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We present results from detailed general relativistic simulations of stellar core collapse to a proto-

neutron star, using two different microphysical nonzero-temperature nuclear equations of state as well as

an approximate description of deleptonization during the collapse phase. Investigating a wide variety of

rotation rates and profiles as well as masses of the progenitor stars and both equations of state, we confirm

in this very general setup the recent finding that a generic gravitational wave burst signal is associated with

core bounce, already known as type I in the literature. The previously suggested type II (or ‘‘multiple-

bounce’’) waveform morphology does not occur. Despite this reduction to a single waveform type, we

demonstrate that it is still possible to constrain the progenitor and postbounce rotation based on a

combination of the maximum signal amplitude and the peak frequency of the emitted gravitational wave

burst. Our models include to sufficient accuracy the currently known necessary physics for the collapse

and bounce phase of core-collapse supernovae, yielding accurate and reliable gravitational wave signal

templates for gravitational wave data analysis. In addition, we assess the possibility of nonaxisymmetric

instabilities in rotating nascent proto-neutron stars. We find strong evidence that in an iron core-collapse

event the postbounce core cannot reach sufficiently rapid rotation to become subject to a classical bar-

mode instability. However, many of our postbounce core models exhibit sufficiently rapid and differential

rotation to become subject to the recently discovered dynamical instability at low rotation rates.
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I. INTRODUCTION

The final event in the life of a massive star is the

catastrophic collapse of its central, electron-degenerate

core composed of iron-peak nuclei. When silicon shell

burning pushes the iron core over its effective

Chandrasekhar mass, collapse is initiated by a combination

of electron capture and photo-disintegration of heavy nu-

clei, both leading to a depletion of central pressure support.

Massive stars in the approximate mass range of about 10 to

100 solar masses (M�) experience such a collapse phase

until their homologously contracting [1,2] inner core

reaches densities near and above nuclear saturation density

where the nuclear equation of state (EoS) stiffens, leading

to an almost instantaneous rebound of the inner core (core

bounce) into the still supersonically infalling outer core.

The hydrodynamic supernova shock is born, travels out-

ward in radius and mass, but rapidly loses its kinetic energy

to the dissociation of infalling iron-group nuclei and to

neutrinos that deleptonize the immediate postshock mate-

rial and stream off from these regions quasi-freely. The

shock stalls, turns into an accretion shock and must be

revived to produce the observable explosion associated

with a core-collapse supernova. Mechanisms of shock

revival are still under debate (a recent review is presented

in [3], but see also [4–6]) and may involve heating of the

postshock region by neutrinos, multidimensional hydro-

dynamic instabilities of the accretion shock, in the post-

shock region, and/or in the proto-neutron star, rotation,

magnetic fields, and nuclear burning. If the shock is not

revived, black-hole formation (on a timescale of �1–2 s
[7]) is inevitable and the stellar collapse event may remain

undetected by conventional astronomy or, perhaps, appear

as a gamma-ray burst if the progenitor star has a compact

enough envelope and sufficiently rapid rotation in its cen-

tral regions [8,9].

Conventional astronomy can constrain core-collapse su-

pernova theory and the supernova explosion mechanism

via secondary observables only, e.g., the explosion energy,

ejecta morphology, nucleosynthesis yields, residue neutron

star or black-hole mass and proper motion, and pulsar

magnetic fields. Neutrinos and gravitational waves, on

the other hand, are emitted deep inside the supernova

core and travel to observers on Earth practically unscathed

by intervening material. They can act as messengers to

provide first-hand and live dynamical information on the

intricate multidimensional dynamics of the proto-neutron

star and postshock region and may constrain directly the

core-collapse supernova mechanism. Importantly, core-

collapse events that do not produce the canonical observa-

tional astronomical signature or whose observational dis-

play is shrouded from view can still be observed in
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neutrinos and gravitational waves if occurring sufficiently

close to Earth.

Gravitational waves, in contrast to neutrinos, have not

yet been observed directly, but an international array of

gravitational wave observatories (see, e.g., [10]) is active

and taking data. Since gravitational waves from astrophys-

ical sources are expected to be weak, their detection is

notoriously difficult and involves extensive signal process-

ing and detailed analysis of the detector output. Chances

for the detection of an astrophysical event of gravitational

wave emission are significantly enhanced if accurate theo-

retical knowledge of the expected gravitational wave sig-

nature from such an event is at hand.

Theoretical predictions of the gravitational wave signa-

ture from a core-collapse supernova are complicated, since

the emission mechanisms are very diverse. While the

prospective gravitational wave burst signal from the col-

lapse, bounce, and the very early postbounce phase is

present only when the core rotates [11–18], gravitational

wave signals with sizeable amplitudes can also be expected

from convective motions at postbounce times, instabilities

of the standing accretion shock, anisotropic neutrino

emission, excitation of various oscillations in the proto-

neutron star, or nonaxisymmetric rotational instabilities

[17,19–23].

In the observational search for gravitational waves from

merging black hole or neutron star binaries, powerful data

analysis algorithms such as matched filtering are appli-

cable, as the waveform from the inspiral phase can be

modeled with high accuracy (see, e.g., [24]) and gravita-

tional wave data analysts already have access to robust

template waveforms that depend only on a limited number

of macroscopic parameters. In contrast, the complete

gravitational wave signature of a core-collapse supernova

cannot be predicted with template-level accuracy as the

postbounce dynamics involve chaotic processes (turbu-

lence, [magneto-] hydrodynamic instabilities) that are sen-

sitive not only to a multitude of precollapse parameters, but

also to small-scale perturbations of any of the hydrody-

namic variables.

While the complete supernova gravitational wave sig-

nature may remain inaccessible to template-based data

analysis, a number of individual constituent emission pro-

cesses, in particular, those involving coherent global bulk

dynamics and/or rotation, allow, in principle, for accurate

and robust waveform predictions that may be applied to

template-based searches. Rotating core collapse and core

bounce as well as pulsations or nonaxisymmetric rotational

deformations of a proto-neutron star constitute this group

of processes. Among them, rotating collapse and bounce is

the historically most extensively studied case (see, e.g.,

[25] for a historical review) and may be the most promising

for becoming robustly predictable in its gravitational wave

emission. Yet, to date, the gravitational wave signal from

rotating stellar core collapse and bounce has not been

predicted with the desired accuracy and robustness.

These deficiencies of previous simulations result from

the fact that the physically realistic modeling of core

collapse requires a general relativistic description of con-

sistently coupled gravity and hydrodynamics in conjunc-

tion with a microphysical treatment of the sub- and

supernuclear EoS, electron capture on heavy nuclei and

free protons, and neutrino radiation transport. Only very

few multidimensional general relativistic codes have re-

cently begun to approach these requirements [17,18]. In

addition, the properties of the EoS around and above

nuclear density are not very well constrained by theory

or experiments. The same applies to the rotation rate and

angular velocity profile of the progenitor core, which are

also not directly accessible by observation and very diffi-

cult to model numerically in stellar evolution codes.

Furthermore, variations with progenitor structure and

mass are to be expected. Therefore, the influence of rota-

tion and progenitor structure on the collapse and bounce

dynamics and thus the gravitational wave burst signal must

be investigated by extensive and computationally expen-

sive parameter studies.

Previous parameter studies have considered a large vari-

ety of rotation rates and progenitor core configurations, but

generally ignored important microphysical aspects and/or

the influence of general relativity. Mönchmeyer et al. [12]

performed axisymmetric Newtonian calculations with pro-

genitor models from stellar evolutionary studies. They

employed the microphysical nuclear EoS of Hillebrandt

and Wolff [26] and included deleptonization via a neutrino

leakage scheme and electron capture on free protons.

Capture on heavy nuclei was neglected, which resulted in

a too high electron fraction Ye at core bounce and a con-

sequently overestimated inner core mass [2,27]. In that

study a limited set of four calculations was computed and

two qualitatively and quantitatively different types of

gravitational wave burst signals were identified. Their

morphology can be classified alongside with the collapse

and bounce dynamics: Type I signals are emitted when the

collapse of the quasihomologously contracting inner core

is not strongly influenced by rotation, but stopped by a

pressure-dominated bounce due to the stiffening of the EoS

near nuclear density �nuc � 2� 1014 g cm�3, where the

adiabatic index �eos rises above 4=3. This leads to a bounce
with a maximum core density �max � �nuc. Type II signals

occur when centrifugal forces, which grow during contrac-

tion owing to angular momentum conservation, are suffi-

ciently strong to halt the collapse, resulting in consecutive

(typically multiple) centrifugal bounces with intermediate

coherent re-expansion of the inner core, seen as density

drops by sometimes more than an order of magnitude; thus

here �max <�nuc after bounce. Type I and II dynamics and

waveforms were also found in the more recent Newtonian

studies by Kotake et al. [15], who employed a more

complete leakage/capture scheme, but still obtained too

high Ye at bounce, and by Ott et al. [16], who performed

an extensive parameter study and for the first time also
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considered variations in progenitor star structure, but ne-

glected deleptonization during collapse.

Zwerger and Müller [13] carried out an extensive two-

dimensional Newtonian study of rotating collapse of ideal-

ized polytropes in rotational equilibrium [28] with a sim-

plified hybrid EoS, consisting of a polytropic and a thermal

component [29]. Electron capture during collapse was

mimicked by an instantaneous lowering of the adiabatic

index �eos from its initial value of 4=3 to trigger the onset

of collapse. At �nuc, the adiabatic index was raised to * 2
to qualitatively model the stiffening of the nuclear EoS.

Zwerger and Müller also obtained the previously suggested

signal types and introduced type III signals that appear in a

pressure-dominated bounce when the inner core has a very

small mass due to very efficient electron capture (approxi-

mated in [13] via a �eos & 1:29 in their hybrid EoS).

Obergaulinger et al. [30] also employed the hybrid EoS,

but included magnetic fields. They introduced the addi-

tional dynamics/signal type IV, which occurs only in the

case of very strong precollapse core magnetization. They

found that weak to moderate core magnetization in agree-

ment with predictions from stellar evolution theory (see,

e.g., [31]) has little effect on the collapse and bounce

dynamics and the resulting gravitational wave signal.

This finding is in agreement with [32] (see also [5,33]),

where magnetorotational collapse simulations were per-

formed, a smaller model set was considered, but the neu-

trino leakage scheme of [15] was employed, and it made

use of two different microphysical EoSs to study the EoS

dependence of the collapse dynamics and gravitational

wave signal.

The first extensive set of general relativistic simulations

of rotating iron core collapse to a proto-neutron star were

presented by Dimmelmeier et al. [14], who employed an

analytic hybrid EoS and polytropic precollapse models in

rotational equilibrium as initial data (but see also the

pioneering early work of [34]). These simulations were

subsequently confirmed in [25,35–37]. Dimmelmeier et al.

studied a subset of the models in [13] in the same parame-

ter space of rotation rate and degree of differential rotation,

and found that general relativistic effects counteract cen-

trifugal support and shift the occurrence of type II dynam-

ics and wave signals to a higher precollapse rotation rate at

a fixed degree of differential rotation.

Recently, new general relativistic simulations of rotating

core collapse in two and three dimensions were carried out

by Ott et al. [17,25,38] who included the microphysical

EoS of Shen et al. [39], precollapse models from stellar

evolutionary calculations as well as an approximate dele-

ptonization scheme [40]. The results of these calculations

indicate that the gravitational wave burst signal associated

with rotating core collapse is exclusively of type I. In

addition, the simulations showed that rotating stellar iron

cores stay axisymmetric throughout collapse and bounce,

and only at postbounce times develop nonaxisymmetric

features.

In a general relativistic two-dimensional follow-up

study, Dimmelmeier et al. [18,41] considerably extended

the number of models and comprehensively explored a

wide parameter space of precollapse rotational configura-

tions. Even for this more general setup they found gravi-

tational wave signals solely of type I form, although for

rapid precollapse rotation some of their models experience

a core bounce due to centrifugal forces only, which how-

ever is always a single centrifugal bounce rather than the

multiple ones observed in earlier work (see, e.g.,

[13,14,16]). They identified the physical conditions that

lead to the emergence of this generic gravitational wave

signal type and quantified their relative influence. These

results strongly suggest that the waveform of the gravita-

tional wave burst signal from the collapse of rotating iron

cores in a core-collapse event is much more generic than

previously anticipated.

In this work, we extend the above study of the gravita-

tional wave signal from rotating core collapse and consider

not only variations in the precollapse rotational configura-

tion, but also in progenitor structure and nuclear EoS. In

this way, we carry out the to-date largest and most com-

plete parameter study of rotating stellar core collapse that

includes all the (known) necessary physics to produce

reliable predictions of the gravitational wave signal asso-

ciated with rotating collapse and bounce. All our computed

gravitational wave signals are made available to the detec-

tor data analysis community in a freely accessible wave-

form catalog [42].

We perform a large number of two-dimensional simula-

tions with our general relativistic core-collapse code

COCONUT and employ 11.2, 15.0, 20.0, and 40:0M�
(masses at zero-age main sequence) precollapse stellar

models from the stellar evolutionary studies of Heger

et al. [31,43]. In addition to the EoS by Shen et al. [39]

used in our previous studies, we also calculate models with

the EoS by Lattimer and Swesty [44]. We describe in detail

and explain comprehensively the qualitative and quantita-

tive aspects of the collapse and bounce dynamics and the

resultant gravitational wave signal. We lay out the individ-

ual effects of general relativity, deleptonization, precol-

lapse stellar structure and rotational configuration, and

nuclear EoS on the gravitational wave signature from

rotating core collapse. We study the prospects for non-

axisymmetric rotational instabilities in our postbounce

cores, which could lead to an enhancement of the gravita-

tional wave signature. Furthermore, we set our model

gravitational radiation waveforms in context with present

and future detector technology and assess their

detectability.

This paper is organized as follows: In Sec. II, we in-

troduce our treatment of the general relativistic spacetime

curvature and hydrodynamics equations. Furthermore, we

introduce our variants of the two microphysical EoS

we employ, the scheme for deleptonization and neutrino
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pressure contributions, our precollapse model set, and the

gravitational wave extraction technique employed.

Section III discusses the numerical methods used in the

COCONUT code and the computational grid setup for the

simulations presented in this paper. In Sec. IV, we present

the collapse dynamics and waveform morphology of our

simulated models, while in Sec. V, we investigate the

stratification of the postbounce core and its impact on the

gravitational wave signal. The detection prospects for the

gravitational wave burst from core bounce are discussed in

Sec. VI, while the rotational configuration of the proto-

neutron star and its susceptibility to nonaxisymmetric rota-

tional instabilities are examined in Sec. VII. Finally, in

Sec. VIII, we summarize and discuss our results.

Throughout the paper we use a spacelike signature

(� , þ, þ, þ) and units in which c ¼ G ¼ 1. Greek
indices run from 0 to 3, Latin indices from 1 to 3, and

we adopt the standard Einstein summation convention.

II. PHYSICAL MODEL AND EQUATIONS

A. General relativistic hydrodynamics

We adopt the Arnowitt-Deser-Misner (ADM) 3þ 1 for-
malism of general relativity to foliate the spacetime en-

dowed with a four metric g�� into spacelike hypersurfaces

[45]. In this approach the line element reads

ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where � is the lapse function, �i is the shift vector, and �ij

is the spatial three metric induced in each hypersurface.

The hydrodynamic evolution of a perfect fluid in general

relativity with four velocity u�, rest-mass current J� ¼
�u�, and stress-energy tensor T�� ¼ �hu�u� þ Pg�� is

determined by a system of local conservation equations

r�J
� ¼ 0; r�T

�� ¼ 0; (2)

where r� denotes the covariant derivative with respect to

the four metric. Here, � is the rest-mass density, h ¼ 1þ
�þ P=� is the specific enthalpy, P is the fluid pressure,

and the three velocity with respect to an Eulerian observer

moving orthogonally to the spacelike hypersurfaces is

given by vi ¼ ui=ð�u0Þ þ �i=�. We define a set of con-

served variables as

D ¼ �W; Si ¼ �hW2vi; � ¼ �hW2 � P�D:

(3)

In the above expressions, W ¼ �u0 is the Lorentz factor,

which satisfies the relation W ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� viv
i

p

.

The local conservation laws (2) are written as a first-

order, flux-conservative system of hyperbolic equations

[46]

@
ffiffiffiffi
�

p
U

@t
þ @

ffiffiffiffiffiffiffi�g
p

Fi

@xi
¼ ffiffiffiffiffiffiffi�g

p
S; (4)

with

U ¼ ½D; Sj; �; DYe�; (5)

F i ¼ ½Dv̂i; Sjv̂
i þ 	i

jP; �v̂
i þ Pvi; DYev̂

i�; (6)

S ¼
�

0;
T��

2

@g��

@xj
� @P�

@xj
; T00

�

Kij�
i�j � �i @�

@xi

�

þ T0i

�

2Kij�
j � @�

@xi

�

þ TijKij � vi @P�

@xi
; 0

�

: (7)

Here, v̂i ¼ vi � �i=�, and g and � are the determinant of

g�� and �ij, respectively, with
ffiffiffiffiffiffiffi�g

p ¼ �
ffiffiffiffi
�

p
. �


�� are the

four-Christoffel symbols. Since we use a microphysical

EoS that requires information on the local electron fraction

per baryon Ye, we add an advection equation for the

quantity DYe to the standard form of the conservation

Eq. (4). The radiation stress due to the neutrino pressure

P� (as defined in Sec. II D), is included in the form of an

additive term in the source of both the momentum and

energy equations. Note also that here we use an analyti-

cally equivalent reformulation of the energy source term in

contrast to the one presented in [14].

B. Metric equations in the conformal flatness

approximation

Using the ADM 3þ 1 formalism, the Einstein equations

split into a coupled set of first-order evolution equations for

the three-metric �ij and the extrinsic curvature Kij

@t�ij ¼ �2�Kij þri�j þrj�i; (8)

@tKij ¼ �rirj�þ �ðRij � 2KikK
k
j Þ þ �krkKij

þ Kikrj�
k þ Kjkri�

k

� 8��

�

Sij �
�ij

2
ðSkk � �ADMÞ

�

(9)

and constraint equations,

0 ¼ R� KijK
ij � 16��ADM; (10)

0 ¼ riK
ij � 8�Sj: (11)

In the above equations, ri is the covariant derivative with

respect to the three metric �ij, Rij is the three-Ricci tensor,

and R is the scalar three curvature. The projection of the

stress-energy tensor onto the spatial hypersurface is Sij ¼
�hW2vivj þ �ijP, the ADM energy density is given by

�ADM ¼ �hW2 � P, and Sj ¼ �hW2vi is the momentum

density. In addition, we have chosen the maximal slicing

condition for which the trace of the extrinsic curvature

vanishes: K ¼ 0.
In order to simplify the ADM metric equations and to

ameliorate the stability properties when numerically solv-

ing those equations, we employ the conformal flatness

DIMMELMEIER, OTT, MAREK, AND JANKA PHYSICAL REVIEW D 78, 064056 (2008)

064056-4



condition (CFC) introduced in [47] and first used in a

pseudo-evolutionary context in [48]. In this approximation

the spatial three metric is replaced by the conformally flat

three metric �ij ¼ �4�̂ij, where �̂ij is the flat-space metric

and � is the conformal factor. Then the metric Eqs. (8)–

(11) reduce to a set of elliptic equations for �, �, and �i,

�̂� ¼ �2��5

�

Eþ KijK
ij

16�

�

; (12)

�̂ð��Þ ¼ 2���5

�

Eþ 2Sþ 7KijK
ij

16�

�

; (13)

�̂�i ¼ 16���4Si þ 2�10Kijr̂j

�

�6
� 1

3
r̂ir̂k�

k; (14)

where �̂ and r̂ are the Laplace and covariant derivative

operators associated with the flat three metric, and S ¼
�ijSij. The CFC metric Eqs. (12)–(14) do not contain

explicit time derivatives, and thus the metric components

are evaluated in a fully constrained approach.

Imposing CFC in a spherically symmetric spacetime is

equivalent to solving the exact Einstein equations. For

nonspherical configurations the CFC approximation may

be roughly regarded as full general relativity without the

dynamical degrees of freedom of the gravitational field that

correspond to the gravitational wave content [49].

However, even spacetimes that do not contain gravitational

waves can be not conformally flat. A prime example are the

spacetime of a Kerr black hole [50] or rotating fluids in

equilibrium. For rapidly rotating models of stationary neu-

tron stars the deviation of certain metric components from

conformal flatness has been shown to reach up to �5% in

extreme cases [51], while the oscillation frequencies of

such models typically deviate even less from the corre-

sponding values obtained in full general relativistic simu-

lations [52]. In the context of rotating stellar core collapse

the excellent quality of the CFC approximation has been

demonstrated extensively [17,35,36].

Because of its fully constrained nature, the CFC ap-

proximation permits a straightforward and numerically

more robust implementation of the metric equations in

coordinate systems containing coordinate singularities

(e.g., spherical polar coordinates) compared with a

Cauchy free-evolution scheme. Furthermore, by definition

it allows no constraint violations, which is a significant

benefit in cases where a perturbation is added to the initial

data. More details on the CFC equations can be found in,

e.g., [14].

C. Equations of state

In our simulations we employ two tabulated nonzero-

temperature equations of state, the one by Shen et al.

[39,53] (Shen EoS), and the one by Lattimer and Swesty

[44] (LS EoS). The LS EoS is based on a compressible

liquid-drop model [54]. The transition from inhomogene-

ous to homogeneous matter is established by a Maxwell

construction, and the nucleon-nucleon interactions are ex-

pressed by a Skyrme force. In our version of this EoS, the

incompressibility modulus of bulk nuclear matter is taken

to be 180 MeV and the symmetry energy parameter has a

value of 29.3 MeV. In contrast, the Shen EoS is based on a

relativistic mean field model and is extended with the

Thomas–Fermi approximation to describe the homogene-

ous phase of matter as well as the inhomogeneous matter

composition. The parameter for the incompressibility of

nuclear matter is 281 MeVand the symmetry energy has a

value of 36.9 MeV.

Both EoSs employed in this study are the same as in

Marek et al. [55] and include contributions of baryons,

electrons, positrons, and photons. Furthermore, in this

study the LS EoS has been extended to densities below

� ¼ 5:8� 107 g cm�3 by a smooth transition to the Shen

EoS, which is tabulated down to � ¼ 6:4� 105 g cm�3.

The microphysical EoS returns the fluid pressure (and

additional thermodynamic quantities) as a function of

ð�; T; YeÞ, where T is the temperature. Since the hydro-

dynamic Eq. (4) operate on the specific internal energy �,
we determine the corresponding temperature T iteratively

with a Newton–Raphson scheme and the EoS table. All

interpolations are carried out in trilinear fashion and the

tables are sufficiently densely spaced to lead to an artificial

entropy increase in an adiabatic collapse by not more than

�2%.

D. Deleptonization and neutrino pressure

Electron capture on free protons and heavy nuclei during

collapse reduces Ye (i.e., ‘‘deleptonizes’’ the collapsing

core) and consequently decreases the size of the homolo-

gously collapsing inner core that depends on the average

value of Ye in a roughly quadratic way (see, e.g., [56]). The

material of the inner core is in sonic contact and determines

the dynamics and the gravitational wave signal at core

bounce and in the early postbounce phases. Hence, dele-

ptonization has a direct influence on the collapse dynamics

and the gravitational wave signal, and thus it is essential to

include deleptonization during collapse.

Since multidimensional radiation-hydrodynamics calcu-

lations in general relativity are not yet computationally

feasible, in our simulations we make use of a recently

proposed approximative scheme [40], where deleptoniza-

tion is parametrized based on data from detailed spheri-

cally symmetric calculations with Boltzmann neutrino

transport, for which (as in [18]) we take the latest available

electron capture rates [57]. Following the main assumption

in [40] that the local electron fraction for each fluid ele-

ment during the contraction phase can be modeled rather

accurately by a dependence on the density only, these

simulations yield a universal relation �Yeð�Þ. Furthermore,

we find that this relation varies only slightly with progeni-

tor mass, as shown in Fig. 1, where models with identical

progenitor but different EoS have the same color, but
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different hues (e.g., dark green versus light green for the

s20 progenitor). Consequently, we utilize the 20:0M� pro-

genitor to create such a profile �Yeð�Þ for each of the two

EoSs. This profile is then used to correct the value of Ye

obtained from the advection by an amount

�Ye ¼ min½0; �Yeð�Þ � Ye� (15)

after each time integration step. This procedure assures that

Ye approaches the phenomenological input profile �Yeð�Þ
with the constraint that �Ye must be negative.

Accordingly, in order to model the entropy loss by neutri-

nos escaping the collapsing core, for densities below an

adopted neutrino trapping density �tr ¼ 2� 1012 g cm�3

the internal specific energy � is re-adjusted at constant �
and Ye such that the specific entropy per baryon s is

changed by

�s ¼ ��Ye

�p ��n þ�e � E�

kBT
; (16)

where E� ¼ 10 MeV is an average escape energy for the

neutrinos, kB is the Boltzmann constant and where�p,�n,

and �e are the proton, neutron, and electron chemical

potentials, respectively. Note that when equilibrium be-

tween neutrinos and matter (i.e., � equilibrium) is estab-

lished, this balance requires �� ¼ �p ��n þ�e for the

neutrino chemical potential ��.

We stop deleptonization at the time of core bounce (i.e.,

as soon as the specific entropy s per baryon exceeds 3kB at

the outer boundary of the inner core). After core bounce,

for lack of a simple yet accurate approximation scheme for

treating the further deleptonization in the nascent proto-

neutron star, we advect Ye only passively according to the

conservation Eq. (4), although this effectively prevents the

factual cooling and contraction of the proto-neutron star.

In all collapse phases, however, as in [40] we approxi-

mate the pressure contribution of the neutrinos by that of

an ideal Fermi gas

P� ¼ 4�ðkBTÞ4
3ðhcÞ3 F3

�
��

kBT

�

; (17)

with F3 being the Fermi–Dirac function of order 3. The

neutrino pressure is included only in the regime that is

optically thick to neutrinos, which we define for densities

above �tr.

E. Initial models

All presupernova stellar models available to date are end

products of Newtonian spherically symmetric stellar evo-

lutionary calculations from hydrogen burning on the main

sequence to the onset of core collapse by photo dissocia-

tion of heavy nuclei and electron captures (see, e.g., [58]).

Here, we employ various nonrotating models of [58] with

zero-age main sequence masses Mprog ¼ 11:2M� (core-

model s11.2, here for simplicity labeled s11), 15:0M�
(core-model s15), 20:0M� (core-model s20), and 40:0M�
(core-model s40). Recently, the first presupernova models

that include rotation in a one-dimensional approximate

fashion have become available [31,43], and of these we

select ones with Mprog ¼ 15:0M� (models e15a and e15b)

as well as 20:0M� (core-models e20a and e20b). All

progenitors have solar metallicity (at zero-age main se-

quence), and we generate our initial models by taking the

data obtained from stellar evolution out to a radius Ri,

where the density drops to a value that equals 10�4 of

the initial precollapse central density �c;i. Selected quan-

tities that describe the properties of these stellar cores are

summarized in Table I.

We set those cores that are initially nonrotating (core-

models s11, s15, s20, and s40) artificially into rotation

according to the rotation law specified in [28], where the

specific angular momentum j is given by

j ¼ A2ð�c;i ��Þ: (18)

Here, the length A parametrizes the degree of differential

rotation (stronger differentiality with decreasing A) and

�c;i is the precollapse value of the angular velocity � at

the center. In the Newtonian limit, this reduces to

� ¼ �c;i

A2

A2 þ r2sin2

; (19)

with r sin
 being the distance to the rotation axis.

In order to determine the influence of different angular

momentum distributions on the collapse dynamics, we

parameterize the precollapse rotation of our models in

terms of A (A1: A ¼ 50; 000 km, almost uniform; A2: A ¼
1; 000 km, moderately differential; A3: A ¼ 500 km,

strongly differential); and �c;i. The model nomenclature

for the precollapse rotation parameters is shown in Table II.

We have selected the rotational configuration of the models
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FIG. 1 (color online). Electron fraction �Ye obtained from de-

tailed spherically symmetric calculations with Boltzmann neu-

trino transport versus the maximum density �max in the

collapsing core. The EoS is encoded in dark hues for the Shen

EoS and light hues for the LS EoS with the basis color specifying

the progenitor mass.
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TABLE I. Properties of the iron core models used as initial data. Mprog is the total zero-age main sequence mass of the progenitor

star, Mcore and Rcore are the mass and radius of the iron core, Mi and Ri are the mass and radius of the initial model on the

computational grid, and �c;i is the precollapse density at the center. The size of the iron core is determined by the condition that Ye

exceeds 0.497, while the initial model extends beyond the iron core to where the density drops to 10�4�c;i. �c;i deviates slightly from

the original value of the models in [58] because of regridding to the more densely spaced central grid of the evolution code.

Core model Mprog [M�] Mcore [M�] Rcore [10
3 km] Mi [M�] Ri [10

3 km] �c;i [10
9 g cm�3]

s11 11.2 1.24 0.99 1.36 1.58 17.71

s15 15.0 1.55 1.94 1.81 3.88 6.50

s20 20.0 1.46 1.69 1.59 3.48 8.77

s40 40.0 1.55 1.62 2.03 4.60 3.88

e15a 15.0 1.47 1.55 1.83 4.45 5.78

e15b 15.0 1.40 1.66 1.56 3.17 8.04

e20a 20.0 1.75 2.41 2.26 5.42 4.27

e20b 20.0 1.38 1.35 1.60 3.18 7.22

TABLE II. Precollapse rotation properties of the core-collapse models. A is the differential rotation length scale, �c;i is the

precollapse angular velocity at the center, and �i is the precollapse rotation rate. Note that the models e15a, e15b, e20a, and e20b have

a rotation profile from the corresponding stellar evolution calculations, while onto all other models an artificial rotation profile is

imposed.

Rotating core

model

A

[108 cm]

�c;i

[rad s�1]

�i

[%]

Rotating core

model

A
[108 cm]

�c;i

[rad s�1]

�i

[%]

Rotating core

model

A
[108 cm]

�c;i

[rad s�1]

�i

[%]

s11A1O01 50.0 0.45 0.01 s15A1O01 50.0 0.45 0.09 e15a — 4.18 0.46

s11A1O05 50.0 1.01 0.06 s15A1O05 50.0 1.01 0.45 e15b — 9.93 2.75

s11A1O07 50.0 1.43 0.12 s15A1O07 50.0 1.43 0.91 e20a — 3.13 0.28

s11A1O09 50.0 1.91 0.22 s15A1O09 50.0 1.91 1.63 e20b — 11.01 2.16

s11A1O13 50.0 2.71 0.43 s15A1O13 50.0 2.71 3.26

s11A2O05 1.0 2.40 0.16 s15A2O05 1.0 2.40 0.30

s11A2O07 1.0 3.40 0.31 s15A2O07 1.0 3.40 0.60

s11A2O09 1.0 4.56 0.56 s15A2O09 1.0 4.56 1.09

s11A2O13 1.0 6.45 1.13 s15A2O13 1.0 6.45 2.18

s11A2O15 1.0 7.60 1.57 s15A2O15 1.0 7.60 3.03

s11A3O05 0.5 4.21 0.20 s15A3O05 0.5 4.21 0.27

s11A3O07 0.5 5.95 0.40 s15A3O07 0.5 5.95 0.53

s11A3O09 0.5 8.99 0.72 s15A3O09 0.5 8.99 0.96

s11A3O12 0.5 10.65 1.28 s15A3O12 0.5 10.65 1.71

s11A3O13 0.5 11.30 1.44 s15A3O13 0.5 11.30 1.92

s11A3O15 0.5 13.31 2.00 s15A3O15 0.5 13.31 2.67

s20A1O01 50.0 0.45 0.05 s40A1O01 50.0 0.45 0.13

s20A1O05 50.0 1.01 0.25 s40A1O05 50.0 1.01 0.64

s20A1O07 50.0 1.43 0.50 s40A1O07 50.0 1.43 1.28

s20A1O09 50.0 1.91 0.90 s40A1O09 50.0 1.91 2.31

s20A1O13 50.0 2.71 1.80 s40A1O13 50.0 2.71 4.62

s20A2O05 1.0 2.40 0.25 s40A2O05 1.0 2.40 0.36

s20A2O07 1.0 3.40 0.50 s40A2O07 1.0 3.40 0.72

s20A2O09 1.0 4.56 0.90 s40A2O09 1.0 4.56 1.30

s20A2O13 1.0 6.45 1.80 s40A2O13 1.0 6.45 2.60

s20A2O15 1.0 7.60 2.50 s40A2O15 1.0 7.60 3.62

s20A3O05 0.5 4.21 0.25 s40A3O05 0.5 4.21 0.29

s20A3O07 0.5 5.95 0.50 s40A3O07 0.5 5.95 0.57

s20A3O09 0.5 8.99 0.90 s40A3O09 0.5 8.99 1.03

s20A3O12 0.5 10.65 1.60 s40A3O12 0.5 10.65 1.84

s20A3O13 0.5 11.30 1.80 s40A3O13 0.5 11.30 2.07

s20A3O15 0.5 13.31 2.50 s40A3O15 0.5 13.31 2.87
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in such a way that for the s20 progenitor they are a

representative subset of the models investigated in

[18,41]. They reflect different properties of the collapse

dynamics and the gravitational radiation waveform dis-

cussed in that work, namely, pressure-dominated bounce

with or without significant postbounce convective overturn

as well as single centrifugal bounce.

Note that models with the same rotation specification

(but different progenitor mass or EoS) have an identical

angular velocity profile, while the precollapse rotation rate

�i ¼ Ti=jWji, which is the precollapse ratio of rotational

energy to gravitational energy, varies. We have decided to

compare models with identical initial angular velocity�c;i

and not precollapse rotation rate �i, as the latter quantity is

rather sensitive to the chosen core radius Rcore in the case of

(almost) uniform rotation.

The models that are based on progenitor calculations

including rotation (core-models e15a, e15b, e20a, and

e20b) are mapped onto our computational grids under the

assumption of constant rotation on cylindrical shells of

constant distance to the rotation axis. We also point out

that due to the one-dimensional nature, none of the con-

sidered models are in rotational equilibrium. Still, in

slowly rotating initial models this effect is small and thus

negligible. For more rapidly rotating models, which exhib-

its the strongest deviation from rotational equilibrium, the

collapse proceeds more slowly due to stabilizing centrifu-

gal forces, and hence the star has more time for the adjust-

ment to the appropriate angular stratifications for its rate of

rotation.

In this study, we focus on the collapse of massive

presupernova iron cores with at most moderate differential

rotation and precollapse rotation rates that except for the

most slowly rotating models lead to proto-neutron stars

that are probably spinning too fast to yield spin periods of

cold neutron stars in agreement with observationally in-

ferred injection periods of young pulsars into the P= _P
diagram [31,59]. However, they may be highly relevant

in the collapsar-type gamma-ray burst scenario [9,59,60].

F. Gravitational wave extraction

We employ the Newtonian quadrupole formula in the

first moment of momentum density formulation as dis-

cussed, e.g., in [14,61,62] to extract the gravitational waves

generated by nonspherical accelerated fluid motions. It

yields the quadrupole wave amplitude AE2
20 as the lowest

order term in a multipole expansion of the radiation field

into pure-spin tensor harmonics [63]. The wave amplitude

is related to the dimensionless gravitational wave strain h
in the equatorial plane by

h ¼ 1

8

ffiffiffiffiffiffi

15

�

s

AE2
20

r
¼ 8:8524� 10�21 AE2

20

103 cm

10 kpc

r
; (20)

where r is the distance to the emitting source.

We point out that although the quadrupole formula is not

gauge invariant and is only valid in the Newtonian slow-

motion limit, for gravitational waves emitted by pulsations

of rotating NSs (i.e., in astrophysical situations comparable

to collapsing stellar cores at bounce in terms of compact-

ness and rotation rates) it yields results that agree very well

in phase and to �10–20% in amplitude with more sophis-

ticated methods [61,64].

In order to assess the prospects for detection by current

and planned interferometer detectors and to specifically

address the issue of detection range and expected event

rates, we calculate the dimensionless characteristic gravi-

tational wave strain hc of the signal according to [65]. We

first perform a Fourier transform of the gravitational wave

strain h,

ĥ ¼
Z 1

�1
e2�ifthdt: (21)

To obtain the (detector dependent) integrated characteristic

signal frequency

fc ¼
�Z 1

0

hĥ2i
Sh

fdf

��Z 1

0

hĥ2i
Sh

df

��1

(22)

and the integrated characteristic signal strain

hc ¼
�

3
Z 1

0

Shc
Sh

hĥ2ifdf
�
1=2

; (23)

the power spectral density Sh of the detector is needed

(with Shc ¼ ShðfcÞ). We approximate the average hĥ2i over
randomly distributed angles by ĥ2, assuming optimal ori-

entation of the interferometer detector. From Eqs. (22) and

(23) the signal-to-noise ratio can be computed as SNR ¼
hc=½hrmsðfcÞ�, where hrms ¼

ffiffiffiffiffiffiffiffi
fSh

p
is the value of the rms

strain noise (i.e., the theoretical sensitivity window) for the

detector.

III. NUMERICAL METHODS

We perform all simulations using the COCONUT code

described in detail in [14,62]. The equations of general

relativistic hydrodynamics are solved in semidiscrete fash-

ion. The spatial discretization is performed by means of a

high-resolution shock-capturing scheme employing a

second-order accurate finite-volume discretization. We

make use of the Harten-Lax-van Leer-Einfeldt (HLLE)

flux formula for the local Riemann problems and

piecewise-parabolic reconstruction of the primitive varia-

bles ð�; vi; �Þ at cell interfaces. For a review of such

methods in general relativistic hydrodynamics, see [66].

The time integration and coupling with curvature are car-

ried out with the method of lines [67] in combination with a

second-order accurate explicit Runge–Kutta scheme. Once

the state vectorU is updated in time, the primitive variables

are recovered from the conserved ones given in Eq. (3)

through an iterative Newton–Raphson method. Note that
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the component associated to Ye in the system (4) of hydro-

dynamic evolution equations is treated as a passive advec-

tion equation, which does not contribute to the

characteristic structure in the form of eigenvalues and

eigenvectors required by some flux solvers.

To numerically solve the metric equations we utilize an

iterative nonlinear solver based on spectral methods. The

spectral grid of the metric solver is split into 6 radial

domains with 33 radial and 17 angular collocation points

each. The combination of high-resolution shock-capturing

methods for the hydrodynamics and spectral methods for

the metric equations (the Mariage des Maillages or ‘‘grid

wedding’’ approach) in a multidimensional numerical code

has been presented in detail in [62]. Even when using

spectral methods the calculation of the spacetime metric

from the system (12)–(14) of elliptic equations is computa-

tionally expensive. Hence, in our simulations the metric is

updated only once every 100=10=50 hydrodynamic time

steps before/during/after core bounce, and extrapolated in

between. The numerical adequacy of this procedure has

been tested and discussed in detail in [14].

In this study we focus on the gravitational wave signal

associated with core bounce. As demonstrated by [17,25],

effects that may break rotational symmetry are most likely

unimportant in this context. Hence, we assume axisymme-

try and in addition impose symmetry with respect to the

equatorial plane.

The COCONUT code utilizes Eulerian spherical coordi-

nates fr; 
g, and for the computational grid we choose 250

logarithmically spaced, centrally condensed radial zones

with a central resolution of 250 m and 45 equidistant

angular zones covering 90�. A small part of the grid is

covered by an artificial low-density atmosphere extending

beyond the core’s outer boundary defined where � 	
10�4�c;i.

We also note that we have performed extensive resolu-

tion tests with different grid resolutions to ascertain that

the grid setup specified above is appropriate for our

simulations.

IV. COLLAPSE DYNAMICS AND WAVEFORM

MORPHOLOGY

A. Generic waveform type

We begin our discussion with an analysis of the gravi-

tational radiation waveform emitted during core bounce as

an indicator for the influence of the EoS, the progenitor

structure, and the precollapse rotational configuration on

the collapse and bounce dynamics. In Fig. 2, we present

example waveforms for representative collapsing cores

selected from the investigated parameter space of models

(i.e., less or more massive progenitors with slow or rapid

precollapse rotation, varying degree of differential rota-

tion, and using either the Shen EoS or LS EoS). The

waveforms of all models are of type I, and hence exhibit

a positive prebounce rise and a large negative peak, fol-

lowed by a ringdown. In the light of a considerably ex-

tended parameter space in terms of EoS and progenitor

mass of the rotating core-collapse models investigated in

this work, we thus confirm the observation presented in

[17,18,38,41] that in general relativistic gravity all models

with microphysics exhibit gravitational wave burst signals

of type I.
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FIG. 2 (color online). Time evolution of the gravitational wave

amplitude h for representative models with different precollapse

rotation profiles using the Shen EoS (red lines) or LS EoS (blue

lines). Models with slow and almost uniform precollapse rotation

(e.g., s11A1O07) develop considerable prompt postbounce con-

vection visible as a dominating lower-frequency contribution in

the waveform, while the waveform for both models with mod-

erate rotation (e.g., s11A3O13, s15A2O05, s20A2O09,

s40A1O07, or e15a) and rapidly rotating models, which undergo

a centrifugal bounce (e.g., s40A3O13 or e20b), exhibit an

essentially regular ringdown. Time is normalized to the time

of bounce tb.
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As already inferred in [18,41], this signal type can be

classified into three subtypes, which, however, do have in

common the same qualitative features of a type I waveform

described above:

(1) For a slowly rotating core, prompt convective over-

turn at early postbounce times after the pressure-

dominated bounce adds a significant low-frequency

contribution to the regular ringdown signal (see,

e.g., model s11A1O07).

(2) In the case of moderately rapid rotation, which still

leads to a pressure-dominated bounce, this convec-

tion is effectively suppressed due to the growing

influence of angular momentum gradients [33,68]

and does not strongly stand out in the postbounce

ringdown signal (see, e.g., models s11A3O13,

s15A2O05, s20A2O09, s40A1O07, or e15a).

(3) If rotation is sufficiently rapid, the core bounces at

subnuclear or only slightly supernuclear densities

due to the increased effects of centrifugal forces,

reflected by a significant widening of the bounce

peak of the waveform and an overall lower fre-

quency of the signal (see, e.g., models s40A3O13

or e20b).

Figure 2 also demonstrates that for comparable precollapse

rotational configuration (as specified by the parameters A
and �i) the impact of the EoS on the collapse dynamics

and, hence, the gravitational wave signal is small. In Table

III, we mark each model with its type of collapse dynam-

ics, and in Fig. 3 we encode that type in the parameter

space spanned by rotational configuration, progenitor

mass/model, and EoS.

For our set of collapse models, only in four cases (mod-

els s11A1O13, s15A1O07, s20A1O09, and s40A1O05) the

LS EoS yields a signal with dominant convective contri-

bution, while the Shen EoS does not, and only a single

model (s15A2O15) changes its collapse type from a cen-

trifugal bounce to a pressure-dominated bounce when re-

placing the Shen EoS with the LS EoS. However, Fig. 3

shows that the transition between the three different col-

lapse and waveform subtypes occurs at different precol-

lapse rotational configurations for the various progenitor

masses. This is a consequence of differences in the mass

Mic;b of the inner core at bounce as discussed in Sec. IVC.

The growth of the strong prompt early postbounce con-

vection in slowly rotating models depends sensitively on

the seed perturbations resulting from the numerical

scheme/grid. In nature, prompt convection will be influ-

enced by random small-scale to large-scale variations in

the final stages of silicon burning that are frozen in during

collapse. We point out that the duration of the prompt

postbounce convection is most likely overestimated in

our approach, since in full postbounce radiation-

hydrodynamics calculations, energy deposition by neutri-
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FIG. 3 (color online). Collapse dynamics of all investigated

models in the parameter space of precollapse rotational configu-

ration (specified by the precollapse angular velocity �c;i at the

center and the precollapse differential rotation length scale A),
progenitor mass Mprog, and EoS. Models marked by unfilled/

filled circles undergo a pressure-dominated bounce with/without

significant early postbounce convection, while models marked

with crosses show a single centrifugal bounce. The EoS is

encoded as in Fig. 1, while small/medium/large symbols repre-

sent the precollapse rotation parameter A1/A2/A3. For better

visibility, the symbols for the same Mprog but different EoS are

spread a bit in the vertical direction. Note also that in this and the

following plots that encode the precollapse rotational configura-

tion in the form of the parameter �i, we refrain from including

models e15a, e15b, e20a, and e20b, as these have a precollapse

rotation profile that is not given by the analytic rotation law (18).
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FIG. 4 (color online). Mass Mic;b of the inner core at the time

of bounce for all models versus the precollapse initial central

angular velocity �c;i. The progenitor model, the EoS, the initial

rotation parameter A, and the collapse dynamics are encoded as

in Fig. 3.
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nos in the immediate postshock region rapidly smooths out

the negative entropy gradient left behind by the shock (see,

e.g., [20,69]) and quickly damps this early convective

instability.

B. Influence of general relativity and deleptonization

The general type of collapse and bounce dynamics of the

core, i.e., pressure-dominated or centrifugal bounce, can be

influenced (provided that the description of gravity and

neutrino effects are identical) by the progenitor core strati-

fication and thermodynamic structure, the amount and

precollapse distribution of angular momentum, and the

properties of the EoS in the density regime just below the

stiffening threshold [18,41]. These conditions influence the

mass Mic;b of the homologously contracting inner core at

bounce, which in turn determined the region that is dy-

namically relevant at bounce and sets the initial size of the

proto-neutron star.

In Fig. 4, we show the resulting variation of Mic;b with

�c;i, progenitor model, precollapse differential rotation

parameter A, EoS, and collapse type (encoded via symbols

as in Fig. 3). The details of the variation of Mic;b with

progenitor, EoS and rotational configuration will be dis-

cussed in Sec. IVC. In the following, without loss of

generality, we focus on a single progenitor and discuss

the influence of general relativity and deleptonization on

the collapse dynamics and the gravitational wave burst

signal along the lines of the discussion in [18,41].

In order to assess the individual influence of relativistic

effects and deleptonization, and to explain the absence of

type II and III burst signals in microphysical general

relativistic models, in [18,41] we compared collapse mod-

els of the s20 progenitor using the Shen EoS and a descrip-

tion for deleptonization with models using a simple hybrid

polytropic/�-law EoS. We selected the adiabatic index �eos

of these simple models in such a way that the transition

between pressure-dominated bounce and centrifugal

bounce occurs at the same precollapse rotation rate �i as

for the microphysical models. With this method we were

able to demonstrate that the influence of deleptonization

can be approximated by a correction ��� ’ 0:03 that must

be applied to the estimate of the average EoS adiabatic

index �eos;Shen ’ 1:32 in the density interval between 1012

and 1014 g cm�3. This leads to a generic value for the

effective adiabatic index �eff;Shen ¼ �eos;Shen � ��� ’
1:32� 0:03 ¼ 1:29, practically independent of the precol-
lapse rotational configuration, both in Newtonian gravity

and general relativity (where relativistic effects are ac-

counted for by a correction ��gr ’ �0:015). A graphic

representation of this argument is shown in the top panel of

Fig. 5, that is identical to Fig. 2 in [18] and Fig. 4 in [41],

and which we include here for completeness.

The estimate �eff ’ 1:29 for microphysical models also

allows us to explain the suppression of multiple centrifugal

bounces with an associated type II waveform in a straight-

forward way, since this type of collapse occurs only in the

respective hybrid EoS models with an effective adiabatic

index that is much closer to 4=3, i.e., �eff � 1:31. Rapid
collapse dynamics that is characterized by a type III burst

signal is also not realized in microphysical models of

massive star collapse, as it requires a mass of the inner

core at bounce Mic;b & 0:3M� [13], which is considerably

smaller than those found in microphysical models with any

of our progenitors, for which we find Mic * 0:4M� (see

Fig. 4, and also the discussion in Sec. IVC). However, in

[25,70] it is suggested that rapid collapse dynamics and a

type III burst signal may be associated with very efficient

electron capture in the accretion-induced collapse of mas-

sive, rapidly rotating white dwarfs.

Finally, we point out that calculations with �eff used in

the hybrid EoS have the tendency to underestimate the

massMic;b at bounce compared with the full microphysical

treatment. This is a consequence of the fact that in these
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FIG. 5 (color online). Boundary between pressure-dominated

and centrifugal bounce in the �eff � �i plane for s20 progenitor

models using the hybrid EoS in Newtonian gravity (dashed lines)

and general relativity (solid lines). The curved dotted lines show

the Newtonian results shifted by ���gr ¼ 0:015. The transition

points for models using the microphysical EoS without and with

deleptonization, again for Newtonian gravity (circles) and gen-

eral relativity (bullets), lie in the shaded areas around �eos;Shen ’
1:32 and �eff;Shen ’ 1:29, respectively, for the Shen EoS (top

panel) and around �eos;LS ’ 1:3225 and �eff;LS ’ 1:285, respec-
tively, for the LS EoS (bottom panel).

GRAVITATIONAL WAVE BURST SIGNAL FROM CORE . . . PHYSICAL REVIEW D 78, 064056 (2008)

064056-11



calculations �eff is kept constant throughout the collapse,

leading to a reduction of the inner core massMic already at

much earlier collapse stages than in microphysical models.

The underestimated Mic;b, in turn, leads to gravitational

wave burst signals from bounce in those simple models that

are quantitatively or even qualitatively incorrect (as in the

case of type III signals, which do not occur in micro-

physical models). Hence, while useful for understanding

the collapse dynamics, the �eff approach cannot replace the

full microphysical treatment with a nonzero-temperature

microphysical EoS and deleptonization as performed in the

present work.

C. Influence of the equation of state and progenitor

model

At densities below �nuc the total fluid pressure is domi-

nated by the contribution from the degenerate electrons,

hence the two microphysical EoSs should lead to rather

similar dynamics in the infall phase of collapse. This is also

reflected in the very similar behavior of their adiabatic

indices �eos as shown in Fig. 6.

In the bottom panel of Fig. 5, we demonstrate that the

same influence of general relativistic effects and delepto-

nization as discussed in Sec. IVB applies for the s20

progenitor when the LS EoS is used instead of the Shen

EoS. We obtain values of �eos;LS ’ 1:3225 for the adiabatic
index of the EoS (without deleptonization) and �eff;LS ’
1:285 for the effective adiabatic index (including delepto-

nization), which is in very close agreement with the values

deduced from the simulations using the Shen EoS. As

shown in Fig. 7, now only for general relativistic gravity,

there is some spread of �eff with progenitor mass/model,

but on average, we find �eff ’ 1:28 for the s11, s15, and s40
progenitor models.

Again following the line of arguments presented in

[18,41], the combination of a low effective adiabatic index

�eff < 1:31 and a high inner core mass Mic * 0:4M� at

bounce results in a type I gravitational wave burst signal

for all our models, independent of the EoS or progenitor

model. Note that creating Figs. 5 and 7 we have performed

additional simulations of microphysical models that are

more narrowly spaced in �i;c (and correspondingly in �i)

than the ones listed in Table II. As a result, those figures

reveal a small dependence of the transition between

pressure-dominated bounce and centrifugal bounce (i.e.,

the location of the bullets and circles in the direction of the

abscissa) on the EoS, which is generally not apparent from

Table II.

Although the sensitivity of the deleptonization and col-

lapse dynamics on the progenitor mass and EoS is only

small, Fig. 4 still reveals a dependence of the inner core

massMic;b at bounce both on the EoS and (in particular) on

rotation. Furthermore, Mic;b varies nonmonotonically with

the progenitor massMprog. In the absence of rotation,Mic;b

is solely determined by the mean trapped lepton fraction

Ylep ¼ Ye þ Y� and specific entropy s in the inner core

[1,2,27,71] with a roughly quadratic dependence on both

quantities. Since we employ the same Yeð�Þ parametriza-

tion (based on model s20) for all models with the same
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FIG. 6 (color online). Adiabatic index �eos of the Shen EoS

(red line) and LS EoS (blue line) versus the maximum density

�max in the collapsing core for model s20A2O09. Although �max,

which for this model is located in the center of the core, does not

follow a trajectory of constant specific entropy, s is still approxi-
mately conserved in the prebounce phase. Inset: Magnified view

of �eos in the dynamically most relevant density range between

1012 and 1014 g cm�3. The average value of �eos in this density

regime is roughly 1.32 for both EoSs.
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FIG. 7 (color online). Boundary between pressure-dominated

and centrifugal bounce in the �eff ��c;i plane for models of all

progenitors using the hybrid EoS in general relativity. The

transition points for models using the microphysical EoS with

deleptonization (bullets) lie in the shaded area around �eff ’
1:28. Except for the rotation profile A2 of the s15 progenitor, the
locations of these points are identical for the two EoSs. Note that

for the A1 profiles of any progenitor (and the A2 profile for the

s11 progenitor) we do not observe a centrifugal bounce for any

value of�c;i. In contrast to Fig. 5, we use here the�c;i instead of

�i as parameter for the precollapse rotational configuration (see

the discussion in Sec. II E).
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EoS, the variations inMic;b are caused by differences in the

specific entropy in the precollapse iron core. Generally, the

specific entropy in the iron core increases with progenitor

mass, but, in particular, in the mass range of �18–25M�,
the relationship of progenitor mass and specific core en-

tropy can be nonmonotonic (see, e.g., [58]). However, note

that the systematics for Mic;b with progenitor mass seen in

Fig. 4 are possibly overemphasized by our Yeð�Þ parame-

trization and may be less pronounced in full radiation

transport simulations, which remain to be carried out in

the future.

For a rotating collapse, the variations of Mic;b with

progenitor mass are amplified, while the overall system-

atics are preserved. Obviously, a more massive and hence

more extended inner core is more susceptible to the influ-

ence of centrifugal forces (which scale proportional to the

radius r) than a less massive and thus more compact inner

core. This behavior is confirmed by Fig. 4, which depicts

the dependence of the mass Mic;b of the inner core at

bounce on the precollapse central angular velocity �c;i,

the EoS, and the differential rotation parameter A. Models

with comparably large precollapse iron core specific en-

tropy (and also large iron core mass) and, thus, largerMic;b

already in the nonrotating case, show a more pronounced

increase of Mic;b with rotation than models with lower

precollapse specific entropy (and also smaller iron core

mass). The scaling of Mic;b with �c;i, at fixed differential

rotation parameter A, is linear for small to intermediate

�c;i and turns approximately quadratic for the most rapidly

rotating configurations. On the other hand, when increas-

ing the degree of differential rotation A at fixed �c;i, Mic;b

decreases since then the angular velocity in the outer parts

of the inner core and consequently centrifugal support

drops.

We also observe that the impact of the EoS on the mass

of the inner core manifests itself only via an almost con-

stant positive relative increase in Mic;b of �10% when

changing from the LS EoS to the Shen EoS, practically

independent of rotation and progenitor mass (see Fig. 4).

Again, the mean electron (respectively lepton) fraction and

specific entropy in the inner core are the key to under-

standing these systematics. The representative s20 pro-

genitor model used to parametrize Yeð�Þ in this study

yields minima for Ye in the center of the core at bounce

of �0:249 and �0:241 for the Shen EoS and the

LS EoS, respectively. This relative difference of �3:3%
translates into a difference in Mic;b of �7%, assuming that

the mass of the inner core scales quadratically with Ye,

which slightly underestimates the actual change. We attrib-

ute the remaining difference to variations in the specific

entropy s of the inner core at bounce due to the slightly

more efficient electron capture in the models with the

LS EoS.

We point out that the progenitor models e15a, e15b,

e20a, and e20b, which already come with a rotation profile

from the stellar evolution calculation, are very well repre-

sented in terms of collapse dynamics, waveform, and

postbounce rotation state by members of our model set

with an artificially added precollapse rotation profile, spe-

cifically the models s15A2O09, s15A2O15, s20A2O09,

and s20A2O15. For this reason we refrain from separately

discussing those special models in this paper.

D. Influence of differential rotation

Increasing the degree of differential rotation by lowering

the value of the differential rotation parameter A at fixed

precollapse central angular velocity �c;i results in less

centrifugal support in outer core regions and, as already

pointed out in Sec. IVC, in a smaller mass Mic;b of the

inner core at bounce. Consequently, a higher value of �c;i

is necessary for a stronger differentially rotating precol-

lapse core to become significantly affected by centrifugal

forces during the collapse. This is confirmed by Fig. 7,

which displays the systematics of the transition between

pressure-dominated and centrifugal bounce for our set of

progenitors and the A2 and A3 rotation profiles. Compared

with the transition values of �c;i for the A2 profile, the A3

profile requires a roughly 20–40% higher �c;i (varying

slightly with progenitor model) for a transition from

pressure-dominated to centrifugal bounce.

In previous extensive parameter studies of rotating stel-

lar core collapse (see, e.g., [14–16]) the effect of differen-

tial rotation was studied in model sequences in the

parameter space spanned by the precollapse differential

rotation parameter A and the precollapse rotation rate �i.

At a constant �i, more differentially rotating models re-

quire a larger�c;i than less differentially rotating ones and

experience core bounce at lower densities. Hence, at fixed

�i, more differentially rotating models are generally more

affected by centrifugal effects. Our s20 model series is

constructed as a sequence of fixed �i for each of the

rotation profiles A1, A2, and A3 (see Table II), and there-

fore permits a direct comparison with preceding work. Our

results confirm qualitatively the previously identified sys-

tematics (see Table III). However, in contrast to more

simplistic simulations, the combination of general relativ-

ity and deleptonization in our models weakens the overall

impact of centrifugal effects on the collapse dynamics (see

Sec. IVB), and consequently leads to much smaller quan-

titative changes in the characteristic collapse variables

(such as �max;b, jhjmax, Mic;b, or �b) when varying the

degree of differential rotation.

V. STRUCTURE OF THE POSTBOUNCE CORE

AND IMPACT ON THE WAVE SIGNAL

A. Equation of state at supernuclear densities and

maximum density in the core

From Table III it is apparent that the change from the

Shen EoS to the LS EoS in an otherwise identical model
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results systematically in an increase of the peak maximum

density �max;b at bounce, i.e., �max;b;LS >�max;b;Shen. This

result is in agreement with the previous Newtonian study of

Kotake et al. [32] who compared simulations of a single

model carried out with the Shen EoS and the LS EoS.

For centrifugally bouncing models, which only margin-

ally exceed or even remain below �nuc at bounce, the

absolute increase in the maximum core density at bounce

is small, exhibiting a maximum ��max;b ¼ �max;b;LS �
�max;b;Shen ¼ 0:13� 1014 g cm�3 for model s40A3O09

(leaving aside the exceptional models s40A2O13 and

s40A2O15, which we will discuss separately later). This

is another manifestation of the similarity of the two micro-

physical EoSs at subnuclear densities (see also Sec. IVC).

For slowly or at most moderately fast rotating models

that undergo pressure-dominated bounce and whose center

exceeds supernuclear density at (and also after) bounce,

��max;b can amount up to 1:19� 1014 g cm�3 for model

s11A1O01, the most slowly rotating model of the s11

model series. This strong impact of the EoS can be readily

explained by the fact that at supernuclear densities the LS

EoS is considerably softer than the Shen EoS. Figure 6

shows a difference in the adiabatic index �eos between the

two microphysical EoSs (for a representative model) of

about ��eos ’ �0:5 at those densities, where nuclear

forces have an essential impact on the EoS properties.

The large effect of the EoS seen in �max;b in models

where this quantity exceeds �nuc does not contradict our

TABLE III. Summary of relevant quantities from the rotating collapse of all iron core models. �max;b is the maximum density in the

core at the time of bounce, jhjmax is the peak value of the gravitational wave amplitude for the burst signal, while �b and �pb are the

rotation rates at the time of bounce and late after core bounce, respectively. Models marked by unfilled/filled circles undergo a

pressure-dominated bounce with/without significant early postbounce convection, while models marked with crosses show a single

centrifugal bounce. The values left/right of the vertical separator (j) are for the Shen/LS EoS.

Collapse

model

�max;b

½ 1014

g cm�3�
jhjmax

[10�21 at 10 kpc]

�b

[%]

�pb

[%]

Collapse

model

�max;b

½ 1014

g cm�3�
jhjmax

[10�21 at 10 kpc]

�b

[%]

�pb

[%]

s11A1O01 �j� 3:24j4:43 0:05j0:05 0:1j0:1 0:1j0:1 s15A1O01 �j� 3:28j4:43 0:20j0:20 0:2j0:2 0:3j0:3
s11A1O05 �j� 3:23j4:41 0:26j0:25 0:3j0:3 0:4j0:5 s15A1O05 �j� 3:17j4:20 0:98j0:97 1:0j1:0 1:3j1:2
s11A1O07 �j� 3:22j4:35 0:51j0:49 0:6j0:6 0:8j0:8 s15A1O07 
j� 3:12j4:13 1:84j1:84 2:0j1:9 2:4j2:6
s11A1O09 �j� 3:17j4:21 0:95j0:90 1:1j1:1 1:3j1:4 s15A1O09 
j
 2:97j3:88 3:11j3:08 3:4j3:4 3:7j4:0
s11A1O13 
j� 3:11j4:13 1:77j1:76 2:0j2:0 2:4j2:6 s15A1O13 
j
 2:86j3:56 5:35j5:01 6:2j6:1 6:0j6:6
s11A2O05 �j� 3:16j4:18 1:30j1:35 1:4j1:5 1:6j1:7 s15A2O05 
j
 2:95j3:76 4:04j3:94 4:1j4:1 3:8j4:3
s11A2O07 
j
 3:02j3:92 2:47j2:52 2:8j2:8 2:9j3:0 s15A2O07 
j
 2:81j3:44 6:84j6:33 7:5j7:4 6:7j6:8
s11A2O09 
j
 2:94j3:69 4:08j4:00 4:8j4:8 4:6j4:7 s15A2O09 
j
 2:58j3:05 8:61j7:83 11:8j11:6 10:3j10:4
s11A2O13 
j
 2:76j3:35 6:68j6:09 8:5j8:4 7:9j8:0 s15A2O13 
j
 2:14j2:33 7:07j6:21 18:2j17:5 15:6j15:5
s11A2O15 
j
 2:66j3:15 7:72j7:01 10:9j10:8 9:8j9:9 s15A2O15 �j
 1:80j1:90 4:01j3:73 20:1j19:7 17:9j18:1
s11A3O05 
j
 3:02j3:88 2:96j3:05 3:2j3:2 2:8j3:0 s15A3O05 
j
 2:82j3:46 7:65j7:27 7:2j7:4 5:7j5:8
s11A3O07 
j
 2:89j3:60 5:33j5:30 5:9j6:0 5:1j5:2 s15A3O07 
j
 2:55j2:94 10:06j9:55 12:8j12:7 10:0j9:9
s11A3O09 
j
 2:71j3:25 8:42j7:66 9:7j9:7 8:0j8:2 s15A3O09 
j
 2:17j2:31 9:74j8:48 18:7j18:1 14:8j14:6
s11A3O12 
j
 2:46j2:75 8:92j7:84 14:9j14:7 12:3j12:3 s15A3O12 �j� 1:15j1:26 5:68j4:82 21:1j21:0 18:3j18:9
s11A3O13 
j
 2:36j2:64 8:62j7:73 16:1j15:8 13:2j13:2 s15A3O13 �j� 0:72j0:84 5:33j4:52 21:3j21:3 18:9j19:6
s11A3O15 
j
 2:10j2:23 7:21j6:32 19:4j18:6 16:2j15:8 s15A3O15 �j� 0:25j0:30 4:84j4:53 22:2j22:3 20:3j21:1
s20A1O01 �j� 3:28j4:41 0:13j0:13 0:1j0:1 0:2j0:2 s40A1O01 �j� 3:29j4:42 0:50j0:42 0:4j0:4 0:5j0:6
s20A1O05 �j� 3:21j4:23 0:63j0:64 0:7j0:7 0:9j1:0 s40A1O05 
j� 3:13j4:14 2:12j1:92 1:9j1:8 2:1j2:3
s20A1O07 �j� 3:17j4:23 1:19j1:28 1:3j1:3 1:6j1:9 s40A1O07 
j
 2:96j3:89 3:89j3:57 3:5j3:5 3:7j4:5
s20A1O09 
j� 3:10j4:11 2:20j2:12 2:3j2:3 2:6j3:0 s40A1O09 
j
 2:85j3:64 5:97j5:37 5:9j5:8 5:7j6:5
s20A1O13 
j
 2:95j3:77 3:81j3:68 4:3j4:3 4:5j5:0 s40A1O13 
j
 2:63j3:22 8:30j7:07 10:2j9:9 9:4j9:5
s20A2O05 
j
 3:03j3:94 2:89j2:89 3:0j3:0 2:9j3:1 s40A2O05 
j
 2:81j3:57 7:43j6:79 6:8j6:7 5:7j5:8
s20A2O07 
j
 2:90j3:63 5:04j4:87 5:5j5:5 5:1j5:3 s40A2O07 
j
 2:57j3:06 9:95j8:74 11:8j11:6 9:9j9:9
s20A2O09 
j
 2:75j3:31 7:46j6:73 9:0j8:8 8:0j8:3 s40A2O09 
j
 2:22j2:44 9:22j7:80 17:3j16:7 14:3j14:3
s20A2O13 
j
 2:42j2:75 7:83j7:07 14:8j14:4 12:8j12:9 s40A2O13 �j� 0:91j1:28 4:04j3:30 20:4j20:6 19:2j19:0
s20A2O15 
j
 2:20j2:37 7:00j6:10 17:8j17:2 15:4j15:2 s40A2O15 �j� 0:27j0:40 3:51j3:51 21:1j21:4 20:3j21:0
s20A3O05 
j
 2:92j3:62 5:59j5:53 5:6j5:7 4:6j4:7 s40A3O05 
j
 2:65j3:21 10:19j10:07 10:5j10:6 7:6j7:7
s20A3O07 
j
 2:70j3:20 9:50j8:72 10:1j10:2 8:0j8:1 s40A3O07 
j
 2:21j2:47 10:29j10:09 17:2j16:8 12:7j12:5
s20A3O09 
j
 2:38j2:63 9:67j8:65 15:7j15:4 12:5j12:4 s40A3O09 �j� 1:69j1:72 7:45j7:72 21:6j21:4 16:9j16:8
s20A3O12 
j
 1:93j2:00 6:52j5:98 21:0j20:3 17:6j17:1 s40A3O12 �j� 0:33j0:40 7:36j6:34 22:5j22:8 19:2j20:1
s20A3O13 �j� 1:77j1:79 5:35j4:98 21:3j20:8 18:1j18:0 s40A3O13 �j� 0:23j0:28 7:40j6:51 22:9j23:4 19:8j20:7
s20A3O15 �j� 0:65j0:75 4:62j3:78 21:6j21:5 19:7j20:2 s40A3O15 �j� 0:09j0:11 6:90j6:90 24:4j25:1 21:5j22:4
e15a 
j
 2:66j3:25 9:85j8:30 9:7j9:5 7:6j7:8
e15b �j� 1:61j1:69 3:62j3:57 20:2j20:1 18:0j19:0
e20a 
j
 2:69j3:35 9:41j8:09 8:7j8:5 6:4j6:4
e20b �j� 1:41j1:50 6:40j5:54 21:0j20:4 18:3j17:4
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observation that the EoS has little impact on the collapse

dynamics, since once the core plunges into the supernu-

clear density regime, where stronger differences in the two

microphysical EoSs emerge, the mass Mic;b of the inner

core at bounce is already fixed and the bounce dynamics

(pressure dominated or centrifugal) is already determined.

The impact of the EoS on �max;b is also visualized in

Fig. 8. As expected, for moderately or rapidly rotating

models, whose central parts do not reach high supernuclear

densities at bounce, the difference in �max;b gradually

decreases. Figure 8 also reveals that the two models

s40A2O13 and s40A2O15 (marked by two dark and light

blue crosses at intermediate values of �c;i, respectively)

are the ones that undergo a clear centrifugal bounce for

both EoSs with the lowest value of �c;i of all models with

the A2 rotation profile.

The convergence of �max;b for the two microphysical

EoS with increasing rotation can also be observed in the

relative difference ��max;b;rel ¼ �max;b;LS=�max;b;Shen � 1

shown in Fig. 9, which starting from ��max;b;rel ’
35–40% in the nonrotating limit first declines linearly

with �c;i until it levels off at roughly constant values.

However, the largest values are obtained with ��max;b;rel ’
40% and 48% for the rapidly rotating and centrifugally

bouncing models s40A2O13 and s40A2O15, emphasizing

their exceptional nature. This particular behavior results

from a combination of two effects, exhibited by only these

two models in our entire model set. First, when switching

from the Shen EoS to the LS EoS the inner core massMic;b

at bounce significantly decreases (see Fig. 4). Hence, in the

LS EoS variant the two models experience weaker rota-

tional support (in particular with the differential rotation

parameter A2; see also Sec. IVC). Second, the two models

bounce in a density regime (see Table III and Fig. 6), where

the LS EoS exhibits a smaller �eos than the Shen EoS,

resulting in less pressure support when the LS EoS is used.

The combination of weaker rotational support and pressure

support when using the LS EoS can then readily explain the

excess in �max;b;LS compared with �max;b;Shen in the two

exceptional s40 models.

A higher value of the maximum density �max in the

collapsed core for the LS EoS is not limited to the time

of bounce, but typically also remains in the nascent proto-

neutron star at later postbounce times, as shown in Fig. 10

for models representing the three collapse type and wave-

form subclasses (see Sec. IVA). Only very rapidly and thus

centrifugally bouncing models such as model e20b in

Fig. 10 have a time evolution of �max that is practically

independent of the chosen EoS.

We point out that in our discussion we always make use

of the maximum density �max instead of the central density

�c, since, after bounce, some of the most rapidly rotating

and thus centrifugally bouncing models develop a slightly

toroidal density structure with an off-center density maxi-

mum that is at most 20% larger than �c. This is much less

extreme than for models with the simplified hybrid EoS

treatment, where the maximum density was found to be

several orders of magnitude larger than the central density

in extreme cases [13,14].
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FIG. 8 (color online). Maximum density �max;b in the star at

the time of bounce for all models versus the precollapse central
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models, which do not exceed nuclear density at bounce, �max;b is
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(light hues), while for slowly rotating models the difference

reaches ��max;b ’ 1014 g cm�3 in the nonrotating limit. The
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0 5 10

Ω
c,i

 [rad s
-1

]

0

10

20

30

40

50

∆
ρ

m
ax

,b
,r

el
 [

%
]

s11
s15
s20
s40

FIG. 9 (color online). Relative change ��max;b;rel of the maxi-

mum density at bounce when changing from the Shen EoS to the

LS EoS for all models versus the precollapse central angular

velocity �c;i. The progenitor mass and the precollapse differen-

tial rotation parameter A are encoded as in Fig. 3, while the

collapse dynamics are not specified.
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B. Structure of the postcollapse core and peak

waveform amplitude

Since the LS EoS leads to higher central densities at

bounce, one can on the one hand expect higher gravita-

tional wave peak amplitudes in the burst signal from core

bounce, as a denser and more compact core should yield in

an increase of the contribution to the quadrupole moment

from the central parts of the core. Furthermore, the asso-

ciated shorter dynamical times also lead to a more rapid

time variation in the quadrupole formula. On the other

hand, the higher compactness of the inner core of a model

run with the LS EoS results in lower densities at inter-

mediate and large radii than in the less compact core of the

corresponding model with the Shen EoS. In turn, this may

lead to an effectively smaller total quadrupole moment and

thus to a decrease in the signal amplitude compared with

the counterpart model with the Shen EoS. We now test

which of these two competing effects dominates in our

models.

In Fig. 11, we show the peak value jhjmax of the gravi-

tational wave amplitude for the burst signal from core

bounce (see also Table III), where we neglect any possibly

larger contributions at later times for models with strong

prompt postbounce convection. For slowly or at most

moderately rapidly rotating cores, jhjmax rises steeply

with increasing �c;i and covers a range of more than 2

orders of magnitude for our selection of initial models. For

rapid rotation, when centrifugal forces become dynami-

cally important and can be the dominant factor at bounce,

the peak amplitude jhjmax saturates and even decreases

again at very high �c;i. This behavior is a consequence

of centrifugal support, which prevents such rapidly spin-

ning cores from reaching high densities and more extreme

compactness as well as being subject to short variations of

the quadrupole moment (see also the discussion in Sec. VII

and in [16]).

For each precollapse rotational configuration (i.e., at

constant �c;i and differential rotation parameter A in

Fig. 11), the value of jhjmax depends indirectly on the

massMprog of the progenitor via the massMic;b of the inner

core at bounce. As already discussed in Sec. IVC, Mic;b

does not depend in a monotonic way on Mprog, but for our

standard model set increases in the order of the progenitor

models s11, s20, s15, and s40. Therefore, for pressure-

dominated bounce models the amplitude of the gravita-

tional wave signal directly scales with Mic;b in the obvious

sense that more massive inner cores produce stronger

gravitational wave emission.

What cannot be extracted from Fig. 11 is a clear effect of

the choice of the EoS on jhjmax, despite the strong differ-

ence in �max;b we observe between models using the Shen

EoS and the LS EoS. When plotting the relative change

�jhjmax;rel ¼ jhjmax;LS=jhjmax;Shen � 1 obtained by chang-

ing from the Shen EoS to the LS EoS for the same initial

model (as presented in Fig. 12), the majority of models

shows a decrease of jhjmax;LS compared with jhjmax;Shen.

Only six out of the 68 models (s11A2O05, s11A2O07,

s11A3O05, s20A1O05, s20A1O07, and s40A3O09) listed

in Table III exhibit a larger jhjmax when the LS EoS is used.

This behavior is similar to the situation discussed by

Dimmelmeier et al. [14] who compared collapse dynamics

and gravitational waveforms obtained from Newtonian and

general relativistic collapse simulations with the simple

hybrid EoS. They showed that for jhjmax the global density

distribution in the core at bounce is decisive, not the local

maximum density value. In their simulations, the general

relativistic variants consistently produced an increase of

�max;b compared with their Newtonian counterparts. Still,

they found that the peak value jhjmax of the gravitational

-10 0 10 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ρ
m

ax
 [

10
1

4  g
 c

m
-3

]

s20A2O09

-10 0 10 20

t − t
b
 [ms]

0.0

0.5

1.0

1.5

ρ
m

ax
 [

10
1

4  g
 c

m
-3

]

Shen EoS
LS EoS

e20b

-10 0 10 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

ρ
m

ax
 [

10
1

4  g
 c

m
-3

]
s11A1O07

FIG. 10 (color online). Time evolution of the maximum den-

sity �max for representative models with different precollapse

rotation profiles using the Shen EoS (red lines) or LS EoS (blue

lines). While models with at most moderate precollapse rotation

rates (e.g., s11A1O07 or s20A2O09) undergo a pressure-

dominated bounce at supernuclear densities, rapidly rotating

models (e.g., e20b) experience a centrifugal bounce.
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wave amplitude actually decreases for most models when

general relativistic effects are taken into account.

In [14], the negative �jhjmax;rel observed in many mod-

els when comparing Newtonian and relativistic simulations

could be attributed to the ‘‘density crossing’’ that occurs at

some radius inside the inner core at bounce: The general

relativistic simulation of a model yields a higher density

inside that (angle dependent, due to rotation) radius, while

for larger distances from the center, � is smaller compared

with the Newtonian simulation. Here, we vary the EoS

rather than the description of gravity, but we observe a

very similar density crossing in models that show

jhjmax;LS < jhjmax;Shen. In Fig. 13, we demonstrate this for

models s20A3O09 (representative for a pressure-

dominated bounce) and s40A2O13 (representative for a

centrifugal bounce).

Following the argument in [14], we plot the weighted

density �r2 in Fig. 14, since this is the relevant quantity in

the integrand of the quadrupole gravitational wave for-

mula. Although the larger �r2 of the model with the LS

EoS gives a larger quadrupole contribution out to the

crossing radius, in most models the larger �r2 in the outer

parts of the core in the variant with the Shen EoS more than

compensates this and ultimately leads to a larger integral

quadrupole moment and, thus, to a stronger gravitational

wave burst. We note that in [14], allmodels whose collapse

type did not change exhibited lower peak waveform am-

plitudes (�jhjmax;rel < 0) when going from Newtonian to

general relativistic gravity. In contrast, going from the

relatively stiff Shen EoS to the softer LS EoS results in a

less clear trend with a few models exhibiting �jhjmax;rel >

0. This suggests a less dramatic impact of a change from

the Shen EoS to the LS EoS compared with altering the

description of gravity.

For the small set of our models with �jhjmax;rel > 0 we

are neither able to identify any obvious and systematic

correlation with model parameters nor do we find any clear

systematics of �jhjmax;rel > 0 with ��max;b;rel. It appears

that the sign and magnitude of �jhjmax;rel depends sensi-

tively and in a complicated way on the details of the

collapse dynamics in each individual model. Hence, we

can only explain why specific model differences in the

density structure at bounce between the model variants

with the Shen EoS and the LS EoS lead to an observed

�jhjmax;rel, but cannot predict �jhjmax;rel based on precol-

lapse model parameters.

C. Frequency spectrum of the waveform and variation

with the equation of state

In contrast to the somewhat ambiguous impact of the

EoS on the peak waveform amplitude, the effect of replac-

ing the Shen EoS with the LS EoS on the waveform peak

frequency is unequivocal for models undergoing a

pressure-dominated bounce. The increase in the maximum

density at bounce in the models with the LS EoS always

results in a shift of the main peak in the waveform spectrum

to higher frequencies. In the center panel of Fig. 15, we

plot the waveform spectrum (i.e., the Fourier transform ĥ
of h) for model s20A3O09 as a representative pressure-

dominated bounce model. The spectrum of this model

exhibits a distinct and narrow high-frequency peak at
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later times) for all models versus initial precollapse central

angular velocity �c;i. The progenitor mass, the EoS, the pre-

collapse differential rotation parameter A, and the collapse

dynamics are encoded as in Fig. 3.
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fmax;Shen ¼ 710 Hz when using the Shen EoS, while the

calculation of the same model with the LS EoS results in a

peak at fmax;LS ¼ 744 Hz. Thus, for this particular model,

the change in EoS shifts the frequency associated with the

bounce peak by �fmax ¼ þ34 Hz. We observe similar

values for �fmax in all models undergoing pressure-

dominated bounce.

At frequencies below about 200 Hz, the waveform spec-

trum of s20A3O09 exhibits a plateau, which is due to the

low-frequency contribution from prompt large-scale post-

bounce convection. Such a contribution is present in many

models with slow to moderate rotation, but gradually de-

creases in magnitude and relevance with increasing rota-

tion. As pointed out in Sec. IVA, our present numerical

scheme has the tendency to overestimate prompt post-

bounce convection compared with full radiation-

hydrodynamics calculations.

The waveform of the slowly spinning model s20A1O05,

whose spectrum is shown in the top panel of Fig. 15, is

dominated by such prompt postbounce convective mo-

tions. Accordingly, for this model, there is a strong con-

tribution to the spectrum at low frequencies, even

exceeding the still clearly discernible bounce peak at

high frequencies. Nevertheless, also in this case the shift

of the high-frequency bounce peak when replacing the

Shen EoS by the LS EoS is obvious and obeys the system-

atics discussed above.

With increasing rotation, centrifugal forces become

more relevant and slow down the late phase of collapse

and bounce. As a consequence, fmax always retreats to

10
24

10
25

10
26

Shen EoS
LS EoS

11 0

r [km]

10
24

10
25

10
26

ρ
e 
r 2

 [
g
 c

m
-1

]

s20A3O09

s40A2O13

FIG. 14 (color online). Radial profiles of the weighted density

�er
2 in the equatorial plane at the time of bounce for model

s20A3O09 (top panel) and model s40A2O13 (bottom panel)

using the Shen EoS (red lines) and LS EoS (blue lines). The

vertical lines mark the crossing radius.

Shen EoS
LS EoS

100 1000
f [Hz]

〈

lo
g 

h

s20A1O05

s20A3O09

s20A3O13

f
max,Shen

 = 737 Hz

f
max,Shen

 = 710 Hz

f
max,Shen

 = 467 Hz

f
max,LS

 = 806 Hz

f
max,LS

 = 744 Hz

f
max,LS

 = 490 Hz

FIG. 15 (color online). Spectrum of the gravitational radiation

waveform for model s20A1O05 (top panel), model s20A2O09

(center panel), and model s20A3O13 (bottom panel) using the

Shen EoS (red line) and LS EoS (blue line). ĥ is the Fourier

transform in frequency space of the waveform amplitude h. The
dotted lines mark the frequency fmax at the maximum of the
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FIG. 13 (color online). Radial profiles of the density �e in the

equatorial plane at the time of bounce for model s20A3O09 (top

panel) and model s40A2O13 (bottom panel) using the Shen EoS

(red line) and LS EoS (blue line). In the central parts of the

proto-neutron star (for these models at radii smaller than the

crossing radius r ’ 5:5 km and r ’ 23:5 km, respectively,

marked by dotted lines) the LS EoS leads to higher densities.
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lower frequencies. This is apparent in the spectrum of the

centrifugal bounce model s20A3O13 shown in the bottom

panel of Fig. 15. For this model, one can still identify the

high-frequency bounce peak, but now at significantly lower

frequencies around 400–500 Hz. Note that the low-

frequency quasicontinuous part of the spectrum in centri-

fugally bouncing models, such as s20A3O13, is due to

rotationally slowed dynamics and stronger postbounce

oscillations, and should not be confused with the low-

frequency contribution from prompt convection in slowly

rotating models.

In Fig. 16, we plot fmax for all models that undergo

pressure-dominated bounce and thus exhibit a clearly vis-

ible high-frequency peak in their spectra that can be asso-

ciated with the gravitational wave burst from core bounce.

For all models the systematic increase of fmax when chang-

ing from the Shen EoS to the LS EoS is apparent, and only

for very few rapidly rotating models close to the threshold

to centrifugal bounce the change of fmax becomes small. In

Table IV, we summarize the arithmetic mean �fmax along

with the respective absolute and relative differences be-

tween models using the Shen EoS and the LS EoS. Note

that when computing fmax we neglect the contribution

below a cutoff frequency fcut ¼ 250 Hz in order to exclude
any influence from the possibly unphysically strong and

prolonged early postbounce convection.

In previous work [18], Dimmelmeier et al. discussed the

detection prospects for the gravitational wave burst emitted

in rotating core-collapse models based on the s20 progeni-

tor and using the Shen EoS. To this end, they simulated a

large set of models with varying precollapse rotation rates

�i in the range from 0.05–4%, approximately logarithmi-

cally spaced in 18 steps for each of the three rotation

profiles A1, A2, and A3. For the current work, we have

repeated the calculations of this model set (which is ex-

tended in terms of precollapse rotation compared with our

standard models stated in Table II, but limited to one

progenitor), this time with the LS EoS. While the models

with the Shen EoS that undergo pressure-dominated

bounce have an arithmetic mean peak frequency
�fmax;Shen � 718 Hz [18], we find �fmax;LS � 758 Hz when

using the the LS EoS. Thus, for this particular model we set

the average relative frequency shift amounts to � �fmax;rel �
5:6%. Both the average peak frequencies and their change

with EoS are consistent with what we find for our standard

model set using the four different progenitors and a more

restricted variety of precollapse rotation rates.

VI. DETECTION PROSPECTS FOR THE

GRAVITATIONALWAVE BURST SIGNAL

In order to assess the detectability of the burst signal

from core bounce, we compute the (detector-dependent)

frequency-integrated characteristic signal frequency fc and
dimensionless characteristic gravitational wave amplitude

hc using Eqs. (22) and (23), respectively. We again exclude

frequencies below 250 Hz from the integrals in an attempt

to filter out dominant contributions from prompt post-

bounce convection in slowly rotating models. In Fig. 17,

we plot hc against fc for the current LIGO detector [72] at a

distance of 10 kpc. For comparison with the detector

sensitivity, we include its rms strain sensitivity curve.

Note that the total energy emitted in gravitational waves

ranges from Egw � 3:5� 10�10 to 5:3� 10�8 in units of
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FIG. 16 (color online). Frequency fmax at the maximum of the

waveform spectrum for all models with a given progenitor mass

versus the precollapse central angular velocity�c;i. Only models

that undergo pressure-dominated bounce are shown. The dotted

lines mark the average �fmax when using the Shen EoS or LS EoS.

The progenitor mass, the EoS, the precollapse differential rota-

tion parameter A, and the collapse dynamics are encoded as in

Fig. 3.

TABLE IV. Average �fmax of the frequency at the maximum of

the waveform spectrum for all models with a given progenitor

mass. � �fmax and � �fmax;rel are the absolute and relative change of

the frequency average, respectively, when changing from the

Shen EoS to the LS EoS.

Collapse

model set

�fmax;Shen

[Hz]

�fmax;LS

[Hz]

� �fmax

[Hz]

� �fmax;rel

[%]

s11 733 777 44 6.0

s15 658 702 44 6.7

s20 690 724 34 4.9

s40 685 716 31 4.5
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M�c
2 (including the contribution from convection) for our

standard models.

The distribution of our standard set of models (as listed

in Table II) in the hc � fc plane of Fig. 17 obeys straight-

forward systematics. The clustering in frequency of the

large number of models undergoing a pressure-dominated

bounce (marked by circles in Fig. 17) is obvious. Very

slowly rotating models, whose waveforms are dominated

by the imprint of prompt postbounce convection (unfilled

circles), exhibit the lowest values for hc, which increases

with faster rotation (along arrow 1), reflecting that the inner

core at bounce becomes more massive (cf. Secs. IVC and

VB). Despite the frequency cut at 250 Hz in the integral for

fc, the low-frequency contribution from convection in the

spectrum leads to an fc that is lower than the value ob-

tained for more rapidly rotating models without significant

postbounce convection (filled circles). For the latter model

class, hc simply grows with increasing precollapse rotation

(along arrow 2), now at practically constant fc. Even for

these models, fc is always lower than the average peak

frequency �fmax of their waveform spectra, which amounts

to 715 Hz for the 108 models of our standard model set

(including the e15/e20 models) which exhibit a pressure-

dominated bounce. This is a consequence of the detector

characteristics, whose maximum sensitivity is at much

lower frequencies between 100 and 200 Hz and thus ac-

cordingly lowers fc in comparison with a fiducial flat

sensitivity curve.

For rapid rotation, the influence of centrifugal forces on

the collapse dynamics manifests itself as a centrifugal

barrier that limits the characteristic amplitude hc (see

also the discussion in Sec. VII A and Fig. 11).

Simultaneously, the characteristic frequency fc moves to

increasingly lower values as faster rotation slows down the

collapse (along arrow 3). Models that rotate so rapidly that

they undergo a purely centrifugal bounce (marked by cross

symbols in Fig. 17) constitute a practically separate class

(area 4) in the hc � fc diagram somewhat below the maxi-

mum value of the amplitude hc, but at considerably lower

frequencies fc.
For very rapidly rotating models the imprint of centrifu-

gal effects on various waveform characteristics (such as

fmax, fc, jhjmax, or hc) is quite pronounced and permits one

to infer on the precollapse rotational configuration in the

case of a successful detection of gravitational waves from a

core-collapse event. As already noted in [18], in the case of

moderate or slow rotation, which is the astrophysically

most probable case [31,59], the insensitivity of the wave-

form’s frequency characteristics to variations in the pre-

collapse configuration significantly obstructs the

‘‘inversion problem’’ of gravitational wave detection, i.e.,

the constraining of physical parameters of the precollapse

core or of the nascent proto-neutron star from a detected

waveform, leaving only the (e.g., maximum or integrated

characteristic) amplitude as an indicator of the rotational

configuration. In addition, Fig. 16 also implies that it will
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FIG. 17 (color online). Location of the gravitational wave

burst signals from core bounce for all models (including the

e15/e20 models) in the hc � fc plane relative to the sensitivity

curves of the LIGO, assuming at a distance of 10 kpc. The

meaning of the arrows 1, 2, and 3 as well as area 4 are explained

in the main text. The dotted line marks the average �fmax of the

frequency at the maximum of the waveform spectrum. The

progenitor model, the EoS, the initial rotation parameter A,
and the collapse dynamics are encoded as in Fig. 3.
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FIG. 18 (color online). Location of the gravitational wave

burst signals from core bounce in the hc � fc plane relative to

the sensitivity curves of various interferometer detectors (as

color-coded) for an extended set of models with the progenitor

s20 using the Shen EoS (dark hues) or LS EoS (light hues). The

sources are at a distance of 10 kpc for LIGO, 0.8 Mpc for

Advanced LIGO, and 15 Mpc for EURO. The dotted lines

mark the average �fmax of the frequency at the maximum of the

waveform spectrum for the models when using the Shen EoS or

LS EoS. Only the EoS and the collapse dynamics are encoded as

in Fig. 3, but not the precollapse differential rotation parameter

A.
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be very hard, if not impossible, to constrain other possibly

unknown model parameters aside from rotation (such as

EoS or progenitor mass) from the gravitational waveform

of the burst signal from core bounce alone, since their

effect on the burst waveform is small and no clear trends

or systematics are discernible, which adds to the degener-

acy of the inversion problem.

As an example, we again single out the impact of the

EoS on the waveform frequency, while keeping the pro-

genitor model s20 fixed. For the particular, extended set of

models with many precollapse rotation rates already dis-

cussed in Sec. VC, we show in Fig. 18 the location of the

waveform signals in the hc � fc plane for initial LIGO at a

distance of 10 kpc, Advanced LIGO in broadband tuning

[72] at a distance of 0.8 Mpc, and the projected EURO

detector in xylophone mode [73] at a distance of 15 Mpc

(cf. Fig. 4 in [18]). All 54 s20 models of [18] using the

Shen EoS along with the newly computed corresponding

models with the LS EoS are shown.

It is obvious that the spread within the group of models

with either the Shen EoS or the LS EoS is larger than the

variation due to a change in the EoS, since the effect of the

EoS on the characteristic signal frequency fc is small

(comparable to � �fmax;rel, corresponding to a change of a

few percent). The two EoSs considered here bracket the

range from rather soft (LS EoS) to rather stiff (Shen EoS),

and therefore it is unlikely that employing a larger variety

of nonzero-temperature nuclear EoSs would lead to any

more optimistic conclusions.

Based on the relative positions of the models with

respect to the individual detector sensitivities, from

Fig. 18 we conclude (in agreement with previous work

[17,18]) that initial-LIGO-class detectors are sensitive only

to signals coming from an event in the Milky Way, while

Advanced-LIGO-class observatories could marginally de-

tect events from other galaxies in the Local Group (e.g.,

M31 Andromeda at�0:8 Mpc distance). For the proposed
EURO detector in xylophone mode, we expect a very high

signal-to-noise ratio (hc divided by the detector sensitivity

at fc). This detector could also observe many of the com-

puted signals at a distance of 15 Mpc, i.e., in the Virgo

cluster, for which one expects a favorably high event rate.

VII. ROTATION OF THE PROTO-NEUTRON STAR

The calculations presented in this study impose axisym-

metry, hence we are unable to track the development of

rotationally induced nonaxisymmetric structures and dy-

namics. Nevertheless, we can utilize the results from our

simulations to assess the possibility of rotational triaxial

instabilities during the collapse and early postbounce

phase. In this way we can (i) test the reliability of our

present restriction to axisymmetry and (ii) put constraints

on the relevance of the various types of such instabilities in

a core-collapse event.

Nonaxisymmetric rotational instabilities in proto-

neutron stars have long been proposed as strong and po-

tentially long-lasting sources of gravitational waves. In

principle, the gravitational wave emission by a nonaxisym-

metrically deformed proto-neutron star after bounce could

easily exceed (see, e.g., [17,25]) in total emitted energy

(and, hence, in characteristic strain hc) the gravitational

wave burst from core bounce on which this paper is

focussed.

In the context of classical Newtonian theory of fluid

equilibria (see, e.g., [74]), MacLaurin spheroids (i.e., axi-

symmetric, rigidly rotating, equilibrium configurations of

uniform density) become unstable to nonaxisymmetric

deformation when a nonaxisymmetric configuration with

lower total energy exists at a given rotation rate �.
MacLaurin spheroids become dynamically unstable to de-

formation into Riemann ellipsoids at � * �dyn ¼ 27%. At

� * �sec ¼ 14%, they become secularly unstable to triax-

ial ellipsoidal deformation in the presence of dissipative

processes (Jacobi ellipsoids via gravitational wave back-

reaction known as the Chandrasekhar-Friedman-Schutz

(CFS) instability [75,76], or Dedekind ellipsoids via vis-

cous processes). In both the dynamical and the secular

case, the lowest-order deformation in terms of azimuthal

nonaxisymmetric modes proportional to expðim’Þ is the

m ¼ 2 Kelvin (bar-) f-mode, where ’ is the azimuthal

angle and the mode order m is an integer.

Although Newtonian MacLaurin spheroids are highly

idealized configurations, numerical studies (see, e.g., [77]

and references therein) have shown that the above insta-

bility threshold �dyn for the dynamical instability holds

approximately even when differentially rotating compress-

ible fluid configurations in general relativity are consid-

ered. The situation may be different for the gravitational

radiation backreaction driven secular instability, since per-

turbative studies (see, e.g., [78]) predict an onset at sig-

nificantly lower � in general relativity than in the

Newtonian case. However, fully relativistic nonlinear hy-

drodynamic studies of the secular instability remain yet to

be carried out.

Recently, a new kind of dynamical rotational nonaxi-

symmetric instability at a value of � much lower than the

classical threshold has been discovered both in numerical

and perturbative studies (see, e.g., [17,22,25,79–85] and

references therein). This low-� instability (making the

classical MacLaurin instability a ‘‘high’’-� instability)

appears to amplify nonaxisymmetric modes at points

where their pattern speed �m (the eigenfrequency !m

divided by the azimuthal mode order m) coincides with

the local angular velocity of the fluid [22,81–83].

A. The rotational barrier in core collapse

From first principles one can derive that the conservation

of angular momentum during the collapse phase results in

an increase of the angular velocity � of a representative
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Lagrangian mass element proportional to$�2, where$ ¼
r sin
 is the distance from the rotation axis. Setting for

simplicity $ equal to the spherical radial coordinate r
(which, of course, only holds in the equatorial plane),

this translates into a scaling of the centrifugal force pro-

portional to r�3. The gravitational force, on the other hand,

increases only like r�2. Hence, even in this simple

Keplerian picture, one may expect a dominance of the

centrifugal force over gravity at sufficiently small r. In a

more elaborate approach, employing sequences of

Newtonian self-gravitating equilibrium spheroids,

Tohline [86] demonstrated that such a rotational barrier

at which the collapsing core becomes centrifugally stabi-

lized indeed exists in the context of stellar core collapse.

This rotational barrier marks the hard upper limit for the

contraction of the inner core, hence also puts an upper limit

�rb on the rotation rate that can be reached when varying

�c;i for a given combination of precollapse degree of

differential rotation and progenitor structure.

Tohline’s qualitative conclusions have been confirmed

by multiple numerical studies of rotating collapse (see,

e.g., [12–14,16,25] and our present work), while the quan-

titative results, in particular, the analytic critical rotation

rate for centrifugal stabilization of collapse, do not hold for

a dynamical collapse situation and must be determined via

nonlinear hydrodynamic simulations [18].

In Fig. 19 we plot the time evolution of the rotation rate

� for a sequence of rotating collapse models with increas-

ing precollapse central angular velocity�c;i while all other

model parameters are kept fixed. All models reach their

maximum rotation rate �max close to the time of core

bounce, hence �max ’ �b. After bounce, the inner core

re-expands and settles into a new quasi-equilibrium con-

figuration with �pb <�b. Slowly to moderately rapidly

rotating models experience little rotational support, and

in those cases �b increases roughly linearly with �c;i
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FIG. 19 (color online). Time evolution of the rotation rate �
around the time of core bounce for various models of the s20

progenitor series computed with the Shen EoS at fixed precol-

lapse degree A of differential rotation and varying the precol-

lapse central angular velocity�c;i. Note that we have augmented

this sequence by three extra models s20A3O16 to s20A3O18

(with �i ¼ 3:00, 3.50, and 4.00, respectively) not listed in

Table III.
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FIG. 20 (color online). Rotation rate �b at the time of bounce

for all models versus the precollapse central angular velocity

�c;i. The progenitor mass, the EoS, the precollapse differential

rotation parameter A, and the collapse dynamics are encoded as

in Fig. 3. The lower horizontal line approximately separates

pressure-dominated bounce models with and without strong

prompt postbounce convection, while upper horizontal line

marks the approximate transition between pressure-dominated

bounce and centrifugal bounce.
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FIG. 21 (color online). Rotation rate �pb in the late postbounce

phase for all models versus the precollapse central angular

velocity �c;i. The progenitor mass, the EoS, the precollapse

differential rotation parameter A, and the collapse dynamics are

encoded as in Fig. 3. As in Fig. 20, the horizontal lines again

approximately mark the boundaries between different bounce

dynamics.

DIMMELMEIER, OTT, MAREK, AND JANKA PHYSICAL REVIEW D 78, 064056 (2008)

064056-22



(see also Table III). For higher values of �c;i, centrifugal

forces become relevant and �b saturates at �rb as the

models start to bounce centrifugally. For the s20A3 se-

quence with the Shen EoS considered here we determine

�rb to be �23%.

Figures 20 and 21 provide an overview of the depen-

dences of �b and �pb, respectively, on �c;i for our entire

model set as listed in Table III. Models that start out in

essentially solid-body rotation (A1) never reach a �b in

excess of �10% (with the maximum obtained in model

s40A1O13). With increasing �c;i such rigidly rotating

cores become eventually fully centrifugally supported al-

ready at the onset of collapse and do not collapse at all.

Differentially rotating models may have higher values of

�c;i and thus a more rapidly rotating center, while the core

is still allowed to collapse. As the collapse proceeds,

electron capture reduces the pressure support and the size

of the homologously collapsing inner core stays suffi-

ciently small that centrifugal forces can become dynami-

cally relevant only in the final phase of collapse (see the

discussion in Sec. IVB). Thus, for our model set, the most

differentially rotating configuration A3 leads to the highest

values for �b and �pb. A centrifugal bounce near the rota-

tional barrier occurs only in a small subset of very rapidly

(�c;i * 6:5 rad s�1) and differentially (A2/A3) rotating

models, generally at �b * 20:5%.

At a fixed precollapse degree of differential rotation and

�c;i,�b, and�pb increase with a more massive and radially

extended progenitor iron core (cf. Table I). This is analo-

gous to the systematics found for the rotational enhance-

ment of the inner core mass Mic;b at bounce (see Fig. 4).

The dependence of both �b and �pb on the EoS is small

and shows little systematic trend. The Shen EoS, on the one

hand, systematically yields a more massive and more ex-

tended inner core that bounces with more dynamically

relevant angular momentum than one obtained with the

LS EoS. The LS EoS, on the other hand, leads to more

compact configurations, which provide for stronger cen-

trifugal spinup in the final phase of collapse. The competi-

tion between these two effects results in the nonsystematic

difference between the two EoSs seen in Figs. 20 and 21.

The centrifugal barrier is also evident in Fig. 22, where

we plot the dependence of the peak value jhjmax of the

gravitational wave burst against the rotation rate �b at

bounce. It is noteworthy that centrifugal effects are respon-

sible for an upper limit in jhjmax even before the maximum

rotation rate �b � 25% is reached, which reflects the ob-

servation that the highest values of jhjmax � 1020 at 10 kpc
distance are obtained for models which still undergo a

pressure-dominated bounce, albeit at rapid rotation with

�b � 10%. Below these rotation rates, jhjmax scales line-

arly with �b with remarkable precision, which is important

information for the inversion problem in the case of a

detection. We find a similar linear dependence of jhjmax

on the postbounce rotation rate �pb. In that case, however,

the linear correlation is not as precise for low rotation rates

(as �pb is rather sensitive to angular momentum redistrib-

ution due to convection after core bounce) and, in addition,

the scaling becomes approximately quadratic well before

jhjmax reaches its upper limit.

B. The prospects for dynamical high-� instability in

iron core collapse

We find that none of our models surpass the threshold

rotation rate �dyn for the classical dynamical instability

(see Table III). The overall largest � of �25% is reached

by model s40A3O15, which has the most massive and

extended progenitor iron core (see Table I) in combination

with the strongest precollapse degree of differential rota-

tion and highest precollapse central angular velocity con-

sidered in this study. This value of �b � 25% comes close

to the numerically obtained instability threshold of �dyn *

25:5% reported in [77], but is maintained only for a very

short time, since the core rebounds and settles at a more

expanded quasi-equilibrium state after bounce.

Accordingly, its postbounce rotation rate �pb is �22%,

and thus this model is unlikely to become subject to a

dynamical high-� bar-mode instability. As portrayed by

Fig. 21, the models with less extreme precollapse condi-

tions in general reach a �pb significantly below �20%.

Based on the results from our extensive set of simula-

tions, we consider it unlikely that a proto-neutron star in

nature develops a high-� dynamical instability at or early

after core bounce. On the other hand, during its cooling to
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FIG. 22 (color online). Peak value jhjmax of the gravitational

wave amplitude at 10 kpc distance for the burst signal (neglect-

ing possibly larger contributions from postbounce convection at

later times) for all models versus the rotation rate �b at the time

of bounce. At slow to moderately rapid rotation, jhjmax is

proportional to �b to high accuracy (as marked by the dotted

line with a slope of 1 in the log-log plot), while for �b * 10%
centrifugal effects reduce jhjmax.
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the final cold and condensed neutron star, the proto-neutron

star contracts, and, if angular momentum is conserved and

not redistributed or shed by other means (see, e.g., the

discussion in [31,59]), spins up on a timescale of seconds

to minutes. While many of the proto-neutron stars in our

model calculations could theoretically reach �dyn, it is,

however, more likely that the secular instability driven by

dissipation or gravitational radiation backreaction, which

in proto-neutron stars has a growth timescale on the order

of 1 s [87], will set in first, completely diminishing the

chances for dynamical high-� instability even in the most

rapidly rotating proto-neutron stars.

Finally, we point out that it is in principle possible to

construct precollapse conditions that lead to �b and �pb

above �dyn. This may be achieved by increasing signifi-

cantly the precollapse degree of differential rotation and

�c;i above the values used in our most extreme models.

However, such configurations (including already the rota-

tional setup A3 in our models) are very unlikely to arise in

evolution scenarios of single massive stars, since stellar

evolution proceeds sufficiently slowly for redistribution of

angular momentum toward solid-body rotation to occur on

nuclear-burning timescales [31,43,88].

C. Differential rotation in the proto-neutron star and its

relevance for the low-� dynamical instability

The low-� dynamical instability appears to develop

exclusively in differentially rotating fluid bodies and has

been reported to occur even for rotation rates as low as

�1%, provided the degree of differential rotation is suffi-

ciently large [80].

The nature of the low-� instability remains to be deter-

mined in detail, yet it has been suggested [81] that it is a

type of dynamical shear instability that operates on the

shear energy stored in differential rotation and radially

redistributes angular momentum via the generation of an

azimuthal (nonaxisymmetric, spiral) structure that propa-

gates outward in radius [25,83]. In this picture, nonaxisym-

metric structure is generated by transfer of rotational

energy from the axisymmetric background fluid to an

azimuthal fluid mode at the location where the background

angular velocity matches the mode pattern speed (i.e., at

the corotation point). This proposed corotation mechanism

suggests a close relationship of the low-� instability ob-

served in simulations of stellar models with dynamical

instabilities in disks such as those described by

Papaloizou and Pringle [89].

The importance of differential rotation for the low-�
instability in stars can now be understood by the combina-

tion of two important factors: First, differential rotation

provides the reservoir of shear energy that can be tapped to

generate the nonaxisymmetric structure. Second, despite a

relatively low global rotation rate �, differential rotation
allows the central regions of a star to rotate sufficiently

rapid to be in corotation with the lowest-order unstable

modes that have pattern speeds of Oð2�=�dynÞ, where

�dyn � 2�

ffiffiffiffiffiffiffiffiffi

R3

GM

s

(24)

is the dynamical timescale of the rotating star set by the

Keplerian angular velocity [22,79].

Since solid-body rotation is the state of lowest rotational

energy, neutron stars are very likely to become rigidly

rotating within at most a few dissipative timescales during

their post-supernova cooling evolution. Significant differ-

ential rotation may be expected in early merger remnants

of binary neutron stars (e.g., [90]) and, importantly, is a

consequence of rotating iron core collapse to a proto-

neutron star investigated in the present work.

In Fig. 23, we plot radial profiles of the angular velocity

� in the equatorial plane at 20 ms after core bounce for

several of our models. As a result of quasihomologous

contraction, the near uniform precollapse rotational profile

of the inner core is essentially frozen during collapse [59].

In the outer core, however, the collapse proceeds super-

sonically, resulting in differential rotation at equatorial

radii * 10 km. In all models shown in Fig. 23, � declines

by about 2 orders of magnitude in the radial interval from

10 to 200 km, and roughly obeys a power-law with an

exponent in the range of �1:2 to �1:4. Generally, a

stronger degree of precollapse differential rotation leads

to a steeper radial decline of � after bounce. When in-

creasing �c;i while keeping the degree of precollapse

differential rotation fixed, the outer core regions experi-

ence more centrifugal support during collapse, resulting in

a shallower postbounce slope for � (cf. model s20A2O15

in Fig. 23).
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FIG. 23 (color online). Radial profile of the angular velocity�
in the equatorial plane at 20 ms after the time of core bounce for

a representative subset of the models listed in Table III. Note that

the inner core is in approximate solid body rotation out to about

10 km, while the outer parts of the proto-neutron star and the

postshock region rotate strongly differentially. The dotted lines

mark the approximate range for the characteristic angular fre-

quency �char.
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In general, we find that the central angular velocity �c

after bounce increases monotonically with the precollapse

value �c;i. For our models we obtain values for �c in the

nascent proto-neutron star between about 2 and

6 radms�1, which corresponds to central rotation periods

of about 1 to 3 ms. Assuming a mass range of the proto-

neutron star of �0:6 to 0:8M� for the models considered

here (see Fig. 4) and a fiducial radius of the inner core at

bounce of �20 km, we obtain dynamical times of 1.7–

2.0 ms, which yield characteristic angular frequencies of

�char � 3–4 radms�1. Since the lowest-order unstable

mode is likely to have a pattern speed of the order of

�char, most models whose angular velocity we plot in

Fig. 4 may indeed have corotation points with an unstable

mode, hence could undergo a corotation-type low-� insta-

bility. Slow rotators (with �c;i & 2 rad s�1) do not appear

to reach a sufficiently high angular velocity in the inner

proto-neutron star core to have corotation points with

potentially unstable modes in the first several tens of milli-

seconds after bounce. However, this may change at later

times when the proto-neutron star contracts and spins up.

Finally, we point out that our discussion is based on a

very rough estimate of the pattern speed for the lowest-

order unstable azimuthal mode. More reliable estimates

can be made via multidimensional perturbative analysis

(see, e.g., [83] in the context of idealized models) or by

performing a large set of numerical simulations in three

dimensions, which we plan to carry out in a future study.

VIII. SUMMARYAND CONCLUSIONS

In this article we have presented results from a compre-

hensive set of collapse simulations of rotating stellar iron

cores to proto-neutron stars, using the axisymmetric gen-

eral relativistic hydrodynamics code COCONUT. Our simu-

lations treat all the relevant physics of the collapse phase to

good approximation. They include precollapse iron core

profiles from stellar evolutionary calculations, a highly

efficient approximate treatment of deleptonization, a mi-

crophysical finite-temperature EoS, as well as neutrino

pressure contributions. Magnetic fields are not included,

since their relevance in the collapse and early postbounce

phases is very likely negligible in cores with realistic

precollapse fields [5,31,33,37].

The focus of our study is on procuring accurate and

reliable waveforms of the gravitational wave burst signal

associated with core bounce and on understanding the

dependence of the signal characteristics on progenitor

star mass, precollapse rotational setup, and nuclear EoS.

To this end, we have performed the to-date most extensive

parameter study of this scenario, covering with more than

100 model calculations the parameter space spanned by

(1) progenitor mass and model profile (zero-age main

sequence masses from 11.2 to 40M�, presupernova models

with and without rotation), (2) rotational configuration

(slow and uniform to rapid and differential rotation), and

(3) nuclear EoS prescription (from relatively soft to rela-

tively stiff). Importantly, the parameter space encompasses

and even goes beyond all precollapse rotational configura-

tions that are deemed realistic in the context of collapsing

massive stars.

A central result of this work is the finding that the

gravitational wave burst from core bounce exhibits a ge-

neric waveform shape known as type I in the literature

[12,13], independent of the model parameters. The mul-

tiple centrifugal bounce dynamics and the corresponding

type II waveform found in previous, technically less com-

plete studies (see, e.g., [12–14,16]) do not occur in our

models.

We have demonstrated that all models with precollapse

core angular velocities�c;i below�5 rad s�1 (correspond-

ing periods longer than about 1 s) reach nuclear densities

and experience a core bounce predominantly due to nu-

clear pressure effects. More rapidly rotating cores develop

sufficient rotational support during collapse to undergo

either a mixture of centrifugal and pressure-dominated

bounce or a single centrifugal bounce at subnuclear den-

sities. Centrifugal hangup much below nuclear density or

multiple, damped harmonic oscillatorlike centrifugal

bounces do not occur. Therefore, these models also exhibit

a type I waveform. The detailed analysis of the collapse

dynamics presented in this paper reveals that the combined

effects of general relativity and deleptonization lead to an

increased destabilization of the collapsing core, result in a

relatively small radius and mass Mic;b of the sonically

connected inner core at bounce (but not small enough to

show the type III waveform associated with rapid collapse

found in some previous simplistic models), and diminish

the dynamical importance of centrifugal forces during

collapse.

The key parameter that determines the peak amplitude

jhjmax of the gravitational wave burst has turned out to be

the precollapse central angular velocity �c;i. Slowly rotat-

ing cores with �c;i & 1 rad s�1 produce feeble peak am-

plitudes on the order of 10�22 at a distance of 10 kpc. More

rapidly rotating cores with 1 rad s�1
& �c;i & 6 rad s�1

develop stronger quadrupole deformations and have a

rotationally increased mass Mic;b at bounce, resulting in

sizeable peak amplitudes in the range of 5� 10�22
&

jhjmax & 10�20. The peaks of the waveform spectrum of

such cores cluster in frequency space in the interval of

650–800 Hz. At larger �c;i, centrifugal effects become

strong, significantly decelerate collapse and bounce, and

even lead to a purely centrifugal bounce in a subset of

models. This results in a general decrease of jhjmax and a

shift of the waveform’s spectral peak to frequencies below

�400 Hz at high �c;i.

We have also shown that, in addition to �c;i, the pre-

collapse core mass in combination with the electron frac-

tion sets the mass Mic;b of the inner core at bounce, is an

important quantity influencing the strength of the gravita-
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tional burst. Since more massive progenitors generally

(though with notable nonmonotonicity in the mass range

from about 18 to 23M�) form larger iron cores, we observe

in our model series a general trend to bigger Mic;b and

larger jhjmax with increasing progenitor mass if all other

parameters are kept constant. For instance, the 40M� pro-

genitor yields values of jhjmax, which are up to 4 times

larger than for the lower-entropy 11:2M� counterpart with

the same rotational configuration.

The variations in the degree of differential rotation

considered in this study have only a minor impact on the

collapse dynamics and burst waveform amplitude.

Increasing differential rotation at fixed �c;i generally low-

ers the centrifugal support of outer core regions. However,

since the dynamically most relevant inner core at bounce

consists of only �0:5–1M� located within about 1000 km

at the onset of collapse, the effects of differential rotation

on the gravitational wave burst are small.

Our results further indicate that the nuclear EoS has little

influence on the gravitational wave burst signal. For a

given precollapse configuration, a softer nuclear EoS

yields higher densities at bounce and postbounce times

with shorter variation timescales of the quadrupole mo-

ment, but also leads to greater inner core compactness. In

our simulations, the two effects generally cancel, leading

to no systematic trend in the peak waveform amplitude

jhjmax with the EoS. The peak of the waveform spectrum,

however, shifts to higher frequencies in the case of a softer

EoS. For the models considered here, this frequency shift

amounts to �5:5% on average for models undergoing

pressure-dominated bounce. It is significantly smaller for

models bouncing at subnuclear densities under the influ-

ence of centrifugal effects.

If situated within our galaxy, a large fraction of our

models are comfortably detectable by current gravitational

wave detectors with a signal-to-noise ratio of up to 6 in the

most optimistic case (which is obtained for the most rap-

idly rotating models that still undergo pressure-dominated

core bounce). Advanced detectors could observe them

easily out to �100 kpc and up to several 10 Mpc for

third-generation detectors.

While such a gravitational wave signal may per se be

detectable, the extraction of detailed physical information

from the signal (i.e., solving the ‘‘inversion problem’’)

from the signal will be a formidable task. The very generic

morphology of the burst waveforms and the clustering in

frequency space of most models make it seem unlikely that

a pure waveform-template-based inversion (as, e.g., carried

out in [91] using the waveforms of [16]) can be successful

for determining key physical parameters to significant

precision. Our results, however, suggest that based on

jhjmax and the peak frequency fmax of the waveform spec-

trum alone, it should be possible to discriminate between

purely pressure-dominated bounce (small to large jhjmax at

frequencies fmax significantly above 500 Hz) and centrifu-

gal bounce (large jhjmax at frequencies fmax significantly

below 500 Hz). Furthermore, we find that for not too rapid

rotation jhjmax can be directly used to extract the rotation

rate �b at bounce to good precision.

Making use of the extensive set of postbounce rotational

configurations obtained with our simulations, we have also

studied the prospects for the development of nonaxisym-

metric rotational instabilities in nascent proto-neutron

stars. We find that the rotational barrier imposed by cen-

trifugal forces prohibits the spinup to rotation rates neces-

sary for the classical dynamical bar-mode instability at

high values of �. We find, however, that a large subset of

our postbounce models exhibits sufficiently differential

and rapid rotation to become subject to the recently dis-

covered low-� instability. Still, three-dimensional simula-

tions as in [17,19,22,38] will be necessary to provide

conclusive tests of our predictions. Furthermore, the inter-

action and competition of the low-� instability and other

instabilities operating on the shear energy of differential

rotation, for instance the magneto-rotational instability

(see, e.g., [33,92]), remain to be studied.

Finally, we point out that this study may be regarded as

part—with the presently highest level of sophistication—

of a multidecade effort of our groups [11–14,16–18] to

provide reliable estimates for the gravitational wave burst

emission associated with rotating core collapse and core

bounce. The waveforms presented here are for the first time

not only accurate (i.e., numerically converged), but reliable

and robust, since our calculations take into account all the

necessary physics, including general relativity, deleptoni-

zation, and a microphysical EoS. All waveforms are avail-

able for download in various formats in a publicly

accessible waveform catalog [42].

We point out that the gravitational wave emission pro-

cess considered in this work operates at measurable

strength only if the progenitor core is rotating a lot more

rapidly than expected for ordinary iron cores (see, e.g.,

[31,59]). In slowly rotating core-collapse supernovae, tur-

bulent convective overturn, instabilities of the accretion

shock, and, possibly, proto-neutron star pulsations are

likely to be the dominant emission processes of gravita-

tional waves. The characteristics of these emission pro-

cesses are not as well understood and will require more

extensive and precise modeling to provide accurate esti-

mates of the complete gravitational wave signature of core-

collapse supernovae.
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[33] P. Cerdá-Durán, J. A. Font, and H. Dimmelmeier, Astron.

Astrophys. 474, 169 (2007).

[34] T. Nakamura and H. Sato, Phys. Lett. A 86, 318

(1981).

[35] M. Shibata and Y.-I. Sekiguchi, Phys. Rev. D 69, 084024

(2004).
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