1 =

4
c3

∑
l≥0

(−)l

l!
∂L

(
1
r
WL(u)

)
,

ϕi
1 = − 4

c4

∑
l≥0

(−)l

l!
∂iL

(
1
r
XL(u)

)

− 4
c4

∑
l≥1

(−)l

l!

{
∂L−1

(
1
r
YiL−1(u)

)
+

l

l + 1
εiab∂aL−1

(
1
r
ZbL−1(u)

)}
.

(28)

Because the theory is covariant with respect to non-linear diffeomorphisms and not merely with
respect to linear gauge transformations, the moments WL, . . ., ZL do play a physical role starting at
the non-linear level, in the following sense. If one takes these moments equal to zero and continues
the calculations one ends up with a metric depending on IL and JL only, but that metric will not
describe the same physical source as the one constructed from the six moments IL, . . ., ZL. In
other words, the two non-linear metrics associated with the sets of multipole moments {IL, JL, 0,
. . ., 0} and {IL, JL, WL, . . ., ZL} are not isometric. We point out in Section 4.2 below that the
full set of moments {IL, JL, WL, . . ., ZL} is in fact physically equivalent to some reduced set {ML,
SL, 0, . . ., 0}, but with some moments ML, SL that differ from IL, JL by non-linear corrections
(see Eq. (90)). All the multipole moments IL, JL, WL, XL, YL, ZL will be computed in Section 5.
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4 Non-linear Iteration of the Field Equations

By Theorem 1 we know the most general solution of the linearized equations in the exterior of
the source. We then tackle the problem of the post-Minkowskian iteration of that solution. We
consider the full post-Minkowskian series

hαβ
ext =

+∞∑
n=1

Gnhαβ
n , (29)

where the first term is composed of the result given by Eqs. (26, 27, 28). In this article, we shall
always understand the infinite sums such as the one in Eq. (29) in the sense of formal power
series, i.e. as an ordered collection of coefficients, e.g.,

(
hαβ

n

)
n∈N. We do not attempt to control the

mathematical nature of the series and refer to the mathematical-physics literature for discussion
(in the present context, see notably Refs. [45, 64]).

4.1 The post-Minkowskian solution

We insert the ansatz (29) into the vacuum Einstein field equations (12, 13), i.e. with ταβ =
c4/(16πG)Λαβ , and we equate term by term the factors of the successive powers of our book-
keeping parameter G. We get an infinite set of equations for each of the hαβ

n ’s: ∀n ≥ 2,

�hαβ
n = Λαβ

n [h1, h2, . . . , hn−1], (30)
∂µh

αµ
n = 0. (31)

The right-hand side of the wave equation (30) is obtained from inserting the previous iterations, up
to the order n− 1, into the gravitational source term. In more details, the series of equations (30)
reads

�hαβ
2 = Nαβ [h1, h1], (32)

�hαβ
3 = Mαβ [h1, h1, h1] +Nαβ [h1, h2] +Nαβ [h2, h1], (33)

�hαβ
4 = Lαβ [h1, h1, h1, h1]

+Mαβ [h1, h1, h2] +Mαβ [h1, h2, h1] +Mαβ [h2, h1, h1]
+Nαβ [h2, h2] +Nαβ [h1, h3] +Nαβ [h3, h1]
... (34)

The quadratic, cubic and quartic pieces of Λαβ are defined by Eq. (16).
Let us now proceed by induction. Some n being given, we assume that we succeeded in con-

structing, from the linearized coefficient h1, the sequence of post-Minkowskian coefficients h2, h3,
. . ., hn−1, and from this we want to infer the next coefficient hn. The right-hand side of Eq. (30),
Λαβ

n , is known by induction hypothesis. Thus the problem is that of solving a wave equation whose
source is given. The point is that this wave equation, instead of being valid everywhere in R3, is
correct only outside the matter (r > a), and it makes no sense to solve it by means of the usual
retarded integral. Technically speaking, the right-hand side of Eq. (30) is composed of the product
of many multipole expansions, which are singular at the origin of the spatial coordinates r = 0,
and which make the retarded integral divergent at that point. This does not mean that there are
no solutions to the wave equation, but simply that the retarded integral does not constitute the
appropriate solution in that context.

What we need is a solution which takes the same structure as the source term Λαβ
n , i.e. is

expanded into multipole contributions, with a singularity at r = 0, and satisfies the d’Alembertian
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equation as soon as r > 0. Such a particular solution can be obtained, following the suggestion
in Ref. [14], by means of a mathematical trick in which one first “regularizes” the source term
Λαβ

n by multiplying it by the factor rB , where B ∈ C. Let us assume, for definiteness, that Λαβ
n

is composed of multipolar pieces with maximal multipolarity lmax. This means that we start the
iteration from the linearized metric (26, 27, 28) in which the multipolar sums are actually finite7.
The divergences when r → 0 of the source term are typically power-like, say 1/rk (there are also
powers of the logarithm of r), and with the previous assumption there will exist a maximal order
of divergency, say kmax. Thus, when the real part of B is large enough, i.e. < (B) > kmax − 3, the
“regularized” source term rBΛαβ

n is regular enough when r → 0 so that one can perfectly apply
the retarded integral operator. This defines the B-dependent retarded integral

Iαβ(B) ≡ �−1
ret

[
r̃BΛαβ

n

]
, (35)

where the symbol �−1
ret stands for the retarded integral (21). It is convenient to introduce inside

the regularizing factor some arbitrary constant length scale r0 in order to make it dimensionless.
Everywhere in this article we pose

r̃ ≡ r

r0
. (36)

The fate of the constant r0 in a detailed calculation will be interesting to follow, as we shall
see, because it provides some check that the calculation is going well. Now the point for our
purpose is that the function Iαβ(B) on the complex plane, which was originally defined only when
< (B) > kmax − 3, admits a unique analytic continuation to all values of B ∈ C except at some
integer values. Furthermore, the analytic continuation of Iαβ(B) can be expanded, when B → 0
(namely the limit of interest to us) into a Laurent expansion involving in general some multiple
poles. The key idea, as we shall prove, is that the finite part, or the coefficient of the zeroth power
of B in that expansion, represents the particular solution we are looking for. We write the Laurent
expansion of Iαβ(B), when B → 0, in the form

Iαβ(B) =
+∞∑
p=p0

ιαβ
p Bp, (37)

where p ∈ Z, and the various coefficients ιαβ
p are functions of the field point (x, t). When p0 ≤ −1

there are poles; −p0, which depends on n, refers to the maximal order of the poles. By applying
the box operator onto both sides of (37), and equating the different powers of B, we arrive at

p0 ≤ p ≤ −1 =⇒ �ιαβ
p = 0,

p ≥ 0 =⇒ �ιαβ
p =

(ln r)p

p!
Λαβ

n .
(38)

As we see, the case p = 0 shows that the finite-part coefficient in Eq. (37), namely ιαβ
0 , is a

particular solution of the requested equation: �ιαβ
0 = Λαβ

n . Furthermore, we can prove that this
term, by its very construction, owns the same structure made of a multipolar expansion singular
at r = 0.

Let us forget about the intermediate name ιαβ
0 , and denote, from now on, the latter solution

by uαβ
n ≡ ιαβ

0 , or, in more explicit terms,

uαβ
n = FPB=0 �−1

ret

[
r̃BΛαβ

n

]
, (39)

7This assumption is justified because we are ultimately interested in the radiation field at some given finite
post-Newtonian precision like 3PN, and because only a finite number of multipole moments can contribute at any
finite order of approximation. With a finite number of multipoles in the linearized metric (26, 27, 28), there is a
maximal multipolarity lmax(n) at any post-Minkowskian order n, which grows linearly with n.
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where the finite-part symbol FPB=0 means the previously detailed operations of considering the
analytic continuation, taking the Laurent expansion, and picking up the finite-part coefficient when
B → 0. The story is not complete, however, because uαβ

n does not fulfill the constraint of harmonic
coordinates (31); its divergence, say wα

n = ∂µu
αµ
n , is different from zero in general. From the fact

that the source term is divergence-free in vacuum, ∂µΛαµ
n = 0 (see Eq. (18)), we find instead

wα
n = FPB=0 �−1

ret

[
B r̃B ni

r
Λαi

n

]
. (40)

The factor B comes from the differentiation of the regularization factor r̃B . So, wα
n is zero only in

the special case where the Laurent expansion of the retarded integral in Eq. (40) does not develop
any simple pole when B → 0. Fortunately, when it does, the structure of the pole is quite easy to
control. We find that it necessarily consists of a solution of the source-free d’Alembertian equation,
and, what is more (from its stationarity in the past), the solution is a retarded one. Hence, taking
into account the index structure of wα

n , there must exist four STF-tensorial functions of the retarded
time u = t− r/c, say NL(u), PL(u), QL(u) and RL(u), such that

w0
n =

+∞∑
l=0

∂L

[
r−1NL(u)

]
,

wi
n =

+∞∑
l=0

∂iL

[
r−1PL(u)

]
+

+∞∑
l=1

{
∂L−1

[
r−1QiL−1(u)

]
+ εiab∂aL−1

[
r−1RbL−1(u)

]}
.

(41)

From that expression we are able to find a new object, say vαβ
n , which takes the same structure as

wα
n (a retarded solution of the source-free wave equation) and, furthermore, whose divergence is

exactly the opposite of the divergence of uαβ
n , i.e. ∂µv

αµ
n = −wα

n . Such a vαβ
n is not unique, but we

shall see that it is simply necessary to make a choice for vαβ
n (the simplest one) in order to obtain

the general solution. The formulas that we adopt are

v00
n = −r−1N (−1) + ∂a

[
r−1

(
−N (−1)

a + C(−2)
a − 3Pa

)]
,

v0i
n = r−1

(
−Q(−1)

i + 3P (1)
i

)
− εiab∂a

[
r−1R

(−1)
b

]
−

+∞∑
l=2

∂L−1

[
r−1NiL−1

]
,

vij
n = −δijr−1P +

+∞∑
l=2

{
2δij∂L−1

[
r−1PL−1

]
− 6∂L−2(i

[
r−1Pj)L−2

]
+ ∂L−2

[
r−1(N (1)

ijL−2 + 3P (2)
ijL−2 −QijL−2)

]
− 2∂aL−2

[
r−1εab(iRj)bL−2

]}
.

(42)

Notice the presence of anti-derivatives, denoted, e.g., by N (−1)(u) =
∫ u

−∞ dvN(v); there is no
problem with the limit v → −∞ since all the corresponding functions are zero when t ≤ −T .
The choice made in Eqs. (42) is dictated by the fact that the 00 component involves only some
monopolar and dipolar terms, and that the spatial trace ii is monopolar: vii

n = −3r−1P . Finally,
if we pose

hαβ
n = uαβ

n + vαβ
n , (43)

we see that we solve at once the d’Alembertian equation (30) and the coordinate condition (31).
That is, we have succeeded in finding a solution of the field equations at the nth post-Minkowskian
order. By induction the same method applies to any order n, and, therefore, we have constructed
a complete post-Minkowskian series (29) based on the linearized approximation hαβ

1 given by (26,
27, 28). The previous procedure constitutes an algorithm, which could be implemented by an
algebraic computer programme.
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4.2 Generality of the solution

We have a solution, but is that a general solution? The answer, yes, is provided by the following
result [14]:

Theorem 2 The most general solution of the harmonic-coordinates Einstein field equations in the
vacuum region outside an isolated source, admitting some post-Minkowskian and multipolar expan-
sions, is given by the previous construction as hαβ =

∑+∞
n=1G

nhαβ
n [IL, JL, . . . ,ZL]. It depends on

two sets of arbitrary STF-tensorial functions of time IL(u) and JL(u) (satisfying the conservation
laws) defined by Eqs. (27), and on four supplementary functions WL(u), . . ., ZL(u) parametrizing
the gauge vector (28).

The proof is quite easy. With Eq. (43) we obtained a particular solution of the system of equa-
tions (30, 31). To it we should add the most general solution of the corresponding homogeneous
system of equations, which is obtained by setting Λαβ

n = 0 into Eqs. (30, 31). But this homogeneous
system of equations is nothing but the linearized vacuum field equations (23, 24), for which we know
the most general solution hαβ

1 given by (26, 27, 28). Thus, we must add to our “particular” solution
hαβ

n a general homogeneous solution that is necessarily of the type hαβ
1 [δIL, . . . , δZL], where δIL,

. . ., δZL denote some “corrections” to the multipole moments at the nth post-Minkowskian order.
It is then clear, since precisely the linearized metric is a linear functional of all these moments,
that the previous corrections to the moments can be absorbed into a re-definition of the original
ones IL, . . . ,ZL by posing

Inew
L = IL +Gn−1δIL, (44)

...
Znew

L = ZL +Gn−1δZL. (45)

After re-arranging the metric in terms of these new moments, taking into account the fact that the
precision of the metric is limited to the nth post-Minkowskian order, and dropping the superscript
“new”, we find exactly the same solution as the one we had before (indeed, the moments are
arbitrary functions of time) – hence the proof.

The six sets of multipole moments IL(u), . . . ,ZL(u) contain the physical information about any
isolated source as seen in its exterior. However, as we now discuss, it is always possible to find two,
and only two, sets of multipole moments, ML(u) and SL(u), for parametrizing the most general
isolated source as well. The route for constructing such a general solution is to get rid of the
moments WL,XL,YL,ZL at the linearized level by performing the linearized gauge transformation
δxα = ϕα

1 , where ϕα
1 is the gauge vector given by Eqs. (28). So, at the linearized level, we have only

the two types of moments ML and SL, parametrizing kαβ
1 by the same formulas as in Eqs. (27).

We must be careful to denote these moments with some names different from IL and JL because
they will ultimately correspond to a different physical source. Then we apply exactly the same
post-Minkowskian algorithm, following the formulas (39, 40, 41, 42, 43) as we did above, but
starting from the gauge-transformed linear metric kαβ

1 instead of hαβ
1 . The result of the iteration

is therefore some kαβ =
∑+∞

n=1G
nkαβ

n [ML,SL]. Obviously this post-Minkowskian algorithm yields
some simpler calculations as we have only two multipole moments to iterate. The point is that one
can show that the resulting metric kαβ [ML,SL] is isometric to the original one hαβ [IL, JL, . . . ,ZL]
if and only if ML and SL are related to the moments IL, JL, . . . ,ZL by some (quite involved) non-
linear equations. Therefore, the most general solution of the field equations, modulo a coordinate
transformation, can be obtained by starting from the linearized metric kαβ

1 [ML,SL] instead of the
more complicated kαβ

1 [IL, JL] + ∂αϕβ
1 + ∂βϕα

1 − ηαβ∂µϕ
µ
1 , and continuing the post-Minkowskian

calculation.
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So why not consider from the start that the best description of the isolated source is provided
by only the two types of multipole moments, ML and SL, instead of the six, IL, JL, . . ., ZL? The
reason is that we shall determine (in Theorem 6 below) the explicit closed-form expressions of
the six moments IL, JL, . . ., ZL, but that, by contrast, it seems to be impossible to obtain some
similar closed-form expressions for ML and SL. The only thing we can do is to write down the
explicit non-linear algorithm that computes ML, SL starting from IL, JL, . . ., ZL. In consequence,
it is better to view the moments IL, JL, . . ., ZL as more “fundamental” than ML and SL, in
the sense that they appear to be more tightly related to the description of the source, since they
admit closed-form expressions as some explicit integrals over the source. Hence, we choose to refer
collectively to the six moments IL, JL, . . ., ZL as the multipole moments of the source. This being
said, the moments ML and SL are often useful in practical computations because they yield a
simpler post-Minkowskian iteration. Then, one can generally come back to the more fundamental
source-rooted moments by using the fact that ML and SL differ from the corresponding IL and JL

only by high-order post-Newtonian terms like 2.5PN; see Ref. [7] and Eq. (90) below. Indeed, this
is to be expected because the physical difference between both types of moments stems only from
non-linearities.

4.3 Near-zone and far-zone structures

In our presentation of the post-Minkowskian algorithm (39, 40, 41, 42, 43) we have omitted a
crucial recursive hypothesis, which is required in order to prove that at each post-Minkowskian
order n, the inverse d’Alembertian operator can be applied in the way we did (and notably that the
B-dependent retarded integral can be analytically continued down to a neighbourhood of B = 0).
This hypothesis is that the “near-zone” expansion, i.e. when r → 0, of each one of the post-
Minkowskian coefficients hαβ

n owns a certain structure. This hypothesis is established as a theorem
once the mathematical induction succeeds.

Theorem 3 The general structure of the expansion of the post-Minkowskian exterior metric in
the near-zone (when r → 0) is of the type: ∀N ∈ N,

hn(x, t) =
∑

n̂Lr
m(ln r)pFL,m,p,n(t) + o(rN ), (46)

where m ∈ Z, with m0 ≤ m ≤ N (and m0 becoming more and more negative as n grows), p ∈ N
with p ≤ n−1. The functions FL,m,p,n are multilinear functionals of the source multipole moments
IL, . . . ,ZL.

For the proof see Ref. [14]8. As we see, the near-zone expansion involves, besides the simple powers
of r, some powers of the logarithm of r, with a maximal power of n − 1. As a corollary of that
theorem, we find (by restoring all the powers of c in Eq. (46) and using the fact that each r goes
into the combination r/c), that the general structure of the post-Newtonian expansion (c→ +∞)
is necessarily of the type

hn(c) '
∑

p,q∈N

(ln c)p

cq
, (47)

where p ≤ n − 1 (and q ≥ 2). The post-Newtonian expansion proceeds not only with the normal
powers of 1/c but also with powers of the logarithm of c [14].

Paralleling the structure of the near-zone expansion, we have a similar result concerning the
structure of the far-zone expansion at Minkowskian future null infinity, i.e. when r → +∞ with

8The o and O Landau symbols for remainders have their standard meaning.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 25

u = t− r/c = const.: ∀N ∈ N,

hn(x, t) =
∑ n̂L(ln r)p

rk
GL,k,p,n(u) + o

(
1
rN

)
, (48)

where k, p ∈ N, with 1 ≤ k ≤ N , and where, likewise in the near-zone expansion (46), some powers
of logarithms, such that p ≤ n−1, appear. The appearance of logarithms in the far-zone expansion
of the harmonic-coordinates metric has been known since the work of Fock [74]. One knows also
that this is a coordinate effect, because the study of the “asymptotic” structure of space-time
at future null infinity by Bondi et al. [32], Sachs [128] and Penrose [114, 115], has revealed the
existence of other coordinate systems that avoid the appearance of any logarithms: the so-called
radiative coordinates, in which the far-zone expansion of the metric proceeds with simple powers
of the inverse radial distance. Hence, the logarithms are simply an artifact of the use of harmonic
coordinates [82, 99]. The following theorem, proved in Ref. [3], shows that our general construction
of the metric in the exterior of the source, when developed at future null infinity, is consistent with
the Bondi–Sachs–Penrose [32, 128, 114, 115] approach to gravitational radiation.

Theorem 4 The most general multipolar-post-Minkowskian solution, stationary in the past (see
Eq. (19)), admits some radiative coordinates (T,X), for which the expansion at future null infinity,
R→ +∞ with U ≡ T −R/c = const., takes the form

Hn(X, T ) =
∑ N̂L

Rk
KL,k,n(U) +O

(
1
RN

)
. (49)

The functions KL,k,n are computable functionals of the source multipole moments. In radiative
coordinates the retarded time U = T −R/c is a null coordinate in the asymptotic limit. The metric
Hαβ

ext =
∑

n≥1G
nHαβ

n is asymptotically simple in the sense of Penrose [114, 115], perturbatively to
any post-Minkowskian order.

Proof: We introduce a linearized “radiative” metric by performing a gauge transformation of the
harmonic-coordinates metric defined by Eqs. (26, 27, 28), namely

Hαβ
1 = hαβ

1 + ∂αξβ
1 + ∂βξα

1 − ηαβ∂µξ
µ
1 , (50)

where the gauge vector ξα
1 is

ξα
1 = 2M η0α ln

(
r

r0

)
. (51)

This gauge transformation is non-harmonic:

∂µH
αµ
1 = �ξα

1 =
2M
r2
η0α. (52)

Its effect is to “correct” for the well-known logarithmic deviation of the harmonic coordinates’
retarded time with respect to the true space-time characteristic or light cones. After the change
of gauge, the coordinate u = t− r/c coincides with a null coordinate at the linearized level9. This
is the requirement to be satisfied by a linearized metric so that it can constitute the linearized
approximation to a full (post-Minkowskian) radiative field [99]. One can easily show that, at the
dominant order when r → +∞,

kµkνH
µν
1 = O

(
1
r2

)
, (53)

9In this proof the coordinates are considered as dummy variables denoted (t, r). At the end, when we obtain the
radiative metric, we shall denote the associated radiative coordinates by (T, R).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


26 Luc Blanchet

where kα = (1,n) is the outgoing Minkowskian null vector. Given any n ≥ 2, let us recursively
assume that we have obtained all the previous radiative post-Minkowskian coefficients Hαβ

m , i.e.
∀m ≤ n− 1, and that all of them satisfy

kµkνH
µν
m = O

(
1
r2

)
. (54)

From this induction hypothesis one can prove that the nth post-Minkowskian source term Λαβ
n =

Λαβ
n (H1, . . . ,Hn−1) is such that

Λαβ
n =

kαkβ

r2
σn (u,n) +O

(
1
r3

)
. (55)

To the leading order this term takes the classic form of the stress-energy tensor for a swarm
of massless particles, with σn being related to the power in the waves. One can show that all
the problems with the appearance of logarithms come from the retarded integral of the terms in
Eq. (55) that behave like 1/r2: See indeed the integration formula (103), which behaves like ln r/r
at infinity. But now, thanks to the particular index structure of the term (55), we can correct for
the effect by adjusting the gauge at the nth post-Minkowskian order. We pose, as a gauge vector,

ξα
n = FP �−1

ret

[
kα

2r2

∫ u

−∞
dv σn(v,n)

]
, (56)

where FP refers to the same finite part operation as in Eq. (39). This vector is such that the
logarithms that will appear in the corresponding gauge terms cancel out the logarithms coming
from the retarded integral of the source term (55); see Ref. [3] for the details. Hence, to the nth
post-Minkowskian order, we define the radiative metric as

Hαβ
n = Uαβ

n + V αβ
n + ∂αξβ

n + ∂βξα
n − ηαβ∂µξ

µ
n . (57)

Here Uαβ
n and V αβ

n denote the quantities that are the analogues of uαβ
n and vαβ

n , which were
introduced into the harmonic-coordinates algorithm: See Eqs. (39, 40, 41, 42). In particular, these
quantities are constructed in such a way that the sum Uαβ

n +V αβ
n is divergence-free, so we see that

the radiative metric does not obey the harmonic-gauge condition:

∂µH
αµ
n = �ξα

n =
kα

2r2

∫ u

−∞
dv σn(v,n). (58)

The far-zone expansion of the latter metric is of the type (49), i.e. is free of any logarithms, and the
retarded time in these coordinates tends asymptotically toward a null coordinate at infinity. The
property of asymptotic simplicity, in the mathematical form given by Geroch and Horowitz [76], is
proved by introducing the conformal factor Ω = 1/r in radiative coordinates (see Ref. [3]). Finally,
it can be checked that the metric so constructed, which is a functional of the source multipole
moments IL, . . ., ZL (from the definition of the algorithm), is as general as the general harmonic-
coordinate metric of Theorem 2, since it merely differs from it by a coordinate transformation
(t,x) −→ (T,X), where (t,x) are the harmonic coordinates and (T,X) the radiative ones, together
with a re-definition of the multipole moments.

4.4 The radiative multipole moments

The leading-order term 1/R of the metric in radiative coordinates, neglecting O(1/R2), yields
the operational definition of two sets of STF radiative multipole moments, mass-type UL(U) and
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current-type VL(U). By definition, we have

HTT
ij (U,N) =

4G
c2R

Pijab(N)
+∞∑
l=2

1
cll!

{
NL−2UabL−2(U)− 2l

c(l + 1)
NcL−2εcd(aVb)dL−2(U)

}
+O

(
1
R2

)
. (59)

This multipole decomposition represents the generalization, up to any post-Newtonian order (wit-
ness the factors of 1/c in front of each of the multipolar pieces) of the quadrupole-moment formalism
reviewed in Eq. (2). The corresponding total gravitational flux reads

L(U) =
+∞∑
l=2

G

c2l+1

{
(l + 1)(l + 2)

(l − 1)ll!(2l + 1)!!
U(1)

L (U)U(1)
L (U) +

4l(l + 2)
c2(l − 1)(l + 1)!(2l + 1)!!

V(1)
L (U)V(1)

L (U)
}
.

(60)

Notice that the meaning of such formulas is rather empty, because we do not know yet how the
radiative moments are given in terms of the actual source parameters. Only at the Newtonian level
do we know this relation, which from the comparison with the quadrupole formalism of Eqs. (2, 3,
4) reduces to

Uij(U) = Q(2)
ij (U) +O

(
1
c2

)
, (61)

where Qij is the Newtonian quadrupole given by Eq. (3). Fortunately, we are not in such bad
shape because we have learned from Theorem 4 the general method that permits us to compute
the radiative multipole moments UL, VL in terms of the source moments IL, JL, . . ., ZL. Therefore,
what is missing is the explicit dependence of the source multipole moments as functions of the actual
parameters of some isolated source. We come to grips with this question in the next section.
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5 Exterior Field of a Post-Newtonian Source

By Theorem 2 we control the most general class of solutions of the vacuum equations outside
the source, in the form of non-linear functionals of the source multipole moments. For instance,
these solutions include the Schwarzschild and Kerr solutions, as well as all their perturbations.
By Theorem 4 we learned how to construct the radiative moments at infinity. We now want to
understand how a specific choice of stress-energy tensor Tαβ (i.e. a choice of some physical model
describing the source) selects a particular physical exterior solution among our general class.

5.1 The matching equation

We shall provide the answer in the case of a post-Newtonian source for which the post-Newtonian
parameter 1/c defined by Eq. (1) is small. The fundamental fact that permits the connection of
the exterior field to the inner field of the source is the existence of a “matching” region, in which
both the multipole and the post-Newtonian expansions are valid. This region is nothing but the
exterior near zone, such that r > a (exterior) and r � λ (near zone). It always exists around
post-Newtonian sources.

Let us denote by M(h) the multipole expansion of h (for simplicity, we suppress the space-time
indices). By M(h) we really mean the multipolar-post-Minkowskian exterior metric that we have
constructed in Sections 3 and 4:

M(h) ≡ hext =
+∞∑
n=1

Gnhn[IL, . . . ,ZL]. (62)

Of course, h agrees with its own multipole expansion in the exterior of the source,

r > a =⇒ M(h) = h. (63)

By contrast, inside the source, h and M(h) disagree with each other because h is a fully-fledged
solution of the field equations with matter source, while M(h) is a vacuum solution becoming
singular at r = 0. Now let us denote by h the post-Newtonian expansion of h. We have already an-
ticipated the general structure of this expansion as given in Eq. (47). In the matching region, where
both the multipolar and post-Newtonian expansions are valid, we write the numerical equality

a < r � λ =⇒ M(h) = h. (64)

This “numerical” equality is viewed here in a sense of formal expansions, as we do not control the
convergence of the series. In fact, we should be aware that such an equality, though quite natural
and even physically obvious, is probably not really justified within the approximation scheme
(mathematically speaking), and we take it as part of our fundamental assumptions.

We now transform Eq. (64) into a matching equation, by replacing in the left-hand side M(h)
by its near-zone re-expansionM(h), and in the right-hand side h by its multipole expansionM(h).
The structure of the near-zone expansion (r → 0) of the exterior multipolar field has been found in
Eq. (46). We denote the corresponding infinite series M(h) with the same overbar as for the post-
Newtonian expansion because it is really an expansion when r/c→ 0, equivalent to an expansion
when c→∞. Concerning the multipole expansion of the post-Newtonian metric, M(h), we simply
postulate its existence. Therefore, the matching equation is the statement that

M(h) = M(h), (65)

by which we really mean an infinite set of functional identities, valid ∀(x, t) ∈ R3
∗ × R, between

the coefficients of the series in both sides of the equation. Note that such a meaning is somewhat
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different from that of a numerical equality like Eq. (64), which is valid only when x belongs to some
limited spatial domain. The matching equation (65) tells us that the formal near-zone expansion
of the multipole decomposition is identical, term by term, to the multipole expansion of the post-
Newtonian solution. However, the former expansion is nothing but the formal far-zone expansion,
when r → ∞, of each of the post-Newtonian coefficients. Most importantly, it is possible to
write down, within the present formalism, the general structure of these identical expansions as a
consequence of Theorem 3, Eq. (46):

M(h) =
∑

n̂Lr
m(ln r)pFL,m,p(t) = M(h), (66)

where the functions FL,m,p =
∑

n≥1G
nFL,m,p,n. The latter expansion can be interpreted either as

the singular re-expansion of the multipole decomposition when r → 0 (first equality in Eq. (66)),
or the singular re-expansion of the post-Newtonian series when r → +∞ (second equality). We
recognize the beauty of singular perturbation theory, where two asymptotic expansions, taken
formally outside their respective domains of validity, are matched together. Of course, the method
works because there exists, physically, an overlapping region in which the two approximation series
are expected to be numerically close to the exact solution.

5.2 General expression of the multipole expansion

Theorem 5 Under the hypothesis of matching, Eq. (65), the multipole expansion of the solution
of the Einstein field equation outside a post-Newtonian source reads as

M(hαβ) = FPB=0 �−1
ret [r̃

BM(Λαβ)]− 4G
c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Hαβ

L (t− r/c)
}
, (67)

where the “multipole moments” are given by

Hαβ
L (u) = FPB=0

∫
d3x |x̃|BxL τ

αβ(x, u). (68)

Here, ταβ denotes the post-Newtonian expansion of the stress-energy pseudo-tensor defined by
Eq. (14).

Proof [6, 11]: First notice where the physical restriction of considering a post-Newtonian source
enters this theorem: the multipole moments (68) depend on the post-Newtonian expansion ταβ ,
rather than on ταβ itself. Consider ∆αβ , namely the difference between hαβ , which is a solution of
the field equations everywhere inside and outside the source, and the first term in Eq. (67), namely
the finite part of the retarded integral of the multipole expansion M(Λαβ):

∆αβ ≡ hαβ −FP �−1
ret [M(Λαβ)]. (69)

From now on we shall generally abbreviate the symbols concerning the finite-part operation at
B = 0 by a mere FP. According to Eq. (20), hαβ is given by the retarded integral of the pseudo-
tensor ταβ . So,

∆αβ =
16πG
c4

�−1
retτ

αβ −FP �−1
ret [M(Λαβ)]. (70)

In the second term the finite part plays a crucial role because the multipole expansion M(Λαβ) is
singular at r = 0. By contrast, the first term in Eq. (70), as it stands, is well-defined because we
are considering only some smooth field distributions: ταβ ∈ C∞(R4). There is no need to include a
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finite part FP in the first term, but a contrario there is no harm to add one in front of it, because
for convergent integrals the finite part simply gives back the value of the integral. The advantage
of adding “artificially” the FP in the first term is that we can re-write Eq. (70) into the much
more interesting form

∆αβ =
16πG
c4

FP �−1
ret

[
ταβ −M(ταβ)

]
, (71)

in which we have also used the fact that M(Λαβ) = 16πG/c4 ·M(ταβ) because Tαβ has a compact
support. The interesting point about Eq. (71) is that ∆αβ appears now to be the (finite part of
a) retarded integral of a source with spatially compact support. This follows from the fact that
the pseudo-tensor agrees numerically with its own multipole expansion when r > a (same equation
as (63)). Therefore, M(∆αβ) can be obtained from the known formula for the multipole expansion
of the retarded solution of a wave equation with compact-support source. This formula, given in
Appendix B of Ref. [16], yields the second term in Eq. (67),

M(∆αβ) = −4G
c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Hαβ

L (u)
}
, (72)

but in which the moments do not yet match the result (68); instead,

Hαβ
L = FP

∫
d3xxL

[
ταβ −M(ταβ)

]
. (73)

The reason is that we have not yet applied the assumption of a post-Newtonian source. Such
sources are entirely covered by their own near zone (i.e. a� λ), and, in addition, the integral (73)
has a compact support limited to the domain of the source. In consequence, we can replace the
integrand in Eq. (73) by its post-Newtonian expansion, valid over all the near zone, i.e.

Hαβ
L = FP

∫
d3xxL

[
ταβ −M(ταβ)

]
. (74)

Strangely enough, we do not get the expected result because of the presence of the second term in
Eq. (74). Actually, this term is a bit curious, because the objectM(ταβ) it contains is only known in
the form of the formal series whose structure is given by the first equality in Eq. (66) (indeed τ and
h have the same type of structure). Happily (because we would not know what to do with this term
in applications), we are now going to prove that the second term in Eq. (74) is in fact identically
zero. The proof is based on the properties of the analytic continuation as applied to the formal
structure (66) of M(ταβ). Each term of this series yields a contribution to Eq. (74) that takes
the form, after performing the angular integration, of the integral FPB=0

∫ +∞
0

dr rB+b(ln r)p, and
multiplied by some function of time. We want to prove that the radial integral

∫ +∞
0

dr rB+b(ln r)p

is zero by analytic continuation (∀B ∈ C). First we can get rid of the logarithms by considering
some repeated differentiations with respect to B; thus we need only to consider the simpler integral∫ +∞
0

dr rB+b. We split the integral into a “near-zone” integral
∫R
0
dr rB+b and a “far-zone” one∫ +∞

R dr rB+b, where R is some constant radius. When < (B) is a large enough positive number, the
value of the near-zone integral is RB+b+1/(B+b+1), while when < (B) is a large negative number,
the far-zone integral reads the opposite, −RB+b+1/(B + b + 1). Both obtained values represent
the unique analytic continuations of the near-zone and far-zone integrals for any B ∈ C except
−b − 1. The complete integral

∫ +∞
0

dr rB+b is equal to the sum of these analytic continuations,
and is therefore identically zero (∀B ∈ C, including the value −b− 1). At last we have completed
the proof of Theorem 5:

Hαβ
L = FP

∫
d3xxLτ

αβ . (75)
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The latter proof makes it clear how crucial the analytic-continuation finite part FP is, which we
recall is the same as in our iteration of the exterior post-Minkowskian field (see Eq. (39)). Without a
finite part, the multipole moment (75) would be strongly divergent, because the pseudo-tensor ταβ

has a non-compact support owing to the contribution of the gravitational field, and the multipolar
factor xL behaves like rl when r → +∞. In applications (Part B of this article) we must carefully
follow the rules for handling the FP operator.

The two terms in the right-hand side of Eq. (67) depend separately on the length scale r0 that
we have introduced into the definition of the finite part, through the analytic-continuation factor
r̃B = (r/r0)B (see Eq. (36)). However, the sum of these two terms, i.e. the exterior multipolar
field M(h) itself, is independent of r0. To see this, the simplest way is to differentiate formally
M(h) with respect to r0. The independence of the field upon r0 is quite useful in applications,
since in general many intermediate calculations do depend on r0, and only in the final stage does
the cancellation of the r0’s occur. For instance, we shall see that the source quadrupole moment
depends on r0 starting from the 3PN level [26], but that this r0 is compensated by another r0
coming from the non-linear “tails of tails” at the 3PN order.

5.3 Equivalence with the Will–Wiseman formalism

Recently, Will and Wiseman [152] (see also Refs. [151, 112]), extending previous work of Epstein
and Wagoner [70] and Thorne [142], have obtained a different-looking multipole decomposition,
with different definitions for the multipole moments of a post-Newtonian source. They find, instead
of our multipole decomposition given by Eq. (67),

M(hαβ) = �−1
ret [M(Λαβ)]∣∣

R

− 4G
c4

+∞∑
l=0

(−)l

l!
∂L

{
1
r
Wαβ

L (t− r/c)
}
. (76)

There is no FP operation in the first term, but instead the retarded integral is truncated, as
indicated by the subscript R, to extend only in the “far zone”: i.e. |x′| > R in the notation of
Eq. (21), where R is a constant radius enclosing the source (R > a). The near-zone part of the
retarded integral is thereby removed, and there is no problem with the singularity of the multipole
expansion M(Λαβ) at the origin. The multipole moments WL are then given, in contrast with our
result (68), by an integral extending over the “near zone” only:

Wαβ
L (u) =

∫
|x|<R

d3x xL τ
αβ(x, u). (77)

Since the integrand is compact-supported there is no problem with the bound at infinity and the
integral is well-defined (no need of a FP).

Let us show that the two different formalisms are equivalent. We compute the difference between
our moment HL, defined by Eq. (68), and the Will–Wiseman moment WL, given by Eq. (77). For
the comparison we split HL into far-zone and near-zone integrals corresponding to the radius R.
Since the finite part FP present inHL deals only with the bound at infinity, it can be removed from
the near-zone integral, which is then seen to be exactly equal to WL. So the difference between
the two moments is simply given by the far-zone integral:

Hαβ
L (u)−Wαβ

L (u) = FP
∫
|x|>R

d3xxLτ
αβ(x, u). (78)

Next, we transform this expression. Successively we write ταβ = M(ταβ) because we are outside
the source, and M(ταβ) = M(ταβ) from the matching equation (65). At this stage, we recall
from our reasoning right after Eq. (74) that the finite part of an integral over the whole space R3
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of a quantity having the same structure as M(ταβ) is identically zero by analytic continuation.
The main trick of the proof is made possible by this fact, as it allows us to transform the far-zone
integration |x| > R in Eq. (78) into a near-zone one |x| < R, at the price of changing the overall
sign in front of the integral. So,

Hαβ
L (u)−Wαβ

L (u) = −FP
∫
|x|<R

d3xxLM(ταβ)(x, u). (79)

Finally, it is straightforward to check that the right-hand side of this equation, when summed
up over all multipolarities l, accounts exactly for the near-zone part that was removed from the
retarded integral of M(Λαβ) (first term in Eq. (76)), so that the “complete” retarded integral
as given by the first term in our own definition (67) is exactly reconstituted. In conclusion, the
formalism of Ref. [152] is equivalent to the one of Refs. [6, 11].

5.4 The source multipole moments

In principle the bridge between the exterior gravitational field generated by the post-Newtonian
source and its inner field is provided by Theorem 5; however, we still have to make the connection
with the explicit construction of the general multipolar and post-Minkowskian metric in Sections 3
and 4. Namely, we must find the expressions of the six STF source multipole moments IL, JL, . . .,
ZL parametrizing the linearized metric (26, 27, 28) at the basis of that construction10. To do this
we impose the harmonic-gauge conditions (12) onto the multipole decomposition as given by (67),
and we decompose the multipole functions Hαβ

L (u) into STF irreducible pieces (refer to [11] for the
details).

Theorem 6 The STF multipole moments IL and JL of a post-Newtonian source are given, formally
up to any post-Newtonian order, by (l ≥ 2)

IL(u) = FP
∫
d3x

∫ 1

−1

dz

{
δlx̂LΣ− 4(2l + 1)

c2(l + 1)(2l + 3)
δl+1x̂iLΣ(1)

i

+
2(2l + 1)

c4(l + 1)(l + 2)(2l + 5)
δl+2x̂ijLΣ(2)

ij

}
(x, u+ z|x|/c),

JL(u) = FP
∫
d3x

∫ 1

−1

dz εab〈il

{
δlx̂L−1〉aΣb −

2l + 1
c2(l + 2)(2l + 3)

δl+1x̂L−1〉acΣ
(1)
bc

}
(x, u+ z|x|/c).

(80)

These moments are the ones that are to be inserted into the linearized metric hαβ
1 that represents

the lowest approximation to the post-Minkowskian field hαβ
ext =

∑
n≥1G

nhαβ
n defined in Section 4.

In these formulas the notation is as follows: Some convenient source densities are defined from the
post-Newtonian expansion of the pseudo-tensor ταβ by

Σ =
τ00 + τ ii

c2
,

Σi =
τ0i

c
,

Σij = τ ij

(81)

10Recall that in actual applications we need mostly the mass-type moment IL and current-type one JL, because
the other moments parametrize a linearized gauge transformation.
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(where τ ii ≡ δijτ
ij). As indicated in Eqs. (80) these quantities are to be evaluated at the spatial

point x and at time u + z|x|/c. Notice the presence of an extra integration variable z, ranging
from −1 to 1. The z-integration involves the weighting function11

δl(z) =
(2l + 1)!!

2l+1l!
(1− z2)l, (82)

which is normalized in such a way that ∫ 1

−1

dz δl(z) = 1. (83)

For completeness, we give also the formulas for the four auxiliary source moments WL, . . . ,ZL,
which parametrize the gauge vector ϕα

1 as defined in Eqs. (28):

WL(u) = FP
∫
d3x

∫ 1

−1

dz

{
2l + 1

(l + 1)(2l + 3)
δl+1x̂iLΣi −

2l + 1
2c2(l + 1)(l + 2)(2l + 5)

δl+2x̂ijLΣ(1)
ij

}
,

(84)

XL(u) = FP
∫
d3x

∫ 1

−1

dz

{
2l + 1

2(l + 1)(l + 2)(2l + 5)
δl+2x̂ijLΣij

}
, (85)

YL(u) = FP
∫
d3x

∫ 1

−1

dz

{
−δlx̂LΣii +

3(2l + 1)
(l + 1)(2l + 3)

δl+1x̂iLΣ(1)
i

− 2(2l + 1)
c2(l + 1)(l + 2)(2l + 5)

δl+2x̂ijLΣ(2)
ij

}
, (86)

ZL(u) = FP
∫
d3x

∫ 1

−1

dz εab〈il

{
− 2l + 1

(l + 2)(2l + 3)
δl+1x̂L−1〉bcΣac

}
. (87)

As discussed in Section 4, one can always find two intermediate “packages” of multipole moments,
ML and SL, which are some non-linear functionals of the source moments (80) and (84, 85, 86,
87), and such that the exterior field depends only on them, modulo a change of coordinates. See,
e.g., Eq. (90) below.

In fact, all these source moments make sense only in the form of a post-Newtonian expansion,
so in practice we need to know how to expand all the z-integrals as series when c→ +∞. Here is
the appropriate formula:∫ 1

−1

dz δl(z)τ(x, u+ z|x|/c) =
+∞∑
k=0

(2l + 1)!!
2kk!(2l + 2k + 1)!!

(
|x|
c

∂

∂u

)2k

τ(x, u). (88)

Since the right-hand side involves only even powers of 1/c, the same result holds equally well for
the “advanced” variable u+ z|x|/c or the “retarded” one u− z|x|/c. Of course, in the Newtonian
limit, the moments IL and JL (and also ML, SL) reduce to the standard expressions. For instance,
we have

IL(u) = QL(u) +O
(

1
c2

)
, (89)

11This function approaches the Dirac delta-function (hence its name) in the limit of large multipoles:
lim l→+∞ δl(z) = δ(z). Indeed the source looks more and more like a point mass as we increase the multipolar
order l.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


34 Luc Blanchet

where QL is the Newtonian mass-type multipole moment (see Eq. (3)). (The moments WL, . . .,
ZL have also a Newtonian limit, but it is not particularly illuminating.)

Theorem 6 solves in principle the question of the generation of gravitational waves by extended
post-Newtonian sources. However, note that this result has to be completed by the definition
of an explicit algorithm for the post-Newtonian iteration, analogous to the post-Minkowskian
algorithm we defined in Section 4, so that the source multipole moments, which contain the full
post-Newtonian expansion of the pseudo-tensor ταβ , can be completely specified. Such a systematic
post-Newtonian iteration scheme, valid (formally) to any post-Newtonian order, has been recently
implemented by Poujade and Blanchet [123] using matched asymptotic expansions (see Section 7
below for the metric developed explicitly up to the 3PN order). The solution of this problem
yields, in particular, some general expression, valid up to any order, of the terms associated with
the gravitational radiation reaction force inside the post-Newtonian source12.

Needless to say, the formalism becomes prohibitively difficult to apply at very high post-
Newtonian approximations. Some post-Newtonian order being given, we must first compute the
relevant relativistic corrections to the pseudo stress-energy-tensor ταβ (this necessitates solving the
field equations inside the matter) before inserting them into the source moments (80, 81, 82, 83, 88,
84, 85, 86, 87). The formula (88) is used to express all the terms up to that post-Newtonian order
by means of more tractable integrals extending over R3. Given a specific model for the matter
source we then have to find a way to compute all these spatial integrals (we do it in Section 10 in
the case of point-mass binaries). Next, we must substitute the source multipole moments into the
linearized metric (26, 27, 28), and iterate them until all the necessary multipole interactions taking
place in the radiative moments UL and VL are under control. In fact, we shall work out these
multipole interactions for general sources in the next section up to the 3PN order. Only at this
point does one have the physical radiation field at infinity, from which we can build the templates
for the detection and analysis of gravitational waves. We advocate here that the complexity of the
formalism reflects simply the complexity of the Einstein field equations. It is probably impossi-
ble to devise a different formalism, valid for general sources devoid of symmetries, that would be
substantially simpler.

12An alternative approach to the problem of radiation reaction, besides the matching procedure, is to work only
within a post-Minkowskian iteration scheme (which does not expand the retardations): see, e.g., Ref. [43].

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 35

6 Non-linear Multipole Interactions

We shall now show that the radiative mass-type quadrupole moment Uij includes a quadratic
tail at the relative 1.5PN order (or 1/c3), corresponding to the interaction of the mass M of the
source and its quadrupole moment Iij . This is due to the back-scattering of quadrupolar waves
off the Schwarzschild curvature generated by M. Next, Uij includes a so-called non-linear memory
integral at the 2.5PN order, due to the quadrupolar radiation of the stress-energy distribution of
linear quadrupole waves themselves, i.e. of multipole interactions Iij × Ikl. Finally, we have also a
cubic tail, or “tail of tail”, arising at the 3PN order, and associated with the multipole interaction
M2 × Iij . The result for Uij is better expressed in terms of the intermediate quadrupole moment
Mij already discussed in Section 4.2. This moment reads [7]

Mij = Iij −
4G
c5

[
W(2)Iij −W(1)I(1)ij

]
+O

(
1
c7

)
, (90)

where W means WL as given by Eq. (84) in the case l = 0 (of course, in Eq. (90) we need only the
Newtonian value of W). The difference between the two moments Mij and Iij is a small 2.5PN
quantity. Henceforth, we shall express many of the results in terms of the mass moments ML

and the corresponding current ones SL. The complete formula for the radiative quadrupole, valid
through the 3PN order, reads [12, 10]

Uij(U) = M(2)
ij (U) +

2GM
c3

∫ +∞

0

dτ M(4)
ij (U − τ)

[
ln
(
cτ

2r0

)
+

11
12

]
+
G

c5

{
−2

7

∫ +∞

0

dτ M(3)
a〈i(U − τ)M(3)

j〉a(U − τ)

− 2
7
M(3)

a〈iM
(2)
j〉a −

5
7
M(4)

a〈iM
(1)
j〉a +

1
7
M(5)

a〈iMj〉a +
1
3
εab〈iM

(4)
j〉aSb

}

+
2G2M2

c6

∫ +∞

0

dτ M(5)
ij (U − τ)

[
ln2

(
cτ

2r0

)
+

57
70

ln
(
cτ

2r0

)
+

124627
44100

]
+O

(
1
c7

)
. (91)

The retarded time in radiative coordinates is denoted U = T − R/c. The constant r0 is the one
that enters our definition of the finite-part operation FP (see Eq. (36)). The “Newtonian” term in
Eq. (91) contains the Newtonian quadrupole moment Qij (see Eq. (89)). The dominant radiation
tail at the 1.5PN order was computed within the present formalism in Ref. [17]. The 2.5PN non-
linear memory integral – the first term inside the coefficient of G/c5 – has been obtained using both
post-Newtonian methods [4, 154, 145] and rigorous studies of the field at future null infinity [44].
The other multipole interactions at the 2.5PN order can be found in Ref. [12]. Finally the “tail of
tail” integral appearing at the 3PN order has been derived in this formalism in Ref. [10]. Be careful
to note that the latter post-Newtonian orders correspond to “relative” orders when counted in the
local radiation-reaction force, present in the equations of motion: For instance, the 1.5PN tail
integral in Eq. (91) is due to a 4PN radiative effect in the equations of motion [15]; similarly, the
3PN tail-of-tail integral is (presumably) associated with some radiation-reaction terms occuring at
the 5.5PN order.

Notice that all the radiative multipole moments, for any l, get some tail-induced contributions.
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They are computed at the 1.5PN level in Appendix C of Ref. [6]. We find

UL(U) = M(l)
L (U) +

2GM
c3

∫ +∞

0

dτ M(l+2)
L (U − τ)

[
ln
(
cτ

2r0

)
+ κl

]
+O

(
1
c5

)
,

VL(U) = S(l)
L (U) +

2GM
c3

∫ +∞

0

dτ S(l+2)
L (U − τ)

[
ln
(
cτ

2r0

)
+ πl

]
+O

(
1
c5

)
,

(92)

where the constants κl and πl are given by

κl =
2l2 + 5l + 4
l(l + 1)(l + 2)

+
l−2∑
k=1

1
k
,

πl =
l − 1
l(l + 1)

+
l−1∑
k=1

1
k
.

(93)

Recall that the retarded time U in radiative coordinates is given by

U = t− r

c
− 2GM

c3
ln
(
r

r0

)
+O

(
G2
)
, (94)

where (t, r) are harmonic coordinates; recall the gauge vector ξα
1 in Eq. (51). Inserting U as given

by Eq. (94) into Eqs. (92) we obtain the radiative moments expressed in terms of source-rooted
coordinates (t, r), e.g.,

UL = M(l)
L (t− r/c) +

2GM
c3

∫ +∞

0

dτ M(l+2)
L (t− τ − r/c)

[
ln
(cτ

2r

)
+ κl

]
+O

(
1
c5

)
. (95)

This expression no longer depends on the constant r0 (i.e. the r0 gets replaced by r)13. If
we now change the harmonic coordinates (t, r) to some new ones, such as, for instance, some
“Schwarzschild-like” coordinates (t′, r′) such that t′ = t and r′ = r +GM/c2, we get

UL = M(l)
L (t′ − r′/c) +

2GM
c3

∫ +∞

0

dτ M(l+2)
L (t′ − τ − r′/c)

[
ln
( cτ

2r′
)

+ κ′l

]
+O

(
1
c5

)
, (96)

where κ′l = κl + 1/2. Therefore the constant κl (and πl as well) depends on the choice of source-
rooted coordinates (t, r): For instance, we have κ2 = 11/12 in harmonic coordinates (see Eq. (91)),
but κ′2 = 17/12 in Schwarzschild coordinates [31].

The tail integrals in Eqs. (91, 92) involve all the instants from −∞ in the past up to the
current time U . However, strictly speaking, the integrals must not extend up to minus infinity
in the past, because we have assumed from the start that the metric is stationary before the
date −T ; see Eq. (19). The range of integration of the tails is therefore limited a priori to the
time interval [−T , U ]. But now, once we have derived the tail integrals, thanks in part to the
technical assumption of stationarity in the past, we can argue that the results are in fact valid in
more general situations for which the field has never been stationary. We have in mind the case
of two bodies moving initially on some unbound (hyperbolic-like) orbit, and which capture each
other, because of the loss of energy by gravitational radiation, to form a bound system at our
current epoch. In this situation we can check, using a simple Newtonian model for the behaviour

13At the 3PN order (taking into account the tails of tails), we find that r0 does not completely cancel out after
the replacement of U by the right-hand side of Eq. (94). The reason is that the moment ML also depends on r0 at
the 3PN order. Considering also the latter dependence we can check that the 3PN radiative moment UL is actually
free of the unphysical constant r0.
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of the quadrupole moment Mij(U − τ) when τ → +∞, that the tail integrals, when assumed to
extend over the whole time interval [−∞, U ], remain perfectly well-defined (i.e. convergent) at the
integration bound τ = +∞. We regard this fact as a solid a posteriori justification (though not a
proof) of our a priori too restrictive assumption of stationarity in the past. This assumption does
not seem to yield any physical restriction on the applicability of the final formulas.

To obtain the result (91), we must implement in details the post-Minkows-kian algorithm
presented in Section 4.1. Let us outline here this computation, limiting ourselves to the interaction
between one or two masses M ≡ MADM ≡ I and the time-varying quadrupole moment Mab(u)
(that is related to the source quadrupole Iab(u) by Eq. (90)). For these moments the linearized
metric (26, 27, 28) reads

hαβ
1 = hαβ

(M) + hαβ
(Mab)

, (97)

where the monopole part is nothing but the linearized piece of the Schwarzschild metric in harmonic
coordinates,

h00
(M) = −4r−1M,

h0i
(M) = 0,

hij
(M) = 0,

(98)

and the quadrupole part is
h00

(Mab)
= −2∂ab

[
r−1Mab(u)

]
,

h0i
(Mab)

= 2∂a

[
r−1M(1)

ai (u)
]
,

hij
(Mab)

= −2r−1M(2)
ij (u).

(99)

(We pose c = 1 until the end of this section.) Consider next the quadratically non-linear metric
hαβ

2 generated by these moments. Evidently it involves a term proportional to M2, the mixed term
corresponding to the interaction M×Mab, and the self-interaction term of Mab. Say,

hαβ
2 = hαβ

(M2) + hαβ
(MMab)

+ hαβ
(MabMcd). (100)

The first term represents the quadratic piece of the Schwarzschild metric,

h00
(M2) = −7r−2M2,

h0i
(M2) = 0,

hij
(M2) = −nijr

−2M2.

(101)

The second term in Eq. (100) represents the dominant non-static multipole interaction, that is
between the mass and the quadrupole moment, and that we now compute14. We apply the equa-
tions (39, 40, 41, 42, 43) in Section 4. First we obtain the source for this term, viz.

Λαβ
(MMab)

= Nαβ [h(M), h(Mab)] +Nαβ [h(Mab), h(M)], (102)

whereNαβ(h, h) denotes the quadratic-order part of the gravitational source, as defined by Eq. (16).
To integrate this term we need some explicit formulas for the retarded integral of an extended (non-
compact-support) source having some definite multipolarity l. A thorough account of the technical
formulas necessary for handling the quadratic and cubic interactions is given in the appendices of

14The computation of the third term in Eq. (100), which corresponds to the interaction between two quadrupoles,
Mab ×Mcd, can be found in Ref. [12].
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Refs. [12] and [10]. For the present computation the crucial formula corresponds to a source term
behaving like 1/r2:

�−1
ret

[
n̂L

r2
F (t− r)

]
= −n̂L

∫ +∞

1

dxQl(x)F (t− rx), (103)

where Ql is the Legendre function of the second kind15. With the help of this and other formulas
we obtain the object uαβ

2 given by Eq. (39). Next we compute the divergence wα
2 = ∂µu

αµ
2 , and

obtain the supplementary term vαβ
2 by applying Eqs. (42). Actually, we find for this particular

interaction wα
2 = 0 and thus also vαβ

2 = 0. Following Eq. (43), the result is the sum of uαβ
2 and

vαβ
2 , and we get

M−1h00
(MMab)

= nabr
−4
[
−21Mab − 21rM(1)

ab + 7r2M(2)
ab + 10r3M(3)

ab

]
+8nab

∫ +∞

1

dxQ2(x)M
(4)
ab (t− rx),

M−1h0i
(MMab)

= niabr
−3

[
−M(1)

ab − rM(2)
ab −

1
3
r2M(3)

ab

]

+nar
−3

[
−5M(1)

ai − 5rM(2)
ai +

19
3
r2M(3)

ai

]

+8na

∫ +∞

1

dxQ1(x)M
(4)
ai (t− rx),

M−1hij
(MMab)

= nijabr
−4

[
−15

2
Mab −

15
2
rM(1)

ab − 3r2M(2)
ab −

1
2
r3M(3)

ab

]

+ δijnabr
−4

[
−1

2
Mab −

1
2
rM(1)

ab − 2r2M(2)
ab −

11
6
r3M(3)

ab

]
+na(ir

−4
[
6Mj)a + 6rM(1)

j)a + 6r2M(2)
j)a + 4r3M(3)

j)a

]
+ r−4

[
−Mij − rM(1)

ij − 4r2M(2)
ij − 11

3
r3M(3)

ij

]

+8
∫ +∞

1

dxQ0(x)M
(4)
ij (t− rx).

(104)

The metric is composed of two types of terms: “instantaneous” ones depending on the values of
the quadrupole moment at the retarded time u = t−r, and “non-local” or tail integrals, depending
on all previous instants t− rx ≤ u.

Let us investigate now the cubic interaction between two mass monopoles M with the quadrupole
Mab. Obviously, the source term corresponding to this interaction reads

Λαβ
(M2Mab)

= Nαβ [h(M), h(MMab)] +Nαβ [h(MMab), h(M)] +Nαβ [h(M2), h(Mab)] +Nαβ [h(Mab), h(M2)]

15The function Ql is given in terms of the Legendre polynomial Pl by

Ql(x) =
1

2

∫ 1

−1

dz Pl(z)

x− z
=

1

2
Pl(x) ln

(
x + 1

x− 1

)
−

l∑
j=1

1

j
Pl−j(x)Pj−1(x).

In the complex plane there is a branch cut from −∞ to 1. The first equality is known as the Neumann formula for
the Legendre function.
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+Mαβ [h(M), h(M), h(Mab)] +Mαβ [h(M), h(Mab), h(M)] +Mαβ [h(Mab), h(M), h(M)] (105)

(see Eq. (33)). Notably, the N -terms in Eq. (105) involve the interaction between a linearized
metric, h(M) or h(Mab), and a quadratic one, h(M2) or h(MMab). So, included into these terms are
the tails present in the quadratic metric h(MMab) computed previously with the result (104). These
tails will produce in turn some “tails of tails” in the cubic metric h(M2Mab). The rather involved
computation will not be detailed here (see Ref. [10]). Let us just mention the most difficult of the
needed integration formulas16:

FP �−1
ret

[
n̂L

r

∫ +∞

1

dxQm(x)F (t− rx)
]

= n̂L

∫ +∞

1

dy F (−1)(t− ry)

×
{
Ql(y)

∫ y

1

dxQm(x)
dPl

dx
(x) + Pl(y)

∫ +∞

y

dxQm(x)
dQl

dx
(x)
}
, (106)

where F (−1) is the time anti-derivative of F . With this formula and others given in Ref. [10] we
are able to obtain the closed algebraic form of the metric hαβ

(M2Mab)
, at the leading order in the

distance to the source. The net result is

M−2h00
(M2Mab)

=
nab

r

∫ +∞

0

dτ M(5)
ab

[
−4 ln2

( τ
2r

)
− 4 ln

( τ
2r

)
+

116
21

ln
(
τ

2r0

)
− 7136

2205

]
+O

(
1
r2

)
,

M−2h0i
(M2Mab)

=
n̂iab

r

∫ +∞

0

dτ M(5)
ab

[
−2

3
ln
( τ

2r

)
− 4

105
ln
(
τ

2r0

)
− 716

1225

]
+
na

r

∫ +∞

0

dτ M(5)
ai

[
−4 ln2

( τ
2r

)
− 18

5
ln
( τ

2r

)
+

416
75

ln
(
τ

2r0

)
− 22724

7875

]
+O

(
1
r2

)
,

M−2hij
(M2Mab)

=
n̂ijab

r

∫ +∞

0

dτ M(5)
ab

[
− ln

( τ
2r

)
− 191

210

]
+
δijnab

r

∫ +∞

0

dτ M(5)
ab

[
−80

21
ln
( τ

2r

)
− 32

21
ln
(
τ

2r0

)
− 296

35

]
+
n̂a(i

r

∫ +∞

0

dτ M(5)
j)a

[
52
7

ln
( τ

2r

)
+

104
35

ln
(
τ

2r0

)
+

8812
525

]
+

1
r

∫ +∞

0

dτ M(5)
ij

[
−4 ln2

( τ
2r

)
− 24

5
ln
( τ

2r

)
+

76
15

ln
(
τ

2r0

)
− 198

35

]
+O

(
1
r2

)
,

(107)

where all the moments Mab are evaluated at the instant t− r − τ (recall that c = 1). Notice that
some of the logarithms in Eqs. (107) contain the ratio τ/r while others involve τ/r0. The indicated

16Eq. (106) has been obtained using a not so well known mathematical relation between the Legendre functions
and polynomials:

1

2

∫ 1

−1

dz Pl(z)√
(xy − z)2 − (x2 − 1)(y2 − 1)

= Ql(x)Pl(y)

(where 1 ≤ y < x is assumed). See Appendix A in Ref. [10] for the proof. This relation constitutes a generalization
of the Neumann formula (see footnote after Eq. (103)).
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remainders O(1/r2) contain some logarithms of r; in fact they should be more accurately written
as o(rε−2) for some ε� 1.

The presence of logarithms of r in Eqs. (107) is an artifact of the harmonic coordinates xα,
and we need to gauge them away by introducing the radiative coordinates Xα at future null
infinity (see Theorem 4). As it turns out, it is sufficient for the present calculation to take into
account the “linearized” logarithmic deviation of the light cones in harmonic coordinates so that
Xα = xα + Gξα

1 + O(G2), where ξα
1 is the gauge vector defined by Eq. (51) (see also Eq. (94)).

With this coordinate change one removes all the logarithms of r in Eqs. (107). Hence, we obtain
the radiative metric

M−2H00
(M2Mab)

=
Nab

R

∫ +∞

0

dτ M(5)
ab

[
−4 ln2

(
τ

2r0

)
+

32
21

ln
(
τ

2r0

)
− 7136

2205

]

+O
(

1
R2

)
,

M−2H0i
(M2Mab)

=
N̂iab

R

∫ +∞

0

dτ M(5)
ab

[
− 74

105
ln
(
τ

2r0

)
− 716

1225

]

+
Na

R

∫ +∞

0

dτ M(5)
ai

[
−4 ln2

(
τ

2r0

)
+

146
75

ln
(
τ

2r0

)
− 22724

7875

]

+O
(

1
R2

)
,

M−2Hij
(M2Mab)

=
N̂ijab

R

∫ +∞

0

dτ M(5)
ab

[
− ln

(
τ

2r0

)
− 191

210

]

+
δijNab

R

∫ +∞

0

dτ M(5)
ab

[
−16

3
ln
(
τ

2r0

)
− 296

35

]

+
N̂a(i

R

∫ +∞

0

dτ M(5)
j)a

[
52
5

ln
(
τ

2r0

)
+

8812
525

]

+
1
R

∫ +∞

0

dτ M(5)
ij

[
−4 ln2

(
τ

2r0

)
+

4
15

ln
(
τ

2r0

)
− 198

35

]

+O
(

1
R2

)
,

(108)

where the moments are evaluated at time U−τ ≡ T−R−τ . It is trivial to compute the contribution
of the radiative moments UL(U) and VL(U) corresponding to that metric. We find the “tail of
tail” term reported in Eq. (91).

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://www.livingreviews.org/lrr-2002-3


Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 41

7 The Third Post-Newtonian Metric

The detailed calculations that are called for in applications necessitate having ar one’s disposal
some explicit expressions of the metric coefficients gαβ , in harmonic coordinates, at the highest
possible post-Newtonian order. The 3PN metric that we present below is expressed by means of
some particular retarded-type potentials, V , Vi, Ŵij , etc., whose main advantages are to somewhat
minimize the number of terms, so that even at the 3PN order the metric is still tractable, and to
delineate the different problems associated with the computation of different categories of terms.
Of course, these potentials have no physical significance by themselves. The basic idea in our
post-Newtonian iteration is to use whenever possible a “direct” integration, with the help of some
formulas like �−1

ret(∂µV ∂
µV + V�V ) = V 2/2. The 3PN harmonic-coordinates metric (issued from

Ref. [22]) reads

g00 = −1 +
2
c2
V − 2

c4
V 2 +

8
c6

(
X̂ + ViVi +

V 3

6

)
+

32
c8

(
T̂ − 1

2
V X̂ + R̂iVi −

1
2
V ViVi −

1
48
V 4

)
+O

(
1
c10

)
, (109)

g0i = − 4
c3
Vi −

8
c5
R̂i −

16
c7

(
Ŷi +

1
2
ŴijVj +

1
2
V 2Vi

)
+O

(
1
c9

)
, (110)

gij = δij

[
1 +

2
c2
V +

2
c4
V 2 +

8
c6

(
X̂ + VkVk +

V 3

6

)]
+

4
c4
Ŵij +

16
c6

(
Ẑij +

1
2
V Ŵij − ViVj

)
+O

(
1
c8

)
. (111)

All the potentials are generated by the matter stress-energy tensor Tαβ through the definitions
(analogous to Eqs. (81))

σ =
T 00 + T ii

c2
,

σi =
T 0i

c
,

σij = T ij .

(112)

V and Vi represent some retarded versions of the Newtonian and gravitomagnetic potentials,

V = �−1
ret

[
−4πGσ

]
,

Vi = �−1
ret

[
−4πGσi

]
.

(113)

From the 2PN order we have the potentials

X̂ = �−1
ret

[
−4πGV σii + Ŵij∂ijV + 2Vi∂t∂iV + V ∂2

t V +
3
2
(∂tV )2 − 2∂iVj∂jVi

]
,

R̂i = �−1
ret

[
−4πG(V σi − Viσ)− 2∂kV ∂iVk −

3
2
∂tV ∂iV

]
,

Ŵij = �−1
ret

[
−4πG(σij − δijσkk)− ∂iV ∂jV

]
.

(114)

Some parts of these potentials are directly generated by compact-support matter terms, while other
parts are made of non-compact-support products of V -type potentials. There exists also a very
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important cubically non-linear term generated by the coupling between Ŵij and V , the second
term in the X̂-potential. At the 3PN level we have the most complicated of these potentials,
namely

T̂ = �−1
ret

[
−4πG

(
1
4
σijŴij +

1
2
V 2σii + σViVi

)
+ Ẑij∂ijV + R̂i∂t∂iV − 2∂iVj∂jR̂i − ∂iVj∂tŴij

+V Vi∂t∂iV + 2Vi∂jVi∂jV +
3
2
Vi∂tV ∂iV +

1
2
V 2∂2

t V +
3
2
V (∂tV )2 − 1

2
(∂tVi)2

]
,

Ŷi = �−1
ret

[
−4πG

(
−σR̂i − σV Vi +

1
2
σkŴik +

1
2
σikVk +

1
2
σkkVi

)
+ Ŵkl∂klVi − ∂tŴik∂kV + ∂iŴkl∂kVl − ∂kŴil∂lVk − 2∂kV ∂iR̂k −

3
2
Vk∂iV ∂kV

− 3
2
V ∂tV ∂iV − 2V ∂kV ∂kVi + V ∂2

t Vi + 2Vk∂k∂tVi

]
,

Ẑij = �−1
ret

[
−4πGV

(
σij − δijσkk

)
− 2∂(iV ∂tVj) + ∂iVk∂jVk + ∂kVi∂kVj − 2∂(iVk∂kVj)

− 3
4
δij(∂tV )2 − δij∂kVm(∂kVm − ∂mVk)

]
,

(115)
which involve many types of compact-support contributions, as well as quadratic-order and cubic-
order parts; but, surprisingly, there are no quartically non-linear terms17.

The above potentials are not independent. They are linked together by some differential iden-
tities issued from the harmonic gauge conditions, which are equivalent, via the Bianchi identities,
to the equations of motion of the matter fields (see Eq. (17)). These identities read

0 = ∂t

{
V +

1
c2

[
1
2
Ŵkk + 2V 2

]
+

4
c4

[
X̂ +

1
2
Ẑkk +

1
2
V Ŵkk +

2
3
V 3

]}

+ ∂i

{
Vi +

2
c2

[
R̂i + V Vi

]
+

4
c4

[
Ŷi −

1
2
ŴijVj +

1
2
ŴkkVi + V R̂i + V 2Vi

]}

+O
(

1
c6

)
,

0 = ∂t

{
Vi +

2
c2

[
R̂i + V Vi

]}
+ ∂j

{
Ŵij −

1
2
Ŵkkδij +

4
c2

[
Ẑij −

1
2
Ẑkkδij

]}

+O
(

1
c4

)
.

(116)

It is important to remark that the above 3PN metric represents the inner post-Newtonian
field of an isolated system, because it contains, to this order, the correct radiation-reaction terms
corresponding to outgoing radiation. These terms come from the expansions of the retardations in
the retarded-type potentials (113, 114, 115).

17It has been possible to “integrate directly” all the quartic contributions in the 3PN metric. See the terms
composed of V 4 and V X̂ in Eq. (109).
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Part B: Compact Binary Systems
The problem of the motion and gravitational radiation of compact objects in post-Newtonian ap-
proximations of general relativity is of crucial importance, for at least three reasons. First, the
motion of N objects at the 1PN level (1/c2), according to the Einstein–Infeld–Hoffmann equa-
tions [69], is routinely taken into account to describe the Solar System dynamics (see Ref. [104]).
Second, the gravitational radiation-reaction force, which appears in the equations of motion at the
2.5PN order, has been verified by the observation of the secular acceleration of the orbital motion of
the binary pulsar [140, 141, 139]. Third, the forthcoming detection and analysis of the gravitational
waves emitted by inspiralling compact binaries will necessitate the prior knowledge of the equations
of motion and radiation up to the high 3PN relative order [48, 49, 72, 50, 135, 121, 122, 96, 59].

8 Hadamard Self-Field Regularization

8.1 Definitions

A model of structureless point masses is expected to be sufficient to describe the inspiral phase
of compact binaries (see the discussion around Eqs. (6, 7, 8)). Thus we want to compute the
metric (and its gradient needed in the equations of motion) at the 3PN order for a system of
two point-like particles. A priori one is not allowed to use directly the metric expressions (109,
110, 111, 112, 113, 114, 115), as they have been derived under the assumption of a continuous
(smooth) matter distribution. Applying them to a system of point particles, we find that most of
the integrals become divergent at the location of the particles, i.e. when x→ y1(t) or y2(t), where
y1(t) and y2(t) denote the two trajectories. Consequently, we must supplement the calculation by
a prescription for how to remove the “infinite part” of these integrals. We systematically employ
the Hadamard regularization [80, 133] (see Ref. [134] for an entry to the mathematical literature).
Let us present here an account of this regularization, as well as a theory of generalized functions
(or pseudo-functions) associated with it, following the detailed investigations in Refs. [20, 23].

Consider the class F of functions F (x) which are smooth (C∞) on R3 except for the two points
y1 and y2, around which they admit a power-like singular expansion of the type

∀n ∈ N, F (x) =
∑

a0≤a≤n

ra
1 1fa(n1) + o(rn

1 ), (117)

and similarly for the other point 2. Here r1 = |x − y1| → 0, and the coefficients 1fa of the
various powers of r1 depend on the unit direction n1 = (x − y1)/r1 of approach to the singular
point. The powers a of r1 are real, range in discrete steps [i.e. a ∈ (ai)i∈N], and are bounded from
below (a0 ≤ a). The coefficients 1fa (and 2fa) for which a < 0 can be referred to as the singular
coefficients of F . If F and G belong to F so does the ordinary product FG, as well as the ordinary
gradient ∂iF . We define the Hadamard “partie finie” of F at the location of the singular point 1
as

(F )1 =
∫
dΩ1

4π 1f0(n1), (118)

where dΩ1 = dΩ(n1) denotes the solid angle element centered on y1 and of direction n1. The
Hadamard partie finie is “non-distributive” in the sense that (FG)1 6= (F )1(G)1 in general. The
second notion of Hadamard partie finie (Pf) concerns that of the integral

∫
d3xF , which is gener-

ically divergent at the location of the two singular points y1 and y2 (we assume no divergence at
infinity). It is defined by

Pfs1s2

∫
d3xF = lim

s→0

{∫
S(s)

d3xF+4π
∑

a+3<0

sa+3

a+ 3

(
F

ra
1

)
1

+4π ln
(
s

s1

)(
r31F

)
1
+1 ↔ 2

}
. (119)
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The first term integrates over a domain S(s) defined as R3 to which the two spherical balls r1 ≤ s
and r2 ≤ s of radius s and centered on the two singularities are excised: S(s) ≡ R3 \ B(y1, s) ∪
B(y2, s). The other terms, where the value of a function at 1 takes the meaning (118), are such
that they cancel out the divergent part of the first term in the limit where s → 0 (the symbol
1 ↔ 2 means the same terms but corresponding to the other point 2). The Hadamard partie-
finie integral depends on two strictly positive constants s1 and s2, associated with the logarithms
present in Eq. (119). See Ref. [20] for alternative expressions of the partie-finie integral.

To any F ∈ F we associate the partie finie pseudo-function Pf F , namely a linear form acting
on F , which is defined by the duality bracket

∀G ∈ F , 〈Pf F,G〉 = Pf
∫
d3xFG. (120)

When restricted to the set D of smooth functions with compact support (we have D ⊂ F), the
pseudo-function Pf F is a distribution in the sense of Schwartz [133]. The product of pseudo-
functions coincides, by definition, with the ordinary pointwise product, namely Pf F.Pf G =
Pf(FG). An interesting pseudo-function, constructed in Ref. [20] on the basis of the Riesz delta
function [125], is the delta-pseudo-function Pf δ1, which plays a role analogous to the Dirac measure
in distribution theory, δ1(x) ≡ δ(x− y1). It is defined by

∀F ∈ F , 〈Pf δ1, F 〉 = Pf
∫
d3x δ1F = (F )1, (121)

where (F )1 is the partie finie of F as given by Eq. (118). From the product of Pf δ1 with any Pf F
we obtain the new pseudo-function Pf(Fδ1), that is such that

∀G ∈ F , 〈Pf(Fδ1), G〉 = (FG)1. (122)

As a general rule, we are not allowed, in consequence of the “non-distributivity” of the Hadamard
partie finie, to replace F within the pseudo-function Pf(Fδ1) by its regularized value: Pf(Fδ1) 6=
(F )1 Pf δ1. The object Pf(Fδ1) has no equivalent in distribution theory.

Next, we treat the spatial derivative of a pseudo-function of the type Pf F , namely ∂i(Pf F ).
Essentially, we require (in Ref. [20]) that the so-called rule of integration by parts holds. By
this we mean that we are allowed to freely operate by parts any duality bracket, with the all-
integrated (“surface”) terms always zero, as in the case of non-singular functions. This requirement
is motivated by our will that a computation involving singular functions be as much as possible
the same as a computation valid for regular functions. By definition,

∀F,G ∈ F , 〈∂i(Pf F ), G〉 = −〈∂i(Pf G), F 〉. (123)

Furthermore, we assume that when all the singular coefficients of F vanish, the derivative of Pf F
reduces to the ordinary derivative, i.e. ∂i(Pf F ) = Pf(∂iF ). Then it is trivial to check that the
rule (123) contains as a particular case the standard definition of the distributional derivative [133].
Notably, we see that the integral of a gradient is always zero: 〈∂i(Pf F ), 1〉 = 0. This should
certainly be the case if we want to compute a quantity (e.g., a Hamiltonian density) which is
defined only modulo a total divergence. We pose

∂i(Pf F ) = Pf(∂iF ) + Di[F ], (124)

where Pf(∂iF ) represents the “ordinary” derivative and Di[F ] the distributional term. The follow-
ing solution of the basic relation (123) was obtained in Ref. [20]:

Di[F ] = 4π Pf

(
ni

1

[
1
2
r1 1f−1 +

∑
k≥0

1
rk
1

1f−2−k

]
δ1

)
+ 1 ↔ 2, (125)
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where we assume for simplicity that the powers a in the expansion (117) of F are relative integers.
The distributional term (125) is of the form Pf(Gδ1) (plus 1 ↔ 2). It is generated solely by
the singular coefficients of F (the sum over k in Eq. (125) is always finite). The formula for the
distributional term associated with the lth distributional derivative, i.e. DL[F ] = ∂L Pf F−Pf ∂LF ,
where L = i1i2 . . . il, reads

DL[F ] =
l∑

k=1

∂i1...ik−1Dik
[∂ik+1...il

F ]. (126)

We refer to Theorem 4 in Ref. [20] for the definition of another derivative operator, representing
in fact the most general derivative satisfying the same properties as the one defined by Eq. (125)
and, in addition, the commutation of successive derivatives (or Schwarz lemma)18.

The distributional derivative (124, 125, 126) does not satisfy the Leibniz rule for the derivation
of a product, in accordance with a general theorem of Schwartz [132]. Rather, the investigation
in Ref. [20] has suggested that, in order to construct a consistent theory (using the “ordinary”
product for pseudo-functions), the Leibniz rule should in a sense be weakened, and replaced by
the rule of integration by part (123), which is in fact nothing but an “integrated” version of the
Leibniz rule.

The Hadamard regularization (F )1 is defined by Eq. (118) in a preferred spatial hypersurface
t = const. of a coordinate system, and consequently is not a priori compatible with the requirement
of global Lorentz invariance. Thus we expect that the equations of motion in harmonic coordinates
(which, we recall, manifestly preserve the global Lorentz invariance) should exhibit at some stage
a violation of the Lorentz invariance due to the latter regularization. In fact this occurs exactly at
the 3PN order. Up to the 2.5PN level, the use of the regularization (F )1 is sufficient in order to
get some Lorentz-invariant equations of motion [25]. To deal with the problem at 3PN a Lorentz-
invariant regularization, denoted [F ]1, was introduced in Ref. [23]. It consists of performing the
Hadamard regularization within the spatial hypersurface that is geometrically orthogonal (in a
Minkowskian sense) to the four-velocity of the particle. The regularization [F ]1 differs from the
simpler regularization (F )1 by relativistic corrections of order 1/c2 at least. See Ref. [23] for the
formulas defining this regularization in the form of some infinite power series in the relativistic
parameter 1/c2. The regularization [F ]1 plays a crucial role in obtaining the equations of motion
at the 3PN order in Refs. [21, 22].

8.2 Regularization ambiguities

The “standard” Hadamard regularization yields some ambiguous results for the computation of
certain integrals at the 3PN order, as Jaranowski and Schäfer [87, 88, 89] noticed in their compu-
tation of the equations of motion within the ADM-Hamiltonian formulation of general relativity.
By standard Hadamard regularization we mean the regularization based solely on the definitions
of the partie finie of a singular function, Eq. (118), and the partie finie of a divergent integral,
Eq. (119) (i.e. without using a theory of pseudo-functions and generalized distributional derivatives
as proposed in Refs. [20, 23]). It was shown in Refs. [87, 88, 89] that there are two and only two
types of ambiguous terms in the 3PN Hamiltonian, which were then parametrized by two unknown
numerical coefficients ωstatic and ωkinetic.

Blanchet and Faye [20, 23], motivated by the previous result, introduced their “improved”
Hadamard regularization, the one we outlined in the previous Section 8.1. This new regularization
is mathematically well-defined and free of ambiguities; in particular it yields unique results for

18It was shown in Ref. [22] that using one or the other of these derivatives results in some equations of motion
that differ by a mere coordinate transformation. This result indicates that the distributional derivatives introduced
in Ref. [20] constitute merely some technical tools which are devoid of physical meaning.
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the computation of any of the integrals occuring in the 3PN equations of motion. Unfortunately,
this regularization turned out to be in a sense incomplete, because it was found in Refs. [21, 22]
that the 3PN equations of motion involve one and only one unknown numerical constant, called
λ, which cannot be determined within the method. The comparison of this result with the work
of Jaranowski and Schäfer [87, 88, 89], on the basis of the computation of the invariant energy of
binaries moving on circular orbits, showed [21] that

ωkinetic =
41
24
, (127)

ωstatic = −11
3
λ− 1987

840
. (128)

Therefore, the ambiguity ωkinetic is fixed, while λ is equivalent to the other ambiguity ωstatic. Note
that the harmonic-coordinates 3PN equations of motion as they have been obtained in Refs. [21, 22]
depend also, in addition to λ, on two arbitrary constants r′1 and r′2 parametrizing some logarithmic
terms19; however, these constants are not “physical” in the sense that they can be removed by a
coordinate transformation.

The appearance of one and only one physical unknown coefficient λ in the equations of motion
constitutes a quite striking fact, that is related specifically with the use of a Hadamard-type
regularization. Mathematically speaking, the presence of λ is (probably) related to the fact that it
is impossible to construct a distributional derivative operator, such as (124, 125, 126), satisfying
the Leibniz rule for the derivation of the product [132]. The Einstein field equations can be written
into many different forms, by shifting the derivatives and operating some terms by parts with the
help of the Leibniz rule. All these forms are equivalent in the case of regular sources, but they
become inequivalent for point particles if the derivative operator violates the Leibniz rule. On the
other hand, physically speaking, λ has its root in the fact that, in a complete computation of the
equations of motion valid for two regular extended weakly self-gravitating bodies, many non-linear
integrals, when taken individually, start depending, from the 3PN order, on the internal structure
of the bodies, even in the “compact-body” limit where the radii tend to zero. However, when
considering the full equations of motion, we finally expect λ to be independent of the internal
structure of the compact bodies.

Damour, Jaranowski and Schäfer [60] recovered the value of ωkinetic given in Eq. (127) by prov-
ing that this value is the unique one for which the global Poincaré invariance of their formalism
is verified. Since the coordinate conditions associated with the ADM approach do not manifestly
respect the Poincaré symmetry, they had to prove that the Hamiltonian is compatible with the
existence of generators for the Poincaré algebra. By contrast, the harmonic-coordinate condi-
tions preserve the Poincaré invariance, and therefore the associated equations of motion should
be Lorentz-invariant, as was indeed found to be the case by Blanchet and Faye [21, 22], thanks
in particular to their use of a Lorentz-invariant regularization [23] (hence their determination of
ωkinetic).

The other parameter ωstatic was computed by Damour, Jaranowski and Schäfer [61] by means
of a dimensional regularization, instead of a Hadamard-type one, within the ADM-Hamiltonian
formalism. Their result, which in principle fixes λ according to Eq. (128), is

ωstatic = 0 ⇐⇒ λ = −1987
3080

. (129)

As Damour et al. [61] argue, clearing up the ambiguity is made possible by the fact that the dimen-
sional regularization, contrary to the Hadamard regularization, respects all the basic properties of

19The constants r′1 and r′2 are closely related to the constants s1 and s2 in the partie-finie integral (119). See
Ref. [22] for the precise definition.
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the algebraic and differential calculus of ordinary functions. In this respect, the dimensional regu-
larization is certainly better than the Hadamard one, which does not respect the “distributivity”
of the product (recall that (FG)1 6= (F )1(G)1) and unavoidably violates at some stage the Leibniz
rule for the differentiation of a product.

Let us comment that the use of a self-field regularization in this problem, be it dimensional or
based on the Hadamard partie finie, signals a somewhat unsatisfactory situation on the physical
point of view, because, ideally, we would like to perform a complete calculation valid for extended
bodies, taking into account the details of the internal structure of the bodies (energy density,
pressure, internal velocities, etc.). By considering the limit where the radii of the objects tend to
zero, one should recover the same result as obtained by means of the point-mass regularization.
This would demonstrate the suitability of the regularization. This program has been achieved at
the 2PN order by Kopeikin [93] and Grishchuk and Kopeikin [79] who derived the equations of
motion of two extended fluid balls, and proved that for compact bodies the equations depend only
on the two masses m1 and m2. At the 3PN order we expect that the extended-body approach
will give the value of the regularization parameter λ. In the following, we shall prefer to keep λ
unspecified, until its value has been confirmed by independent and hopefully more physical methods
(like in Refs. [146, 94, 65]).

Blanchet, Iyer and Joguet [26], in their computation of the 3PN radiation field of two point
masses – the second half of the problem, besides the 3PN equations of motion – used the (stan-
dard) Hadamard regularization and found it necessary to introduce three additional regularization
constants ξ, κ and ζ, which play a role analogous to the equation-of-motion λ. Such unknown
constants come from the computation of the 3PN binary’s quadrupole moment Iij . Some good
news is that the total gravitational-wave flux, in the case of circular orbits, depends in fact only
on a single combination of the three latter constants,

θ = ξ + 2κ+ ζ. (130)

To summarize, the final result that we shall derive below for the binary’s orbital phase will involve
the two regularization constants: λ coming from the equations of motion and θ coming from the
multipole moments. But, interestingly, we shall find that there is only one unknown coefficient, in
the form of a linear combination of λ and θ.
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9 Newtonian-like Equations of Motion

9.1 The 3PN accelerations and energy

We present the acceleration of one of the particles, say the particle 1, at the 3PN order, as well as
the 3PN energy of the binary, which is conserved in the absence of radiation reaction. To get this
result we used essentially a “direct” post-Newtonian method (issued from Ref. [25]), which consists
of reducing the 3PN metric of an extended regular source, worked out in Eqs. (109, 110, 111, 112,
113, 114, 115), to the case where the matter tensor is made of delta functions, and then curing
the self-field divergences by means of the Hadamard regularization technique. The equations of
motion are simply the geodesic equations associated with the regularized metric (see Ref. [23] for
a proof).

Though the successive post-Newtonian approximations are really a consequence of general
relativity, the final equations of motion must be interpreted in a Newtonian-like fashion. That is,
once a convenient general-relativistic (Cartesian) coordinate system is chosen, we should express
the results in terms of the coordinate positions, velocities, and accelerations of the bodies, and view
the trajectories of the particles as taking place in the absolute Euclidean space of Newton. But
because the equations of motion are actually relativistic, they must

(i) stay manifestly invariant – at least in harmonic coordinates – when we perform a global
post-Newtonian-expanded Lorentz transformation,

(ii) possess the correct “perturbative” limit, given by the geodesics of the (post-Newtonian-
expanded) Schwarzschild metric, when one of the masses tends to zero, and

(iii) be conservative, i.e. to admit a Lagrangian or Hamiltonian formulation, when the gravita-
tional radiation reaction is turned off.

We denote by r12 = |y1(t)−y2(t)| the harmonic-coordinate distance between the two particles,
with y1 = (yi

1) and y2 = (yi
2), by ni

12 = (yi
1 − yi

2)/r12 the corresponding unit direction, and by
vi
1 = dyi

1/dt and ai
1 = dvi

1/dt the coordinate velocity and acceleration of the particle 1 (and idem
for 2). Sometimes we pose vi

12 = vi
1 − vi

2 for the relative velocity. The usual Euclidean scalar
product of vectors is denoted with parentheses, e.g., (n12v1) = n12.v1 and (v1v2) = v1.v2. The
equations of the body 2 are obtained by exchanging all the particle labels 1 ↔ 2 (remembering
that ni

12 and vi
12 change sign in this operation):

ai
1 = −Gm2n

i
12

r212

+
1
c2

{[
5G2m1m2

r312
+

4G2m2
2

r312
+
Gm2

r212

(
3
2
(n12v2)2 − v2

1 + 4(v1v2)− 2v2
2

)]
ni

12

+
Gm2

r212

(
4(n12v1)− 3(n12v2)

)
vi
12

}

+
1
c4

{[
− 57G3m2

1m2

4r412
− 69G3m1m

2
2

2r412
− 9G3m3

2

r412

+
Gm2

r212

(
− 15

8
(n12v2)4 +

3
2
(n12v2)2v2

1 − 6(n12v2)2(v1v2)− 2(v1v2)2 +
9
2
(n12v2)2v2

2

+ 4(v1v2)v2
2 − 2v4

2

)
+
G2m1m2

r312

(
39
2

(n12v1)2 − 39(n12v1)(n12v2) +
17
2

(n12v2)2 −
15
4
v2
1 −

5
2
(v1v2) +

5
4
v2
2

)
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+
G2m2

2

r312

(
2(n12v1)2 − 4(n12v1)(n12v2)− 6(n12v2)2 − 8(v1v2) + 4v2

2

)]
ni

12

+
[
G2m2

2

r312

(
− 2(n12v1)− 2(n12v2)

)
+
G2m1m2

r312

(
− 63

4
(n12v1) +

55
4

(n12v2)
)

+
Gm2

r212

(
− 6(n12v1)(n12v2)2 +

9
2
(n12v2)3 + (n12v2)v2

1 − 4(n12v1)(v1v2)

+ 4(n12v2)(v1v2) + 4(n12v1)v2
2 − 5(n12v2)v2

2

)]
vi
12

}

+
1
c5

{[
208G3m1m

2
2

15r412
(n12v12)−

24G3m2
1m2

5r412
(n12v12) +

12G2m1m2

5r312
(n12v12)v2

12

]
ni

12

+
[
8G3m2

1m2

5r412
− 32G3m1m

2
2

5r412
− 4G2m1m2

5r312
v2
12

]
vi
12

}

+
1
c6

{[
Gm2

r212

(
35
16

(n12v2)6 −
15
8

(n12v2)4v2
1 +

15
2

(n12v2)4(v1v2) + 3(n12v2)2(v1v2)2

−15
2

(n12v2)4v2
2 +

3
2
(n12v2)2v2

1v
2
2 − 12(n12v2)2(v1v2)v2

2 − 2(v1v2)2v2
2

+
15
2

(n12v2)2v4
2 + 4(v1v2)v4

2 − 2v6
2

)
+
G2m1m2

r312

(
− 171

8
(n12v1)4 +

171
2

(n12v1)3(n12v2)−
723
4

(n12v1)2(n12v2)2

+
383
2

(n12v1)(n12v2)3 −
455
8

(n12v2)4 +
229
4

(n12v1)2v2
1

− 205
2

(n12v1)(n12v2)v2
1 +

191
4

(n12v2)2v2
1 −

91
8
v4
1 −

229
2

(n12v1)2(v1v2)

+ 244(n12v1)(n12v2)(v1v2)−
225
2

(n12v2)2(v1v2) +
91
2
v2
1(v1v2)

− 177
4

(v1v2)2 +
229
4

(n12v1)2v2
2 −

283
2

(n12v1)(n12v2)v2
2

+
259
4

(n12v2)2v2
2 −

91
4
v2
1v

2
2 + 43(v1v2)v2

2 −
81
8
v4
2

)
+
G2m2

2

r312

(
− 6(n12v1)2(n12v2)2 + 12(n12v1)(n12v2)3 + 6(n12v2)4

+4(n12v1)(n12v2)(v1v2) + 12(n12v2)2(v1v2) + 4(v1v2)2

− 4(n12v1)(n12v2)v2
2 − 12(n12v2)2v2

2 − 8(v1v2)v2
2 + 4v4

2

)
+
G3m3

2

r412

(
− (n12v1)2 + 2(n12v1)(n12v2) +

43
2

(n12v2)2 + 18(v1v2)− 9v2
2

)
+
G3m1m

2
2

r412

(
415
8

(n12v1)2 −
375
4

(n12v1)(n12v2) +
1113

8
(n12v2)2 −

615
64

(n12v12)2π2

+ 18v2
1 +

123
64

π2v2
12 + 33(v1v2)−

33
2
v2
2

)
+
G3m2

1m2

r412

(
− 45887

168
(n12v1)2 +

24025
42

(n12v1)(n12v2)−
10469

42
(n12v2)2 +

48197
840

v2
1
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− 36227
420

(v1v2) +
36227
840

v2
2 + 110(n12v12)2 ln

(
r12
r′1

)
− 22v2

12 ln
(
r12
r′1

))
+

16G4m4
2

r512
+
G4m2

1m
2
2

r512

(
34763
210

− 44λ
3
− 41

16
π2

)
+
G4m3

1m2

r512

(
−3187

1260
+

44
3

ln
(
r12
r′1

))
+
G4m1m

3
2

r512

(
10478

63
− 44λ

3
− 41

16
π2 − 44

3
ln
(
r12
r′2

))]
ni

12

+
[
Gm2

r212

(
15
2

(n12v1)(n12v2)4 −
45
8

(n12v2)5 −
3
2
(n12v2)3v2

1 + 6(n12v1)(n12v2)2(v1v2)

− 6(n12v2)3(v1v2)− 2(n12v2)(v1v2)2 − 12(n12v1)(n12v2)2v2
2 + 12(n12v2)3v2

2

+(n12v2)v2
1v

2
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}
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(
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)
. (131)

The 3PN equations of motion depend on three arbitrary constants20: the dimensionless constant
λ (e.g., a rational fraction), linked with an incompleteness of the Hadamard regularization as
discussed in Section 8.2; and two arbitrary length scales r′1 and r′2 associated with the logarithms
present at the 3PN order.

It has been proved in Ref. [22] that the two constants r′1 and r′2 are merely linked with the
choice of coordinates – we can refer to r′1 and r′2 as “gauge constants”. In our approach [21, 22], the
harmonic coordinate system is not uniquely fixed by the coordinate condition ∂µh

αµ = 0. In fact
there are infinitely many harmonic coordinate systems that are local. For general smooth sources,
as in the general formalism of Part A, we expect the existence and uniqueness of a global harmonic
coordinate system. But here we have some point-particles, with delta-function singularities, and

20Notice also the dependence upon π2. Technically, the π2 terms arise from non-linear interactions involving some
integrals such as

1

π

∫
d3x

r2
1r2

2

=
π2

r12
.
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in this case we don’t have the notion of a global coordinate system. We can always change
the harmonic coordinates by means of the gauge vector ηα = δxα, satisfying ∆ηα = 0 except
at the location of the two particles (we assume that the transformation is at the 3PN level, so
we can consider simply a flat-space Laplace equation). More precisely, we can show that the
logarithms appearing in Eq. (131), together with the constants r′1 and r′2 therein, can be removed
by the coordinate transformation associated with the 3PN gauge vector (with r1 = |x−y1(t)| and
r2 = |x− y2(t)|):

ηα = −22
3
G2m1m2

c6
∂α

[
Gm1

r2
ln
(
r12
r′1

)
+
Gm2

r1
ln
(
r12
r′2

)]
. (132)

Therefore, the “ambiguity” in the choice of the constants r′1 and r′2 is completely innocuous on
the physical point of view, because the physical results must be gauge invariant. Indeed we shall
verify that r′1 and r′2 cancel out in our final results.

When retaining the “even” relativistic corrections at the 1PN, 2PN and 3PN orders, and
neglecting the “odd” radiation reaction term at the 2.5PN order, we find that the equations of
motion admit a conserved energy (and a Lagrangian, as we shall see), and that energy can be
straightforwardly obtained by guess-work starting from Eq. (131), with the result
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(
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. (133)

To the terms given above, we must add the terms corresponding to the relabelling 1 ↔ 2. Actually,
this energy is not conserved because of the radiation reaction. Thus its time derivative, as computed
by means of the 3PN equations of motion themselves (i.e. order-reducing all the accelerations), is
purely equal to the 2.5PN effect,

dE

dt
=

4
5
G2m2

1m2

c5r312

[
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(
−v2

12 + 2
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Gm2

r12

)
+ (n12v1)(n12v12)
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)]
+1 ↔ 2 +O

(
1
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)
. (134)

The resulting “balance equation” can be better expressed by transfering to the left-hand side
certain 2.5PN terms so that the right-hand side takes the familiar form of a total energy flux.
Posing

Ẽ = E +
4G2m2

1m2

5c5r212
(n12v1)

[
v2
12 −

2G(m1 −m2)
r12

]
+ 1 ↔ 2, (135)

we find agreement with the standard Einstein quadrupole formula (4, 5):

dẼ

dt
= − G

5c5
d3Qij

dt3
d3Qij

dt3
+O

(
1
c7

)
, (136)

where the Newtonian trace-free quadrupole moment is Qij = m1(yi
1y

j
1 − 1

3δ
ijy2

1) + 1 ↔ 2. As we
can see, the 3PN equations of motion (131) are highly relativistic when describing the motion, but
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concerning the radiation they are in fact Newtonian, because they contain merely the “Newtonian”
radiation reaction force at the 2.5PN order.

9.2 Lagrangian and Hamiltonian formulations

The conservative part of the equations of motion in harmonic coordinates (131) is derivable from a
generalized Lagrangian, depending not only on the positions and velocities of the bodies, but also
on their accelerations: ai

1 = dvi
1/dt and ai

2 = dvi
2/dt. As shown by Damour and Deruelle [55], the

accelerations in the harmonic-coordinates Lagrangian occur already from the 2PN order. This fact
is in accordance with a general result of Martin and Sanz [100] that N -body equations of motion
cannot be derived from an ordinary Lagrangian beyond the 1PN level, provided that the gauge
conditions preserve the Lorentz invariance. Note that we can always arrange for the dependence of
the Lagrangian upon the accelerations to be linear, at the price of adding some so-called “multi-
zero” terms to the Lagrangian, which do not modify the equations of motion (see, e.g., Ref. [63]).
At the 3PN level, we find that the Lagrangian also depends on accelerations. It is notable that
these accelerations are sufficient – there is no need to include derivatives of accelerations. Note also
that the Lagrangian is not unique because we can always add to it a total time derivative dF/dt,
where F depends on the positions and velocities, without changing the dynamics. We find [66]
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. (137)

Witness the accelerations occuring at the 2PN and 3PN orders; see also the gauge-dependent
logarithms of r12/r′1 and r12/r

′
2, and the single term containing the regularization ambiguity λ.

We refer to [66] for the explicit expressions of the ten conserved quantities corresponding to the
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integrals of energy (also given in Eq. (133)), linear and angular momenta, and center-of-mass
position. Notice that while it is strictly forbidden to replace the accelerations by the equations of
motion in the Lagrangian, this can and should be done in the final expressions of the conserved
integrals derived from that Lagrangian.

Now we want to exhibit a transformation of the particles dynamical variables – or contact
transformation, as it is called in the jargon – which transforms the 3PN harmonic-coordinates
Lagrangian (137) into a new Lagrangian, valid in some ADM or ADM-like coordinate system, and
such that the associated Hamiltonian coincides with the 3PN Hamiltonian that has been obtained
by Damour, Jaranowski and Schäfer [60]. In ADM coordinates the Lagrangian will be “ordinary”,
depending only on the positions and velocities of the bodies. Let this contact transformation be
Y i

1 (t) = yi
1(t) + δyi

1(t) and 1 ↔ 2, where Y i
1 and yi

1 denote the trajectories in ADM and harmonic
coordinates, respectively. For this transformation to be able to remove all the accelerations in the
initial Lagrangian Lharm up to the 3PN order, we determine [66] it to be necessarily of the form
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]
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(138)

(and idem 1 ↔ 2), where F is a freely adjustable function of the positions and velocities, made of
2PN and 3PN terms, and where Xi

1 represents a special correction term, that is purely of order
3PN. The point is that once the function F is specified there is a unique determination of the
correction term Xi

1 for the contact transformation to work (see Ref. [66] for the details). Thus,
the freedom we have is entirely coded into the function F , and the work then consists in showing
that there exists a unique choice of F for which our Lagrangian Lharm is physically equivalent, via
the contact transformation (138), to the ADM Hamiltonian of Ref. [60]. An interesting point is
that not only the transformation must remove all the accelerations in Lharm, but it should also
cancel out all the logarithms ln(r12/r′1) and ln(r12/r′2), because there are no logarithms in ADM
coordinates. The result we find, which can be checked to be in full agreement with the expression
of the gauge vector in Eq. (132), is that F involves the logarithmic terms
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together with many other non-logarithmic terms (indicated by dots) that are entirely specified by
the isometry of the harmonic and ADM descriptions of the motion. For this particular choice of
F the ADM Lagrangian reads as

LADM = Lharm +
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Inserting into this equation all our explicit expressions we find
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1 +
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−1
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3
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π2(N12V1)(N12V12)

−265
48
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1
64
π2(V1V12) +
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1m2

R3
12

(
− 5(N12V1)2 −

1
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48
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2

)}

+1 ↔ 2 +O
(

1
c7

)
. (141)

The notation is the same as in Eq. (137), except that we use upper-case letters to denote the
ADM-coordinates positions and velocities; thus, for instance N12 = (Y1−Y2)/R12 and (N12V1) =
N12.V1. The Hamiltonian is simply deduced from the latter Lagrangian by applying the usual
Legendre transformation. Posing P i

1 = ∂LADM/∂V i
1 and 1 ↔ 2, we get [87, 88, 89, 60, 66]21

HADM = −Gm1m2

2R12
+

P 2
1

2m1

21Note that in the result published in Ref. [60] the following terms are missing:

G2

c6r2
12

(
−

55

12
m1 −

193

48
m2

)
(N12P2)2P 2

1

m1m2
+ 1↔ 2.

This misprint has been corrected in an Erratum [60].
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+
1
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− P 4
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+
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+
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(
− 3

16
(N12P1)2(N12P2)2

m2
1m

2
2
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2
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+
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2
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2
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+
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+
7
32

(N12P1)(N12P2)P 2
1P

2
2

m3
1m

3
2

+
1
2
P 4

1P
2
2

m4
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2
2

+
1
32
P 2

1 (P1P2)P 2
2
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1m

3
2

)}

+1 ↔ 2 +O
(

1
c7

)
. (142)

Arguably, the results given by the ADM-Hamiltonian formalism (for the problem at hand) look
simpler than their harmonic-coordinate counterparts. Indeed, the ADM Lagrangian is ordinary –
no accelerations – and there are no logarithms nor associated gauge constants r′1 and r′2. But of
course, one is free to describe the binary motion in whatever coordinates one likes, and the two
formalisms, harmonic (137) and ADM (141, 142), describe rigorously the same physics. On the
other hand, the higher complexity of the harmonic-coordinates Lagrangian (137) enables one to
perform more tests of the computations, notably by inquiring about the future of the constants r′1
and r′2, that we know must disappear from physical quantities such as the center-of-mass energy
and the total gravitational-wave flux.

9.3 Equations of motion for circular orbits

Most inspiralling compact binaries will have been circularized by the time they become visible by
the detectors LIGO and VIRGO. In the case of orbits that are circular – apart from the gradual
2.5PN radiation-reaction inspiral – the quite complicated acceleration (131) simplifies drastically,
since all the scalar products between n12 and the velocities are of small 2.5PN order: For instance,
(n12v1) = O(1/c5), and the remainder can always be neglected here. Let us translate the origin of
coordinates to the binary’s center-of-mass by imposing that the binary’s dipole Ii = 0 (notation of
Part A). Up to the 2.5PN order, and in the case of circular orbits, this condition implies [7]22

myi
1 = yi

12

[
m2 + 3γ2νδm

]
− 4

5
G2m2νδm

r12c5
vi
12 +O

(
1
c6

)
,

m yi
2 = yi

12

[
−m1 + 3γ2νδm

]
− 4

5
G2m2νδm

r12c5
vi
12 +O

(
1
c6

)
.

(143)

Mass parameters are the total mass m = m1 +m2 (m ≡ M in the notation of Part A), the mass
difference δm = m1 −m2, the reduced mass µ = m1m2/m, and the very useful symmetric mass
ratio

ν ≡ µ

m
≡ m1m2

(m1 +m2)2
. (144)

The usefulness of this ratio lies in its interesting range of variation: 0 < ν ≤ 1/4, with ν = 1/4
in the case of equal masses, and ν → 0 in the “test-mass” limit for one of the bodies. To display
conveniently the successive post-Newtonian corrections, we employ the post-Newtonian parameter

γ ≡ Gm

r12c2
= O

(
1
c2

)
. (145)

Notice that there are no corrections of order 1PN in Eqs. (143) for circular orbits; the dominant
term is of order 2PN, i.e. proportional to γ2 = O(1/c4).

The relative acceleration ai
12 ≡ ai

1 − ai
2 of two bodies moving on a circular orbit at the 3PN

order is then given by

ai
12 = −ω2yi

12 −
32
5
G3m3ν

c5r412
vi
12 +O

(
1
c7

)
, (146)

22Actually, in the present computation we do not need the radiation-reaction 2.5PN terms in these relations; we
give them only for completeness.
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where yi
12 ≡ yi

1−yi
2 is the relative separation (in harmonic coordinates) and ω denotes the angular

frequency of the circular motion. The second term in Eq. (146), opposite to the velocity vi
12 ≡

vi
1 − vi

2, is the 2.5PN radiation reaction force, which comes from the reduction of the coefficient of
1/c5 in the expression (131). The main content of the 3PN equations (146) is the relation between
the frequency ω and the orbital separation r12, that we find to be given by the generalized version
of Kepler’s third law [21, 22]:

ω2 =
Gm

r312

{
1 + (−3 + ν)γ +

(
6 +

41
4
ν + ν2

)
γ2

+
(
−10 +

[
−67759

840
+

41
64
π2 + 22 ln

(
r12
r′0

)
+

44
3
λ

]
ν +

19
2
ν2 + ν3

)
γ3

}
+O

(
1
c8

)
. (147)

The length scale r′0 is given in terms of the two gauge-constants r′1 and r′2 by

ln r′0 =
m1

m
ln r′1 +

m2

m
ln r′2. (148)

As for the energy, it is immediately obtained from the circular-orbit reduction of the general
result (133). We have

E = −µc
2γ

2

{
1 +

(
−7

4
+

1
4
ν

)
γ +

(
−7

8
+

49
8
ν +

1
8
ν2

)
γ2

+
(
−235

64
+
[
106301
6720

− 123
64

π2 +
22
3

ln
(
r12
r′0

)
− 22

3
λ

]
ν +

27
32
ν2 +

5
64
ν3

)
γ3

}
+O

(
1
c8

)
. (149)

This expression is that of a physical observable E; however, it depends on the choice of a coordi-
nate system, as it involves the post-Newtonian parameter γ defined from the harmonic-coordinate
separation r12. But the numerical value of E should not depend on the choice of a coordinate
system, so E must admit a frame-invariant expression, the same in all coordinate systems. To find
it we re-express E with the help of a frequency-related parameter x instead of the post-Newtonian
parameter γ. Posing

x ≡
(
Gmω

c3

)2/3

= O
(

1
c2

)
, (150)

we readily obtain from Eq. (147) the expression of γ in terms of x at 3PN order,

γ = x

{
1 +

(
1− ν

3

)
x+

(
1− 65

12
ν

)
x2

+
(

1 +
[
−10151

2520
− 41

192
π2 − 22

3
ln
(
r12
r′0

)
− 44

9
λ

]
ν +

229
36

ν2 +
1
81
ν3

)
x3

+O
(

1
c8

)}
, (151)

that we substitute back into Eq. (149), making all appropriate post-Newtonian re-expansions. As
a result, we gladly discover that the logarithms together with their associated gauge constant r′0
have cancelled out. Therefore, our result is

E = −µc
2x

2

{
1 +

(
−3

4
− 1

12
ν

)
x+

(
−27

8
+

19
8
ν − 1

24
ν2

)
x2
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+
(
−675

64
+
[
209323
4032

− 205
96

π2 − 110
9
λ

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

}
+O

(
1
c8

)
. (152)

The constant λ is the one introduced in Eq. (128). For circular orbits one can check that there are
no terms of order x7/2 in Eq. (152), so our result for E is actually valid up to the 3.5PN order.
In the test-mass limit ν → 0, we recover the energy of a particle with mass µ in a Schwarzschild
background of mass m, i.e. Etest = µc2

[
(1− 2x)(1− 3x)−1/2 − 1

]
, when developed to 3.5PN order.
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10 Gravitational Waves from Compact Binaries

We pointed out that the 3PN equations of motion, Eqs. (146, 147), are merely Newtonian as
regards the radiative aspects of the problem, because with that precision the radiation reaction
force is at the lowest 2.5PN order. A solution would be to extend the precision of the equations of
motion so as to include the full relative 3PN or 3.5PN precision into the radiation reaction force,
but, needless to say, the equations of motion up to the 5.5PN or 6PN order are quite impossible
to derive with the present technology. The much better alternative solution is to apply the wave-
generation formalism described in Part A, and to determine by its means the work done by the
radiation reaction force directly as a total energy flux at future null infinity. In this approach, we
replace the knowledge of the higher-order radiation reaction force by the computation of the total
flux L, and we apply the energy balance equation as in the test of the Ṗ of the binary pulsar (see
Eqs. (4, 5)):

dE

dt
= −L. (153)

Therefore, the result (152) that we found for the 3.5PN binary’s center-of-mass energy E constitutes
only “half” of the solution of the problem. The second “half” consists of finding the rate of decrease
dE/dt, which by the balance equation is nothing but finding the total gravitational-wave flux L
at the 3.5PN order. Because the orbit of inspiralling binaries is circular, the balance equation
for the energy is sufficient (no need of a balance equation for the angular momentum). This all
sounds perfect, but it is important to realize that we shall use the equation (153) at the very high
3.5PN order, at which order there are no proofs (following from first principles in general relativity)
that the equation is correct, despite its physically obvious character. Nevertheless, Eq. (153) has
been checked to be valid, both in the cases of point-particle binaries [85, 86] and extended weakly
self-gravitating fluids [5, 9], at the 1PN order and even at 1.5PN (the 1.5PN approximation is
especially important for this check because it contains the first wave tails).

Obtaining L can be divided into two equally important steps: (1) the computation of the source
multipole moments IL and JL of the compact binary and (2) the control and determination of the
tails and related non-linear effects occuring in the relation between the binary’s source moments
and the radiative ones UL and VL (cf. the general formalism of Part A).

10.1 The binary’s multipole moments

The general expressions of the source multipole moments given by Theorem 6 (Eqs. (80)) are first to
be worked out explicitly for general fluid systems at the 3PN order. For this computation one uses
the formula (88), and we insert the 3PN metric coefficients (in harmonic coordinates) expressed in
Eq. (109, 110, 111) by means of the retarded-type elementary potentials (113, 114, 115). Then we
specialize each of the (quite numerous) terms to the case of point-particle binaries by inserting, for
the matter stress-energy tensor Tαβ , the standard expression made out of Dirac delta-functions.
The infinite self-field of point-particles is removed by means of the Hadamard regularization (see
Section 8). This computation has been performed by Blanchet and Schäfer [30] at the 1PN order,
and by Blanchet, Damour and Iyer [18] at the 2PN order; we report below the most accurate 3PN
results obtained by Blanchet, Iyer and Joguet [26].

The difficult part of the analysis is to find the closed-form expressions, fully explicit in terms of
the particle’s positions and velocities, of many non-linear integrals. We refer to [26] for full details;
nevertheless, let us give a few examples of the type of technical formulas that are employed in this
calculation. Typically we have to compute some integrals like

(n,p)

YL (y1,y2) = − 1
2π
FP

∫
d3x x̂L r

n
1 r

p
2 , (154)
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where r1 = |x − y1| and r2 = |x − y2|. When n > −3 and p > −3, this integral is perfectly
well-defined (recall that the finite part FP deals with the bound at infinity). When n ≤ −3 or
p ≤ −3, our basic ansatz is that we apply the definition of the Hadamard partie finie provided
by Eq. (119). Two examples of closed-form formulas that we get, which do not necessitate the
Hadamard partie finie, are (quadrupole case l = 2)

(−1,−1)

Yij =
r12
3

[
y
〈ij〉
1 + y

〈i
1 y

j〉
2 + y

〈ij〉
2

]
,

(−2,−1)

Yij = y
〈ij〉
1

[
16
15

ln
(
r12
r0

)
− 188

225

]
+ y

〈i
1 y

j〉
2

[
8
15

ln
(
r12
r0

)
− 4

225

]
+ y

〈ij〉
2

[
2
5

ln
(
r12
r0

)
− 2

25

]
.

(155)

We denote for example y〈ij〉1 = y
〈i
1 y

j〉
1 ; the constant r0 is the one pertaining to the finite-part process

(see Eq. (36)). One example where the integral diverges at the location of the particle 1 is

(−3,0)

Yij =
[
2 ln

(
s1
r0

)
+

16
15

]
y
〈ij〉
1 , (156)

where s1 is the Hadamard-regularization constant introduced in Eq. (119)23.
The crucial input of the computation of the flux at the 3PN order is the mass quadrupole

moment Iij , since this moment necessitates the full 3PN precision. The result of Ref. [26] for this
moment (in the case of circular orbits) is

Iij = µ

(
Ax〈ij〉 +B

r312
Gm

v〈ij〉 +
48
7
G2m2ν

c5r12
x〈ivj〉

)
+O

(
1
c7

)
, (157)

where we pose xi = xi ≡ yi
12 and vi = vi ≡ vi

12. The third term is the 2.5PN radiation-reaction
term, which does not contribute to the energy flux for circular orbits. The two important coeffi-
cients are A and B, whose expressions through 3PN order are

A = 1 + γ

(
− 1

42
− 13

14
ν

)
+ γ2

(
− 461

1512
− 18395

1512
ν − 241

1512
ν2

)

+γ3

{
395899
13200

− 428
105

ln
(
r12
r0

)
+
[
139675
33264

− 44
3
ξ − 88

3
κ− 44

3
ln
(
r12
r′0

)]
ν

+
162539
16632

ν2 +
2351
33264

ν3

}
,

B = γ

(
11
21
− 11

7
ν

)
+ γ2

(
1607
378

− 1681
378

ν +
229
378

ν2

)

+γ3

(
−357761

19800
+

428
105

ln
(
r12
r0

)
+
[
−75091

5544
+

44
3
ζ

]
ν +

35759
924

ν2 +
457
5544

ν3

)
.

(158)

These expressions are valid in harmonic coordinates via the post-Newtonian parameter γ given
by Eq. (145). As we see, there are two types of logarithms in the moment: One type involves
the length scale r′0 related by Eq. (148) to the two gauge constants r′1 and r′2 present in the

23When computing the gravitational-wave flux in Ref. [26] we preferred to call the Hadamard-regularization
constants u1 and u2, in order to distinguish them from the constants s1 and s2 that were used in our previous
computation of the equations of motion in Ref. [22]. Indeed these regularization constants need not neccessarily
need to be the same when employed in different contexts.
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3PN equations of motion; the other type contains the different length scale r0 coming from the
general formalism of Part A – indeed, recall that there is a FP operator in front of the source
multipole moments in Theorem 6. As we know, that r′0 is pure gauge; it will disappear from our
physical results at the end. On the other hand, we have remarked that the multipole expansion
outside a general post-Newtonian source is actually free of r0, since the r0’s present in the two
terms of Eq. (67) cancel out. We shall indeed find that the constants r0 present in Eqs. (158) are
compensated by similar constants coming from the non-linear wave “tails of tails”. More seriously,
in addition to the harmless constants r0 and r′0, there are three unknown dimensionless parameters
in Eqs. (158), called ξ, κ and ζ. These parameters reflect some incompleteness of the Hadamard
self-field regularization (see the discussion in Section 8.2).

Besides the 3PN mass quadrupole (157, 158), we need also the mass octupole moment Iijk and
current quadrupole moment Jij , both of them at the 2PN order; these are given by [26]

Iijk = µ
δm

m
x̂ijk

[
−1 + γν + γ2

(
139
330

+
11923
660

ν +
29
110

ν2

)]

+µ
δm

m
x〈ivjk〉

r212
c2

[
−1 + 2ν + γ

(
−1066

165
+

1433
330

ν − 21
55
ν2

)]
+O

(
1
c5

)
,

Jij = µ
δm

m
εab〈ixj〉avb

[
−1 + γ

(
−67

28
+

2
7
ν

)
+ γ2

(
−13

9
+

4651
252

ν +
1

168
ν2

)]
+O

(
1
c5

)
.

(159)

Also needed are the 1PN mass 24-pole, 1PN current 23-pole (octupole), Newtonian mass 25-pole
and Newtonian current 24-pole:

Iijkl = µ x̂ijkl

[
1− 3ν + γ

(
3

110
− 25

22
ν +

69
22
ν2

)]
+

78
55
µx〈ijvkl〉

r212
c2

(1− 5ν + 5ν2) +O
(

1
c3

)
,

Jijk = µ εab〈ixjk〉avb

[
1− 3ν + γ

(
181
90

− 109
18

ν +
13
18
ν2

)]
+

7
45
µ (1− 5ν + 5ν2)εab〈ivjk〉bxa

r212
c2

+O
(

1
c3

)
,

Iijklm = µ
δm

m
(−1 + 2ν)x̂ijklm +O

(
1
c

)
,

Jijkl = µ
δm

m
(−1 + 2ν)εab〈ixjkl〉avb +O

(
1
c

)
.

(160)

These results permit one to control what can be called the “instantaneous” part, say Linst, of
the total energy flux, by which we mean that part of the flux that is generated solely by the source
multipole moments, i.e. not counting the “non-instantaneous” tail integrals. The instantaneous
flux is defined by the replacement into the general expression of L given by Eq. (60) of all the
radiative moments UL and VL by the corresponding (lth time derivatives of the) source moments
IL and JL. Actually, we prefer to define Linst by means of the intermediate moments ML and SL.
Up to the 3.5PN order we have

Linst =
G

c5

{
1
5
M(3)

ij M(3)
ij +

1
c2

[
1

189
M(4)

ijkM(4)
ijk +

16
45

S(3)
ij S(3)

ij

]
+

1
c4

[
1

9072
M(5)

ijkmM(5)
ijkm +

1
84

S(4)
ijkS(4)

ijk

]
+

1
c6

[
1

594000
M(6)

ijkmnM(6)
ijkmn +

4
14175

S(5)
ijkmS(5)

ijkm

]
+O

(
1
c8

)}
. (161)
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The time derivatives of the source moments (157, 158, 159, 160) are computed by means of the
circular-orbit equations of motion given by Eq. (146, 147); then we substitute them into Eq. (161)
(for circular orbits there is no difference at this order between IL, JL and ML, SL). The net result
is

Linst =
32c5

5G
ν2γ5

{
1 +

(
−2927

336
− 5

4
ν

)
γ +

(
293383
9072

+
380
9
ν

)
γ2

+
[
53712289
1108800

− 1712
105

ln
(
r12
r0

)
+
(
−332051

720
+

123
64

π2 +
110
3

ln
(
r12
r′0

)
+ 44λ− 88

3
θ

)
ν − 383

9
ν2

]
γ3

+O
(

1
c8

)}
. (162)

The Newtonian approximation, LN = (32c5)/(5G)·ν2γ5, is the prediction of the Einstein quadrupole
formula (4), as computed by Landau and Lifchitz [97]. The self-field regularization ambiguities
arising at the 3PN order are the equation-of-motion-related constant λ and the multipole-moment-
related constant θ = ξ + 2κ+ ζ (see Section 8.2).

10.2 Contribution of wave tails

To the “instantaneous” part of the flux, we must add the contribution of non-linear multipole
interactions contained in the relationship between the source and radiative moments. The needed
material has already been provided in Eqs. (91, 92). Up to the 3.5PN level we have the dominant
quadratic-order tails, the cubic-order tails or tails of tails, and the non-linear memory integral. We
shall see that the tails play a crucial role in the predicted signal of compact binaries. By contrast,
the non-linear memory effect, given by the integral inside the 2.5PN term in Eq. (91), does not
contribute to the gravitational-wave energy flux before the 4PN order in the case of circular-orbit
binaries (essentially because the memory integral is actually “instantaneous” in the flux), and
therefore has rather poor observational consequences for future detections of inspiralling compact
binaries. We split the energy flux into the different terms

L = Linst + Ltail + L(tail)2 + Ltail(tail), (163)

where Linst has just been found in Eq. (162); Ltail is made of the quadratic (multipolar) tail
integrals in Eq. (92); L(tail)2 is the square of the quadrupole tail in Eq. (91); and Ltail(tail) is the
quadrupole tail of tail in Eq. (91). We find that Ltail contributes at the half-integer 1.5PN, 2.5PN
and 3.5PN orders, while both L(tail)2 and Ltail(tail) appear only at the 3PN order. It is quite
remarkable that so small an effect as a “tail of tail” should be relevant to the present computation,
which is aimed at preparing the ground for forthcoming experiments.

The results follow from the reduction to the case of circular compact binaries of the general
formulas (91, 92). Without going into accessory details (see Ref. [10]), let us give the two basic
technical formulas needed when carrying out this reduction:∫ +∞

0
dτ ln τ e−στ = − 1

σ
(C + lnσ),

∫ +∞
0
dτ ln2 τ e−στ =

1
σ

[
π2

6
+ (C + lnσ)2

]
,

(164)

where σ ∈ C and C = 0.577 . . . denotes the Euler constant [78]. The tail integrals are evaluated
thanks to these formulas for a fixed (non-decaying) circular orbit. Indeed it can be shown [31] that
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the “remote-past” contribution to the tail integrals is negligible; the errors due to the fact that the
orbit actually spirals in by gravitational radiation do not affect the signal before the 4PN order.
We then find, for the quadratic tail term stricto sensu, the 1.5PN, 2.5PN and 3.5PN amounts

Ltail =
32c5

5G
γ5ν2

{
4πγ3/2 +

(
−25663

672
− 125

8
ν

)
πγ5/2

(
90205
576

+
505747
1512

ν +
12809
756

ν2

)
πγ7/2

+ O
(

1
c8

)}
. (165)

For the sum of squared tails and cubic tails of tails at 3PN, we get

L(tail)2+tail(tail) =
32c5

5G
γ5ν2

{(
−116761

3675
+

16
3
π2 − 1712

105
C +

1712
105

ln
(
r12
r0

)
− 856

105
ln (16γ)

)
γ3

+O
(

1
c8

)}
. (166)

By comparing Eqs. (162) and (166) we observe that the constants r0 cleanly cancel out. Adding
together all these contributions we obtain

L =
32c5

5G
γ5ν2

{
1 +

(
−2927

336
− 5

4
ν

)
γ + 4πγ3/2 +

(
293383
9072

+
380
9
ν

)
γ2 +

(
−25663

672
− 125

8
ν

)
πγ5/2

+
[
129386791
7761600

+
16π2

3
− 1712

105
C − 856

105
ln(16γ)

+
(
−332051

720
+

110
3

ln
(
r12
r′0

)
+

123π2

64
+ 44λ− 88

3
θ

)
ν − 383

9
ν2

]
γ3

+
(

90205
576

+
505747
1512

ν +
12809
756

ν2

)
πγ7/2 +O

(
1
c8

)}
. (167)

The gauge constant r′0 has not yet disappeared because the post-Newtonian expansion is still
parametrized by γ instead of the frequency-related parameter x defined by Eq. (150) – just as for
E when it was given by Eq. (149). After substituting the expression γ(x) given by Eq. (151), we
find that r′0 does cancel as well. Because the relation γ(x) is issued from the equations of motion,
the latter cancellation represents an interesting test of the consistency of the two computations, in
harmonic coordinates, of the 3PN multipole moments and the 3PN equations of motion. At long
last we obtain our end result:

L =
32c5

5G
ν2x5

{
1 +

(
−1247

336
− 35

12
ν

)
x+ 4πx3/2 +

(
−44711

9072
+

9271
504

ν +
65
18
ν2

)
x2

+
(
−8191

672
− 583

24
ν

)
πx5/2

+
[
6643739519
69854400

+
16
3
π2 − 1712

105
C − 856

105
ln(16x)

+
(
−11497453

272160
+

41
48
π2 +

176
9
λ− 88

3
θ

)
ν − 94403

3024
ν2 − 775

324
ν3

]
x3

+
(
−16285

504
+

214745
1728

ν +
193385
3024

ν2

)
πx7/2 +O

(
1
c8

)}
. (168)

In the test-mass limit ν → 0 for one of the bodies, we recover exactly the result following from
linear black-hole perturbations obtained by Tagoshi and Sasaki [137]. In particular, the rational
fraction 6643739519/69854400 comes out exactly the same as in black-hole perturbations.
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10.3 Orbital phase evolution

We shall now deduce the laws of variation with time of the orbital frequency and phase of an
inspiralling compact binary from the energy balance equation (153). The center-of-mass energy E
is given by Eq. (152) and the total flux L by Eq. (168). For convenience we adopt the dimensionless
time variable24

Θ ≡ νc3

5Gm
(tc − t), (169)

where tc denotes the instant of coalescence, at which the frequency tends to infinity (evidently, the
post-Newtonian method breaks down well before this point). We transform the balance equation
into an ordinary differential equation for the parameter x, which is immediately integrated with
the result

x =
1
4
Θ−1/4

{
1 +

(
743
4032

+
11
48
ν

)
Θ−1/4 − 1

5
πΘ−3/8 +

(
19583
254016

+
24401
193536

ν +
31
288

ν2

)
Θ−1/2

+
(
−11891

53760
+

109
1920

ν

)
πΘ−5/8

+
[
−10052469856691

6008596070400
+

1
6
π2 +

107
420

C − 107
3360

ln
(

Θ
256

)
+
(

15335597827
3901685760

− 451
3072

π2 − 77
72
λ+

11
24
θ

)
ν − 15211

442368
ν2 +

25565
331776

ν3

]
Θ−3/4

+
(
−113868647

433520640
− 31821

143360
ν +

294941
3870720

ν2

)
πΘ−7/8 +O

(
1
c8

)}
. (170)

The orbital phase is defined as the angle φ, oriented in the sense of the motion, between the
separation of the two bodies and the direction of the ascending node N within the plane of the
sky, namely the point on the orbit at which the bodies cross the plane of the sky moving toward
the detector. We have dφ/dt = ω, which translates, with our notation, into dφ/dΘ = −5/ν · x3/2,
from which we determine

φ = −1
ν

Θ5/8

{
1 +

(
3715
8064

+
55
96
ν

)
Θ−1/4 − 3

4
πΘ−3/8 +

(
9275495
14450688

+
284875
258048

ν +
1855
2048

ν2

)
Θ−1/2

+
(
− 38645

172032
+

65
2048

ν

)
πΘ−5/8 ln

(
Θ
Θ0

)
+
[
831032450749357
57682522275840

− 53
40
π2 − 107

56
C +

107
448

ln
(

Θ
256

)
+
(
−123292747421

4161798144
+

2255
2048

π2 +
385
48

λ− 55
16
θ

)
ν

+
154565
1835008

ν2 − 1179625
1769472

ν3

]
Θ−3/4

+
(

188516689
173408256

+
488825
516096

ν − 141769
516096

ν2

)
πΘ−7/8 +O

(
1
c8

)}
, (171)

where Θ0 is a constant of integration that can be fixed by the initial conditions when the wave
frequency enters the detector’s bandwidth. Finally we want also to dispose of the important
expression of the phase in terms of the frequency x. For this we get

φ = −x
−5/2

32ν

{
1 +

(
3715
1008

+
55
12
ν

)
x− 10πx3/2 +

(
15293365
1016064

+
27145
1008

ν +
3085
144

ν2

)
x2

24Notice the strange post-Newtonian order of this time variable: Θ = O(c+8).
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+
(

38645
1344

− 65
16
ν

)
πx5/2 ln

(
x

x0

)
+
[
12348611926451

18776862720
− 160

3
π2 − 1712

21
C − 856

21
ln(16x)

+
(
−15335597827

12192768
+

2255
48

π2 +
3080

9
λ− 440

3
θ

)
ν +

76055
6912

ν2 − 127825
5184

ν3

]
x3

+
(

77096675
2032128

+
378515
12096

ν − 74045
6048

ν2

)
πx7/2 +O

(
1
c8

)}
, (172)

where x0 is another constant of integration.
With the formula (172) the orbital phase is complete up to the 3.5PN order, except for a single

linear combination of the unknown regularization constants λ and θ. More work should be done
to determine these constants. The effects due to the spins of the particles, i.e. spin-orbit coupling
from the 1.5PN order for compact bodies and spin-spin coupling from the 2PN order, can be added
if necessary (they are known up to the 2.5PN order [91, 90, 108, 136]). On the other hand, the
contribution of the quadrupole moments of the compact objects, which are induced by tidal effects,
is expected to come only at the 5PN order (see Eq. (8)).

10.4 The two polarization wave-forms

The theoretical templates of the compact binary inspiral follow from insertion of the previous
solutions for the 3.5PN-accurate orbital frequency and phase into the binary’s two polarization
wave-forms h+ and h×. We shall include in h+ and h× all the harmonics, besides the dominant
one at twice the orbital frequency, up to the 2PN order, as they have been calculated by Blanchet,
Iyer, Will and Wiseman [27].

The polarization wave-forms are defined with respect to two polarization vectors p = (pi) and
q = (qi):

h+ =
1
2
(pipj − qiqj)hTT

ij ,

h× =
1
2
(piqj + pjqi)hTT

ij ,

(173)

where p and q are chosen to lie along the major and minor axis, respectively, of the projection
onto the plane of the sky of the circular orbit, with p oriented toward the ascending node N . To
the 2PN order we have

h+,× =
2Gµx
c2R

{
H

(0)
+,× + x1/2H

(1/2)
+,× + xH

(1)
+,× + x3/2H

(3/2)
+,× + x2H

(2)
+,× +O

(
1
c5

)}
. (174)

The post-Newtonian terms are ordered by means of the frequency-related variable x. They depend
on the binary’s 3.5PN-accurate phase φ through the auxiliary phase variable

ψ = φ− 2Gmω
c3

ln
(
ω

ω0

)
, (175)

where ω0 is a constant frequency that can conveniently be chosen to be the entry frequency of a
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laser-interferometric detector (say ω0/π = 10Hz). We have, for the plus polarization,

H
(0)
+ = −(1 + c2i ) cos 2ψ,

H
(1/2)
+ = −si

8
δm

m

[
(5 + c2i ) cosψ − 9(1 + c2i ) cos 3ψ

]
,

H
(1)
+ =

1
6

[
19 + 9c2i − 2c4i − ν(19− 11c2i − 6c4i )

]
cos 2ψ − 4

3
s2i (1 + c2i )(1− 3ν) cos 4ψ,

H
(3/2)
+ =

si

192
δm

m

{[
57 + 60c2i − c4i − 2ν(49− 12c2i − c4i )

]
cosψ

− 27
2

[
73 + 40c2i − 9c4i − 2ν(25− 8c2i − 9c4i )

]
cos 3ψ

+
625
2

(1− 2ν)s2i (1 + c2i ) cos 5ψ
}
− 2π(1 + c2i ) cos 2ψ,

H
(2)
+ =

1
120

[
22 + 396c2i + 145c4i − 5c6i +

5
3
ν(706− 216c2i − 251c4i + 15c6i )

−5ν2(98− 108c2i + 7c4i + 5c6i )
]

cos 2ψ

+
2
15
s2i

[
59 + 35c2i − 8c4i −

5
3
ν(131 + 59c2i − 24c4i ) + 5ν2(21− 3c2i − 8c4i )

]
cos 4ψ

−81
40

(1− 5ν + 5ν2)s4i (1 + c2i ) cos 6ψ

+
si

40
δm

m

{[
11 + 7c2i + 10(5 + c2i ) ln 2

]
sinψ − 5π(5 + c2i ) cosψ

− 27
[
7− 10 ln(3/2)

]
(1 + c2i ) sin 3ψ + 135π(1 + c2i ) cos 3ψ

}
,

(176)
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and, for the cross polarization,

H
(0)
× = −2ci sin 2ψ,

H
(1/2)
× = −3

4
sici

δm

m
[sinψ − 3 sin 3ψ] ,

H
(1)
× =

ci
3

[
17− 4c2i − ν(13− 12c2i )

]
sin 2ψ − 8

3
(1− 3ν)cis2i sin 4ψ,

H
(3/2)
× =

sici
96

δm

m

{[
63− 5c2i − 2ν(23− 5c2i )

]
sinψ − 27

2
[
67− 15c2i − 2ν(19− 15c2i )

]
sin 3ψ

+
625
2

(1− 2ν)s2i sin 5ψ
}
− 4πci sin 2ψ,

H
(2)
× =

ci
60

[
68 + 226c2i − 15c4i +

5
3
ν(572− 490c2i + 45c4i )− 5ν2(56− 70c2i + 15c4i )

]
sin 2ψ

+
4
15
cis

2
i

[
55− 12c2i −

5
3
ν(119− 36c2i ) + 5ν2(17− 12c2i )

]
sin 4ψ

−81
20

(1− 5ν + 5ν2)cis4i sin 6ψ

− 3
20
sici

δm

m
{[3 + 10 ln 2] cosψ + 5π sinψ − 9 [7− 10 ln(3/2)] cos 3ψ − 45π sin 3ψ} .

(177)

We use the shorthands ci = cos i and si = sin i for the cosine and sine of the inclination angle i
between the direction of the detector as seen from the binary’s center-of-mass, and the normal to
the orbital plane (we always suppose that the normal is right-handed with respect to the sense of
motion, so that 0 ≤ i ≤ π).

To conclude, the use of theoretical templates based on the preceding 2PN wave forms, and
having their frequency evolution built in via the 3.5PN phase evolution (171, 172), should yield
some accurate detection and measurement of the binary signals. Interestingly, it should also permit
some new tests of general relativity, because we have the possibility of checking that the observed
signals do obey each of the terms of the phasing formulas (171, 172), notably those associated
with the specific quadratic and cubic non-linear tails exactly as they are predicted by Einstein’s
theory [28, 29]. Indeed, we don’t know of any other physical systems for which it would be possible
to perform such tests.
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[111] Papapetrou, A., “Relativité – une formule pour le rayonnement gravitationnel en première
approximation”, C. R. Acad. Sci. Ser. II, 255, 1578, (1962). 2

[112] Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations: Foundations”, Phys. Rev. D, 62,
124015–1–28, (2000). Related online version (cited on 31 July 2000):
http://arXiv.org/abs/gr-qc/0007087. 2, 5.3

[113] Pati, M.E., and Will, C.M., “Post-Newtonian gravitational radiation and equations of motion
via direct integration of the relaxed Einstein equations. II. Two-body equations of motion
to second post-Newtonian order, and radiation-reaction to 3.5 post-Newtonian order”, Phys.
Rev. D, 65, 104008–1–21, (2001). Related online version (cited on 31 December 2001):
http://arXiv.org/abs/gr-qc/0201001. 3

[114] Penrose, R., “Asymptotic Properties of Fields and Space-Times”, Phys. Rev. Lett., 10, 66–68,
(1963). 2, 8, 4

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2002-3

http://arXiv.org/abs/gr-qc/9712057
http://arXiv.org/abs/gr-qc/9710134
http://arXiv.org/abs/gr-qc/0007087
http://arXiv.org/abs/gr-qc/0201001
http://www.livingreviews.org/lrr-2002-3


Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries 79

[115] Penrose, R., “Zero rest-mass fields including gravitation - asymptotic behaviour”, Proc. R.
Soc. London, Ser. A, 284, 159, (1965). 2, 8, 4

[116] Peters, P.C., “Gravitational Radiation and the Motion of Two Point Masses”, Phys. Rev.,
136, B1224–B1232, (1964). 2, 1.2

[117] Peters, P.C., and Mathews, J., “Gravitational Radiation from Point Masses in a Keplerian
Orbit”, Phys. Rev., 131, 435–440, (1963). 2

[118] Petrova, N.M., “Ob Uravnenii Dvizheniya i Tenzore Materii dlya Sistemy Konechnykh Mass
v Obshchei Teorii Otnositielnosti”, J. Exp. Theor. Phys., 19(11), 989–999, (1949). 1.3

[119] Pirani, F.A.E., “Introduction to Gravitational Radiation Theory”, in Trautman, A., Pirani,
F.A.E., and Bondi, H., eds., Lectures on General Relativity, Vol. 1, Brandeis Summer Insti-
tute in Theoretical Physics, 249–373, (Prentice-Hall, Englewood Cliffs, U.S.A., 1964). 2

[120] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black hole. I.
Analytic results for the nonrotating case”, Phys. Rev. D, 47, 1497–1510, (1993). 3

[121] Poisson, E., “Gravitational radiation from a particle in circular orbit around a black-hole. VI.
Accuracy of the post-Newtonian expansion”, Phys. Rev. D, 52, 5719–5723, (1995). Related
online version (cited on 11 February 1997):
http://arXiv.org/abs/gr-qc/9505030. Addendum Phys. Rev. D 55 (1997) 7980–7981.
1.2, B

[122] Poisson, E., and Will, C.M., “Gravitational waves from inspiralling compact binaries: Pa-
rameter estimation using second-post-Newtonian waveforms”, Phys. Rev. D, 52, 848–855,
(1995). Related online version (cited on 24 February 1995):
http://arXiv.org/abs/gr-qc/9502040. 1.2, B

[123] Poujade, O., and Blanchet, L., “Post-Newtonian approximation for isolated systems calcu-
lated by matched asymptotic expansions”, (2001). URL (cited on 21 December 2001):
http://arXiv.org/abs/gr-qc/0112057. 11

[124] Press, W.H., “Gravitational Radiation from Sources Which Extend Into Their Own Wave
Zone”, Phys. Rev. D, 15, 965–968, (1977). 2
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