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In this work we present the first calculation of the gravitational self-force on generic bound
geodesics in Kerr spacetime to first order in the mass-ratio. That is, the local correction to equa-
tions of motion for a compact object orbiting a larger rotating black hole due to its own impact on
the gravitational field. This includes both dissipative and conservative effects. Our method builds
on and extends earlier methods for calculating the gravitational self-force on equatorial orbits. In
particular we reconstruct the local metric perturbation in the outgoing radiation gauge from the
Weyl scalar ψ4, which in turn is obtained by solving the Teukolsky equation using semi-analytical
frequency domain methods. The gravitational self-force is subsequently obtained using (spherical)
l-mode regularization.

We test our implementation by comparing the large l-behaviour against the analytically known
regularization parameters. In addition we validate our results be comparing the long-term average
changes to the energy, angular momentum, and Carter constant to changes to these constants of
motion inferred from the gravitational wave flux to infinity and down the horizon.

I. INTRODUCTION

For the interpretation of gravitational wave observations,
accurate theoretical models of their sources are essen-
tial. For the comparable mass binaries observed by
LIGO and Virgo [1–5] this modelling is provided by
the results of post-Newtonian (PN) theory and numer-
ical relativity (NR), typically repackaged in an effective-
one-body (EOB) model or a phenomenological surrogate
model. However, PN theory works well only in the (rela-
tive) weak field regime, whereas NR simulations are lim-
ited to systems with fairly homogeneous intrinsic length
scales, practically limiting its applicability to systems
with small mass-ratios (η := m2/m1 & 1/10). Conse-
quently, current methods are insufficient to accurately
model the final strong field stages of the inspirals of small
mass-ratio binaries.

Nonetheless, the current generation of ground based de-
tectors is in principle sensitive to binaries with mass ra-
tios as low as 10−2, which currently cannot be accurately
modelled. The occurrence of such small mass-ratio inspi-
rals is dependent on the existence of a sufficiently large
population of large ∼ 100M⊙ black holes, which is not
guaranteed to exist. Hence LIGO/Virgo observation of
such small ratio events is not a given.

ESA’s planned space-based gravitational wave observa-
tory, LISA, will however be sensitive to so called extreme
mass ratio binaries (EMRIs), compact binaries consisting
of a ∼ 106M⊙ supermassive black hole and a stellar mass
compact object. The rate at which EMRIs occur is un-
certain, but studies show we should expect between 1 and
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4000 detectable LISA events per year with SNRs up to a
few hundred [6].

Unlike the comparable mass binaries detectable by
ground based detectors, EMRIs are expected to exhibit
significant eccentricity (e . 0.2 at merger), and incli-
nation of the orbital plane compared to the total angu-
lar momentum. Moreover, the small mass ratio implies
that evolution of these systems is very slow, producing
∼ η−1 ≃ 105 gravitational wave cycles in the strong field
regime. As a consequence, EMRIs produce an informa-
tion rich GW signal, allowing highly accurate determi-
nation of the source properties. The component masses,
primary spin, eccentricity and inclination can be deter-
mined at a relative accuracy of 10−5, while luminosity
distance can be determined to 5− 10%, and sky position
can be localized to a few square degrees [6]. Alternatively,
the detailed signal can be used to test the general rela-
tivity prediction that the supermassive primary should
be described by the Kerr metric, by measuring its mass
quadrupole to a relative accuracy of 10−4 [6].

However, any such measurement will rely on the avail-
ability of accurate waveform models for EMRIs including
the effects of spin, eccentricity, and inclination. One ap-
proach is to use the smallness of the mass-ratio η to our
advantage, and treat dynamics of EMRIs in a systematic
perturbative expansion in η. At zeroth order in η, the
secondary object acts as a test particle in the Kerr ge-
ometry generated by the primary. It follows a geodesic,
which can be obtained analytically [7–10]. At the next or-
der, the corrections to the equations of motion due to the
gravitational field generated by the secondary can be col-
lected into an effective force term perturbing the geodesic
equation, the gravitational self-force (GSF). Since this
force is small the evolutionary timescale (tinsp = O(η−1))
of an EMRI is much larger than the orbital timescale
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(torb = O(1)). This hierarchy of timescales can be ex-
ploited to simplify the evolution of EMRIs by using a
two timescale expansion. A systematic analysis by Hin-
derer and Flanagan [11] has shown that in order to obtain
the phase evolution of an EMRI with error of O(η) we
need the first order GSF sourced by individual geodesics,
and the long term average of the dissipative part of the
second order GSF. In this paper we will provide the first
calculation of the first order GSF on fully generic bound
geodesics featuring both eccentricity and inclination in
Kerr spacetime.

The formalism for calculating the GSF was first intro-
duced by Mino, Sasaki, and Tanaka [12] and Quinn and
Wald [13] in the mid 1990s. In the two decades since,
the formalism has been further refined improving both
mathematical rigour and conceptual clarity (see [14, 15]
for reviews and references).

Numerical calculations of the GSF have made steady
progress over these last two decades. The first numerical
calculations appeared in 2002 for direct radial plunges
into a Schwarzschild black hole [16]. The calculation of
the GSF on circular orbits followed in 2007 [17], and
completely generic bound eccentric orbits in 2009 [18].
By now, first order GSF calculations in Schwarzschild
spacetimes are routine, using a wide variety of numerical
methods, regularization techniques, and gauges [19–31].
The results of these calculations have been used to evolve
EMRIs around a Schwarzschild black hole [32, 33]

For a long time, calculating the GSF on a Kerr back-
ground remained a challenge. The core obstacle was that
the linearized Einstein equation on a Kerr background
cannot be separated by introducing some set of harmon-
ics. This has led Dolan and Barack to pursue 2+1 di-
mensional techniques for calculating the GSF [25, 34, 35].
However, these methods suffer from numerical instabili-
ties that have been overcome to produce the GSF on cir-
cular equatorial orbits [36], but thus far have prevented
their application to more general orbits.

Another approach that had been considered, is to uti-
lize the fact that the Weyl scalars ψ0 and ψ4 satisfy the
(separable) Teukolsky equation [37, 38], while contain-
ing most of the gauge invariant information about the
full metric perturbation [39]. In the 1970s, Chrzanowski,
Cohen, and Kegeles [40–42] developed a method for re-
constructing vacuum metric perturbations in a radiation
gauge from vacuum solutions of ψ0 or ψ4. However, as
noted by Ori [43], when this procedure is applied to a
field sourced by a point particle the resulting metric per-
turbation is highly singular. Not only does the resulting
metric perturbation feature a singularity at the location
of the particle, but in addition a string-like gauge sin-
gularity extends from the particle to black hole horizon
and/or infinity. It was unclear whether the established
GSF formalism would extend to such singular gauges.
Only in 2013 did Pound, Merlin, and Barack [44] show
that the GSF can be extracted from radiation gauge met-

ric perturbations.

A second issue was that while ψ0 or ψ4 contain most in-
formation about the metric perturbation, they are obliv-
ious to perturbations within the Kerr family of metric
solutions [39]. These “mass” and “angular momentum”
perturbations need to be recovered through other means.
Merlin et al.[45] recovered these pieces for fields sourced
by a particle on an equatorial orbit by imposing conti-
nuity of certain gauge invariant fields constructed from
the metric. The result is remarkably simple; in the re-
gion “outside” the particle orbit the mass and angular
momentum perturbations are given simply by the energy
and orbital angular momentum of the orbit, while both
perturbations vanish “inside” the orbit. By directly an-
alyzing the form of metric perturbations resulting from
the CCK procedure, it was shown in [46] that this result
must in fact hold for any source with compact support
in the radial direction.

Pending resolution of both issues, implementation of the
radiation gauge approach to calculating the GSF was pi-
oneered by the group of Friedman [21, 47, 48], culminat-
ing in the calculation of the Detweiler redshift invariant
on circular equatorial orbits in Kerr spacetime [49]. In
previous papers [30, 50], the author expanded on their
techniques to obtain the first order GSF and redshift on
eccentric equatorial orbits. In this paper, we will tackle
the case of generic bound orbits in Kerr spacetime, fea-
turing both eccentricity and inclination.

The plan of this paper is as follows. In Sec. II we review
the preliminaries necessary for our calculation. Section
III then reviews our method for calculation of the GSF in
radiation gauge using a metric reconstructed from ψ4. In
this section, the focus will be on aspects of the method
that change for generic Kerr geodesics. A selection of
results is presented in Sec. IV, going through various
consistency checks and plots of the final results. We con-
clude with a discussion of ways these calculations can be
used to explore new physics.

A. Conventions

This paper uses an overall metric signature of (−+++);
for further sign conventions regarding the definitions of
other quantities such as the Weyl curvature scalars we
use conventions consistent with Appendix A of [50]. We
further work in geometrized units such that (c = G =
M = 1).

II. REVIEW OF PRELIMINARIES

In this section we review some of the preliminaries needed
for a calculations. Along the way we establish some of
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the notations and conventions used.

A. Generic geodesics in Kerr spacetime

Like in previous papers [30, 50], we consider the Kerr
metric in modified Boyer-Lindquist coordinates, where
the polar angle θ has been replaced by z := cos θ. In
these coordinates the Kerr metric generated by a black
hole with mass M = 1 and spin a is given by

ds2 = −
(

1− 2r

Σ

)

dt2 +
Σ

∆
dr2 +

Σ

1− z2
dz2

+
1− z2

Σ

(

2a2r(1− z2) + (a2 + r2)Σ
)

dφ2

−4ar(1− z2)

Σ
dt dφ,

(1)

with

∆ = r(r − 2) + a2, (2)

Σ = r2 + a2z2. (3)

At zeroth order an object with massm << M = 1 follows
a geodesic in the Kerr background,

m
dpµ

dτ
+ Γµ

αβp
αpβ = 0, (4)

where pµ := muµ = mdxµ

dτ is the four-momentum, τ is
proper time, and Γµ

αβ are the Christoffel symbols of the
Kerr metric.

Solving the geodesic equation in Kerr spacetime is greatly
helped by the existence of a complete set of constants of
motion. The first is the invariant mass −m2 = pµpµ.
Furthermore, the Kerr metric (1) has two explicit sym-
metries expressed by the Killing vectors ( ∂

∂t
)µ and ( ∂

∂φ
)µ,

which give rise to two further constants of motion; the
specific energy E := −uµ( ∂

∂t
)µ, and the specific (or-

bital) angular momentum L := uµ(
∂
∂φ

)µ. Finally, Carter

showed [51] that the Kerr metric has a third hidden sym-
metry expressed by a Killing tensor,

Kµν := 2Σl(µnν) + r2gµν , (5)

where are lµ and nν are the principal null vectors of the
Kerr metric,

lµ := (
r2 + a2

∆
, 1, 0,

a

∆
), and (6)

nµ := (
r2 + a2

2Σ
,− ∆

2Σ
, 0,

a

2Σ
). (7)

This Killing tensor defines a fourth constant of motion,
the Carter constant,

Q := uµKµνu
ν − (L − aE)2 (8)

Using this complete set of constants of motion, the equa-
tions of motion for a geodesic can be rewritten,

(

Σ
dr

dτ

)2

=
(

E(r2 + a2)− aL
)2

(9a)

−∆
(

r2 + (L − aE)2 +Q
)

,
(

Σ
dz

dτ

)2

= a2(1− E2)z4 (9b)

−
(

Q+ a2(1− E2) + L2
)

z2 +Q,

Σ
dφ

dτ
=

a

∆

(

E(r2 + a2)− aL
)

+
L

1− z2
, (9c)

Σ
dt

dτ
=
r2 + a2

∆

(

E(r2 + a2)− aL
)

− a2E(1− z2).

(9d)

By introducing the Mino time parameter λ defined by

dτ

dλ
= Σ, (10)

the radial and polar motions can be completely decou-
pled. Geodesic motion around a Kerr black hole can
therefore be viewed as two completely independent mo-
tions (radial and polar). This inspires us to introduce
two periodic phase coordinates qr and qz, which specify
where along each of the cycles the particle is. We further
specify that both phases evolve linearly with Mino time

dqr
dλ

= Υr, and (11)

dqz
dλ

= Υz, (12)

where Υr and Υz are the frequencies with respect to Mino
time of the radial and polar motions, explicit expressions
for which can be found in [7]. We further adopt the
convention that qr = 0 corresponds to the apapsis of the
radial motion, meaning that qr = π will correspond to
periapsis. Similarly, we choose qz = 0 to coincide with
the polar motion reaching its maximum, which results in
the minimum being reached at qz = π while the equator
z = 0 is crossed at qz = π/2 and qz = 3π/2.

With these phases, the solutions to the Eqs. (9) take the
following form; r is a periodic function of just qr, z is a
periodic function of just qz, t and φ become

t = Υtλ+ tr(qr) + tz(qz), and (13)

φ = Υφλ+ φr(qr) + φz(qz), (14)

where tr and φr are purely oscillatory functions of qr and
tz and φz are purely oscillatory functions of qz.

Together with the spin a the set of constants of motion
(E ,L, Q) uniquely identifies a bound Kerr geodesic. How-
ever, these tend to be hard to work with. In practice, it
is easier to work with a more geometric set of parame-
ters. One such set is given by the turning points of the
radial motion rmin and rmax and the turn point of the



4

polar motion ±zmax. Here instead of rmin and rmax we
use the semilatus rectum p and eccentricity e defined by

rmax =
p

1− e
, and (15)

rmin =
p

1 + e
. (16)

Kerr geodesics are thus identified by a 4-tuple (a, p, e, z).

B. Gravitational self-force

The main idea behind the self-force formalism is to sys-
tematically expand the equations of motion for a compact
binary in powers of the small mass-ratio η = m/M . At
linear order in η to set-up is to split the metric generated
by the binary as

gµν + ηhµν , (17)

where gµν is the background Kerr metric generated by
the primary object, and hµν is a correction due to the
presence of the secondary object. The motion of the sec-
ondary object is to be described by some worldline xµ0 (τ)
in the background spacetime. This worldline is expected
to satisfy a forced geodesic equation,

m

(

d2xµ0
dτ2

+ Γµ
αβ

dxα0
dτ

dxβ0
dτ

)

= η2Fµ[h], (18)

where Fµ[h] is called the gravitational self-force or GSF.

The most rigorous approach to obtaining the key ingredi-
ents (x0, h, and F ) is a multi-scale expansion (see [14, 15]
for reviews). The general idea is to split the spacetime
into a ‘near zone’ where h dominates the metric, and a
‘far zone’ dominated by g. In each zone, the effects of the
other component can be treated perturbatively. A global
solution is then obtained by matching both expansions
in the region where both zones overlap and both pertur-
bative expansions hold.

The upshot of the analysis is as follows. The world-
line xµ0 is determined by the centre-of-mass motion of
the secondary (as measured asymptotically in the near-
zone). The metric perturbation hµν is obtained by solv-
ing the linearized Einstein equation on the background
gµν sourced by a point particle with mass m following xµ0
and retarded boundary conditions. Finally, (if we ignore
any effects from the spin of the secondary) the GSF is
given by the MiSaTaQiWa [12, 13] equation,

Fµ(τ) = Pµαβγ∇αh
R
βγ(x0(τ)), (19)

with

Pµαβγ ≡ 1

2

(

gµαuβuγ − 2gµβuαuγ − uµuαuβuγ
)

, (20)

and hRµν is a regular part of the metric perturbation hµν
obtained by subtracting off the Detweiler-Whiting singu-
lar field [52].

1. Gauge dependence

The split of the metric in Eq. (17) is not unambiguous.
A small change of the coordinates xµ → x̃µ = xµ + ηξµ

leads to a new background metric

g̃µν = gµν + η∇(µξν). (21)

The small change can be interpreted as a part of hµν ,
leading to a gauge freedom in its definition. This gauge
dependence is inherited by the GSF, which transforms
under a gauge transformation as,

F̃µ −Fµ = − (gµα + uµuα)∇2
uξα −Rµ

αβγu
αξβuγ . (22)

For any practical calculation of the GSF, we must there-
fore choose a gauge to work in. A common choice in the
self-force literature is the Lorenz gauge defined by,

∇α

(

hαµ − 1

2
gαµgβγhβγ

)

= 0. (23)

However, in this work we work predominantly in the out-
going radiation gauge or ORG, which is defined by the
conditions

nµhµν = 0, (24)

gµνhµν = 0. (25)

These conditions can be met for vacuum perturbations.
However, if a perturbation is sourced by some matter
distribution, the ORG conditions cannot be met glob-
ally [43]. Trying to impose the ORG condition global on
the perturbation produced by a point-particle results in
a string-like (gauge) singularity extending from the par-
ticle to the horizon of the background geometry and/or
infinity. This leads to various realization possibilities for
the ORG [44]

• The half-string gauges feature a half-string extend-
ing from the particle to either the background hori-
zon or infinity. Elsewhere they are perfectly regular

• The full-string gauge has a sting extending from the
background horizon to infinity through the particle.

• The no-string gauge is discontinuous along a hy-
persurface that includes the particle worldline and
that separates the background horizon from infin-
ity. On each side of this hypersurface the metric
perturbation is realized as the regular half of one
of the half-string gauges.

C. l-mode regularization

A key step in calculating the GSF is obtaining the regular
metric perturbation through the subtraction

hRµν = hRet
µν − hSµν , (26)
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(the derivatives of) which then need(s) to be evaluated
on the particle worldline. This introduces a problem for
any practical calculation since both hRet

µν and hSµν are sin-
gular on the worldline (while their difference is not). We
therefore need to introduce a regulator to allow for a sys-
tematic evaluation of the subtraction. In this work, we
employ the l-mode regularization introduced by Barack
and Ori [53–55].

For any field f(x) on the background spacetime the
method defines its l-modes as,

fl(x) ≡
l
∑

m=−l

(

∫

S2

dΩfȲlm

)

Ylm(z, φ), (27)

where the integral is performed over a sphere of constant
t and r. The key property is that even if the field f
has a pole on some worldline, the l-modes remain finite
(although possibly discontinuous).

The idea is then to evaluate (19) independently on hRet
µν

and hSµν , and calculate the l-modes of each. The subtrac-
tion can then be done at the level of the l-modes, and the
sum of the resulting differences should produce a finite
result for the GSF. However, as written Eq. (19) is only
defined on the worldline, and does not define the GSF as a
field. In order to calculate the l-modes we therefore need
to promote (19) to a field equation for Fµ[h], or equiva-
lently we need to extend the projector Pµαβγ in Eq.(20)
to field off the worldline. This involves a (somewhat ar-
bitrary) choice. Many of the details of the calculation
(but not its final result) depend sensitively on this choice
of extension.

In this work, following [56], we employ a “rigid” exten-
sion of Pµαβγ , where it takes constant values on slices of
constant t.

With this choice of extension and adopting the Lorenz
gauge it is possible to obtain a local Laurent expansion
of Fµ[hS], and subsequently the large l behaviour of its
l-modes [55–57],

Fµ,±
S,l ≡ lim

x→x±

0

Fµ
S,l

= ±LAµ
Lor +Bµ

Lor +
Cµ

Lor

L
+O(L−2),

(28)

with L := l + 1/2, and the ± sign depends on the radial
direction from which x0 is approached. Furthermore, one
can show that,

Dµ
Lor ≡

∑

l

Fµ,±
l,S ∓ LAµ

Lor −Bµ
Lor −

Cµ
Lor

L
= 0. (29)

Consequently, if one can obtain the l-modes Fµ
l,Lor of the

retarded field with same choice of gauge and extension,
then one can obtain the Lorenz gauge GSF using the
mode-sum formula,

Fµ
Lor =

(

∑

l

Fµ,±
l,Lor∓LA

µ
Lor−B

µ
Lor−

Cµ
Lor

L

)

−Dµ
Lor. (30)

The quantities Aµ
Lor, B

µ
Lor, C

µ
Lor, andD

µ
Lor are collectively

known as regularization parameters.

However, in this work we obtain the retarded metric per-
turbations not in the Lorenz gauge, but in the outgo-
ing radiation gauge. Calculation of the GSF in radiation
gauges was studied by Pound, Merlin, and Barack in [44].
They concluded that one can calculate the GSF in the
‘half-string’ gauges using the mode-sum formula provided
that the limit towards the particle is taken from the reg-
ular side. In this case, the A, B, and C parameter are
identical to the Lorenz gauge ones, provided one uses the
same extension. The D parameter, however, acquires a
non-zero correction which is hard to calculate in practice.
It is also possible to calculate the GSF in the no-string
radiation gauge. In this case it is necessary to take the
limit towards the particle from both sides and average the
result. It turns out that with that prescription all reg-
ularization parameters (including D) take their Lorenz
gauge values. The no-string radiation gauge mode-sum
formula is thus given by

Fµ
Rad =

(

∑

l

Fµ,+
l,Rad + Fµ,−

l,Rad

2
−Bµ

Lor−
Cµ

Lor

L

)

−Dµ
Lor. (31)

D. Radiation gauge metric reconstruction

In this work, we avoid the difficulties of directly solving
the linearized Einstein equation on a Kerr background,
by trying to recover the metric perturbation from the
Weyl scalar ψ4, which can be obtained for particles on
generic bound orbits in Kerr spacetime by solving the
spin-(-2) Teukolsky equation in the frequency domain
[58, 59]. That this should be possible was first hinted
at by Wald [39], who showed that ψ4 contains all in-
formation about the metric perturbation modulo a per-
turbation within the Kerr family of solutions and gauge
information.

The first steps towards this goal were set by Chrzanowski,
Cohen, Kegeles, and Wald [40–42, 60], who showed that
given a solution of the vacuum spin-(±2) Teukolsky equa-
tion one can obtain a vacuum solution of the linearized
Einstein equation. The operators that achieves this are
essentially the adjoint of the operators that construct the
sources for ψ0 and ψ4 from the energy-momentum ten-
sor [60]. However, if one calculates ψ4 from the metric
perturbation obtained from a vacuum solution spin-(-2)
Teukolsky equation, one does not recover the same vac-
uum solution of the spin-(-2) Teukolsky equation. The
vacuum solutions of the Teukolsky equation are there-
fore not the Weyl scalars ψ0 and ψ4. Instead they are
different fields known as Hertz potentials.

The problem of obtaining the Hertz potential correspond-
ing to a certain vacuum solution of ψ0 and ψ4 involves
inverting a fourth-order differential equation [61]. This
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was first tackled by Ori [43], who showed how to obtain
the spin-(+2) Hertz potential corresponding to a ψ0 by
inverting the differential equation mode-by-mode in the
frequency domain. A similar procedure was employed by
Keidl et al. [48] to obtain the spin-(-2) Hertz potential
from ψ0. In a previous paper [30] the author showed how
to obtain the spin-(+2) Hertz potential from ψ4. We will
use this last procedure which results in a metric pertur-
bation in the ORG.

As explained in previous papers [30, 50], the metric per-
turbation produced by a point particle on an eccentric or-
bit, for which the frequency domain source will have sup-
port over a finite range in the radial direction, can be ob-
tained by solving the Teukolsky equation for ψ4, execut-
ing the inversion and metric reconstruction in the vacuum
regions away from the source, and analytically extending
those vacuum metric perturbations back to the particle
worldline. This ‘extended homogeneous solutions’ proce-
dure naturally produces a metric in the ‘no-string’ out-
going radiation gauge, and works without alteration for
inclined orbits.

The final step is to complete the metric by finding the
missing perturbations within the Kerr family. Since, the
no-string solution is discontinuous we need to find sepa-
rate perturbations in each half. In [46], it was shown how
these can be recovered for general sources. In particular,
for a point particle on a generic orbit the Kerr perturba-
tions vanish on the inner half of the solution, while on
the outer half they are given by

hcomp,+
µν = E ∂gµν

∂M

∣

∣

∣

∣

∣

J

+ L∂gµν
∂J

∣

∣

∣

∣

∣

M

, (32)

where J = Ma is the angular momentum of the Kerr
metric,

III. METHOD

Our method for calculating the GSF on generic Kerr
geodesics is in many respects identical to the methods
used for calculating the regular metric and GSF on equa-
torial eccentric orbits described in [30] and [50]. In this
section we will therefore give only a brief outline of these
methods and focus on the details that are different in the
generic case.

A. Weyl scalar ψ4 and Hertz potential

As before in [30, 50], we use the formalism of Mano,
Suzuki, and Takasugi (MST) [62, 63] to solve the (homo-
geneous) Teukolsky equation, largely following the nu-
merical implementation of Fujita and Tagoshi [59, 64].
The method of variation of parameters can then be used

to find the ψ4 generated by a particle of a generic Kerr
geodesic, as first demonstrated by Drasco and Hughes
[58]. Details of our arbitrary precision numerical imple-
mentation are forthcoming [65].

Once ψ4 is known, we can use the procedure described
in [30] to obtain the corresponding spin-(+2) Hertz po-
tential Ψ±

+2 in the asymptotic vacuum regions toward
infinity (“+”) and towards the horizon (“−”). These are
then analytically extend towards the particle. The result
has the form,

Ψ±

+2 =
1√
2π

∑

lmω

Ψ±

lmω 2R
±

lmω(r) 2Slmω(z)e
imφ−iωt, (33)

where Ψ±

lmω are the mode amplitudes obtained through
solving the inhomogeneous Teukolsky equation and the
inversion procedure. The 2R

±

lmω(r) are homogeneous so-
lutions of the spin-(+2) Teukolsky equation with out-
going boundary conditions at either infinity or the hori-
zon. The 2Slmω(z) are spin-weighted spheroidal harmon-
ics with spin weight +2. Finally, the discrete ω-sum is
over the set {mΩφ + kΩz + nΩr|m, k, n ∈ ❩}, where the
Ωi are the Boyer-Lindquist coordinate time frequencies.

B. GSF coefficients

The expression in (33) can be used in the procedure de-
scribed in [50] to obtain the GSF. The steps are

1. Apply the ORG metric reconstruction operator.

2. Apply Pµαβγ∇α to obtain Fµ,±
Rad, the field extended

form of the GSF.

3. Use

sSlmω(z) =
∑

l

(sbmω)
l

l sYlm(z), (34)

where the (sbmω)
l

l are obtained through the method
of [66] for expanding spin-weighted spheroidal har-
monics in spin-weighted spherical harmonics.

4. Use

ð̄s =
√

1− z2
(

∂z +
i

1− z2
∂φ − sz

1− z2

)

, (35)

to eliminate any z derivatives in favour of spin-
lowering operators.

5. Re-expand the resulting variety of spin-weighted
spherical harmonics to regular spherical harmon-
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ics, using

2Yl1m(z) =
∑

l2

Am l1
2 l2

Yl2m(z)

1− z2
, (36)

1Yl1m(z) =
∑

l2

Am l1
1 l2

Yl2m(z)
√

(l1 − 1)(l1 + 2)
√
1− z2

, (37)

0Yl1m(z) =
∑

l2

Am l1
0 l2

Yl2m(z)
√

(l1 − 1)l1(l1 + 1)(l1 + 2)
, (38)

−1Yl1m(z) =
∑

l2

Am l1
−1 l2

Yl2m(z)
√

(l1 − 2)!
√

(l1 + 2)!l1(l1 + 1)
√
1− z2

, (39)

where the Am l1
s l2

are defined in [50].

The result is an expression of the form,

Fµ,±
Rad =

∑

mωsi
l1l2l

Cµ
mωsi(r, z)Ψ

±

lmω 2R
±,(i)
lmω (r)(2bmω)

l

l1

× Am l1
s l2

Yl2m(z)eimφ−iωt + c.c.,

(40)

where the Cµ
mωsi(r, z) are coefficient functions determined

through the procedure above. At this point the proce-
dure starts to diverge from the equatorial case. In the
equatorial case we could use the up/down symmetry of
the source to resolve the “+c.c.” terms in a simple form.
This symmetry is no longer available for generic orbits
(which only satisfy up/down symmetry on average). As
a result, we will just leave the “+c.c.” terms as they are.

The form of (40) is almost that of an expansion in l-
modes as needed for our mode-sum regularization. How-
ever, as it stands the Cµ

mωsi(r, z) still depend on the
field coordinate z. To remedy this situation we replace
Cµ
mωsi(r, z) by its Taylor expansion around the polar

position of the particle z0. Truncating this expansion
amounts to changing the field extension of the self-force.
As mentioned in Sec. II C, the values of the regulariza-
tion parameters depends on the extension. In order to
ensure that the values are unchanged we need that the
extension agrees on the first three terms of the Taylor
expansion. Hence we keep the first three terms of the
Taylor expansion of Cµ

mωsi(r, z).

Expanding the result we can eliminate terms of the form
zn Yl2m(z) using the re-expansion

zn Yl1m(z) =
∑

l2

Bn l1
m l2

Yl2m(z), (41)

where

B1 l1
m l2

= (−1)m+l1+1(l1 − l2)

×
√

l1 + l2 + 1

2

(

1 l1 l2
0 m −m

)

,
(42)

and

Bn+1 l1
m l2

=
∑

ℓ

B1 l1
m ℓ Bn ℓ

m l2
. (43)

From the resulting expression we obtain the l-modes of
GSF,

Fµ,±
Rad,l =

∑

mωsin
l1l2l

Cµ
mωsin(r0, z0)Ψ

±

lmω 2R
±,(i)
lmω (r0)

× (2bmω)
l

l1
Am l1

s l2
Bn l2

m l e
imφ0−iωt0 + c.c.,

(44)

where the Cµ
mωsin(r0, z0) are a new set of coefficients that

now only depend on the particle orbit. Although the
formal expression given here is not much different than
the one in [50], the full explicit expression is significantly
more complicated. This can be expressed in terms of
the leaf count of the Mathematica representations of the
Cµ
mωsin(r0, z0). For equatorial orbits the leaf count of

these expressions was less than 200,000. For the new
expressions for generic orbits the leaf count is nearly 6
million.

As a final remark in this section we note that using (13),
(14), and ω = mΩφ + kΩz + nΩr, we can rewrite

eimφ0−iωt0 = ei(mφz−kqz−ωtz)ei(mφt−nqr−ωtr). (45)

Consequently, the l-modes of the GSF can be expressed
as functions of (a, p, e, zmax) and (qr, qz). As expected,
we can express the orbital variation of the GSF purely in
terms of the (qr, qz)-torus.

C. Mode-sum and completion

Once we have obtained the l-modes we can subtract the
regularization parameters calculated in [55, 56] and cal-
culate the mode-sum (31) to obtain (the reconstructed)
piece of the GSF. We follow the procedure outlined in [30]
to numerically fit the large l-tail of the sum to accelerate
convergence of the sum. This procedure is performed sep-
arately for each (qr, qz) point along the orbit. To obtain
the full GSF we need to add the piece coming from the
Kerr-type perturbations of the background. As shown in
[46], this piece is given by Eq. (32). The contribution to
the GSF is found by simply applying (19).

The GSF obtained in this manner contains all gauge
invariant information contained in the GSF. However,
many quantities that we like to calculate and compare
between different calculations such as the Detweiler red-
shift [20] or the periapsis precession [31], are only invari-
ant under the restricted class of gauge transformations
that remain small over the inspiral timescale ∼ η−1. To
calculate such quasi-invariants one would need to fix the
remaining gauge freedom, adding a gauge correction to
the completion inside the orbit [67]. Presumably, such a
correction is also needed to evolve inspirals. However, in
this work we do not add such corrections as they are not
needed here.
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l-mode divergence at (qr,qz)=(
π
3
,
π
6
)

|Ft,l
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|Ft,l- |

|Ft,l
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|Fr,l
+ |

|Fr,l- |

|Fr,l
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|Fz,l
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|Fϕ,l+ |

|Fϕ,l- |

|Fϕ,lavg|
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10-4

0.001
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0.100

1

10

l-mode number

Figure 1. The l-modes of the various components of the GSF
on a geodesic with (a, p, e, zmax) = (0.9, 10, 0.1, 0.1), shown at
the point along the orbit identified by (qr, qz) = (π/3, π/6).
This point is indicative of the generic behaviour (certain spe-
cial points such as periapsis and apapsis will show better con-
vergence behaviour). The grey lines are reference lines of
L = l + 1/2. As expected the ± parts of the t and r com-
ponents diverge with L. The parameters Az and Aφ vanish
[56, 68]. Consequently, we see ± parts of the r and φ l-modes
converge to a constant, just like all the two-side average parts.

IV. RESULTS

We have implemented the above method for calculating
the GSF on generic Kerr orbits in our arbitrary precision
Mathematica code. This implementation is considerably
more computation intensive than the implementation for
eccentric orbits. There are three main contributing fac-
tors

1. As mentioned above, the various expressions for
forming the GSF are considerably more complex,
taking more time to evaluate and consuming more
memory.

2. For generic orbits we now have a 2-dimensional
spectrum of frequency modes for each (l,m)-mode.
As a result we need to compute many more modes
for a single orbit.

3. Orbits are now parametrized by two independent
phases. Consequently, we need to sample the orbits
at many more points.

As a result where moderately eccentric equatorial orbits
would require at most tens of CPU hours to calculate

Regularized l-mode convergence at (qr,qz)=(
π
3
,
π
6
)

|Ft,l
+ |

|Ft,l- |

|Ft,l
avg|

|Fr,l
+ |

|Fr,l- |

|Fr,l
avg|

|Fz,l
+ |

|Fz,l- |

|Fz,l
avg|

|Fϕ,l+ |

|Fϕ,l- |

|Fϕ,lavg|

1 2 5 10 20

10-7

10-6

10-5

10-4

0.001

0.010

0.100

l-mode number

Figure 2. The same l modes as in Fig. 1 after subtracting the
Lorenz gauge regularization parameters. At large l, all com-
ponents of the GSF conform with L−2 behaviour indicated
by the grey reference lines. This is a stringent check on the
validity of our method and numerical implementation.

the GSF, to calculate the GSF on a single inclined Kerr
geodesic with modest eccentricity requires up to 104 CPU
hours. Luckily the large number of modes, means that
the code is embarrassingly parallelizable, easily running
on 400+ cores at an usage efficiency upwards of 90%.

Therefore, for this work we have chosen to limit our-
selves to a limited number of 5 orbits with fixed spin
(a = 0.9), semilatus rectum (p = 10), and eccentricity
(e = 0.1), while varying the inclination from zmax = 0.1
to zmax = 0.9. In the following sections we first present
some consistency checks on our results. We then provide
some graphical representation of the GSF results.

A. Consistency checks

1. Regularization parameters

A key consistency check for any self-force calculation
is comparison of the large l behaviour of the l-modes
with the analytically calculated regularization param-
eters. After subtracting the regularization parameters
from the l-modes, the remainder should decay with (L =
l+1/2)−2 for large l. This requires a large degree of can-
cellation between the two calculations. As a result, it is
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Table I. Numerical test of the balance law for a selection of strong field orbits. In each entry the first row gives η−1(〈
dC

+

flux

dτ
〉+

〈
dC

−

flux

dτ
〉) (with C either E , L, or Q) calculated from the asymptotic values of ψ4. The second row gives −η−1〈dC

GSF

dt
〉. These

independently calculated quantities agree up to the estimated error level, providing a strong consistency check of the radiation
self-force formalism, our numerical implementation, and error estimates. The brackets (.) at the end of values indicated the
estimated uncertainty on the last digit(s) (e.g. 1.234(5)× 10−6 indicates 1.234× 10−6 ± 5× 10−9).

a p e z η−1
〈

dE

dτ

〉

η−1
〈

dL

dτ

〉

η−1
〈

dQ

dτ

〉

0.9 10 0.1 0.1 −6.06082909932(12)× 10−5

−6.060823(6)× 10−5

−1.922697948770(32)× 10−3

−1.922694(2)× 10−3

−1.25834727896(52)× 10−4

−1.258348(1)× 10−4

0.9 10 0.1 0.3 −6.0940549476(48)× 10−5

−6.094073(6)× 10−5

−1.86084947343(96)× 10−3

−1.860854(2)× 10−3

−1.1433881349(42)× 10−3

−1.143378(1)× 10−3

0.9 10 0.1 0.5 −6.16961426(18)× 10−5

−6.16962(6)× 10−5

−1.726403385(41)× 10−3

−1.72640(2)× 10−3

−3.24433301(17)× 10−3

−3.24429(3)× 10−3

0.9 10 0.1 0.7 −6.3149587(13)× 10−5

−6.31488(6)× 10−5

−1.48663121(23)× 10−3

−1.48661(2)× 10−3

−6.6139045(19)× 10−3

−6.6137(3)× 10−3

0.9 10 0.1 0.9 −6.63479732(11)× 10−5

−6.6341(7)× 10−5

−1.015120160(27)× 10−3

−1.01517(4)× 10−3

−1.185295472(21)× 10−2

−1.18535(8)× 10−2

virtually impossible to make a mistake in either calcula-
tion without creating disagreement between the results.

We start by plotting in Fig. 1 the l-modes of the GSF
on a Kerr geodesic with (a, p, e, zmax) = (0.9, 10, 0.1, 0.1)
evaluated at the point (qr, qz) = (π/3, π/6). This point
has been chosen as suitably representative of a generic
point along the orbit. For certain special points along
the orbit such as the turn points, the l-modes will decay
without the need for regularization. We will avoid these
points for this test. As can be seen in Fig. 1, the l-
modes of the “outside” (+) and “inside” (−) values of
the t and φ components of the GSF grow linearly with
L, as is expected since these components have non-zero
A parameters. The parameters Az and Aφ vanish [68],
and indeed we see that the “outside” (+) and “inside”
(−) values of the corresponding l-modes converge to a
constant for large l. Similarly, as required by Eq. (31),
the l-modes of the two-sided averages of all components
also converge to a constant.

Fig. 2 shows the same modes as in Fig. 1 after subtract-
ing the analytical regularization parameters from [56].
As we should expect, all l-modes exhibit a L−2 decay at
large l. As mentioned above this provides an extremely
stringent test on the validity of our methods and imple-
mentation. In addition it provides independent confirma-
tion of the results of [44] showing that the Lorenz gauge
A, B, and C regularization parameters can be used to
regularize the GSF obtained in half-string or no-string
realizations of the radiation gauge. Finally, this provides
the first numerical verification of the analytical calcu-
lation of the regularization parameters for generic Kerr
geodesics [55, 56].

2. Flux balance law

A second important verification test of our results, is
checking whether the “flux balance law” is satisfied. The
“flux balance law” [69–72] says that the orbit averaged
changes to the constants of motion E , L, and Q due to
the local GSF should match the change to this constants
of motion inferred from the gravitational wave flux at
infinity and the background horizon.

The local changes to the constants of motion can be cal-
culated as follows

〈

dEGSF

dτ

〉

= −η
〈

dλ
dτ

〉

(2π)2

∫ π

−π

∫ π

−π

Ft dqr dqz, (46)

〈

dLGSF

dτ

〉

=
η
〈

dλ
dτ

〉

(2π)2

∫ π

−π

∫ π

−π

Fφ dqr dqz, and (47)

〈

dQGSF

dτ

〉

=
η
〈

dλ
dτ

〉

(2π)2

∫ π

−π

∫ π

−π

2uαKαβF
β (48)

− 2(L − aE)(Fφ + aFt) dqr dqz.

Teukolsky and Press [38, 73] already showed how the av-
erage fluxes of E and L can be extracted from the be-
haviour of ψ4 at the horizon and infinity. A similar result
for Q was obtained in 2005 by Sago et al. [72, 74].

In table I we compare the results of the flux calcula-
tions to the local averages obtained from the GSF on
our five test orbits. The results agree to all available
digits. This provides another verification of our imple-
mentation and methods. At the same time, it provides
the first direct numerical test of the formula derived by
Sago et al. [72, 74] for obtaining the average change of
the Carter constant from the flux.
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Figure 3. Time series data of the GSF on an orbits with (a, p, e, zmax) = (0.9, 10, 0.1, 0.5). Because of the bi-periodic nature of
the GSF none of the modulation patterns ever repeat.

B. Sample results

1. Time series

In Fig. 3 we plot the components of the GSF on a
geodesic with (a, p, e, zmax) = (0.9, 10, 0.1, 0.5) as a func-
tion of coordinate time. These time series display the
bi-periodic nature of the GSF on a generic Kerr geodesic,
showing imprints of components of the radial frequency
Ωr = 0.02325 and of the polar frequency Ωz = 0.0291866.
Since these frequencies are incommensurate the oscilla-
tion patterns never really repeat. Most of the modes are
dominated by oscillations compatible with the Ωr and Ωz

frequencies. The notable exception is the φ components
which oscillates on a shorter timescale, we will comeback
to the cause of this in the next section.

2. Torus plots

Although intuitive to read, the time series plots are not
very informative about the features of the generic Kerr
geodesic self-forces. In this section, we take a more inte-
gral approach to plotting the GSF on generic geodesics.
As noted at the end of Sec. III B, the GSF on generic
geodesic reduces to a pure function of the orbital phases.
This is, of course, a natural consequence of the axisym-
metry and stationarity of the background. Consequently,
it makes sense to plot the components of the GSF as a
function of the torus coordinates (qr, qz). We do so in
Fig. 4-8.

These figures are bit less intuitive to read, but do con-
tain all available information about the GSF on a generic
orbit. To help read the plots, note that the horizontal
axis plots qr. Consequently, the vertical lines at qr = 0
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Figure 4. GSF as a function on the torus for an orbit with (a, p, e, zmax) = (0.9, 10, 0.1, 0.1). The horizontal axis displays
changing qr, while the vertical axis displays qz.

and qr = 2π correspond to apapsis passages of the radial
motion, and the vertical line at qr = π corresponds to
periapsis passages. Similarly, since the vertical axis plots
qz, the horizontal lines at qz = 0 and qz = 2π correspond
to passages through the turning point at zmax, while the
horizontal line at qz = π indicates the turning point at
−zmax. Finally, at the horizontal lines at qz = π/2 and
qz = 3π/2 the orbit passes through the equator.

A striking feature of the plots in Fig. 4-8 is that for the
t, r, and φ components the GSF appears to be π peri-
odic in qz (rather than 2π-periodic as one would naively
expect). This feature is easily verified numerically. If we
take decomposition in Fourier modes, this means only
even multiples of qz appear in the exponents. A visually
much less obvious feature is that for the z component of
the GSF only odd multiples of qz appear in the expo-

nents. Both of these features trace back to the original
up/down symmetry of the Kerr background. In future
iterations of the code, this feature can be used to speed
up computation (and reduce memory usage) by sampling
only half the range of qz. This feature also explains the
frequency oscillations seen in the time series of the φ com-
ponent; in this component the polar variations dominate
consequently, we see variations with a frequency 2Ωz in
the time series.

V. CONCLUSIONS AND OUTLOOK

In this paper we have presented the first calculation of
the first order gravitational self-force on generic Kerr
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Figure 5. GSF as a function on the torus for an orbit with (a, p, e, zmax) = (0.9, 10, 0.1, 0.3). The horizontal axis displays
changing qr, while the vertical axis displays qz.

geodesics. We have thus reached an important milestone
in the numerical GSF calculations needed to analyze EM-
RIs in LISA data.

However, there is still more work to be done. Although
the calculations in this paper work fine as a proof of
concept, the implementation is fairly slow. Major opti-
mizations are needed in order to be be able to fill the
(a, p, e, zmax) orbital parameter space as is needed to
evolve inspirals [32, 33]. In particular, it seems we may
have reached the limit of what is feasible in a Mathemat-

ica implementation, which is great for prototyping new
calculation methods such as this one, but not necessar-
ily very efficient in the usage of CPU time and memory.
A next step would be to implement in a more efficient
compiled programming language.

The limited runs done for this paper involved only very
modest eccentricities of e = 0.1. LISA EMRIs are ex-
pected to have eccentricities of up to e . 0.8. Such
calculations would require significantly more modes and
therefore computation resources. Our code for equatorial
orbits has reached such eccentricities [75], but at high
computational cost. Without a more efficient implemen-
tation it seems infeasible to reach such high eccentricities
with the current generic orbit code.

An exciting phenomenon that can be studied using the
GSF on inclined eccentric orbits is the occurrence of or-
bital resonances [76]. These resonances are linked to an
inspiral making a sudden jump in the constants of motion
[76]. In principle, all information about these jumps can
be extracted from the GSF at the moment of resonance
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Figure 6. GSF as a function on the torus for an orbit with (a, p, e, zmax) = (0.9, 10, 0.1, 0.5). The horizontal axis displays
changing qr, while the vertical axis displays qz.

[77]. In particular, we should be able to settle the ques-
tion whether there are contributions to the jumps from
the conservative GSF that cannot be obtained from the
fluxes [78]. There is also an intimate link with the ques-
tion of integrability of the conservative GSF [79]. Cal-
culating the ψ4 generated by a resonant orbit, would re-
quire some minor modifications of our code as shown in
[80]. However, beyond that all our methods should work
almost identically.

The ability to calculate the GSF on inclined orbits fur-
ther opens the door for the calculation for a slew of new
(quasi-)invariants. These include the shift of the inner-
most stable spherical orbit [81], the equatorial limit of the
nodal precession, the periapsis shift of spherical orbits,
and of course the Detweiler redshift. The calculations

of these quantities will require knowledge of the gauge
completion [67], and will be pursued in future work.

ACKNOWLEDGEMENTS

The author would like to acknowledge Scott Hughes for
providing valuable verification data for testing the used
Teukolsky solver for generic orbits. He also wishes to
thank Leor Barack for a number of useful discussions.
The author was supported by European Union’s Hori-
zon 2020 research and innovation programme under grant
agreement No 705229. The numerical results in this pa-
per were obtained using the IRIDIS High Performance
Computing Facility at the University of Southampton.



14

0
π
2

π 3 π
2

2 π0

π
2

π

3 π
2

2 π

0

π
2

π

3 π
2

2 π

Ft

-0.00010

-0.00005

0

0.00005

0.00010

0.00015

0.00020

0.00025

0
π
2

π 3 π
2

2 π0

π
2

π

3 π
2

2 π

0

π
2

π

3 π
2

2 π

Fϕ
-0.008

-0.006

-0.004

-0.002

0

0.002

0
π
2

π 3 π
2

2 π0

π
2

π

3 π
2

2 π

0

π
2

π

3 π
2

2 π

Fr
0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

0.0046

0.0048

0
π
2

π 3 π
2

2 π0

π
2

π

3 π
2

2 π

0

π
2

π

3 π
2

2 π

Fz

-0.015

-0.010

-0.005

0

0.005

0.010

0.015
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