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Gravitational stability of spherical self-gravitating relaxation models
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SUMMARY

The gravitational stability of spherical, self-gravitating, hydrostatically pre-stressed
planetary models remains a subject of active interest. Love (1907, 1911) was the first to
show that purely elastic models can become unstable when values of rigidity and bulk
modulus are insufficient to counteract self-gravitational collapse. We revisit his calcu-
lations and extend his work to show that so-called dilatational (or ‘D’) modes of
a viscoelastic sphere can also become unstable to self-gravitation in a specific region
of Lamé parameter space. As an example, we derive a marginal stability curve for the
dilatational modes of a homogeneous planetary model at spherical harmonic degree
two. We demonstrate that the stability conditions are independent of viscosity and that
the instability will occur only when the homogeneous earth model is already unstable to
the elastic instability described by Love (1907, 1911). Finally, we also consider a class of
Rayleigh-Taylor (or ‘RT’) instabilities related to unstable density stratification in
planetary models. This convective instability is explored using both a homogeneous
Maxwell viscoelastic sphere (which has an unstable layering at all depths) and a suite
of Maxwell earth models that adopt the elastic and density structure of the seismic
model PREM (which has regions of unstable density stratification within the upper
mantle). We argue that previous studies have significantly overestimated the potential
importance of these modes to Earth evolution. For example, suggestions that the time-
scale of the RT modes is short relative to the age of the Earth face the fundamental
problem that the ensuing convective instability would have long ago destroyed the
unstable layering and produced an adiabatic profile. We predict that at low degrees
the RT instabilities for a PREM density profile and realistic viscosity stratification have
timescales comparable to the age of the Earth. It is unclear, in any event, whether the
unstable density layering in the PREM upper mantle is robust.

Key words: earth models, gravitational stability.

INTRODUCTION

The planform of mantle convection remains a source of
active debate in geophysics; however, the existence of con-
vective motions in this region is well established. Both direct
and indirect evidence for flow-induced mantle heterogeneity
exist. The former include, for example, plate tectonic motions
and the increasingly high-resolution tomographic images of
seismic velocity variations.

Despite the presence of convective motions, there are a range
of geodynamic observables that can be modelled under the
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assumption that the Earth is stably stratified. Examples include
(post-)seismic deformations and a suite of anomalies linked to
postglacial adjustment. These models are commonly termed
‘relaxation models’. In principle, they describe the complete
or partial recovery of the perturbed earth due to forcings (for
example, ice melt or growth, sea-level changes, atmospheric
pressure variations, earthquakes, tidal interactions, changes in
centrifugal potential, etc.) as a function of both the parameters
defining the earth model and the space—time geometry of the
forcing.

Stable stratification is a central assumption in the application
of (linearized) relaxation models. Accordingly, the question
of whether these linearized models are stable to perturbing
forcings is a problem of long-standing interest. An important
early contribution to the discussion of stability of elastic
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spherical relaxation models was provided by Love (1907, 1911).
He derived analytical expressions for the stability criteria
of homogeneous compressible elastic spheres for low-degree
(i.e. long-wavelength) harmonics. Elastic models are unstable
whenever the rigidity and incompressibility are insufficient to
prevent collapse of the sphere due to self-gravitation. Practical
considerations limited Love (1911) to presenting expressions
for a small number of points situated on the curves of marginal
stability in the Lamé parameter space.

Stability conditions for spherical viscoelastic models have
been the subject of recent interest. In particular, two classes
of possible gravitational instability in such models have
been discussed. The first relates to so-called dilatation modes
(henceforth D modes), which occur in viscoelastic models with
some level of compressibility. These modes have been discussed
by a number of authors (e.g. Han & Wahr 1995; Vermeersen
et al. 1996), and Vermeersen & Mitrovica (1998) have recently
shown that there exist regions of Lamé parameter space in
which the modes are unstable (that is, regions where the
modal excitation increases exponentially with time). We will
explore this issue in detail below. In particular, we consider
the marginal stability curve for the D modes at low degree for
a self-gravitating, homogeneous Maxwell viscoelastic sphere.
Furthermore, we compare this result with a plot of Love’s
(1911) analytic expressions for the stability of elastic relaxation
at low degree.

Unstable layering of the radial density profile gives rise
to a second class of instability in viscoelastic earth models, as
discussed in a series of recent studies (Plag & Jiittner 1995;
Vermeersen & Sabadini 1997; Vermeersen & Mitrovica 1998;
Hanyk et al. 1999). The stability condition for incompressible
models is simple; namely, instabilities occur whenever the
radial density profile shows inversions (i.e. high density over
low density). (We note, once again, that D modes are entirely
absent in incompressible models.) In a viscoelastic compressible
rheology, the Williamson—Adams (WA) criterion determines
whether the radial density stratification is stable or not: if the
square of the Brunt—Viisild frequency is negative, then the
layering is unstable in a compressible model. The WA criterion
implies that the density must be increasing with depth to some
extent for a compressible viscoelastic sphere to be stable.
Instabilities associated with ‘unstable layering’ of viscoelastic
models are of the Rayleigh—Taylor (henceforth RT, after Plag
& Jiittner 1995) type.

In this paper we revisit the issue of unstable RT modes
by describing in detail results presented by Vermeersen &
Mitrovica (1998) for spherical, Maxwell viscoelastic earth
models. Specifically, we consider both a homogeneous model
and a model with radial profiles of density, rigidity and
bulk modulus specified by PREM (Dziewonski & Anderson
1981). The homogeneous compressible model is subject to RT
instabilities. This is true also for the second model, since the
square of the Brunt—Viisild frequency is negative in PREM
within a small layer just above 670 km depth and for all regions
above the transition zone (i.e. depths less than 400 km).

Previous analyses of RT modes in viscoelastic models have
led to some rather strong claims. For example, Plag & Jiittner
(1995) adopted PREM and concluded that ‘The excitation
amplitudes of the [RT] modes are of the same order of magni-
tude as those for stable eigenmodes . ... For typical viscosity
profiles derived from post-glacial rebound studies, the charac-
teristic times are of the order of 107 to 10% y, while for a profile

with a very low viscosity in the asthenosphere the charac-
teristic times found here are as low as 6x10° y ... [and]
these modes could affect the evolution of the planet’ (p. 267).
Hanyk et al. (1999) adopted a homogeneous compressible
model, and they predicted fastest ‘growth times on the order of
ten thousand years ... for the longest wavelength’ (p. 557).
They furthermore suggested that these modes may play a role
in ‘large-amplitude rotational instabilities’ (p. 560), and as an
example they cited an inertial interchange true polar wander
event (timescale ~ 107 yr) recently invoked for the Cambrian.

There are a number of reasons to be skeptical of these
claims. Hanyk et al. (1999) expressed ‘surprise’ (p. 557) that
they found RT modes in their homogeneous, compressible
earth model; however, that such a model must be unstable
has been known for at least four decades (see e.g. Longman
1962, p. 486). Indeed, the entire homogeneous sphere would
be gravitationally unstable in their calculations, and hence
any application of the results to the Earth would be suspect.
Results based on the adoption of PREM raise two further
issues. First, it is unclear to what extent departures from the
WA condition in the PREM upper mantle are constrained.
Second, the timescales cited above by Plag & Jiittner (1995) are
short relative to the age of the Earth and therefore the unstable
layering in PREM could not have been sustained for any
significant fraction of Earth history. That is, RT (convective)
instabilities would have quickly acted to produce an adiabatic
profile in the region in question. This physics appears to us to
be a rather fundamental objection to these quoted timescales,
and it implies that either the timescales are too short, or the
unstable layering in PREM is not a robust feature of that
model.

ELASTIC INSTABILITIES

In the case of an elastic, homogeneous, spherical, self-
gravitating model, the only instability that can arise occurs
when the rigidity and resistance to compression of the model
are insufficient to prevent self-gravitational collapse. Love
(1907) discussed this mechanism and modelled it under the
assumption that the pre-stress of the body was not advected in
deformation. Love (1911) subsequently corrected his theory by
setting the Lagrangian time-derivative of pre-stress to be zero.
In the following we will discuss the results obtained by Love
(1911).

In Chapter IX of Love (1911), an analysis is given for
the gravitational stability of a hydrostatically pre-stressed,
spherical, elastic, self-gravitating, homogeneous sphere. The
condition of marginal stability in the (4, w)-plane that Love
(1911) derived for harmonic degree two is given by his eq. (21)
(Section 138, p. 119):
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in which (see Section 124, p. 108 of Love 1911)
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and, according to eq. (17) of Love (1911; Section 125, p. 109),
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In eqs (1)-(3), A and u are the usual Lamé parameters, R is the
mean earth radius and g the surface gravity for a homogeneous
earth with density p. In our homogeneous earth models we
will use the values that Love (1911) used, viz. R=6370 km,
p=5500 kg m—3, while g=(4/3)nGpR, where G is the gravi-
tational constant. The parameters « and § have the positive
definite values of their respective quadratic forms in eq. (2).
We can rewrite eq. (1) in the following simple way:

AD+BC

CD 0, “

A+B_
C D

10

Gravitational stability of relaxation models 353

with
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From eq. (2) it follows that
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and thus, since 1 and u are positive definite, both the
numerator 4D+ BC and the denominator CD in eq. (4) have
no singularities.

Love (1911) noted that if the ratio 1/u was specified then the
ratio o/ was known from eq. (2) (or vice versa). In this case,
eq. (1) (or, equivalently, eq.4) can be rewritten with o as the
single unknown. There are several values of o that will satisfy
this equation, and each of these is associated (once again via
eq. 2) with specific values of / and u. Indeed, the largest values
of 1 and u determined in this fashion represent the condition of
marginal stability for the ratio A/p being considered.

As an example, consider the results cited by Love (1911).
Love (1911) treated the two cases a/f=3/2 and 18/17. These
cases correspond to ratios A/u=46/25 and 247246/1225.
Love (1911) found that the former led to the solution aR=4.56
and, ultimately, to (4, g) equal to (5.7,3.1) in units of
10'° Pa. Analogous values for the latter case were oR=5.45,
2=42.38x10'" Pa and u=0.21 x 10'° Pa.

We have revisited this calculation by searching for all
solutions to eq. (4) for a wide range of a priori ratios o/ 8. The
results (Fig.la) clearly indicate the presence of a family of
solutions, with the curve of ‘marginal stability’ given by the
upper line. We note that Love’s (1911) case of a/f=3/2 lies

(Pa X101

n

10

(b)

A (Pa X101

Figure 1. Stability curves for a homogeneous compressible elastic sphere (see text for details) at spherical harmonic degree 2 in the (4, u) parameter
space, computed from expressions derived by Love (1911). (a) Plot of curves satisfying AD+ BC =0 (see eq.4); (b) plot of curves satisfying CD=0

(see eq. 4).
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(almost) on this curve. In Fig. 1(b) we consider cases where
the denominator of eq. (4) becomes zero. This family of curves
falls below the line of marginal stability in Fig. 1(a), so we can
take the latter to represent the boundary between stable and
unstable regions of model space.

The elastic instabilities considered here will not exist in
incompressible models (since the Lamé parameter, 4, is infinite
in this case). These instabilities may, however, exist in either
compressible elastic or viscoelastic models. The predictions
appearing in the next two sections (dealing with D and RT
modes) are based on Maxwell viscoelastic earth models.
These models are not compressible at all timescales; indeed,
a Maxwell body behaves as an incompressible inviscid fluid
in the long-term (or so-called fluid) limit and it is commonly
described as ‘viscously incompressible’ (Peltier 1976; Wu &
Peltier 1982; Mitrovica & Peltier 1992). In this context, our use
of the term ‘compressible viscoelastic’ in describing the pre-
dictions below refers to our adoption of Maxwell earth models
with finite Lamé parameter /. A purely incompressible visco-
elastic rheology (i.e. incompressible at all timescales) may be
obtained from such models by considering the limit A—oo.

VISCOELASTIC INSTABILITIES: D MODES

For a homogeneous earth model with volume-averaged

parameters for the density, rigidity and compressibility, one

set of D modes is triggered in the negative s-domain (that

is, the strengths of these modes decay exponentially with

time). Vermeersen et al. (1996, eq.46) derived an analytical

approximation formula for the s-values of these modes:
(mn/ R’k —4pg/R 1

Sp=— — 7
" (mn/R(+2u)—4pg/ R ™™ @

where k=1+2u/3 is the bulk modulus and 7yy=v/pu is the
Maxwell time. Notice that for an incompressible viscoelastic
model (A— 00), the s, all collapse to the inverse Maxwell time,
and thus the D modes disappear (Vermeersen et al. 1996).

In Vermeersen et al. (1996) the set of D modes was indexed
as m=1,2,3,...; however, Vermeersen & Sabadini (1997)
have shown that the parameter C(s) discussed by Vermeersen
et al. (1996, eq.33) should have been split into two distinct
cases. This oversight has several consequences. First, the
numerical results presented by Vermeersen et al. (1996, Tables 1,
2 and 3 and Fig.1) are slightly altered (Hanyk ez al. 1999).
Second, the mode m=1 does not exist, so that the indexing
in eq.(7) is properly started at m=2. Finally, Vermeersen &
Sabadini (1998) showed that the so-called DO mode (with
inverse relaxation time sg) is analytically associated with the
Maxwell time.

For Lamé parameters characteristic of Earth-like values,
the inverse relaxation times s,, of the D modes are negative. In
previous discussions of these D modes, however, it has not
been recognized that there are regions of (4, i) space in which
the eigenvalues s, are positive. In this case, the modal strength
grows with time and the D modes are unstable. To consider this
case, let us rewrite eq. (7) as

L __LaG+wd-1 1
" rm()v"_zﬂ) -1 ™ ’
with T, =m?n?/(4pgR). One can easily show that s,, becomes

positive when U< i< I, ! —2u/3. The relaxation
times of the D modes are dependent on viscosity through the

®)

Maxwell time, ty; however, the condition for instability is
not dependent on viscosity. Furthermore, the region of stability
(or instability) is dependent on the density, but not on the radial
density gradient (which is equal to zero in a homogeneous
model).

In Fig. 2 we consider the D-mode stability for a homogeneous
Maxwell viscoelastic earth model characterized (as in the last
section) by R=6370 km, p=5500 kg m > and g=(4/3)nGpR.
For m=2, s, becomes positive in the wedge-shaped region
between the lines s =0 and s = c0. These two lines are defined by
cases where the numerator and denominator of eq. (8) are zero,
respectively. The two lines intersect at (4, u)=(T,, !, 0). For
values of m larger than 2, the wedge-shaped region would be
below the line s=0 in Fig.2, so the m=2, s=0 case provides
the marginal stability curve; that is, this curve defines a lower
bound for the Lamé parameters necessary for the gravitational
stability of the dilatational modes of the homogeneous, Maxwell
viscoelastic model.

A comparison of Figs 1(a) and 2 indicates that the marginal
stability curve for the D modes is situated at smaller values
of the Lamé parameters than the stability curve of the purely
elastic model. This suggests that the D modes in compressible
viscoelastic models do not (at least in the cases we have
considered) determine the critical values of the Lamé para-
meters for which self-gravitational collapse of the earth model
occurs. Consequently, the same condition that Love (1911)
derived for the critical values of the elastic parameters necessary
to counteract self-gravitation in an elastic homogeneous com-
pressible model applies to a homogeneous viscoelastic com-
pressible model. The only caveat to this conclusion is that
the latter models are also subject to RT instabilities when the
density profile includes regions of unstable layering. We consider
this case next.

(Pa X 10'1%)

W

A (Pa X101

Figure 2. Curves defining the stability of D modes of a homogeneous
compressible viscoelastic sphere (see text for details) at spherical
harmonic degree 2 in the (4, 1) parameter space. The curve s=0 is the
case where the numerator of eq. (8) is equal to zero; the curve s= o0 is
the case where the denominator of eq. (8) is equal to zero.
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VISCOELASTIC INSTABILITIES: RT MODES

PREM (Dziewonski & Anderson 1981) is widely used in
seismological and geodynamic modelling for its radial density,
rigidity and bulk modulus profiles. Between 24.4 and 220.0 km
depth, PREM shows an inversion of the density profile; that is,
the density decreases with depth (Dziewonski & Anderson
1981, Tables 2 and 3). The influence of the density inversions
of PREM on incompressible viscoelastic relaxation models
was studied by Vermeersen & Sabadini (1997, Section 6). They
concluded that the density inversions can have a significant
impact on the Love numbers when the lithosphere is taken to
be viscoelastic instead of purely elastic. They also concluded
that the shallow density inversions in PREM have more impact
on surface load forcings than on tidal (gravitational) forcings.
The square of the Brunt—Vaiisila frequency is given by

d 2
N2:7§(7p+p7g>. 9)
p \dr K

A density layering is unstable in a compressible model any-
where where N? is negative, and this occurs in two radial
regions within PREM: the surface down to 400 km depth, and
in a small region of the transition zone just above the 670 km
discontinuity. These regions give rise to RT instabilities in
compressible viscoelastic models that adopt PREM.

In the following subsections we will present results for
Maxwell viscoelastic surface load Love numbers /1, £ and k. These
numbers govern the impulse response of the viscoelastic earth
model and, in the time domain, they have the forms (Peltier 1974)

N
hi())=hi o)+ Y rhexp(sii), (10)
j=1
N
LD =L73(0+ Y 1 exp(sho), (11)
j=1
N
ki(ty=kis()+ > ' exp(sh), (12)

Jj=1
where the first term on the right-hand side of each equation
is the immediate elastic response to the impulse load (hence
the superscript E), and the second term is the non-elastic
response. The latter is formed from a superposition of N modes
of exponential decay defined by a common set of eigen-

frequencies sﬁ, and a distinct set of modal amplitudes (+, '/, /!

The symbols # and J represent time and the Dirac delta function,
The A, ¢, and k Love numbers are coefficients in Legendre
polynomial expansions for the radial and tangential surface
displacements and the gravitational potential perturbation,
respectively. If a given eigenfrequency is negative, then the
associated mode is stable and the inverse eigenfrequency can
be termed the decay time of that mode. However, if an eigen-
frequency is positive the mode is unstable and we will simply
refer to the inverse eigenfrequency as the ‘timescale’ of the mode.
Finally, the ratio of the modal amplitude to the associated
eigenfrequency is commonly termed the ‘modal strength’
(Wu & Peltier 1982).

Homogeneous compressible model

Fig.3 shows the modal eigenfrequencies and strengths of a
homogeneous compressible viscoelastic sphere with para-
meters taken from Vermeersen er al. (1996): v=10%! Pa s,

©2000RAS, GJI 142,351-360
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p=5517kg m™3, R=6371 km, /=3.5288x 10" Pa and u=
1.4519 x 10! Pa. The same homogeneous model was recently
considered by Vermeersen & Mitrovica (1998) and Hanyk
et al. (1999) in their analyses of RT modes. The plots do not
include the D modes, which in this case are stable, and there-
fore the only stable modal branch is the so-called fundamental
set, labelled MO. The open circles represent the unstable
(eigenfrequencies greater than zero) RT modes, and, following
Plag & Jiittner (1995), we denote branches associated with
these modes by RTn (n=1, 2, ...). The label RT1 is the branch
with the highest strength, RT2 is the next highest, and so on.
Although we show eigenfrequencies for at least a portion of
seven RT branches in Fig. 3(a), the plots of modal strength only
include the RT1, RT2 and RT3 branches.

The eigenfrequencies of the unstable RT modes are at least
one order of magnitude smaller than the stable MO modes.
The shortest inverse eigenfrequency (or timescale) for the RT
modes is approximately 10 kyr for the RT1 modal branch
at degree 2. This timescale grows with increasing spherical
harmonic degree (or decreasing wavelength) along the RT1
branch, so that by degree 50 it reaches ~ 500 kyr. The variation
of eigenfrequencies with harmonic degree for the remaining
RT modal families (RTn, n=2, 3, . ..) is not monotonic; indeed,
these mode branches obtain a maximum eigenfrequency for
degrees higher than 2, and this maximum appears to shift
towards higher degrees as n increases.

In the case of the /# and k& Love numbers, the modal strengths
for the stable MO modes are about one order of magnitude
greater than the RT1 strengths at low degrees. By degree 50 this
discrepancy increases to over two orders of magnitude. This
behaviour contrasts with the ¢ case, where the modal strengths
for all three unstable mode branches are significantly larger
than the MO strengths. We conclude that horizontal motions
on a homogeneous, compressible viscoelastic earth model loaded
by surface masses are exceedingly unstable.

A common procedure for checking whether all viscoelastic
normal modes have been found in the numerical procedure has
been to invoke the so-called ‘isostatic limit’” (Wu & Peltier
1982). In practice, one first performs an independent calcu-
lation in which the limit is determined by assuming that all
non-elastic regions are inviscid, and, second, one compares
this prediction to the limit determined from the normal modes.
As an example of the latter, let us convolve eq.(10) with a
Heaviside load applied at t=0:

N

[
hi'(t > 0)=hp + Y 2 [1— exp(si0)]. 13)
=

where the superscript H denotes the Heaviside response. Now,
if all modes are stable, the long-time limit of this response can
be written as

N
W (t=o0)=hi + > :

j=1"

X
e

(14

~

Hanyk et al. (1999) observed that expression (14), when both
stable and unstable modes are included in the sum, yields a
match to the analytically determined value for the inviscid limit
of a homogeneous earth. This intriguing result, which we have
confirmed, has implications that extend beyond the simple
homogeneous model considered in this section to the radially
stratified models of the next section. We will explore this issue
in detail in future work.
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Figure 3. Eigenfrequencies (a) and modal strengths (b—d) of the normal modes of a homogeneous compressible viscoelastic sphere. The parameters
defining the viscoelastic structure of the model are given in the text. The dots refer to stable (eigenfrequencies less than zero) modes. We do not show
the D modes, hence the only stable mode family is the fundamental (M0) branch. The open circles depict unstable (positive eigenfrequency) RT
modes. (a) shows a number of the RT mode families, but only the three with greatest strengths (RT1, RT2 and RT3) are shown in (b)-(d). Note that
the k& and ¢ Love number strengths have been scaled by the associated harmonic degree.

PREM

In this section we turn our attention to predictions of visco-
elastic normal modes generated using a model with the density
and elastic structure given by the model PREM (Dziewonski
& Anderson 1981). Plag & IJiittner (1995) were the first to
detect positive eigenfrequencies in models based on PREM. In
particular, they considered four earth models: (1) uniform
viscosity of 10?! Pa s and no lithosphere, as studied earlier by
Peltier (1974); (2) 80-km-thick elastic lithosphere, and upper
and lower mantle viscosities of 102! and 2 x 10%! Pa s; (3) 80-km-
thick elastic lithosphere, and upper and lower mantle viscosities
of 5% 10% and 5x10*' Pa s [both model 2 and model 3 are
adopted from Mitrovica & Peltier (1992)]; and (4) a radial
profile of mantle viscosity varying from below 10!7 Pa s in the

asthenosphere (that is, the region characterized by a negative
value of N2 in PREM) to ~ 10?7 Pa s close to the core—mantle
boundary (CMB). We present a detailed analysis of a set of
models similar to models (1)—(3) considered by Plag & Jiittner
(1995).

In Fig. 4 we consider the eigenfrequencies and modal strengths
for a model consisting of an inviscid core and an isoviscous
102! Pa s mantle. Of the numerous stable normal modes we
only plot mode branches associated with the deflection of density
discontinuities at the surface (the fundamental mode, MO0), the
CMB (C0), 670 km depth (M1) and 400 km depth (M2). Once
again, the open circles represent unstable RT modes. A very
large number of these are shown on the eigenfrequency plot,
but only the modal branch with the largest modal strength
(RT1) is plotted in the remaining frames. We note that

© 2000 RAS, GJI 142, 351-360
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Figure 4. As in Fig. 3 except for eigenfrequencies (a) and strengths (b—d) of an earth model with elastic and density structure given by the model
PREM (Dziewonski & Anderson 1981). The model has no lithosphere and a uniform mantle viscosity of 10>! Pa s. Of the many stable mode branches,
only the M0, CO, M1 and M2 mode families are plotted. (a) shows a very large number of RT modes, but only the family with greatest strength (RT1)

is shown in (b)—(d).

the eigenfrequencies of the CO mode are not plotted above
degree 22 because the numerical propagation procedure used
to compute the normal-mode parameters begins at a radius
above the CMB in this degree range. Furthermore, we have not
plotted modes with eigenfrequencies less than 9 x 108 kyr !
(an eigenfrequency of 2 x 10~7 kyr ! coincides with the age of
the Earth).

The dependence of the eigenfrequency of the RT1 mode
branch on harmonic degree is clearly distinct from both
the variation apparent in other RT families in Fig.4 and the
variation evident in all RT branches in Fig. 3. In particular, the
timescale of the RT1 modes in Fig. 4 increases monotonically
with spherical harmonic degree (at least in the range shown
in the figure). At degree 2 this timescale is ~10° yr, while at
degree 50 it is ~3 x 10° yr (see also Plag & Jiittner 1995). As a
consequence, and in contrast to the homogeneous case (Fig. 3),

©2000RAS, GJI 142,351-360

the timescale of the RT1 mode at degree 2 is six orders of
magnitude longer than the decay time of the fundamental
mode at that degree. Indeed, all unstable modes have time-
scales that are longer than the M0, CO, M1 and M2 modes at all
harmonic degrees depicted in the figure.

For the /4 and k& Love numbers the strengths of the RTI
modes are comparable to the stable M2 modes and far smaller
(generally by several orders of magnitude or more) than the
mode with greatest strength at each degree. As in Fig. 3, the ¢
Love number results are distinct; in this case, the strengths of
the RT1 modes are larger, by an order of magnitude, than the
stable mode with greatest strength.

In Fig. 5 we show results for an earth model identical to the
one adopted in constructing Fig. 4 with the exception that we
include an 80 km elastic lithosphere. (In practice, this feature is
generated by setting the viscosity in the top 80 km of the model
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Figure 5. Same as Fig. 4, but now with an 80 km thick lithosphere added to the model. The LO mode family is a stable branch associated with the

contrast in rheology at the base of the lithosphere.

to an exceedingly high value.) The inclusion of an elastic litho-
sphere has several important effects on the normal modes of
the viscoelastic earth model. First, the set of stable modes now
includes the LO mode, associated with the contrast in rheology
at the base of the lithosphere (Wu & Peltier 1982; Wolf 1985).
The eigenfrequencies and modal strengths of the remaining
stable mode branches (M0, M1, M2 and, to a lesser extent, C0)
are also perturbed by the presence of an elastic plate. The
timescale of the stable RT1 modes increases by about an order
of magnitude by the addition of an 80 km lithosphere (as first
demonstrated by Plag & Jittner 1995); in contrast, the eigen-
frequencies for the remaining set of unstable modes shown in
the figure appear to be insensitive to this aspect of the model.
The timescale of the RT1 modes now ranges from ~10'° yr
at degree 2 (twice the age of the Earth) to 2.5x107 yr at
degree 50. For the /4 and k Love numbers, the modal strengths
of the RTI branch are moderately reduced, and they remain

comparable to strengths associated with the stable M2 modes.
The greatest reduction in strength is apparent at high degrees,
where the influence of the elastic lithosphere should be greatest.
The addition of an elastic lithosphere clearly has the most
significant impact on horizontal deformations. Indeed, the ¢
Love number strengths are reduced by three to four orders of
magnitude from Fig. 4 to Fig. 5 (see also Plag & Jiittner 1995).
Not surprisingly, the elastic plate acts to stabilize surface
horizontal deformations of the earth model associated with the
RT1 modes. Overall, the modal strengths for the RT1 branch
are one to three orders of magnitude smaller than the greatest
strength of the stable mode set.

Finally, in Fig. 6 we consider an earth model with an upper
mantle viscosity of 5x 10%° Pa s and a lower mantle viscosity
of 5x 10%! Pa s. A comparison of Figs 5 and 6 shows relatively
moderate changes. The eigenfrequencies of the RT1 modes
increase by roughly a factor of two. A similar increase is
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Figure 6. Same as Fig. 5, but now with an upper mantle viscosity of 5 x 10%° Pa s and a lower mantle viscosity of 5 x 10>! Pa s.

evident in a second RT branch that emerges (relative to Fig. 5)
from the dense region of unstable modes at the bottom right
of the eigenfrequency plot. This second branch has a similar
monotonic increase of eigenfrequency with harmonic degree
as is evident in the RTI case. The slight increase in eigen-
frequency, or decrease in timescale, is expected since the upper
mantle regions of unstable density stratification in PREM are
subject to a lower viscosity in Fig. 6 than in Fig. 5. The modal
strengths of the RT1 branch appear to be relatively insensitive
to this change in the radial profile of mantle viscosity.

Most of our model results compare well with those obtained
by Plag & Jiittner (1995), although we have not considered a
model similar to their model 4 (characterized, among other
things, by a very weak asthenosphere). However, our con-
clusions differ from theirs in several significant ways. First,
they argued for the strengths that ‘we find the RT modes to be
of the same order as most of the stable modes . ... Only the
dominant stable modes are an order of magnitude larger than the

©2000RAS, GJI 142,351-360

RT modes’ (p. 284). Our results including an elastic lithosphere
indicate that, in general, the stable modes have significantly
greater strength, and that the difference between the strengths
of the dominant stable and unstable modes is generally two
orders of magnitude. Second, they concluded that ‘For low
spherical degrees, the characteristic times are of the order of
10% years ... except for (model #4) where they are as low as
5x10° y’ (p. 284). For realistic earth models, in which the
PREM elastic and density structure is adopted, the timescale of
the RT1 modes at the lowest degrees is actually two orders
of magnitude greater than the upper bound cited by Plag
& Jiittner (1995) and comparable to the age of the Earth.
This is an important point, since Hanyk et al. (1999) have,
for example, suggested that RT modes may be implicated in
relatively rapid and dramatic rotational (i.e. degree two)
instabilities. Our results suggest that this link is highly unlikely.

The lower bound on the timescale cited by Plag & Jittner
(1995) for low-degree deformations (5x 10° yr) is based on
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results generated using a model in which the regions of
unstable density stratification in PREM coincide with a region
of very low (< 10!7 Pa s) viscosity. In this case, Plag & Jiittner
(1995) found RT instability timescales of ~10* yr by degree
30 and ~10% yr by degree 100. As we discussed in the
Introduction, an RT instability proceeding at this timescale
would quickly evolve any unstable density stratification into
an adiabatic profile, and it is unclear how such stratifications
could be argued to persist over geological timescales.
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