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ABSTRACT

We seek to characterize giant-planet systems by their gravitational scattering properties. We do this to a given system by integrating it
numerically along with a large number of hypothetical small bodies that are initially in eccentric habitable zone (HZ)-crossing orbits.
Our analysis produces a single number, the escape rate, which represents the rate at which the small-body flux is perturbed away
by the giant planets into orbits that no longer pose a threat to terrestrial planets inside the HZ. Obtaining the escape rate this way
is similar to computing the largest Liapunov exponent as the exponential rate of divergence of two nearby orbits. For a terrestrial
planet inside the HZ, the escape rate value quantifies the “protective” effect that the studied giant-planet system offers. Therefore,
escape rates could provide information on whether certain giant-planet configurations produce a more desirable environment for life
than the others. We present some computed escape rates on selected planetary systems, focusing on effects of varying the masses and
semi-major axes of the giant planets. In the case of our Solar System we find rather surprisingly that Jupiter, in its current orbit, may
provide a minimal amount of protection to the Earth.
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1. Introduction

The fascinating dynamical variety of extrasolar planetary sys-
tems has been the motivation behind many recent numerical sim-
ulations. We have seen detailed studies concerning the orbital
stability of observed multi-planet systems (e.g., Barnes & Quinn
2004) and also stability analyses where fictitious terrestrial plan-
ets are integrated along with the observed giant-planet system
(e.g., Jones et al. 2005; Menou & Tabachnik 2003; Asghari et al.
2004). In a few cases (GJ 777A, 47 UMa, HD 4208, HD 72659
etc.) it is found that terrestrial planets could indeed survive in-
side the habitable zone (HZ) of the system in a million year time
scale.

For those candidate systems that could harbor Earth-like
planets, we can take our dynamical speculation one step fur-
ther and ask: How intense would the small-body flux be in the
habitable zone of the planetary system in question? After all,
small-body impacts to the Earth have had a major influence on
the evolution of terrestrial life. Although it is arguable whether a
smaller or larger small-body flux would have been more benefi-
cial for our evolution, it would still be a step forward if we could
present something quantitative about the small-body fluxes in
the extrasolar systems.

The initial conditions in the circumstellar disk, the process
of planet formation, and subsequent dynamical evolution un-
doubtly sculpt an individual distribution of small bodies for each
planetary system. A recent analysis of the debris disk around
τ Ceti (Greaves et al. 2004) suggests that the disk has simi-
lar dimensions, but mass an order of magnitude greater than
the Kuiper Belt, indicating a more intense flux of cometary
bodies. Is seems that, again, our solar system is not necessar-
ily to be taken as the prevalent specimen, and that the bom-
bardment by small bodies may become an important vari-
able when searching for habitable Earth-like planets. Direct

observations of debris disks are currently limited to very
nearby stars, and are unavailable for the majority of extraso-
lar planetary systems found by radial velocity measurements
(http://www.obspm.fr/planets). For these systems, mod-
els of planet formation could be used to produce a hypothetical
distribution of small bodies, but this would lead us to undesir-
able complex simulations and heavy computational load. Hence,
we accept the fact that their current population of small bodies
is unknown, and suggest another kind of method of analysis.

In our approach we follow the evolution of a specific hypo-
thetical population of small bodies which is common to all of
the planetary systems under study. Our purpose is to isolate and
characterize the small-body scattering properties of the planets,
and to provide a technique to compare different planetary sys-
tems in this respect. If we can show that a certain configuration
of planets is considerably more efficient in scattering small bod-
ies than another one, we could argue that the actual small-body
flux is less intense in that system, taken that the initial conditions
in both systems are similar. Wetherill (1994) used this idea when
he considered alternative giant-planet formation scenarios in our
Solar System. UsingÖpik-Arnold calculations he followed the
evolution of cometary test bodies and concluded that the absence
of Jupiter would increase the cratering rate on Earth throughout
its history by a factor of 100−1000. The dynamically dominant
role of Jupiter in the Solar System was also shown byEverhart
(1968), in the case of parabolic comets.

In this paper we will present computational tools to mea-
sure the gravitational scattering properties of a planetary system.
First, in Sect. 2, we will introduce a “benchmark” integration
scenario with thousands of cometary small bodies to be inte-
grated numerically along the planetary system under study. The
small bodies are initially in orbits that cross the HZ of the sys-
tem. We will also define a variable, the escape rate, that describes
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the strength at which the planetary system scatters the small bod-
ies into orbits that no longer threaten the HZ. In Sect. 3, we
will present some preliminary results obtained using the tools
above. We have considered hypothetical giant-planet configura-
tions based on the Solar System and especially evaluated the dy-
namical significance of Jupiter. Later, we will show some results
on selected extrasolar planetary systems. In Sect. 4 we will dis-
cuss the interpretation of the results.

2. Methods

2.1. The escape rate of particles

We study planetary systems of one or more giant planets orbit-
ing a single Sun-like star. Into the planetary system we place
a swarm of massless test particles representing a population of
HZ-threatening small bodies. The initial orbital distribution of
the particles is random, but chosen such that the pericenter dis-
tances are inside the HZ. As the system is propagated in time
by numerical integration, the orbits of the particles are perturbed
by the giant planets, deviating some of the particles into orbits
that are no longer HZ-threatening. Our assumption is that this
gravitational scattering is characteristic to the giant-planet sys-
tem, and that its strength can be measured straightforwardly, as
follows.

Suppose that in the scenario described above, we are in a
state where the probability of a particle to be scattered per unit
time, γ, is constant. This implies that at any time t the size of
the particle population N changes by dN = −Nγdt, and that the
population depletes exponentially;

N (t) = N0e−γ(t−t0), (1)

where N0 is the initial population at time t0. We could try to
determine γ simply by integrating the system from t0 to t and
using (1), but some difficulties would arise: first, a suitable
choice for N0 and t − t0 would depend on γ, i.e., on the scat-
tering properties of the planetary system. Second, in reality, it
is unlikely that we would see exactly exponential depletion of
particles with small values of N. Because of these issues, we
define ρ, an approximation to γ, similarly to the method of
computing Liapunov characteristic exponents (LCEs) (see, e.g.,
Lichtenberg & Lieberman 1992), as

ρ =
1

(t − t0)

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

i=1

ln
N0

N (ti)
+ ln

N0

N (t)

⎞⎟⎟⎟⎟⎟⎟⎠ , (2)

where t0 < t1 < ... < tk < t. At the intermediate time
points t1, ..., tk the population is renormalized (regenerated) back
to its initial level N0 by creating new random particles from the
initial orbital distribution. In this way we can keep N(t) always
inside predefined boundaries and select a common N0 and t − t0
for all the planetary systems we investigate. If a system scat-
ters particles at a constant rate, we should see ρ converging to-
wards a specific value. We refer to this value as the escape rate.
There is a resemblance to the escape-rate formalism in statisti-
cal mechanics (e.g., Dorfman 1999). We emphasize the analogy
between the computation of ρ and LCEs. Instead of exponential
divergence of nearby orbits, we monitor the exponential deple-
tion rate of particles in a large population. The renormalization
is done for similar reasons in both cases; with ρ its purpose is
to exclude possible effects caused by the population not being
“large” anymore.

We would also like to point out that our intention is to de-
fine the escape rate as a tool for statistical physics rather than as

Table 1. Initial orbital elements for the particle swarm.

Orbital element Interval
pericenter distance q [0.5, 1.5] AU
apocenter distance Q [10, 80] AU
inclination ι [0, π]
longitude of the ascending node Ω [0, 2π]
longitude of perihelion ω̃ [0, 2π]
mean longitude L [0, 2π]

a measurement for actual physical quantities. Numerically com-
puted escape rate values always depend on the initial orbital pa-
rameter distribution of the particle swarm. Therefore, the escape
rate tells us how the planetary system responds to a certain type
of initial population. In a specific application, in order to im-
prove the informative value of the escape rate, the population
could be chosen to represent, e.g., HZ-crossing comets origi-
nating from an Oort-type reservoir. In this paper, however, we
choose an initial population which makes the demonstration of
our method as simple as possible, but still allows us to make
indicative arguments about real planetary systems.

2.2. Parameters for the particle swarm

In this section we define the initial and critical orbital elements
for the particle swarm, and the dimensions of the HZ. These pa-
rameters fix a benchmark integration scenario which we use for
computing escape rates in this paper.

Obtaining proper convergence in escape rate computation re-
quires that the flux of particles throughout the planetary system
remains as close to steady state as possible. If the initial orbital
distribution that feeds new particles into the system is far away
from the steady-state distribution, we see a secular drift in the
escape rate value. In the process of finding a suitable and sim-
ple orbital distribution we learned that, in order to enhance the
convergence of the escape rate computation, we should:

– choose an initial orbital distribution that is relatively homo-
geneous and contains only chaotic orbits. In other words, or-
bits that have strong interaction with the giant planets and a
mutually similar timescale for being scattered;

– select an initial orbital distribution that is spherically sym-
metric. A disk-shaped distribution is not close to steady state,
since many particles are perturbed into high inclination or-
bits before being scattered;

– introduce an offset time to the integration, after which the
escape rate computation is started. This eliminates the effect
of an initial transient period when the flux of particles seeks
its equilibrium.

Following these guidelines, we define the initial particle popula-
tion for our benchmark integration; each orbital element is ran-
domly selected from an even distribution bounded by the inter-
vals in Table 1. The interval for pericenter distance q coincides
with our definition for the inner (0.5 AU) and outer (1.5 AU)
edges of the HZ. This is a rough approximation; a detailed anal-
ysis of HZs around main sequence stars is given by Kasting et al.
(1993). We adopt such a broad range of values since we want it
to cover the actual HZs of most of the observed extrasolar sys-
tems. In addition, by using a common definition for the HZ we
can compare the escape rates of systems with different central
stars.

During the integration, particles scattered into orbits that will
no longer cross the HZ should contribute to the escape rate value
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Table 2. Integration parameters in benchmark runs.

number of particles N0 10 000
integration time t 100 000 years
escape rate offset time t0 50 000 years
leapfrog step size τlf ∼40 days
Bulirsch-Stoer step size τBS ∼0.05−5 days

and be removed. We define and monitor the following alternative
criteria for particle removal:

– pericenter distance q > 2.0 AU;
– ejection out of the system (semi-major axis a > 10 000 AU

or hyperbolic orbit);
– collision with one of the planets or the central star.

2.3. Orbit integration

The escape rate computation requires a numerical integration
method that has the following properties:

– the integrator must be able to handle close encounters be-
tween planets and massless bodies;

– high numerical accuracy is not important, but the method
must be robust;

– the method has to be fast and optimized for integrating a
planetary system with thousands of massless bodies.

We use a hybrid integration scheme where the primary propa-
gator is the mixed variable symplectic (MVS) leapfrog method
(see, e.g., Murray & Dermott 1999). Close encounters are
handled with the standard Bulirsch-Stoer algorithm (Stoer &
Bulirsch 1992) using the full force function. Our integration
method is close to the method presented by Chambers (1999),
the main difference being that we use heliocentric and Jacobian
coordinates, and have not implemented a changeover function
for more sophisticated switching between the integration meth-
ods. Since our close encounters are always between a massive
and a massless body, the Hamiltonian is trivially conserved.
Table 2 lists the integration parameters we use in the benchmark
integration.

We have implemented the integrator in standard Fortran 95
using object-oriented programming techniques. It is part of a
larger numerical software package that we intend to make public
in the future. The Finnish Center of Scientific Computing (CSC)
provides us computing time on their IBM eServer Cluster 1600,
a supercomputer with 512 Power4-processors. A benchmark run
on a single processor takes 6−8 h of CPU-time.

Since the massless particles do not interact with each other,
the integration algorithm can be parallelized by distributing the
particles evenly between the available processing units. In test
runs, we have obtained a speedup factor of one magnitude by
using 16 CPUs instead of one. However, with our current pa-
rameters, it is more efficient to run multiple benchmarks simul-
taneously, each with a single processor.

3. Results

3.1. Integration consistency

Before the scientific runs, we analysed the consistency of our in-
tegrator. We used two different test setups in order to determine
the integration errors separately for planets and massless parti-
cles. In the first test, we integrated the four giants planets of the

0 0.5 1 1.5 2
0

1

2

3

4

5

6
x 10

−6

 m / m
J

 ρ
 [

ye
ar

−
1 ]

Fig. 1. Escape rates when Jupiter’s mass is varied. System of Jupiter,
Saturn, Uranus, and Neptune is shown with filled circles, and system of
Jupiter alone with empty circles. mJ is the true mass of Jupiter.

Solar System for one million years (the step sizes were set ac-
cording to Table 2). This was effectively a test for the MVS-part
of the integrator, since there are no mutual close encounters be-
tween the planets. The relative energy error of our implementa-
tion shows similar behaviour to previously published ones (e.g.,
Chambers 1999), that is, it hovers around 10−7 throughout the
integration time.

For the second test, we set up a system with the Sun, Jupiter,
and 100 massless particles corresponding to the restricted three-
body problem. Otherwise, the parameters were the same as in the
benchmark runs (Table 2). We monitored the Jacobi constants of
the particles and found that the average error was 7 × 10−6 and
the maximum 2× 10−4. By reducing all the step sizes by a factor
of ten, the average and maximum errors changed to 5 × 10−9

and 2 × 10−7, respectively. For performance reasons, however,
we decided that the step sizes in Table 2 are sufficient for our
qualitative analysis.

3.2. The role of Jupiter

We have computed escape rate values in order to study the dy-
namical significance of Jupiter in the Solar System. We used two
giant-planet configurations; one with all of the giants (Jupiter,
Saturn, Uranus, and Neptune), and the other with Jupiter alone.
The initial values for the planets were given at J2000 epoch. In
both configurations, we varied the mass of Jupiter while retain-
ing all other parameters. The computed escape rate values are
plotted in Fig. 1.

In the single planet case, we see close to linear dependence
between the mass of Jupiter and the escape rate. It is not sur-
prising to notice that a more massive planet scatters particles
more efficiently, but the responsiveness of the escape rate value
encourages us to believe that it could indeed possess some infor-
mative value. The convergence of each escape rate computation
in the single planet case can be can be seen from Fig. 2. It seems
that our choices for the integration time and the number of par-
ticles are sufficient, at least in this case.

Returning to Fig. 1, to the case where all four giant planets
are present, we now see more details in the escape rate. When
the mass of Jupiter is larger than its true value 1.0 mJ, the es-
cape rate behaves similarly to the system with Jupiter alone.
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Fig. 2. Convergence of the escape rate values in integrations with Jupiter
alone (cf. Fig. 1).
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Fig. 3. Escape rates for the Jupiter-only case when the semi-major axis a
of the planet is varied. The mass of Jupiter is 2.0 mJ (black circles),
1.0 mJ (gray circles), and 0.5 mJ (empty circles).

This can be interpreted as Jupiter being the dominant scatterer
of particles among the other giants. However, for Jupiter masses
below 1.0 mJ, the four-giant case eventually separates from the
Jupiter-only case, and the other giants take over in particle scat-
tering, effectively replacing Jupiter as its mass goes to zero.
There is a minimum in the escape rate value which roughly co-
incides with the point of separation. We do not have a proper
explanation to this phenomenon, but one should consider the
following detail: the masses of Saturn (mS), Uranus (mU), and
Neptune (mN) satisfy mS + mU + mN ≈ 0.4 mJ. Hence, when the
mass of Jupiter is 0.6 mJ the total mass of the four giants is ap-
proximately 1.0 mJ. We cannot confirm that this value is some-
how special for the system, but interestingly, it approximately
coincides with the point of separation and the minimum.

Besides the mass, we were interested how changes in the
semi-major axis of Jupiter would affect the escape rate. We took
the system with Jupiter alone with three different masses (0.5 mJ,
1.0 mJ, 2.0 mJ) and varied the semi-major axis of the planet
(Fig. 3).
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Fig. 4. Escape rates for the Jupiter-only case (1.0 mJ, isolated from
Fig. 3) when the semi-major axis a of the planet is varied.

Table 3. Initial parameters for the extrasolar planets.

Parameter 47 UMa b 47 UMa c GJ 777A c GJ 777A b
a [AU] 2.09 3.73 0.128 3.92
e 0.061 0.1 0.01 0.36
ω̃ [◦] 172.0 127.0 153.7 12.4
m [mJ] 2.54 0.76 0.057 1.502

It seems that increasing the mass of the planet has greater im-
pact on the scattering strength than varying its semi-major axis.
At least with larger masses of Jupiter (1.0 mJ and 2.0 mJ), we
can identify a minimum in the escape rate occurring at a certain
value of the semi-major axis. The case where Jupiter has its true
mass is isolated in Fig. 4. It is interesting to notice that the min-
imum occurs approximately at 5.2 AU, at the true semi-major
axis of Jupiter.

By monitoring the orbital parameters of the scattered parti-
cles we can identify two trends that, when combined, explain
the minimum. Remembering our criteria for removing particles
from integration, we see that a Jupiter with a > 5.2 AU is in-
creasingly effective at pulling the pericenter distances of parti-
cles above the 2.0 AU limit. On the other hand, the closer a giant
planet is to the HZ the stronger are the perturbations on particles
near their pericenters, resulting in numerous ejection orbits.

3.3. Extrasolar systems

We computed the escape rate values for two known extrasolar
planetary systems; 47 UMa and GJ 777A (HD 190360). Table 3
shows our initial parameters for the planets. The data for 47 UMa
is given by Fischer et al. (2002). The system is one of the best
candidates for having earth-like planets. Until recently, GJ 777A
was also considered as a feasible candidate. However, measure-
ments by Vogt et al. (2005) may change this picture, since they
suggest that there is a second planet orbiting close to the cen-
tral star. Nevertheless, we chose to analyse GJ 777A, because it
now represents a qualitatively different case where the HZ lies
between the orbits of two perturbing planets.

Inclinations ι, longitudes of the ascending nodeΩ, and mean
longitudes L were all set to zero. Masses of the central stars
were 1.03 m� for 47 UMa and 0.96 m� for GJ 777A. The
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Table 4. Escape rates for selected extrasolar systems.

Planetary system ρ [year−1]

Solar System 1.78 × 10−6

47 UMa 2.08 × 10−5

GJ 777A 4.25 × 10−5

computed escape rate values are shown in Table 4, and compared
to the Solar System (with four giants).

4. Discussion

We have introduced a technique for measuring gravitational scat-
tering efficiency in a planetary system. One simple dynamical
quantity, the escape rate, describes the protection that a giant-
planet system offers to a hypothetical terrestrial planet. Our re-
sults show that, at least with our current choice of parameters,
the escape rate is a computationally consistent quantity and is
a function of the orbital structure of the giant planets. The im-
portant question is: can we use escape rates to make conclusions
that apply to real planetary systems or are they just a dynamical
curiosity with no physical significance?

We believe that the very definition for the escape rate
(Sect. 2.1) is rigorous and, when comparing planetary systems,
the one with a higher escape rate would be more efficient in scat-
tering small bodies away from the HZ. However, this argument
applies only to the particular initial population of small bodies
used in the escape rate scenario. Hence, it is the choice of the
population that mostly determines what the escape rate really
tells us.

There is an obvious conceptual difference that should be
noted. In reality, the shape and intensity of the small-body flux
in a planetary system is a function of time, whereas in the es-
cape rate computation, the flux is intentionally kept constant.
Therefore, each escape rate scenario represents a fixed moment
in time. In order to simulate the small-body flux in a real plane-
tary system, we should fix a time in the history (or in the future)
of the system, and create an initial population that is a model for
the HZ-crossing flux at that particular moment. Unfortunately,
by doing so, we would inevitably lose the ability to compare the
escape rates of totally different planetary systems. This kind of
approach could still be valid and beneficial, if we concentrated
to a one well known system (i.e., to our Solar System) and varied
the parameters of the planets only by small amounts.

In the benchmark integration scenario presented in this paper
(Sect. 2.2) we use the escape rate as a universal dynamical quan-
tity which is not identified with real fluxes of small bodies. Our
initial population is artificial, but for the sake of creditability, it
should still be somehow “typical” among planetary systems. Our
distribution of particles is spherically symmetric, and in the or-
bital parameter space the particles cover the angular dimensions
(ι, Ω, ω̃, L) completely, but only a limited range in semi-major
axis and eccentricity (a, e). This kind of distribution is not typi-
cal to the observed small-body populations or to the simulations
explaining their evolution (see, e.g., Duncan et al. 1987, 1988,
for Solar System comets). However, one should remember that
the initial population for the escape rate is supposed to repre-
sent only the fraction of small bodies that threaten the HZ of the
planetary system. The modelling of all the processes that bring
small bodies into to HZ-crossing flux would be a cumbersome
task and, hence, we feel justified to use our simplified initial pop-
ulation as a first order approximation.

As a part in improving the convergence and efficiency in es-
cape rate computations, we chose the initial orbital distribution
in a way that the apocenter distances (Q) were all well beyond
the semi-major axis of the innermost giant planet. Obviously, a
qualitatively different choice, e.g., one with the apocenter dis-
tances inside the orbits of the giants, could change our results
(Sect. 3) significantly. This is something we wish to investigate
in future papers. However, as an indication of partial robustness,
the qualitative behaviour of our results did not change when we
used an initial population with Q = [40, 50] and a narrower def-
inition for the HZ and for the removal criterion by particle peri-
center ([0.8, 1.4] and 1.5 AU, respectively). Our choice for the
initial population also ensures that the orbits of the particles are
chaotic and none of the particles survive the whole integration
time. If the population included numerous stable or resonant or-
bits, the regenerated particles might accumulate into safe areas
in the phase space, and the escape rate might become biased.

There are open questions about the initial population, but our
results with the benchmark scenario show that the escape rate
has informational value, and it can be used in comparative anal-
yses on planetary systems which was our goal in the first place.
As such, the escape rate cannot predict the habitability of a hy-
pothetical terrestrial planet in an observed extrasolar planetary
system, but it could be used, among other tools, to make edu-
cated guesses about the matter.

The computed escape rate values for the Solar System giant
planets confirm that Jupiter has the dominant role in scattering
small bodies out of the HZ. The scattering efficiency in the Solar
System would not be greatly disturbed if the other giant plan-
ets were removed. This is in line with the findings by Wetherill
(1994). On the other hand, removing Jupiter does not affect the
escape rate considerably either since the other giants effectively
take its role in scattering.

The minimum in the escape rate at the true semi-major axis
of Jupiter is an interesting detail. It could be a coincidence, but
perhaps there is some cosmogonical, or dynamical, explanation.
Maybe Jupiter, the dominant mass, is in an optimal orbit to en-
courage the heavy bombardment of cometary bodies into the in-
ner Solar System. This could have been an essential requirement
for life and evolution on Earth.

If we compare the escape rate for the Solar System to the
escape rates for 47 UMa and GJ 777A we see that small-body
scattering efficiency is more than an order of magnitude greater
in the extrasolar systems. A natural explanation to this are the
smaller semi-major axes and greater masses of the extrasolar gi-
ant planets. Comparison between 47 UMa and GJ 777A is more
interesting, because the higher escape rate of GJ 777A is dif-
ficult to explain by intuition. By looking at the statistics pro-
duced by the integration, we saw that the outer planet in GJ 777A
was the most recent perturber for 92% of the scattered particles.
Therefore, the large eccentricity of the outer planet is probably
responsible for the higher escape rate value.

This is a preliminary paper where we have introduced a
new concept, implemented a computational method, and demon-
strated some basic applications. There are many possibilities for
follow-up studies; an important one is to analyse further the ef-
fect of the initial population on the escape rate. Another task,
which was beyond the CPU-time budget of this paper, would
be to probe the parameter space of the Solar System giants more
thoroughly. In addition to semi-major axes and planetary masses,
one could include the eccentricities into the analysis. Generally,
the increasing dimensionality of the parameter space will cer-
tainly become a problem, but with some kind of compromises,
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one could compute escape-rate maps which could reveal inter-
esting dynamical structures.
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