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Abstract. The first decade of the new millennium should see the first direct detections of

gravitational waves. This will be a milestone or fundamental physics and it will open the new

observational science of gravitational wave astronomy. But gravitational waves already play

an important role in the modeling of astrophysical systems. I review here the present state of

gravitational radiation theory in relativity and astrophysics, and I then look at the development of

detector sensitivity over the next decade, both on the ground (such as LIGO) and in space (LISA).

I review the sources of gravitational waves that are likely to play an imp rtant role in observations

by first- and second-generation interferometers, including the astrophysical information that will c

me from these observations. The review covers some 10 decades of gravitational wave frequency,

from the high-frequency normal odes of neutron stars down to the lowest frequencies observable

from space. The discussion of sources includes recent developments regarding binary black holes,

spinning neutron stars, and the stochastic background.

PACS numbers: 9530S, 9555Y, 0430D, 9585S, 0480N

1. Introduction

Gravity is the dominant force in most astronomical systems. The big surprise of the last third

of the 20th Century was that relativistic gravity is important in so many of them. Neutron stars

represent up to 1% (by number) of the entire stellar population of any galaxy; stellar-mass

black holes seem to be abundant; massive black holes with masses between 106 M⊙ and sever

l times 109 M⊙ seem to inhabit the centres of most galaxies; quasars, x-ray binaries, supernovae

and gamma-ray bursts us relativistic gravity to convert mass into energy with efficiencies ten

times or more greater than nuclear reactions can achieve; gravitational lensing has become an

important tool for understanding the mass distribution of the universe; and of course the Big

Bang is the only naked singularity we expect to be able to see. Most of these systems are either

dynamical or were formed n catastrophic events; many are or were therefore strong sources

of gravitational radiation. As the 21st Century opens, we are on the threshold of using this

radiation to gain a new perspective on the observable universe.

I have chosen the term ‘gravitational wave astronomy’ as the title for this review

deliberately. It suggests, of course, a branch of observational astronomy. Since it may still

be 10 or more years before this observational tool becomes established and reliable, it might

be thought that my use of this term is premature. However, gravitational wave astronomy

already exists. The theory of gravitational radiation already makes an important contribution

to the understanding of a number of astronomical systems, such as binary neutron stars,

cataclysmic variables, young neutron stars, low-mass x-ray binaries, and even the anisotropy of
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the microwave background radiation. As the understanding of relativistic systems improves,

it can be expected that gravitational radiation will become more and more important as a

theoretical tool.

Naturally, the most exciting prospect for the field is the direct observation of gravitational

waves. Not only could sufficiently detailed observations verify the predictions of general

relativity, in particular about their polarization, but they could al o potentially reveal the

existence of a weak scalar component of gravity, which may be expected from many kinds

of unified field theories. Moreover, direct observations would reveal information about

astronomical systems that is available in no other way

• Because gravitational waves are emitted by the bulk motions of their sources, not by

individual atoms or electrons, as is normally the case for electromagnetic waves, they

carry a completely different kind of information about their sources from that which is

normally available from other observations. For example, the polarization of waves from

the orbit of a binary system reveals the inclination of the orbit to the line of sight, a crucial

unknown in the modelling of many such systems.

• Gravitational waves provide the only way to make direct observations of black holes. It

is the only radiation they can emit with observable strength. All other information about

black holes is indirect, coming from their effects on gas in their environments.

• Gravitational waves interact with matter so weakly that they are not attenuated or scattered

on their way to the detector. (They can be gravitationally lensed, however.) This means

that they can reveal information about hidden regions, such as the interior of a supernova

explosion or the Big Bang.

The first three quarters of the 20th Century were required to place the mathematical theory

of gravitational radiation on a sound footing. Many of the most fundamental constructs in

general relativity, such as null infinity and the theory of conserved quantities, were developed

at least in part to help solve the technical problems of gravitational radiation. I will not cover

this history here, for which there are some excellent reviews [1, 2]. There are still many open

questions, since it is impossible to construct exact solutions for most interesting situations.

Among the most important difficulty is that we lack a full understanding of the two-body

problem, and I will review the theoretical work on this problem below. But the fundamentals

of the theory of gravitational radiation are no longer in doubt.

This review is divided into three main parts, plus the introduction and conclusions. The first

part, section 2, treats the existing theoretical work on gravitational radiation. I first discuss the

present activity in gravitational wave astronomy and I follow that by describing theoretical and

numerical work on gravitational radiation emitted by orbiting bodies: the relativistic two-body

problem. The second part, section 3, covers the development of gravitational wave detectors.

There is a brief history followed by a description of the principles underlying the operation of

both resonant-mass and beam detectors. Planned detector developments, including a detector

in space, are also reviewed. The final part of the review, section 4, treats the expected sources

of gravitational radiation that are likely to be detectable in the next decade or so.

The scope of this review is too wide to allow a treatment of any of these topics in depth.

I will try, however, to describe where things stand at present in these fields, sometimes with

a perspective on their historical development, and I will give references where the interested

reader can find further information.
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2. Gravitational wave theory

2.1. Gravitational wave astrophysics today

Gravitational radiation plays an observable role in the dynamics of many known astronomical

systems. In some, such as cataclysmic variables and binary neutron star systems, the role of

gravitational radiation has been understood for years. In others, such as young neutron stars

and low-mass x-ray binaries, the importance of gravitational radiation has been understood

only recently. As further observations, particularly at x-ray wavelengths, become available,

the importance of gravitational radiation as a tool for modelling astronomical systems should

increase.

2.1.1. Cataclysmic variables. The first example of the use of gravitational radiation in

modelling an observed astronomical system was the explanation by Faulkner [4] of how the

activity of cataclysmic binary systems is regulated. Such systems, which include many novae,

involve accretion by a white dwarf from a companion star. Unlike accretion onto neutron

stars, where the accreted hydrogen is normally processed quickly into heavier elements, on

a white dwarf the unprocessed material can build up until there is a nuclear chain reaction,

which results in an outburst of visible radiation from the system.

Now, in a circular binary system that conserves total mass and angular momentum, a

transfer of mass from a more massive to a less massive star will make the orbit shrink, while a

transfer in the opposite direction makes the orbit grow. If accretion onto a white dwarf begins

with the dwarf as the less massive star, then the stars will draw together, and the accretion will

get stronger. This runaway process stops when the stars are of equal mass, and then accretion

begins to drive them apart again. Astronomers observed that in this phase, accretion in certain

very close binaries continued at a more or less steady rate, instead of shutting off as the stars

separated more and more. Faulkner pointed out that gravitational radiation from the orbital

motion would carry away angular momentum and drive the stars together. The two effects

together result in steady accretion at a rate which can be predicted from the quadrupole formula

and simple Newtonian orbital dynamics, and which is in good accord with observations.

2.1.2. Binary neutron stars. The most famous example of the effects of gravitational radiation

on an orbiting system is the Hulse–Taylor Binary Pulsar, PSR1913+16. In this system, two

neutron stars orbit in a close eccentric orbit. The pulsar provides a regular clock that allows one

to deduce, from post-Newtonian effects, all the relevant orbital parameters and the masses of

the stars. The quadrupole formula of general relativity [1] then predicts the orbital shrinking

without any adjustable parameters, and the result is in accord with observations within the

observational errors, which are below 1% [5]. This is the most sensitive test that we have of

the correctness of Einstein’s equations in respect of gravitational radiation, and it leaves little

room for doubt in the validity of the quadrupole formula for other systems that may generate

detectable radiation.

2.1.3. Young neutron stars—the r-mode instability. In 1971 Chandrasekhar [6] applied the

quadrupole formula to calculate the corrections to the eigenfrequencies of the normal mode

vibrations of rotating stars, and he found to his surprise that some modes were made unstable,

i.e., that coupling to gravitational radiation could destabilize a rotating star. Subsequent work

by Friedman and Schutz [7] showed that there was a key signature for a mode of a Newtonian

star that would be unstable in general relativity. This was the pattern speed of the mode, i.e.,

the angular velocity at which the crests of the pattern rotated about the rotation axis of the star.

If this speed was in the same sense as the rotation of the star , but slower than the star, then the
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mode would be unstable in a perfect-fluid star. This instability has come to be known as the

CFS instability, after the three authors who explained it.

The basic theory was developed for perfect-fluid stars. However, Lindblom and Detweiler

[8] showed that the effect of viscosity ran counter to that of radiation reaction, so that

the instability was strongest in modes with the longest wavelengths, i.e. in the quadrupolar

modes. Full numerical calculations on Newtonian stellar models with realistic viscosity model

showed [9] that the standard fundamental and acoustic modes of rotating neutron stars were

not vulnerable to t is instability. Subsequent work on fully relativistic models [10] has hinted

that the instability may be stronger than the Newtonian models indicate, but it is still at the

margins of astrophysical interest.

The situation changed in 1997 when Andersson [11] pointed out that there is another

class of modes of Newtonian stars that should be unstable in the same way, but which had not

been studied in this context before, the so-called Rossby or r-modes. These are momentum-

dominated modes, where the gravitational radiation comes from the current-quadrupole terms

rather than from the mass quadrupole. Investigations by a number of authors [12–14] have

shown that this instability is very strong in hot, rapidly rotating stars. This is particularly

relevant to young neutron stars, which may well be formed with rapid spin and which will

certainly be hot. For their first year, stars spinning faster than about 100 Hz will spin down to

about 100 Hz by losing angular momentum to gravitational radiation. This radiation may be

detectable by future detectors, and may also form a strong cosmic background at frequencies

above 20 Hz. But the implication of most immediate importance is that it explains why all

known young neutron stars are relatively slow rotators, rotating ten times slower than the (older)

millisecond pulsars. Work over the next few years should considerably refine our picture of

the early evolution of young neutron stars.

2.1.4. Low-mass x-ray binaries. Recent observations by the Rossi satellite (RXTE) have

given evidence that the class of x-ray sources called low-mass x-ray binaries (LMXBs) contains

neutron stars with a remarkable narrow range of spins, between perhaps 250 Hz and 320 Hz [15].

These are systems in which it is believed that neutron stars are spun up from the low angular

velocities they have after their lifetime as normal pulsars to the high spins that millisecond

pulsars have. One would expect, therefore, that the spins of neutron stars in such systems

would be spread over a wide range. The fact that they are not requires an explanation.

The most viable explanation so far offered is the suggestion of Bildsten [16] that

gravitational radiation limits the rotation rate. The proposed mechanism is that anisotropic

accretion onto the star creates a temperature gradient in the crust of the neutron star, which in

turn creates a gradient in the mass of the nucleus that is in local equilibrium, and this in turn

creates a density gradient that leads, via the rotation of the star, to the emission of gravitational

radiation. This radiation carries away angular momentum, balancing that which is accreted,

so that the star remains at an approximately constant speed.

This mechanism will receive further study, and observations with new satellites will test

the model stringently. According to the model, the gravitational wave luminosity of the star

is proportional to the measured flux of x-rays, since the x-ray flux is itself proportional to

the accreted angular momentum that has to be carried away by the gravitational waves. If

this model is correct, then the x-ray source Sco X-1 will be marginally detectable by the first

generation of interferometers now under construction.

2.1.5. Cosmic background radiation and galaxy formation. The initial observations of

the anisotropy of the cosmic microwave background by the COBE satellite [17] opened a

new window on the early Universe. The next generation of satellites, called MAP (to be
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launched by NASA) and PLANCK (by ESA), will enormously improve the sensitivity to

small-scale anisotropies. The observations at present do not discriminate between anisotropies

produced by density perturbations and those produced by gravitational radiation at the epoch

of recombination. The gravitational wave content is critical to understanding early galaxy

formation and using the anisotropies to measure cosmological parameters. Gravitational wave

detectors can in principle measure the gravitational wave background, but only at much shorter

wavelengths than those that affect satellite measurements [18]. Indeed, there may be no close

relation between a measured background and the radiation at long wavelengths [19, 20]. But

the upcoming satellite observations may tell us how much is gravitational radiation and how

much is density perturbation. We will return to this question below.

2.2. The two-body problem

The largest effort in gravitational radiation theory in recent years has been to study the two-

body problem using various approximations. The reason is that binary systems are likely to be

important gravitational wave sources, and until the evolution of such a system is thoroughly

understood, it will not be possible to extract the maximum information from the observations.

The two-body problem must be solved approximately because of the two difficulties

of handling the radiation field and of the nonlinearity of Einstein’s equations. One way to

approach this problem is to solve Einstein’s equations numerically. Another is to employ an

analytic approximation scheme. Most such schemes make use of expansions in the smallness

of either the velocity v (alternatively the inverse speed of light 1/c) and/or the internal

Newtonian potential φint ∼ M/R (for a source of mass M and size R). In the most important

approximation scheme, the post-Newtonian scheme, these two parameters are linked because

v2 ∼ M/R for self-gravitating systems, even relativistic ones.

2.2.1. Numerical approaches to the two-body problem. From the point of view of relativity,

the simplest two-body problem is that of two black holes. There are no matter fields and

no point particles, just pure gravity. A number of teams are working towards developing

accurate numerical solutions for the coalescence of two black holes from orbit, using fully

three-dimensional numerical simulations.

Progress has been steady, but the task is enormous. The main impediments are algorithmic,

in that it has so far proved difficult to find numerical schemes that handle the outer boundary

of the numerical grid in a satisfactory way (allowing waves to leave without reflection) and

to impose inner boundaries around the black hole singularities that move with the black holes

in a stable manner. Significant progress on the second problem was recently described by

the Binary Black Hole Grand Challenge Alliance [21], but robust schemes that can handle

sufficiently long integration times are still lacking.

The most general black hole collision yet simulated was performed only recently by the

NCSA/Potsdam/Wash-U collaboration [22]. Two black holes were simulated from a starting

position very near to one another, but their initial velocities were not along the line joining

them, and their initial masses and spins were very different. The simulation could follow

the emission of gravitational radiation and the formation of a single apparent horizon around

both, but since it was done in a coordinate system that did not cut out the singularities, the

simulation had a limited duration in time. Although this represents a big advance in state-

of-the-art simulations, it is still far from what is needed for the interpretation of gravitational

wave observations.

2.2.2. Analytic approximations to the two-body problem. For the interpretation of

observations of binary neutron-star coalescences, which might be detected within five years



A136 B F Schutz

by detectors now under construction, it is necessary to understand their orbital evolution to a

high order in the post-Newtonian expansion. The first effects of radiation reaction are seen at

2.5 pN order, but we probably need to have control over the expansion at least to 3.5 pN order.

There are many approaches to this, and I cannot do justice here to the enormous effort that has

gone into this field in recent years.

The most successful methods so far have come from treating a binary system as if it were

composed of two point masses. This is, strictly speaking, inconsistent in general relativity, since

the masses should form black holes of finite sizes. Blanchet, Damour, and collaborators [3]

have avoided this problem by using a method which involves generalized functions. They

first expand in the nonlinearity parameter, and when they have reached sufficiently high order

they obtain the velocity expansion of each order. By ordering terms in the post-Newtonian

manner they have developed step-by-step the approximations up to 3 pN order. A different

team, led by Will, works with a different method of regularizing the point-particle singularity

and compares its results with those of Blanchet et al at each order [23]. There is no guarantee

that either method can be continued successfully to any particular order, but so far they have

worked well and are in agreement. Their results form the basis of the templates that are being

designed to search for binary coalescences. An interesting way of extending the validity of

the expansion that is known to any order is to apply Padé approximants [24].

Other methods have been applied to this problem. Futamase [25] introduced a limit that

combines the nonlinearity and velocity expansions in different ways in different regions of

space, so that the orbiting bodies themselves have a regular (finite relativistic self-gravity)

limit while their orbital motion is treated in a Newtonian limit. This should not fail at any

order, but it has a degree of arbitrariness in choosing initial data that could cause problems

for gravitational wave search templates that integrate orbits for a long period of time. Linear

calculations of point particles around black holes are of interest in themselves (see the LISA

project below) and also for checking results of the full two-body calculations. These are well

developed for certain situations, e.g. [26, 27]. But the general equation of motion for such a

body, taking into account all non-geodesic effects, has not yet been cast into a form suitable

for practical calculations [28, 29].

3. Detectors for gravitational radiation

3.1. A 40-year history

The first practical instruments for detecting gravitational radiation were constructed by Joseph

Weber [30]. Based on massive cylinders of aluminium, these so-called ‘bar’ detectors were

the best technology at the time for gravitational wave detection. These detectors exploit the

sharp resonance of the cylinder to get their sensitivity, which is normally confined to a narrow

bandwidth (one or a few hertz) around the resonant frequency.

In the 1970s a number of groups turned to laser interferometry for the basis of a new kind

of detector. This technique was considered by Weber, but the technology available in the 1960s

did not make it a good choice. Improvements in lasers and mirrors changed the picture, and by

the early 1980s three prototype interferometers were operating in Glasgow [31], in Garching,

near Munich [32], and at MIT [33]. A prototype at Caltech followed soon after [34].

While bar detectors continue to be developed, and have until very recently had a sensitivity

to broadband bursts which was superior to that of the existing interferometers, the best hope

for the first detections of gravitational radiation lies with large-scale interferometers that have

developed out of the prototypes mentioned above. In the next decade we may also see the

launch of a space-based interferometer, LISA, to search for signals at frequencies lower than
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those that are accessible from the ground.

In this section I review these developments. Two sections (3.2 and 3.3) describe briefly

the physical principles underlying the operation of the two main kinds of detectors, resonant

masses and beam detectors (using light). I then describe the large-scale interferometers now

under construction and look ahead at their long-term future (section 3.3.2). Finally I describe

the space-based project LISA and consider the exciting prospects for the long-term future of

gravitational wave detection in space. For more on the history of the development of detectors,

see the review by Thorne [35]. An excellent introduction to interferometers is the book by

Saulson [36].

3.2. Principles of the operation of resonant mass detectors

A typical ‘bar’ detector consists of a cylinder of aluminium with a length L ∼ 3 m, a resonant

frequency of order f ∼ 500 Hz to 1.5 kHz, and a mass M ∼ 1000 kg. A short gravitational

wave burst with h ∼ 10−21 will make the bar vibrate with an amplitude

δℓgw ∼ hℓ ∼ 10−21 m. (1)

To measure this, one must fight against three main sources of noise:

(i) Thermal noise. The original Weber bar operated at room temperature, but the most

advanced detectors today, Nautilus [37] and Auriga [38], operate at T = 100 mK. At this

temperature the r.m.s. amplitude of vibration is

〈δℓ2〉1/2
th =

(

kT

4π2Mf 2

)1/2

∼ 6 × 10−18 m. (2)

This is far larger than the gravitational wave amplitude. But if the material has a high Q

(say 106) in its fundamental mode, then it changes its thermal amplitude of vibration in

a random walk with very small steps, taking a time Q/f ∼ 1000 s to change by the full

amount. However, a gravitational wave burst will cause a change in 1 ms. In 1 ms, thermal

noise will have random-walked to an expected amplitude change (1000 s/1 ms)1/2 = Q1/2

times smaller, or (for these numbers)

〈δℓ2〉1/2
th: 1 ms =

(

kT

4π2Mf 2Q

)1/2

∼ 6 × 10−21 m. (3)

So bars today can approach the goal of detection at or slightly below h = 10−20 against

thermal noise.

(ii) Sensor noise. A transducer converts the bar’s mechanical energy into electrical energy, and

an amplifier increases the electrical signal to record it. If sensing of the vibration could

be done perfectly, then the detector would be broad-band: both thermal impulses and

gravitational wave forces are mechanical forces, and the ratio of their induced vibrations

would be the same at all frequencies for a given applied impulsive force.

But sensing is not perfect: amplifiers introduce noise, and this makes small amplitudes

harder to measure. The amplitudes of vibration are largest in the resonance band near f ,

so amplifier noise limits the detector sensitivity to gravitational wave frequencies near f .

But if the noise is small, then the measurement bandwidth about f can be much larger than

the resonant bandwidth f/Q. Today, typical measurement bandwidths are 1 Hz, about

1000 times larger than the resonant bandwidths. In the near future, it is hoped to extend

these to 10 Hz or even 100 Hz.
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(iii) Quantum noise. The zero-point vibrations of a bar with a frequency of 1 kHz are

〈δℓ2〉1/2
quant =

(

h̄

2πMf

)1/2

∼ 4 × 10−21 m. (4)

This is comparable to the thermal limits, they will run into the quantum limit, which must

be breached before a signal at 10−21 can be seen with such a detector.

It is also not impossible to breach the quantum limit. The uncertainty principle only sets

the limit above if a measurement tries to determine the excitation energy of the bar, or

equivalently the phonon number. But one is not interested in the phonon number, except

in so far as it allows one to determine the original gravitational wave amplitude. It is

possible to define other observables that also respond to the gravitational wave and which

can be measured more accurately by squeezing their uncertainly at the expense of greater

errors in their conjugate observable [40]. No viable schemes to do this for bars have

been demonstrated so far, although squeezing is now an established technique in quantum

optics.

For the foreseeable future, one can expect that bars will remain fairly narrow-band

detectors, and that they will have difficulty getting below a sensitivity limit of 10−21.

These limitations motivated groups to explore the intrinsically wideband technique of laser

interferometry. However, resonant mass detectors have a future. It is possible now to construct

large spheres of a similar size (1 to 3 m diameter) as existing cylinders. This increases the mass

of the detector and also improves its direction-sensing. One can in principle push to below

10−21 with spheres [39]. The excellent sensitivity of resonant detectors within their narrow

bandwidths makes them suitable for specialized, high-frequency searches.

3.3. Principles of the operation of beam detectors

Interferometers use laser light to measure changes in the difference between the lengths

of two perpendicular (or nearly perpendicular) arms. Typically, the arm lengths respond

differently to a given gravitational wave, so an interferometer is a natural instrument to measure

gravitational waves. But other detectors also use electromagnetic radiation, for example

ranging to spacecraft in the solar system.

All such detectors are governed by a fundamental equation, which describes the interaction

of light with a gravitational wave. If, for weak linearized gravitational waves, a beam of

light travels a distance L outwards and then back again, its round-trip time is affected by

the gravitational wave. All beam detectors measure this, one way or another. If a plane

gravitational wave with amplitude h starts at time t and moves at an angle θ to the direction in

which the beam is travelling, and if its return time treturn is measured as proper time on a clock

that remains at the point where the light started out, then this return time varies at the rate

dtreturn

dt
= 1 + 1

2
{(1 − cos θ)h(t + 2L) − (1 + cos θ)h(t) + 2 cos θh[t + L(1 − cos θ)]} . (5)

This three-term relation is the starting point for analyzing the response of all beam detectors.

3.3.1. Interferometers. The largest detectors under construction today are the LIGO

detectors [41], two of which have arm lengths of 4 km. This is much smaller than the wavelength

of light, so the interaction of the detector with a gravitational wave can be well approximated

by the small-L approximation to equation 5, namely

dtreturn

dt
= (1 − cos θ)2Lḣ(t).
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A detector with an arm length of 4 km responds to a gravitational wave with an amplitude

of 10−21 with

δlgw ∼ hl ∼ 4 × 10−18 m.

Light takes only about 10−5 s to go up and down one arm, much less than the typical period of

gravitational waves of interest. Therefore, it is beneficial to arrange for the light to remain in

an arm longer than this, say for 100 round-trips. This increases its effective path length by 100

and hence the shift in the position of a given phase of the light beam will be of order 10−16 m.

Most interferometers keep the light in the arms for this length of time by setting up optical

cavities in the arms with low-transmissivity mirrors; these are called Fabry–Perot cavities.

The main sources of noise against which a measurement must compete are:

(i) Ground vibration. External mechanical vibrations must be screened out. These are a

problem for bar detectors, too, but are more serious for interferometers, not least because

interferometers bounce light back and forth between the mirrors, and so each reflection

introduces further vibrational noise. Suspension/isolation systems are based on pendula.

A pendulum is a good mechanical filter for frequencies above its natural frequency. By

hanging the mirrors on pendula of perhaps 0.5 m length, one achieves filtering below a few

Hz. Since the spectrum of ground noise falls at higher frequencies, this provides suitable

isolation. But these systems can be very sophisticated; the GEO600 [42] detector has a

three-stage pendulum and other vibration isolation components [43]. The most ambitious

isolation system is being developed for the Virgo detector [44].

(ii) Thermal noise. Vibrations of the mirrors and of the suspending pendulum can mask

gravitational waves. As with vibrational noise, this is increased by the bouncing of the

light between the mirrors. Unlike bars, interferometers measure only at frequencies far

from the resonant frequency, where the amplitude of vibration is smaller. Thus, the

pendulum suspensions have thermal noise at a few Hz, but measurements will be made

above 20 or 30 Hz in the first detectors. Internal vibrations of the mirrors have natural

frequencies of several kilohertz. By ensuring that both kinds of oscillations have very

high Q, one can confine most of the vibration energy to a small bandwidth around the

resonant frequency, so that at the measurement frequencies the vibration amplitudes are

small. This allows interferometers to operate at room temperature. But mechanical Q of

107 or higher are required, and this is technically demanding.

(iii) Shot noise. The photons that are used to do interferometry are quantized, and so they

arrive at random and make random fluctuations in the light intensity that can look like a

gravitational wave signal. The more photons one uses, the smoother will be the interference

signal. As a random process, the error improves with the square root of the number N of

photons. Using infrared light with a wavelength λ ∼ 1 µm, one can expect to measure to

an accuracy of

δlshot ∼ λ/(2π
√

N).

To measure at a frequency f , one has to make at least 2f measurements per second,

so one can accumulate photons for a time 1/2f . With light power P , one gets

N = P/(hc/λ)/(2f ) photons. In order that δlshot should be below 10−16 m one needs

large light power, far beyond the output of any continuous laser.

Light-recycling techniques overcome this problem by using light efficiently. An

interferometer actually has two places where light leaves. One is where the interference

is measured. The other goes back towards the input laser. Normally one arranges that no

light goes to the interference sensor, so that only when a gravitational wave passes does

a signal register there. This means that all the light normally returns to the mirror, apart
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from small losses at the mirrors. Since mirrors are of good quality, only one part in 103 or

less of the light is lost during a 1 ms storage time. By placing a power-recycling mirror

in front of the laser, one can reflect this wasted light back in, allowing power to build up

in the arms until the laser merely resupplies the mirror losses [31]. This can dramatically

reduce the power requirement for the laser. The first interferometers will work with laser

powers of 5–10 W. This is attainable with modern laser technology.

(iv) Quantum effects. Shot noise is a quantum noise, but in addition there are effects like

bar detectors face: zero-point vibrations of mirror surfaces and so on. These are small

compared to present operating limits of detectors, but they may become important in five

years or so. Practical schemes to reduce this noise have already been demonstrated in

principle, but they need to be improved considerably. They can be reduced by making the

mirror masses large, since the amplitude of vibration scales inversely as the square root

of the mass.

(v) Gravity gradient noise. One noise that cannot be screened out is that due to changes

in the local Newtonian gravitational field on the timescale of the measurements. A

gravitational wave detector will respond to tidal forces from local sources just as well

as to gravitational waves. Environmental noise comes not only from man-made sources,

but even more importantly from natural ones: seismic waves are accompanied by changes

in the gravitational field, and changes in air pressure are accompanied by changes in

air density. The spectrum falls steeply with increasing frequency, so for first-generation

interferometers this will not be a problem, but it may limit the performance of detectors

a decade from now. And it is the primary reason that detecting gravitational waves in the

low-frequency band around 1 mHz must be done in space.

3.3.2. Interferometers presently under construction. The two largest interferometer projects

are LIGO [41] and VIRGO [44]. LIGO is building three detectors on two sites. At Hanford,

Washington, there will be a 4 km and a 2 km detector in the same vacuum system. At

Livingston, Louisiana, there will be a single 4 km detector, oriented to be as nearly parallel

to the Hanford detector as possible. It expects to begin serious data taking in 2001 with a

broadband sensitivity near 10−21. VIRGO is building a single 3 km detector near Pisa in Italy.

It will begin taking good data in 2002 with a similar or better sensitivity.

A smaller 600 m detector, GEO600, is under construction near Hanover, Germany [42].

Although smaller, it has second-generation technology (primarily in its suspensions, mirror

materials and interferometry), and it will use this to attain a sensitivity similar to the initial

LIGO sensitivity. After a few years of operation, also beginning in 2001, its technology will

be transferred to LIGO and VIRGO as part of upgrades, described below.

A yet smaller detector, TAMA300 [45], with 300 m arms, has recently achieved a

sensitivity of about 10−19 in Japan, and improvements will take its sensitivity to below 10−20.

It is therefore at present the most sensitive interferometer ever operated, and it is competitive

with the Nautilus and Auriga bar detectors. But it is seen as a development prototype, and its

sensitivity will be confined to higher frequencies (above 100 Hz).

There are plans for a detector in Australia, and a small interferometer has recently been

constructed [46]. But it is not yet clear if a larger detector will be funded. It would be

desirable from the point of view of the physics that we can learn from observations, that

detectors should be widely spaced on the Earth, so Australia and Japan are desirable places

for further development.

Designs are already in hand at the existing detectors for their first upgrades. LIGO expects

to move to LIGO II, a collaboration with the GEO groups, by 2006. VIRGO should also be

upgraded by then, again using some GEO technology. We will see below that, while the first



Gravitational wave astronomy A141

detectors could detect gravitational waves, the second generation will have a much greater

assurance of success.

Beyond that, scientists are now studying the technologies that may be needed for a further

large step in sensitivity, to third-generation detectors. This may involve cooling mirrors, using

ultra-massive mirrors of special materials, using purely non-transmissive optics, and even

circumventing the quantum limit in interferometers, as has been studied for bars. The goal of

third-generation detectors would be to be limited just by gravity-gradient noise and quantum

effects.

3.4. Detection from space

3.4.1. Ranging to spacecraft. Both NASA and ESA perform experiments in which they

monitor the return time of communication signals with interplanetary spacecraft for the

characteristic effect of gravitational waves. For missions to Jupiter and Saturn, for example,

the return times are of order 2–4×103 s. Any gravitational wave event shorter than this will,

by equation 5, appear three times in the time delay: once when the wave passes the Earth-

based transmitter, once when it passes the spacecraft, and once when it passes the Earth-based

receiver. Searches use a form of data analysis using pattern matching. Using two transmission

frequencies and very stable atomic clocks, it is possible to achieve sensitivities for h of order

10−13, and even 10−15 may soon be reached [47].

3.4.2. Pulsar timing. Many pulsars, particularly the old millisecond pulsars, are

extraordinarily regular clocks, with random timing irregularities too small for the best atomic

clocks to measure. If one assumes that they emit pulses perfectly regularly, then one can use

observations of timing irregularities of single pulsars to set upper limits on the background

gravitational wave field. Here the three-term formula is replaced by a simpler two-term

expression, because we only have a one-way transmission. Moreover, the transit time of a

signal to the Earth from the pulsar may be thousands of years, so we cannot look for correlations

between the two terms in a given signal. Instead, the delay is a combination of the effects of

waves at the pulsar when the signal was emitted and waves at the Earth when it is received.

Observations have been used to set limits on a background of gravitational radiation at very

low frequencies [48].

If one simultaneously observes two or more pulsars, the Earth-based part of the delay

is correlated, and this offers a means of actually detecting long-period gravitational waves.

Observations require timescales of several years in order to achieve the long-period stability

of pulse arrival times, so this method is suited to looking for strong gravitational waves with

periods of several years. Observations are currently underway at a number of observatories.

3.4.3. Space interferometry: LISA. Gravity-gradient noise on the Earth is much larger than

the amplitude of any expected waves from astronomical sources at frequencies below about

1 Hz, but this noise falls off a 1/r3 as one moves away from the Earth. A detector in space

would not notice the Earth’s noisy environment. The LISA project, currently being studied by

both ESA and NASA with a view toward a collaborative mission around 2010, would open up

the frequency window between 0.1 mHz and 0.1 Hz for the first time [49].

We will see below that there are many exciting sources expected in this waveband, for

example the coalescences of giant black holes in the centres of galaxies. LISA would see such

events with extraordinary sensitivity, recording typical signal-to-noise ratios of 1000 or more

for events at redshift 1.
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A space-based interferometer can have arm lengths much greater than a wavelength. LISA,

for example, would have arms 5×106 km long, and that would be longer than half a wavelength

for any gravitational waves above 30 mHz. In this regime, the response of each arm will follow

the three-term formula we encountered earlier.

LISA would actually consist of three free-flying spacecraft, arranged in an equilateral

triangular array, orbiting the Sun at 1 AU, about 20 degrees behind the Earth in its orbit. By

passing light along each of the arms, one can construct two different interferometers, so one

can measure the polarization of a gravitational wave directly. The spacecraft are too far apart

to use simple mirrors to reflect light back along an arm: the reflected light would be too weak.

Instead, LISA will have optical transponders: light from one spacecraft’s on-board laser will

be received at another, which will then send back light from its own laser locked exactly to the

phase of the incoming signal.

The main environmental disturbance to LISA are the forces from the Sun: fluctuations

in solar radiation pressure and pressure from the solar wind. To minimize these, LISA

incorporates drag-free technology. Interferometry is referenced to an internal proof mass

that falls freely, not attached to the spacecraft. The job of the spacecraft is to shield this mass

from external disturbances. It does this by sensing the position of the mass and firing its own

jets to keep itself (the spacecraft) stationary relative to the proof mass. To do this, it needs

thrusters of very small thrust that have accurate control. The availability of such thrusters,

of the accelerometers needed to sense disturbances to the spacecraft, and of lasers capable of

continuously emitting 1 W of infrared light for years, have enabled the LISA mission.

4. Sources of gravitational radiation

4.1. Estimation of gravitational wave emission

At this point in the progress of gravitational wave detection, the greatest emphasis in

calculations of sources is on prediction: trying to anticipate what might be seen. Not only

is this important in motivating the construction of detectors, but it also guides details of their

design and, very importantly, the design of data analysis methods. I will return to this issue

later.

Once gravitational waves have been observed, there will undoubtedly be a shift of emphasis

to include interpretation. This will require different kinds of calculations. At present, most

predictions of emission strengths rely on estimates using the quadrupole formula. This is

justifiable because, given the uncertainties in our astrophysical understanding of potential

sources, more accurate calculations would be unjustified in most cases. There are two

exceptions to this generality. One is binary orbits, where the point-mass approximation is

good over a large range of observable frequencies, so fully relativistic calculations (using the

post-Newtonian methods described above) are not only possible, but are necessary for the

construction of sensitive search templates in the data analysis. The second exception are the

numerical simulations of the merger of black holes and neutron stars, where the dynamics is

so complex that none of our analytic approximations offers us reliable guidance.

When the interpretation phase of source calculations begins, one can anticipate that

calculations will be very detailed, and strongly guided by observed parameters (source masses,

waveforms, and so on). Their aim will be to model the observed signal so well that all of its

details can be interpreted in terms of characteristics of the source: the total angular momentum

of a system, the spins of individual stars, the equation of state of nuclear matter, and so on.

In this section I will review the major predictions that have been made about likely

gravitational wave sources, and I will examine the potential science that can be extracted
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by careful interpretation of the observations. The discussions of this section are put into the

context of the sensitivity of the detectors described earlier by figure 1, which is a composite

overview of gravitational wave detection across 10 decades of frequency.

Figure 1. Sensitivity of gravitational wave interferometers across 10 decades of frequency. The

solid curves show the expected and planned sensitivities of four representative interferometers.

Other important instruments, such as VIRGO, have been omitted for the sake of clarity in the

diagram, because their sensitivity lies between those of the instruments shown. The vertical axis

is the strain spectral density, which is the square-root of the noise power per unit frequency. The

strength of the signals expected from coalescing systems are shown as spectral densities, in such as

way that the area between a signal curve and an instrumental noise curve indicates the signal-to-noise

ratio that could be achieved with perfect matched filtering; the signal spans the frequency range of

the last year before coalescence. Stochastic background sensitivities are shown as the limit that can

be reached at 90% confidence in any decade of frequency with an ‘ideal’ correlation experiment

between two co-located interferometers that have uncorrelated instrumental noise. Various possible

neurton-star signals are shown, including the Crab Pulsar, shown as a line from its upper limit (set

by equating the observed loss of energy in spindown to the gravitational wave luminosity) to a point

where its ellipticity would be 10−5. Two points are shown for hypothetical radiation that might

come from Sco X-1. The higher point is the spectral density when it is observed for a year, over

which time modelling the signal might be difficult because fluctuations in accretion rate induce spin

changes in the star. The lower point requires only a one-day observation, during which the signal

should have a constant frequency. The predicted binary confusion limit noise at low frequencies is

shown where it competes with the LISA sensitivity.

4.1.1. Quadrupole approximation. The lowest order of the post-Newtonian approximation

is the quadrupole formula, which gives the first approximation to the radiation emitted by a

weakly relativistic system. If we define the spatial tensor Qjk , the second moment of the mass

distribution:

Qjk =
∫

ρxjxk d3x, (6)
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then the amplitude of the gravitational wave (in Lorentz gauge but not TT gauge) is

hjk =
2

r

d2Qjk

dt2
. (7)

To get the TT-amplitude of a wave travelling outwards from its source, project this tensor

perpendicular to its direction of travel and remove the trace of the projected tensor.

4.1.2. Simple estimates. If the motion inside the source is highly non-spherical, then a typical

component of d2Qjk/dt2 will (from equation (6)) have magnitude Mv2
N.S., where v2

N.S. is the

non-spherical part of the squared velocity inside the source. So one way of approximating any

component of equation (7) is

h ∼
2Mv2

N.S.

r
. (8)

It is interesting to observe that the ratio ǫ of the wave amplitude to the Newtonian potential

φext of its source at the observer’s distance r is simply

ǫ ∼ 2v2
N.S..

By the virial theorem for self-gravitating bodies, this will not be larger than

ǫ < φint , (9)

where φint is the maximum value of the Newtonian gravitational potential inside the system.

This provides a convenient bound in practice:

h < φintφext . (10)

For a neutron star source one has φint ∼ 0.2. If the star is in the Virgo cluster, then the

upper limit on the amplitude of the radiation from such a source is 5 × 10−22. This is a simple

way to get the number that has been the goal of detector development for decades, to make

detectors that can observe waves at or below an amplitude of about 10−21.

4.1.3. Estimating the frequency of the gravitational waves. The signals for which the best

waveform predictions are available have narrowly defined frequencies. In some cases the

frequency is dominated by an existing motion, such as the spin of a pulsar. But in most cases

the frequency will be related to the natural frequency for a self-gravitating body, defined as

f0 =
√

ρ̄/4π, (11)

where ρ̄ is the mean density of mass-energy in the source. This is of the same order as the

binary orbital frequency and the fundamental pulsation frequency of the body.

The frequency is determined by the size R and mass M of the source, taking ρ̄ =
3M/4πR3. For a neutron star of mass 1.4 M⊙ and radius 10 km, the natural frequency is

f0 = 1.9 kHz. For a black hole of mass 10 M⊙ and radius 2M = 30 km, it is f0 = 1 kHz.

And for a large black hole of mass 2.5 × 106 M⊙, such as the one at the centre of our Galaxy,

this goes down in inverse proportion to the mass to f0 = 4 mHz.

Figure 2 shows the mass–radius diagram for likely sources of gravitational waves. Three

lines of constant natural frequency are plotted: f0 = 104 Hz, f0 = 1 Hz, and f0 = 10−4 Hz.

These are interesting frequencies from the point of view of observing techniques: gravitational

waves between 1 and 104 Hz are accessible to ground-based detectors, while lower frequencies

are observable only from space. Also shown is the line marking the black hole boundary. This

has the equation R = 2M . There are no objects below this line. This line cuts through the

ground-based frequency band in such a way as to restrict ground-based instruments to looking

at stellar-mass objects. Nothing over a mass of about 104 M⊙ can radiate above 1 Hz.
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Figure 2. Mass-radius plot for gravitational wave sources.

A number of typical relativistic objects are placed in the diagram: a neutron star, a binary

pair of neutron stars that spirals together as they orbit, some black holes. Two other interesting

lines are drawn. The lower (dashed) line is the one-year coalescence line, where the orbital

shrinking timescale in equation (16) is less than one year. The upper (solid) line is the one-year

chirp line: if a binary lies below this line then its orbit will shrink enough to make its orbital

frequency increase by a measurable amount in one year. (In a one-year observation one can

in principle measure changes in frequency of 1 yr−1, or 3 × 10−8 Hz.)

It is clear from the figure that any binary system that is observed from the ground will

coalesce within an observing time of one year. Since pulsar statistics suggest that this happens

less than once every 105 years in our Galaxy, ground-based detectors must be able to register

these events in a volume of space containing at least 106 galaxies in order to have a hope of

seeing occasional coalescences.

4.1.4. Polarization of gravitational waves. Gravitational waves have two independent

polarizations, usually called + and × [1]. A general wave will have a linear combination

of both. Rotating sources typically emit both polarizations with a phase delay between them,

leading to elliptical polarization patterns. The polarization of the waves contains important

information. For example, a binary system emits purely circular polarization along the angular

momentum axis, but purely linear in its equatorial plane. By measuring the polarization of

waves from a binary (or from a spinning neutron star) one can determine the orientation and

inclination of its spin axis. This is a piece of information that is usually very hard to extract

from optical observations.

4.1.5. Luminosity in gravitational waves. The gravitational wave luminosity in the

quadrupole approximation is

Lgw = 1
5

(

∑

j,k

...

Qjk

...

Qjk − 1
3

...

Q
2

)

, (12)
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where Q is the trace of the matrix Qjk . This equation can be used to estimate the back-reaction

effect on a system that emits gravitational radiation.

4.2. Astronomical sources of gravitational waves

Until observations of gravitational waves are successfully made, one can only make intelligent

guesses about most of the sources that will be seen. There are many that could be strong

enough to be seen by the early detectors: binary stars, supernova explosions, neutron stars,

the early Universe. The detectability depends, of course, not only on the intrinsic luminosity

of the source, but on how far away it is. Often the biggest uncertainty in making predictions

is the spatial density of any particular class of sources. The estimates in this section use the

quadrupole formula and other approximations, and so they are accurate only to within factors

of order 2; but they show how important observables scale with the properties of the systems.

4.2.1. Man-made gravitational waves. One source can unfortunately be ruled out as

undetectable: man-made gravitational radiation. Imagine creating a wave generator with the

following extreme properties. It consists of two masses of 103 kg each (a small car) at opposite

ends of a beam 10 m long. At its centre the beam pivots about an axis. This centrifuge rotates 10

times per second. All the velocity is non-spherical, so v2
N.S. in equation (8) is about 105 m2 s−2.

The frequency of the waves will actually be 20 Hz, since the mass distribution of the system

is periodic with a period of 0.05 s, only half the rotation period. The wavelength of the waves

will therefore be 1.5 × 107 m, about the diameter of the earth. In order to detect gravitational

waves, not near-zone Newtonian gravity, the detector must be at least one wavelength from

the source. Then the amplitude h can be deduced from equation (8): h ∼ 5 × 10−43. This is

far too small to contemplate detecting!

4.2.2. Radiation from a spinning neutron star. Some likely gravitational wave sources behave

like the centrifuge, however, only on a grander scale. Suppose a neutron star of radius R spins

with a frequency f and has an irregularity, a bump of mass m on its otherwise axially symmetric

shape. Then the bump will emit gravitational radiation (again at frequency 2f because it spins

about its centre of mass, so it actually has mass excesses on two sides of the star), and the

non-spherical velocity will be just vN.S. = 2πRf . The radiation amplitude will be, from

equation (8),

hbump ∼ 2(2πRf )2m/r, (13)

and the luminosity, from equation (12) (assuming roughly four comparable components of

Qjk contribute to the sum),

Lbump ∼ (1/5)(2πf )6m2R4.

The radiated energy would presumably come from the rotational energy of the star. This would

lead to a spindown of the star on a timescale

tspindown = 1
2
mv2/Lbump ∼

5

4π
f −1

(m

R

)−1

v−3. (14)

It is believed that neutron star crusts are not strong enough to support asymmetries with a

mass of more than about m ∼ 10−5 M⊙, and from this one can estimate the likelihood that the

observed spindown timescales of pulsars are due to gravitational radiation. In most cases, it

seems that gravitational wave losses cannot be the main spindown mechanism.
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But lower levels of radiation would still be observable by detectors under construction,

and this may be coming from a number of stars. Particular interest has focused recently on low-

mass x-ray binary systems (LMXBs). The neutron stars in them are accreting mass and angular

momentum, so they should be spinning up. As described earlier, observations suggest that

most of the neutron stars are spinning at about 300 Hz. Bildsten’s proposed explanation [16]

is still speculative, but the numbers make a plausible case that this radiation could carry away

as much angular momentum as is accreted, leading to a limit on the spinup of such systems. It

is also possible that the r-mode instability mentioned earlier could operate in these stars: their

temperature is marginal for reducing viscosity to a low enough level. In either case, the stars

could turn out be long-lived sources of gravitational waves.

4.2.3. Radiation from a binary star system. Another ‘centrifuge’ is a binary star system.

Two stars of the same mass M in a circular orbit of radius R have v2
N.S. = M/4R. The

gravitational-wave amplitude can then be written

hbinary ∼
1

2

M

r

M

R
. (15)

The gravitational-wave luminosity of such a system is, by a calculation analogous to that

for bumps on neutron stars,

Lbinary ∼
1

80G

(

M

R

)5

.

This equation is dimensionless, but can be converted to normal luminosity units by multiplying

by the scale factor c5/G = 3.6 × 1052 W. By comparison, the luminosity of the Sun is only

3.8 × 1026 W. Close binaries can therefore radiate more energy in gravitational waves than in

light.

The radiation of energy by the orbital motion causes the orbit to shrink. The shrinking

will make any observed gravitational waves increase in frequency with time. This is called a

chirp. The timescale for this is

tchirp =
Mv2

Lbinary

∼ 20M

(

M

R

)−4

. (16)

A more careful calculation shows that, for unequal masses, the quadrupole amplitude and

the rate of shrinking depend on the masses only through the combination

M = µ3/5M2/5, (17)

where µ is the reduced mass and M the total mass. This is called the chirp mass. If one can

observe, in gravitational radiation, the shrinking time, then one can infer the chirp mass. If

one then measures the amplitude of the radiation, the only unknown is the distance r to the

source. Gravitational wave observations of orbits that shrink because of gravitational energy

losses can therefore directly determine the distance to the source. This is another way in

which gravitational wave observations are complementary to electromagnetic ones, providing

information that is hard to obtain electromagnetically. One consequence is the possibility that

observations of coalescing compact object binaries could allow one to measure the Hubble

constant [50] or other cosmological parameters. This will be particularly interesting for the

LISA project, whose observations of black hole binaries could contribute to the debate over

the value of the cosmological constant.

The amplitude of the radiation from such a system is not a good guide to its detectability.

As we will discuss below, data analysis techniques like matched filtering are able to eliminate

most of the detector noise and allow the recognition of weaker signals. The improvement in
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amplitude sensitivity is roughly proportional to the square root of the number of cycles of the

waveform that one observes. For neutron stars that are observed from a frequency of 10 Hz

until they coalesce, there could be of the order of 104 cycles, meaning that the sensitivity of a

second-generation detector would effectively be 100 times better than its broadband sensitivity.

Such detectors would see coalescences to 400 Mpc or more. The event rate, determined from

the small-number statistics of observed binary pulsar systems in our Galaxy, is estimated to

be one event per year out to 200 Mpc [52], so second-generation detectors should see events

once per month or so.

As mentioned earlier, orbital shrinking has already been observed in the Hulse–Taylor

Pulsar system, containing the radio pulsar PSR1913+16 and an unseen neutron star in a binary

orbit. The key to the importance of this binary system is that all of the important parameters of

the system can be measured before one takes account of the orbital shrinking. This is because

a number of post-Newtonian effects on the arrival time of pulses at the Earth, such as the

precession of the position of the periastron and the time-dependent gravitational redshift of

the pulsar period as it approaches and recedes from its companion, are measured and fully

determine the masses and separation of the stars and the inclination and eccentricity of their

orbit. From these numbers, without any free parameters, it is possible to compute the shrinking

timescale predicted by general relativity. The observed rate matches the predicted rate to within

the observational errors of less than 1%.

Binary systems at lower frequencies are much more abundant than coalescing binaries

and they have much longer lifetimes. LISA would look for close white-dwarf binaries in the

Galaxy, and would probably see thousands of them. For each resolved binary LISA could

determine the orbital period and the spatial orientation of the orbit, and it could give a crude

position. If the orbit is seen to decay during the observation, LISA could determine the distance

to the binary. In fact, there are likely to be so many binaries that they will provide a confusion-

dominated background radiation at frequencies below about 1 mHz, as shown in figure 1. This

is likely to be larger than instrumental noise at these frequencies, but it will not obscure strong

black-hole signals.

4.2.4. Neutron-star normal modes. In figure 2 there is a dot for the typical neutron star. The

corresponding frequency is the fundamental vibrational frequency of such an object. In fact,

neutron stars have a rich spectrum of non-radial normal modes, which fall into several families:

f-, g-, p-, w-, and r-modes have all been studied. If their gravitational wave emissions can

be detected, then the details of their spectra would be a sensitive probe of their structure and

of the equation of state of neutron stars, in much the same way that helioseismology probes

the interior of the Sun. This is a challenge to ground-based detectors, which cannot yet make

sensitive observations as high as 10 kHz. It may be that specialized resonant-mass detectors

or third-generation interferometers will open up this important part of the spectrum.

4.2.5. Gravitational collapse. The event that forms a neutron star is the gravitational collapse

that results in a supernova. It is difficult to predict the waveform or amplitude expected from this

event. Although detecting this radiation has been a goal of detector development for decades,

little more is known now about what to expect than 30 years ago. The burst might be broadband,

centred on 1 kHz, or it might be a few cycles of radiation at a frequency anywhere between

100 Hz and 10 kHz, chirping up or down. If the emitted energy is more than about 0.01 M⊙,

then second-generation detectors should have no trouble seeing events that occur in the Virgo

Cluster. But it is possible that amplitudes are much smaller. Axisymmetric simulations of

gravitational collapse with neutrino transport show a kind of bubbling, or boiling, of the



Gravitational wave astronomy A149

material outside the neutron star, as the neutrinos stream through it [51]. This material has

relatively low density, and the frequencies are not high, but such boiling might be detectable

by second-generation detectors from a supernova in the Galaxy.

If gravitational collapse forms a neutron star spinning rapidly, then it may be followed by

a relatively long period (perhaps a year) of emission of nearly monochromatic gravitational

radiation, as the r-mode instability described earlier forces the star to spin down to speeds of

about 100–200 Hz [14]. If as few as 10% of all the neutron stars formed since star formation

began (at a redshift of perhaps 4) went through such a spindown, then they may have produced

a detectable random background of gravitational radiation at frequencies down to 20 Hz.

4.2.6. Gravitational waves from stellar-mass black holes. Astronomers now recognize that

there is an abundance of black holes in the Universe. Observations across the electromagnetic

spectrum have located black holes in x-ray binary systems in the Galaxy and in the centres of

galaxies.

These two classes of black holes have very different masses. Stellar black holes typically

have masses of around 10 M⊙, and are thought to have been formed by the gravitational collapse

of the centre of a large, evolved red giant star, perhaps in a supernova explosion. Black holes in

galactic centres seem to have masses between 106 and 1010 M⊙, but their history and method

of formation are not yet well understood.

Both kinds of black hole can radiate gravitational waves. According to figure 2, stellar

black hole radiation will be in the ground-based frequency range, while galactic holes are

detectable only from space. The radiation from an excited black hole itself is strongly damped,

lasting only a few cycles at the natural frequency (equation (11) with R = 2M):

fBH ∼ 2800(M/10 M⊙)−1 Hz.

Radiation from stellar-mass black holes is expected mainly from coalescing binary

systems, when one or both of the components is a black hole. Although black holes are

formed more rarely than neutron stars, the spatial abundance of binary systems consisting of

neutron stars with black holes, or of two black holes, may in fact be similar to the abundance

of binary neutron stars. This is because binary systems are much more easily broken up when

a neutron star forms than when a black hole forms. When a neutron star forms, most of the

progenitor star’s mass (6 M⊙ or more) must be expelled from the system rapidly. This unbinds

the binary: the companion star has the same speed as before but is held to the neutron star by

only a fraction of the original gravitational attraction. When a black hole forms, most of the

original mass may simply go down into the hole, and the binary will have a higher survival

probability.

Double black hole binaries may in fact be ten times as abundant as neutron-star binaries,

if recent suggestions are correct that globular clusters are efficient factories for black hole

binaries [53]. Being more massive than the average star in a globular cluster, black holes sink

towards the centre, where three-body interactions can lead to the formation of binaries. The

key point is that these binaries are not strongly bound to the cluster, so they can easily be

expelled by later encounters. From that point on they evolve in isolation, and typically have a

lifetime shorter than 1010 yr.

The larger mass of such black hole systems makes them visible from a greater distance

than neutron-star binaries. If binaries with black holes are this abundant, black hole events

will be detected much more frequently than those involving neutron stars. They may even be

seen by first-generation detectors like LIGO I and GEO600. By measuring the chirp mass (as

discussed above) observers will recognize that they have a black hole system. It seems likely

that the first observations of binaries by interferometers will be of black holes.
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More speculatively, black hole binaries may even be part of the dark matter of the Universe.

Observations of MACHOs (microlensing of distant stars by compact objects in the halo of our

galaxy) have indicated that up to half of the galactic halo could be in dark compact objects of

0.5 M⊙ [55,56]. This is difficult to understand in terms of stellar evolution as we understand it

today: neutron stars and black holes should be more massive than this, and white dwarfs of this

mass should be bright enough to have been identified as the lensing objects. One possibility

is that the objects were formed primordially when conditions may have allowed black holes

of this mass to form. If so, there should also be a population of binaries among them, and

occasional coalescences should therefore be expected. In fact, the abundance would be so

high that the coalescence rate might be as large as one every 20 years in each galaxy, which is

higher than the supernova rate. Since binaries are maximally non-axisymmetric, these systems

could be easily detected by first-generation interferometers out to the distance of the Virgo

Cluster [57].

The estimates used here of detectability of black hole systems rely entirely on the radiation

emitted as the orbit decays, during which the point-particle post-Newtonian approximation

should be adequate. But the inspiral phase will of course be followed by a burst of gravitational

radiation from the merger of the holes that will depend in detail on the masses and spins of the

objects. Numerical simulations of such events are needed to interpret this signal, and possibly

even to extract it from the instrumental noise of the detector. Moreover, for black holes of mass

greater than about 50 M⊙, the inspiral phase ends at the frequency of the last stable orbit, which

is perhaps 0.06 of the hole’s natural frequency, or 30 Hz. This is so near the lower limit of

interferometer sensitivity that even detecting the event may require at least some information

about the expected waveform [54]. This aspect of gravitational wave detection may proceed

at a pace determined by the success of numerical simulations of black hole mergers.

Massive and supermassive black holes. Gravitational radiation is expected from galactic-

mass black holes in two ways. In one scenario, two massive black holes spiral together in a

much more powerful version of the coalescence we have just discussed. The frequency is much

lower, in inverse proportion to their masses, but the amplitude is higher. Equation (20) below

implies that the effective signal amplitude is almost linear in the masses of the holes, so that a

signal from two 106 M⊙ black holes will have an amplitude 105 times bigger than the signal

from two 10 M⊙ holes at the same distance. Even allowing for differences in technology,

this indicates why space-based detectors will be able to study such events with a very high

signal-to-noise ratio no matter where in the Universe they occur. Observations of coalescing

massive black hole binaries will therefore provide unique insight into the behaviour of strong

gravitational fields in general relativity.

The event rate for such coalescences is not easy to predict, but is likely to be large. It

seems that the central core of most galaxies may contain a black hole of at least 106 M⊙. This

is known to be true for our galaxy [58] and for a very large proportion of other galaxies that are

near enough to be studied in sufficient detail [59]. Supermassive black holes (up to a few times

109 M⊙) are believed to power quasars and active galaxies, and there is some evidence that the

mass of the central black hole is proportional to the mass of the core of the host galaxy [60].

If black holes are formed with their galaxies, in a single spherical gravitational collapse

event, and if nothing happens to them after that, then coalescences will never be seen. But

this is unlikely for two reasons. First, it is believed that galaxy may have occurred through

the merger of smaller units, sub-galaxies of masses upwards of 106 M⊙. If these units had

their own black holes, then the mergers would have resulted in the coalescence of many of

the holes on a timescale shorter than the present age of the Universe. This would give an

event rate of several mergers per year in the Universe, most of which would be observable by
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LISA if the more massive hole is not larger than about 107 M⊙. If the 106 M⊙ black holes

were formed from smaller holes in a hierarchical merger scenario, then the event rate could

be hundreds or thousands per year. The second reason is that we see large galaxies merging

frequently. Interacting galaxies are common, and if galaxies come together in such a way that

their central black holes both remain in the central core, then dynamical friction with other

stars will bring them close enough together to allow gravitational radiation to bring about a

merger on a timescale of less than 1010 yr [61].

Besides mergers of holes with comparable masses, the capture of a small compact object

by a massive black hole can also result in observable radiation. The tidal disruption of main-

sequence or giant stars that stray too close to the hole is thought to provide the gas that powers

the quasar phenomenon. These clusters will also contain a good number of neutron stars and

stellar-mass black holes. They are too compact to be disrupted by the hole even if they fall

directly into it.

Such captures therefore emit a gravitational wave signal that will be well approximated as

that from a point mass near the black hole. This will again be a chirp of radiation, but in this

case the orbit may be highly eccentric. The details of the waveform encode information about

the geometry of spacetime near the hole. In particular, it may be possible to measure the mass

and spin of the hole and thereby to test the uniqueness theorem for black holes. The event rate

is not very dependent on the details of galaxy formation, and is probably high enough for many

detections per year from a space-based detector, provided that theoretical calculations provide

data analysts with accurate predictions of the motion of these point particles over many tens

of orbits.

Predicting these orbits may not be easy, however. One problem that is not yet solved

is to find a practical way of calculating the effects of radiation reaction on point particles,

which we discussed earlier. Another potential problem is that the motion of a particle on a

highly eccentric orbit near a Kerr black hole may be effectively chaotic. The orbit of such a

particle—particularly if it has spin, which is likely—if it moves well outside of the equatorial

plane is very complex, and it probably wanders rapidly around the entire horizon. In order

to predict the motion for tens of orbits, it may be necessary to define the initial data, or other

parameters that distinguish one motion from another, with a very high accuracy. This would

mean that one has to use a huge family of templates in order to pick out the signal (see our

discussion of data analysis below). In turn, this raises the confidence threshold necessary to

eliminate false alarms in the detection process. It is not yet clear whether this threshold will

still allow signals of the expected strength to be detected.

4.2.7. Gravitational waves from the Big Bang. Gravitational waves have travelled

almost unimpeded through the Universe since they were generated. Whereas the cosmic

microwave background reflects the Universe at a time 105 y after the Big Bang, and

studies of nucleosynthesis reveal conditions in the Universe a few minutes after the Big

Bang, gravitational waves were produced at times earlier than 10−24 s after the Big Bang.

Observing this background would undoubtedly be one of the most important measurements

that gravitational wave astronomy could make.

Inflation is an attractive scenario for the early Universe because it makes the large-scale

homogeneity of the Universe easier to understand. It also provides a mechanism for producing

initial density perturbations large enough to evolve into galaxies as the Universe expands.

These perturbations are accompanied by gravitational-field perturbations that travel through

the Universe, redshifting in the same way that photons do. Today these perturbations should

form a random background of gravitational radiation [62].

The perturbations arise by parametric amplification of quantum fluctuations in the
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gravitational wave field that existed before inflation began [63]. The huge expansion associated

with inflation puts energy into these fluctuations, converting them into real gravitational waves

with classical amplitudes.

If inflation did not occur, then the perturbations that led to galaxies must have arisen in

some other way, and it is possible that this alternative mechanism also produced gravitational

waves. One candidate is cosmic defects, including cosmic strings and cosmic texture. Although

observations at present seem to rule cosmic defects out as a candidate for galaxy formation,

cosmic strings may nevertheless have produced observable gravitational waves [64].

There could also be a thermal background under certain circumstances. If inflation did not

occur, but at the Planck time there was some kind of equipartition between gravitational degrees

of freedom and other fields, then there would also be a thermal background of gravitational

waves at a temperature similar to that of the cosmological microwave background. But this

radiation would have such a high frequency that it would not be detectable by any known or

proposed technique. If inflation occurred, it would have redshifted this background down to

undetectable frequencies.

The random background will be detectable as a noise, competing with instrumental noise.

To be observed by a single detector, this noise must be larger than the instrumental noise, and

one must have great confidence in the detector in order to claim that the observed noise is

external. This is how the cosmic microwave background was originally discovered in a radio

telescope. It is how LISA would look for a background, since the two interferometers in LISA

would share a common arm and would therefore not be able to improve their sensitivity by

cross-correlation, as described next.

If there are two detectors, then one can cross-correlate their output. In this way, the random

wave field in one detector acts like a matched filtering template, matching the random field

in the other detector. This allows the detection of noise that is below the instrumental noise

of the individual detectors. For this to work, the two detectors must be close enough together

to respond to the same random wave field. In practice, the sensitivity of this method falls

off rapidly with separation if the detectors are more than a wavelength apart. The two LIGO

detectors are well placed for such correlations, particularly when upgrades push their lower

frequency limit to 20 Hz or less.

Random gravitational waves are conventionally described in terms of their energy density

ρgw(f ) rather than their mean amplitude. For a cosmological field, what is relevant is to

normalize this energy density to the critical density ρc required to close the Universe. It is thus

conventional to define

�gw :=
dρgw/ρc

d ln f
. (18)

This is roughly the fraction of the closure energy density in random gravitational waves between

the frequency f and e × f .

Inflation predicts that the �gw spectrum should be flat, independent of frequency. Other

models, such as string cosmologies, can make very different predictions [65], so it is possible

that there will be a peak in the spectrum in the observing band of ground-based or space-based

detectors.

The first-generation LIGO detectors should reach a sensitivity of �gw ∼ 10−5 at 100 Hz,

and second-generation LIGO could reach 10−9 at a similar frequency. LISA could also

approach 10−8 at about 1 mHz, but the exact sensitivity will depend on whether a binary

background obscures the cosmological background. There is also a likelihood that backgrounds

due to other sources (r-mode spindown, as discussed above, or binary black holes and neutron

star systems, or even supernova explosions themselves [66]) could obscure a cosmological

background above 0.1 mHz. In fact, it is likely that the binary star background falls off (as
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measured by �gw) at frequencies below about 10 µHz, so that a space-based detector designed

for the microhertz frequency band might be the best way to observe the background.

4.3. Recognizing weak signals

For ground-based detectors, all expected signals have amplitudes that are close to or even below

the instrumental noise level in the detector output. Such signals can nevertheless be detected

with confidence if their waveform matches an expected waveform. The pattern recognition

technique that will be used by detector scientists is called matched filtering.

Matched filtering works by multiplying the output of the detector by a function of time

(called the template) that represents an expected waveform, and summing (integrating) the

result. If there is a signal matching the waveform buried in the noise then the output of the

filter will be higher than expected for pure noise.

A simple example of such a filter is the Fourier transform, which is a matched filter for a

constant-frequency signal. The noise power in the data stream is spread out over the spectrum,

while the power in the signal is concentrated in a single frequency. This makes the signal easier

to recognize. The improvement of the signal-to-noise ratio for the amplitude of the signal is

proportional to the square root of the number of cycles of the wave contained in the data. This

is well known for the Fourier transform, and it is generally true for matched filtering.

Matched filtering can make big demands on computation, for several reasons. First,

the arrival time of a short-duration signal is generally not known, so the template has to be

multiplied into the data stream at each distinguishable arrival time. This is then a correlation

of the template with the data stream. Normally this is done efficiently using Fast Fourier

Transform methods.

Second, the expected signal usually depends on a number of unknown parameters. For

example, the radiation from a binary system depends on the chirp mass M, and it might arrive

with an arbitrary phase. Therefore, many related templates must be separately applied to the

data to cover the whole family.

Third, matched filtering enhances the signal only if the template stays in phase with the

signal for the whole data set. If they go out of phase, the method begins to reduce the signal-to-

noise ratio. For long-duration signals, such as for low-mass neutron-star coalescing binaries

or continuous-wave signals from neutron stars (see below), this requires the analysis of large

data sets, and often forces the introduction of additional parameters to allow for small effects

that can make the signal drift out of phase. It also means that the method works well only if

there is a good prediction of the form of the signal.

Because the first signals will be weak, matched filtering will be used wherever possible.

As a simple rule of thumb, the detectability of a signal depends on its effective amplitude heff ,

defined as

heff = h
√

Ncycles , (19)

where Ncycles is the number of cycles in the waveform that are matched by the template.

For example, the effective amplitude of the radiation from a bump on a neutron star

(equation (13))will be hbump

√
2f Tobs , where Tobs is the observation time. In order to detect

this radiation, detectors may need to observe for long periods, say four months, during which

they accumulate billions of cycles of the waveform. During this time, the star may spin down

by a detectable amount, and the motion of the Earth introduces large changes in the apparent

frequency of the signal, so matched filtering needs to be done with care and precision. In

order to do a sky survey for unknown neutron star sources, the data analysis job is so large

that the sensitivity of detectors may be limited by the computer power available to process the

data [67, 68].
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Another example is a binary system followed to coalescence, i.e., where the chirp time in

equation (16) is less than the observing time. For neutron-star binaries observed by ground-

based detectors this will always be the case (see earlier), so the effective amplitude is roughly

hchirp ∼ hbin

√

fgwtchirp ∼
GM

rc2

(

GM

Rc2

)−1/4

, (20)

where for fgw one must use twice the orbital frequency
√

GM/R3/4π . This may seem a

puzzling result, because it says that the effective amplitude of the signal gets smaller as the

stars get closer. But this just means that the signal will be more detectable if it is picked up

earlier, since equation (20) assumes that the signal is followed right to coalescence. This gives

a significant advantage to detectors that can operate at lower frequencies.

In general, the sensitivity of detectors will be limited not just by detector technology, but

also by the duration of the observation, the quality of the signal predictions, and the availability

of computer processing power for the data analysis.

5. Conclusions

The first few years of the 21st Century should see the first direct detections of gravitational

radiation and the opening of the field of gravitational wave astronomy. Beyond that,

over a period of a decade or more, one may expect observations to yield important and

useful information about binary systems, stellar evolution, neutron stars, black holes, strong

gravitational fields, and cosmology.

If gravitational wave astronomy follows the example of other fields, like x-ray astronomy

and radio astronomy, then at some level of sensitivity it will begin to discover sources that were

completely unexpected. Many scientists think the chance of this happening early is very good,

since the processes that produce gravitational waves are so different from those that produce

the electromagnetic radiation on which most present knowledge of the Universe is based, and

since more than 90% of the matter in the universe today is dark and seems to interact with

visible matter only through gravitation. By looking at the dynamical part of the gravitational

field, gravitational wave detectors are the only way of discovering whether interesting things

are happening in this dark sector of the Universe.

The first and second generation of ground-based interferometers, and the first space-based

project, are all very likely to operate within the first decade of the 21st Century. They will open

up the observational side of gravitational wave astronomy. But we know that, sophisticated

as their designs are, they are not ideal for some kinds of gravitational wave sources that we

believe exist. Sensitive measurements of a cosmological background of radiation from the Big

Bang may not be possible with these instruments if the spectrum follows the predictions of

standard inflation theory. Most of the normal mode oscillations of neutron stars will be very

hard to detect, because the radiation is weak and at a high frequency, but the science there is

compelling: neutron-star seismology may be the only way to probe the interiors of neutron

stars and understand these complex and fascinating objects. The field of gravitational wave

astronomy can therefore be expected to have a long future. There will be much to do for a

long time after the first observations are successfully made.
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