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We show that gravitational radiation drives an instability in hot young rapidly rotating neu
stars. This instability occurs primarily in thel  2 r-mode and will carry away most of the angula
momentum of a rapidly rotating star by gravitational radiation. On the time scale needed to c
young neutron star to aboutT  109 K (about one year) this instability can reduce the rotation ra
of a rapidly rotating star to about0.076VK , whereVK is the Keplerian angular velocity where mas
shedding occurs. In older colder neutron stars this instability is suppressed by viscous effects, al
older stars to be spun up by accretion to larger angular velocities. [S0031-9007(98)06212-7]

PACS numbers: 04.40.Dg, 04.30.Db, 97.60.Jd
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Recently Andersson [1] discovered (and Friedman a
Morsink [2] confirmed more generally) that gravitationa
radiation tends to drive ther-modes of all rotating stars
unstable. In this paper we examine the time scales as
ciated with this instability in some detail. We show tha
gravitational radiation couples to these modes primar
through the current multipoles, rather than the usual m
multipoles. We also evaluate the effects of internal flu
dissipation which tends to suppress this instability. W
find that gravitational radiation is stronger than viscosi
in these modes and so this instability severely limits t
rotation rates of hot young neutron stars. We show th
such stars can spin down by the emission of gravitatio
radiation to about 7.6% of their maximum rotation rate
on the time scale (about one year) needed to cool th
stars to109 K.

The r-modes of rotating barotropic Newtonian sta
are solutions of the perturbed fluid equations havi
(Eulerian) velocity perturbations

d $y  aRV

µ
r
R

∂l
$YB

ll eivt , (1)

whereR andV are the radius and angular velocity of th
unperturbed star,a is an arbitrary constant, and$Y B

lm is the
magnetic-type vector spherical harmonic defined by
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lm  flsl 1 1dg21y2r $= 3 sr $=Ylmd . (2)
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Papaloizou and Pringle [3] first showed that the Eule
equation forr-modes determines the frequencies as

v  2
sl 2 1d sl 1 2d

l 1 1
V . (3)

Further use of the Euler equation (as first noted b
Provost, Berthomieu, and Rocca [4]) in the barotrop
case (a good approximation for neutron stars) determin
that only thel  m r-modes exist, and thatd $y must have
the radial dependence given in Eq. (1). These expressio
for the velocity perturbation and frequency are only th
lowest order terms in expansions for these quantities
powers ofV. The exact expressions contain additiona
terms of orderV3.

The lowest order expressions for the (Eulerian) densi
perturbationdr can also be deduced from the perturbe
fluid equations (Ipser and Lindblom [5]):
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wheredCsrd is proportional to the gravitational potential
dF and satisfies
d2dC
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Equation (4) is the complete expression fordr to order
V2. The next order terms are proportional toV4.

Our interest here is to study the evolution of the
modes due to the dissipative influences of viscosity a
gravitational radiation. For this purpose it is useful
consider the effects of radiation on the evolution of t
energy of the mode (as measured in the corotating fra
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of the equilibrium star)̃E:

Ẽ 
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d3x .

(6)
This energy evolves on the secular time scale of
dissipative processes. The general expression for the t
© 1998 The American Physical Society 4843



VOLUME 80, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 1 JUNE 1998

for

i-
m

o

er

-

or
he

a-

ted
nt
n.
7)
of
of

of
tion

y.
tly
derivative ofẼ for a mode with time dependenceeivt and
azimuthal angular dependenceeimw is

dẼ
dt

 2
Z

s2hdsabdsp
ab 1 zdsdspdd3x

2 vsv 1 mVd
X
l$2

Nlv
2lsjdDlmj2 1 jdJlmj2d .

(7)

The thermodynamic functionsh and z that appear in
Eq. (7) are the shear and bulk viscosities of the fluid. T
viscous forces are driven by the sheardsab and expansion
ds of the perturbation, defined by the usual expression

dsab 
1
2 s=adyb 1 =bdya 2

2
3 dab=cdycd , (8)

ds  =adya. (9)

Gravitational radiation couples to the evolution of th
mode through the massdDlm and currentdJlm multipole
moments of the perturbed fluid,

dDlm 
Z

drrlYp
lmd3x , (10)
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with coupling constant

Nl 
4pG
c2l11

sl 1 1d sl 1 2d
lsl 2 1d fs2l 1 1d!!g2

. (12)

The terms in the expression fordẼydt due to viscosity
and the gravitational radiation generated by the ma
multipoles are well known [6]. The terms involving the
current multipole moments have been deduced from
general expressions given by Thorne [7].

We can now use Eq. (7) to evaluate the stability of th
r-modes. Viscosity always tends to decrease the ene
Ẽ, while gravitational radiation may either increase or d
crease it. The sum that appears in Eq. (7) is positive d
nite; thus the effect of gravitational radiation is determine
by the sign ofvsv 1 mVd. Forr-modes this quantity is
negative definite:

vsv 1 lVd  2
2sl 2 1d sl 1 2d

sl 1 1d2
V2 , 0 . (13)

Therefore gravitational radiation tends to increase the
ergy of these modes. For small angular velocities the e
ergy Ẽ is positive definite: The positive termjd $yj2 in
Eq. (6) (proportional toV2) dominates the indefinite term
sdpyr 2 dFddrp (proportional toV4). Thus, gravi-
tational radiation tends to makeevery r-mode unstable
in slowly rotating stars. This confirms the discovery o
Andersson [1] and the more general arguments of Frie
man and Morsink [2]. To determine whether these mod
are actually stable or unstable in rotating neutron sta
therefore, we must evaluate the magnitudes of all the d
sipative terms in Eq. (7) and determine which dominate

Here we estimate the relative importance of the
dissipative effects in the small angular velocity limit usin
4844
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the lowest order expressions for ther-moded $y and dr

given in Eqs. (1) and (4). The lowest order expression
the energy of the modẽE is

Ẽ 
1
2 a2V2R22l12

Z R

0
rr2l12dr . (14)

The lowest order contribution to the gravitational rad
ation terms in the energy dissipation comes entirely fro
the current multipole momentdJll. This term can be eval-
uated to lowest order inV using Eqs. (1) and (11):

dJll 
2aV

cRl21

s
l

l 1 1

Z R

0
rr2l12dr . (15)

The other contributions from gravitational radiation t
the dissipation rate are all higher order inV. The
mass multipole moment contributions are higher ord
because (a) the density perturbationdr from Eq. (4) is
proportional toV2 while the velocity perturbationd $y is
proportional toV; and (b) the density perturbationdr

generates gravitational radiation at order2l 1 4 in v

while d $y generates radiation at order2l 1 2.
The contribution of gravitational radiation to the imag

inary part of the frequency of the mode1ytGR can be
computed as follows:

1
tGR

 2
1

2Ẽ

√
dẼ
dt

!
GR

. (16)

Using Eqs. (14)–(16) we obtain an explicit expression f
the gravitational radiation time scale associated with t
r-modes:

1
tGR
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(17)

The time derivative of the energy due to viscous dissip
tion is driven by the sheardsab and the expansionds

of the velocity perturbation. The shear can be evalua
using Eqs. (1) and (8) and its integral over the consta
r two-spheres performed in a straightforward calculatio
Using the formulas for the viscous dissipation rate Eq. (
and the energy Eq. (14), we obtain the contribution
shear viscosity to the imaginary part of the frequency
the mode,

1
tV

 sl 2 1d s2l 1 1d
Z R

0
hr2ldr

√Z R

0
rr2l12dr

!21

.

(18)
The expansionds, which drives the bulk viscosity
dissipation in the fluid, can be reexpressed in terms
the density perturbation. The perturbed mass conserva
law gives the relationshipds  2isv 1 mVdDryr,
whereDr is the Lagrangian perturbation in the densit
The perturbation analysis used here is not of sufficien
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high order (inV) to evaluate the lowest order contributio
to Dr. However, we are able to evaluate the Euleria
perturbationdr as given in Eq. (4). We expect that th
integral of jdryrj2 over the interior of the star will be
similar to (i.e., within about a factor of 2) the integral o
jDryrj2. Thus, we estimate the magnitude of the bu
viscosity contribution to the dissipation by

1
tB

ø
sv 1 mVd2

2Ẽ

Z
z

drdrp

r2 d3x . (19)

Using Eqs. (4) and (14) fordryr and Ẽ, Eq. (19)
becomes an explicit formula for the contribution to th
imaginary part of the frequency due to bulk viscosity.

To evaluate the dissipative time scales associated w
the r-modes using the formulas in Eqs. (17)–(19), w
need models for the structures of neutron stars as w
as expressions for the viscosities of neutron star mat
We have evaluated these time scales for1.4MØ neutron
star models based on several realistic equations of s
[8]. We use the standard formulas for the shear and b
viscosities of hot neutron star matter [9]

h  347r9y4T22, (20)

z  6.0 3 10259r2sv 1 mVd22T6, (21)

where all quantities are given in cgs units. The time sca
for the more realistic equations of state are compara
to those based on a simple polytropic modelp  kr2

with k chosen so that the radius of a1.4MØ star is
12.53 km. The dissipation time scales for this polytrop
model (which can be evaluated analytically) aret̃GR 
23.26 s, t̃V  2.52 3 108 s, andt̃B  6.99 3 108 s for
the fiducial values of the angular velocityV 

p
pGr̄

and temperatureT  109 K in the l  2 r-mode. The
gravitational radiation time scales increase by about
order of magnitude for each incremental increase inl,
while the viscous time scales decrease by about 20%.

The evolution of anr-mode due to the dissipative
effects of viscosity and gravitational radiation reaction
determined by the imaginary part of the frequency of t
mode,

1
tsVd
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pGr̄

!
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Equation (22) is displayed in a form that makes explic
the angular velocity and temperature dependences of
various terms. Dissipative effects cause the mode
decay exponentially ase2tyt (i.e., the mode is stable) as
long ast . 0. From Eqs. (17)–(19) we see thatt̃V . 0
and t̃B . 0 while t̃GR , 0. Thus gravitational radiation
drives these modes towards instability while viscosity tri
to stabilize them. For smallV the gravitational radiation
contribution to the imaginary part of the frequency
very small since it is proportional toV2l12. Thus, for
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sufficiently small angular velocities, viscosity dominate
and the mode is stable. For sufficiently largeV, however,
gravitational radiation will dominate and drive the mode
unstable. It is convenient to define a critical angula
velocity Vc, where the sign of the imaginary part of the
frequency changes from positive to negative:1ytsVcd 
0. If the angular velocity of the star exceedsVc then
gravitational radiation reaction dominates viscosity and th
mode is unstable.

For a given temperature and model the equation for the
critical angular velocity,0  1ytsVcd, is a polynomial of
orderl 1 1 in V2

c , and thus each mode has its own criti-
cal angular velocity. However, only the smallest of thes
(always thel  2 r-mode here) represents the critical an
gular velocity of the star. Figure 1 depicts the critica
angular velocity for a range of temperatures relevant fo
neutron stars. The solid curve in Fig. 1 represents the cr
ical angular velocity for the polytropic model discussed
above. Figure 2 depicts the critical angular velocities fo
1.4MØ neutron star models computed from a variety of re
alistic equations of state [8]. Figure 2 illustrates that th
minimum critical angular velocity (in units of

p
pGr̄)

is extremely insensitive to the equation of state. Th
minima of these curves occur atT ø 2 3 109 K, with
Vc ø 0.043

p
pGr̄. The maximum angular velocity for

any star occurs when the material at the surface effective
orbits the star. This “Keplerian” angular velocityVK is
very nearly2

3

p
pGr̄ for any equation of state. Thus the

minimum critical angular velocity due to instability of the
r-modes is about0.065VK for any equation of state [10].

To determine how rapidly a young neutron star i
allowed to spin after cooling, we must compare th
rate it cools with the rate it loses angular momentum
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FIG. 1. Critical angular velocities for a1.4MØ polytropic
neutron star with (solid line) and without (dashed line) bulk
viscosity. Also the evolution of a rapidly rotating neutron
star (dash-dotted line) as the star cools and emits gravitation
radiation.
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FIG. 2. Critical angular velocities of realistic1.4MØ neutron
star models.

by gravitational radiation. We approximate the coolin
with a simple model based on the emission of neutrin
through the modified URCA process [11]. We comput
the time evolution of the angular velocity of the star b
settingdJydt  Jyt, whereJ is the angular momentum
of the star andt is the time scale given in Eq. (22).
The result is a simple first order differential equation fo
Vstd which we solve for initial angular velocityV  VK

and initial temperature1011 K. The solution is shown as
the dash-dotted line in Fig. 1. The gravitational radiatio
time scale is so short that the star radiates away its angu
momentum almost as quickly as it cools. The angul
velocity of the star decreases fromVK to 0.076VK in a
period of about one year [12]. Thus, we conclude th
young neutron stars will be spun down by the emission
gravitational radiation within their first year to a rotation
period of about13Pmin, where Pmin  2pyVK . The
Crab pulsar with present rotation period 33 ms and initi
period 19 ms (based on the measured braking inde
rotates more slowly than this limit ifPmin , 1.5 ms.

Our analysis is based on the assumption that a you
hot neutron star may be modeled as an ordinary flu
Once the star cools below the superfluid transition tem
perature (about109 K) the analysis presented here mus
be modified [13]. We expect ther-mode instability to
be completely suppressed (withVc  VK ) when the star
becomes a superfluid [14]. This makes it possible for o
recycled pulsars to be spun up to large angular velo
ties by accretion if they are not reheated above109 K in
the process. If nonperfect fluid effects enter above109 K,
however, the spin-down process may be terminated a
higher angular velocity than the0.076VK figure com-
puted here. The detection of a young fast pulsar [1
would provide evidence for such effects at temperatur
higher than109 K. Magnetic fields could also damp these
4846
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modes; however preliminary estimates based on stand
magnetosphere-mode coupling models [16] suggest t
such damping is too weak to suppress the relatively lo
frequencyr-mode instability.
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