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Abstract
A generic ‘chirp’ of the form h(t) = A(t) cos φ(t) can be closely approximated
by a connected set of multiscale chirplets with quadratically-evolving phase.
The problem of finding the best approximation to a given signal using
chirplets can be reduced to that of finding the path of minimum cost in a
weighted, directed graph, and can be solved in polynomial time via dynamic
programming. For a signal embedded in noise we apply constraints on the path
length to obtain a statistic for detection of chirping signals in coloured noise.
In this paper we present some results from using this test to detect binary black
hole coalescences in simulated LIGO noise.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.30.Sf, 95.85.Sz

1. Introduction

Despite having achieved unprecedented sensitivities, experiments for laser interferometric
detection of gravitational waves such as LIGO [1] face significant challenges, not least of
which is the problem of detecting unmodelled or poorly modelled sources of gravitational
waves. For detecting the inspiral of a binary system, the standard technique is matched
filtering using a bank of templates parametrized by the component masses of the system.
For low-mass binaries, the time evolution of the inspiral is well-modelled by post-Newtonian
approximations, however for high-mass binaries the models are considerably less certain [2].
Furthermore, as the binary mass increases, the spin of the two bodies becomes a significant
factor in the evolution of the signal [3]. A complete description of a binary system including
the spin of both bodies requires 17 parameters, making the set of templates to be searched
over infeasibly large. Even when some parameters are neglected, estimates of the number
of templates needed to detect, for example, spinning extreme mass ratio inspirals using a
space-based detector such as LISA range from 1015 to 1040 templates [4, 5]. Methods have
been proposed to reduce the number of templates required, such as by using detection template

0264-9381/08/184020+12$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1

http://dx.doi.org/10.1088/0264-9381/25/18/184020
mailto:emmanuel@acm.caltech.edu
mailto:pcharlton@csu.edu.au
mailto:hannes@acm.caltech.edu
http://stacks.iop.org/CQG/25/184020


Class. Quantum Grav. 25 (2008) 184020 E J Candès et al

families which cover the expected range of gravitational wave signals [6, 7], but these still
require ∼105 templates [8].

Template methods for detecting binary coalescence events mostly focus on the inspiral
component or the ringdown component [9] and do not attempt to match the merger component,
believed to be a major contribution to the gravitational signature for black hole coalescences.
Modelling the inspiral and ringdown is relatively straightforward, whereas modelling the
merger requires robust techniques for solving the full Einstein equations numerically under
extreme conditions. Much progress has been made in achieving this goal but the problem is
far from solved [10, 11].

A number of potential gravitational wave signals are of short duration (less than 1 s) and
are collected under the heading of burst sources. These include events such as supernovae,
the final stages of binary black hole coalescence, and other potential sources of gravitational
waves such as gamma-ray bursts. Generally, models for these sources are either non-existent
or insufficient for constructing matched filters, and we must rely on non-parametric methods.
Various methods for detecting bursts have been proposed [12–17], and some have been applied
to interferometer data [18].

In this paper we apply a non-parametric detection scheme called the best path (BP) test
introduced in [19] to the detection of binary black hole coalescences in simulated LIGO noise.
The terminology comes from the study of weighted graphs and refers to the path between two
vertices of a graph which is of maximum total weight, subject to a constraint on its length.
The BP test is applicable to the detection of quasi-periodic signals of the form

h(t) = A(t) cos φ(t), (1)

where the amplitude A(t) varies slowly with time and the unknown phase φ(t) obeys some
regularity conditions. Signals of this form have a well-defined instantaneous frequency
f (t) = φ̇(t)/2π (to avoid confusion, we note that there is an unrelated method called the fast
chirp transform which is applicable to the detection of signals of the form (1) where the phase
function is known [20]).

2. Chirplet path pursuit

Given detector output

u(t) = n(t) + ρh(t), (2)

where n(t) is Gaussian coloured noise with two-sided power spectral density S(f ), we seek a
test statistic which will discriminate between the two hypotheses

H0 : ρ = 0 H1 : ρ �= 0. (3)

The null hypothesis is that the data are pure noise, while the alternative is that the data contain
a chirp-like signal of the form (1), normalized with respect to the inner product derived from
S(f ),

〈u, v〉 =
∫ ∞

−∞

ũ∗(f )ṽ(f )

S(f )
df. (4)

The parameter ρ may be interpreted as the expectation of the SNR,

SNR = 〈u, h〉
rms〈n, h〉 . (5)

Note that a one-sided PSD is more commonly used in the literature, equivalent to 2S(|f |). We
use the two-sided PSD here to simplify the discretized form of (4).
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Locally, chirps with smoothly-varying phase have a very simple structure. Over
short times their frequency evolution is approximately linear. For longer duration, local
approximations can be joined together so that the instantaneous frequency of the signal is
approximated by a piecewise linear function. In the following we outline the methodology for
obtaining a test statistic via chirplet path pursuit—details may be found in [19].

2.1. Multiscale chirplets

Consider a signal on the interval I = [0, T ). The preceding discussion suggests we should
examine functions which will correlate well locally with signals of the form (1). Our detection
method uses a dictionary of normalized multiscale chirplets of the form

cs,j,a,b(t) ∝ ei2π(at+bt2/2), t ∈ Is,j ⊆ I (6)

that is, a collection of chirplets supported on intervals Is,j and parametrized by length scale
s, location j , initial frequency a and chirp rate b. The intervals are taken to be dyadic of the
form Is,j = [j2−sT , (j + 1)2−sT ]. Here s = 0, 1, 2, . . . , represents a scale index and defines
the length of the dyadic interval. The dictionary has elements of various durations, locations,
initial frequencies and chirp rates. It is convenient to think of a chirplet as a line segment
a + bt supported on Is,j in the time–frequency plane.

Our test statistic is constructed by looking for a connected ‘path’ of chirplets in the
time–frequency plane that gives a good overall correlation with the signal. To achieve this
we notionally discretize the time–frequency plane and consider points (ti , fk) as vertices in
a directed graph. The frequency intervals may be chosen as convenient—for example, to
coincide with bins of a discrete Fourier transform. Fixing a time–frequency discretization also
fixes the discretization of the chirp parameter, since we think of chirplets as arcs connecting
vertices of the graph supported on dyadic intervals. Using the FFT we can quickly calculate
the local correlations |〈u, cs,j,a,b〉|2 of u(t) with elements of the chirplet dictionary, which we
use as the weights of the arcs connecting each vertex in the graph. Given a connected, non-
overlapping chirplet path P = {c1, c2, . . . , cp} supported on a partition P = {I1, I2, . . . , Ip}
of I the total weight of the path is

∑
p |〈u, cp〉|2. A description of our discretization scheme

may be found in the appendix.
Simply maximizing

∑
p |〈u, cp〉|2 over all chirplet paths will naively overfit the data. In

the limit of small chirplets, such a statistic would simply fit u(t) rather than a hidden signal.
Instead we use a multivariate statistic obtained as the solution of the optimization problem

T ∗
� = max

P

∑
p

|〈u, cp〉|2 subject to |P | � �. (7)

Here � is a constraint on the path length ie. the number of chirplets in the path. To be adaptive,
we calculate T ∗

� for several different path lengths, � ∈ L = {�1, �2, . . .}. While there are a
vast number of possible paths, using a variant of Dijkstra’s algorithm, calculating T ∗

� reduces
to a constrained dynamic programming problem which can be solved in O(|L| × #arcs) [21].
The number of arcs depends on such things as choice of discrete frequencies and chirp rates,
but is typically not more than N2 log2 N .

Since T ∗
� is a multivariate statistic we use a multiple comparison rule for rejecting the null

hypothesis [22]. Given data u(t) we test H0 at false alarm probability α using the following
procedure:

(1) For each � ∈ L, calculate T ∗
� and find the corresponding p-value under H0, p�.

(2) Compare the minimum p-value p∗ = min� p� with the distribution of minimum p-values
under H0.
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Figure 1. The best path found for a binary inspiral signal with total mass 16 M
 in white noise,
indicated by the dashed curve. Vertical lines delimit the support of individual chirplets in the path.
Note that the BP test uses long chirplets when the frequency is changing slowly, and short chirplets
when it is changing rapidly.

(This figure is in colour only in the electronic version)

(3) If p∗ is small enough to lie in the α-quantile of the distribution, reject H0—we conclude
a signal is present.

In this procedure we are choosing the ordinate of the multivariate test statistic that gives
the greatest evidence against the null hypothesis. We then compare this p-value with what one
would expect under the null hypothesis. Although there do not exist analytic expressions for
the distributions of T ∗

� and the minimum p-value, we can estimate them using Monte Carlo
simulations. We call T ∗

� the best path (BP) statistic. As an example, figure 1 shows the path
obtained for an inspiral signal in white noise.

3. Simulations

3.1. Noise model

To estimate the statistical power of the BP test we have studied the detection of certain
gravitational wave signals in simulated LIGO noise. Discretely sampled Gaussian noise is
produced via the following method. We generate two sequences of white noise ak and bk , then
construct a discrete Fourier representation of an instance of coloured noise ñk using the PSD
as follows:

ñ0 =
[
NSk

�t

] 1
2

a0

ñk =
[
NSk

�t

] 1
2 ak + ibk

2
k = 1, . . . , N/2 − 1
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ñN/2 =
[
NSN/2

�t

] 1
2

aN/2

ñk = ñ∗
N−k k = N/2 + 1, . . . , N − 1. (8)

By construction, the inverse DFT nk is real Gaussian noise with PSD Sk . The PSD used is the
polynomial fit given in ([23], table 5). This fit is only valid for frequencies above the LIGO-I
seismic wall frequency fs = 40 Hz. Seismic noise renders region below fs inaccessible to
gravitational wave searches. For the purposes of simulation, we mimic high-pass filtered data
by rolling off S(f ) below 20 Hz. When calculating the BP statistics we only search over paths
with instantaneous frequencies above fs . At this time we have not included non-Gaussian
features such as instrumental bursts in our noise model.

3.2. Signal model

Since the object of the exercise is to detect ‘real’ gravitational waves, we will use as our test
signals a collection of physically realistic waveforms for binary black hole coalescence. We
use a modification of the method in [12] to model a complete coalescence waveform. The
signal consists of an inspiral component, a merger component and a ringdown component.
While the inspiral and ringdown models are reasonable, the simulated merger should not
be taken to be physically realistic. Instead, it is meant to approximate the overall time and
frequency characteristics of a real merger.

The test signals are parametrized by the total mass M = m1 + m2 of the two bodies and
the symmetric mass ratio η = m1m2/M

2. The full waveform is obtained by combining the
components in such a way that the instantaneous frequency and amplitude are continuous up
to first derivatives:

h(t) =

⎧⎪⎨
⎪⎩

Ainsp(t) cos φinsp(t) t � 0

Amerge(t) cos φmerge(t) 0 < t � tm

Aring(t) cos φring(t) tm < t.

(9)

Here we have arranged for the inspiral component to end at t = 0 and the merger component
to end at t = tm. Following [24] we take the merger duration to be tm = 50M/M
 × T
.

For the inspiral component of the signal we use the non-spinning 2PN approximation for
the phase in the form given by ([25], equation (15.24)). For amplitude we use the leading order
(i.e. Newtonian) expression given in ([25], equations (15.27) and (15.28)). For simplicity we
average over orientation (ι, β) and sky position to obtain

Ainsp(t) = 8

5

T
c

D

ηM

M


[
πT
Mf insp(t)

M


]2/3

, (10)

where D is the distance to the source.
We model the inspiral component from the time the instantaneous frequency enters the

sensitive band of the detector above fs up to the commencement of the merger component.
Deciding where the boundary between inspiral and merger lies is somewhat arbitrary. We
follow [24] in making the transition at the point where post-Newtonian approximations begin
to break down. It is convenient to fix this transition at t = 0. A conservative estimate [24]
is that errors in the 2PN approximation become significant when the instantaneous frequency
reaches

f0 = M

M

× 4100 Hz, (11)

so we set the coalescence time tc of the inspiral in ([25], equation (15.24)) by solving
f insp(0) = f0.
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The ringdown component is assumed to be an exponentially damped sinusoid with
constant frequency f ring as given in ([25], equation (18.3)). Our amplitude model, adapted
from [26], is

Aring(t) = A√
20π

T
c

D

M

M

e−πf ring(t−tm)/Q, (12)

where a is the dimensionless spin parameter, Q = 2(1 − a)−0.45 is the quality factor,

A = 4

[
πε

Q[1 − 0.63(1 − a)0.3]

]1/2

(13)

and ε is the fraction of M radiated as gravitational waves during the ringdown. The factor of
1/

√
20π in (12) comes from averaging over orientations and sky positions. This is essentially

the same amplitude model as given in ([25], equation (18.5)).
Our inspiral component has been arranged to terminate at t = 0, with ringdown

commencing at t = tm. Since no analytic models exist for the merger component, we fit the
amplitude and phase functions to bridge the gap between inspiral and ringdown. Assuming
that the merger waveform is of the form (1), a simple way to connect the inspiral and ringdown
waveforms is to require that the amplitude be continuous to first derivatives, and the phase
to be continuous up to second derivatives (thus ensuring that the instantaneous frequency
is continuous up to first derivatives). This gives four conditions that must be satisfied by
f merge(t) and Amerge(t) at t = 0 and t = tm, so we model f merge(t) and Amerge(t) by cubic
polynomials. Since we also require the phase to be continuous at t = 0, we obtain φmerge(t)

from the anti-derivative of f merge(t) with an appropriate constant of integration. We note
that phenomenological templates for coalescing binaries have recently become available [27],
however our waveforms are qualitatively very similar, and for testing purposes it is convenient
to know the exact form of the instantaneous frequency and be able to set the precise times of
transition from inspiral to merger to ringdown. Phenomenological templates will be examined
in future work.

3.3. Choice of signal parameters

To test detection efficiency we used signals of length N = 512, N = 1024 and N = 2048
sampled at 2048 Hz. Signals of roughly this duration are produced by BBH systems with total
mass in the range 20–50 M
. As most models for the ringdown waveforms assume equal mass
binaries, we will only consider this case. The masses used were m1 = m2 = 22.5, 15 and 10.
Motivated by recent numerical experiments [10, 11], we take a = 0.7 and ε = 0.01. While the
procedure for producing a merger waveform is crude, it does produce a signal with frequency
and amplitude characteristics similar to those seen in numerical relativity simulations.
Figure 2 shows the strain and instantaneous frequency for these binary coalescences at a
distance of 1 Mpc for the M = 45 and 30 M
 cases.

4. Results

To use the BP test we first need the distribution of T ∗
� under H0. There is no analytic expression

for the distribution of the BP statistic so we have used a Monte Carlo simulation to estimate
them. As our test signals have different lengths we generated three null distributions, one for
each N. In each case we generated 105 instances of simulated LIGO noise and calculated T ∗

�

for each of them with chirplet path lengths � drawn from the set L = {1, 2, 4, 8, 16}. These
random trials give an approximation to the distributions of T ∗

� under H0 for each �. Using our
empirical distributions we can estimate the p-value for an observed T ∗

� .
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Figure 2. h(t) and instantaneous frequency for a binary coalescence with masses (a) m1 = m2 =
22.5 M
 and (b) m1 = m2 = 15 M
 at a distance of 1 Mpc.

To test detection efficiency, we first constructed normalized test signals using the model
described in section 3.2. For each ρ = 7, 8, 9, 10, 11 and 12 we generated 105 instances of
noise and injected the signal at that level. The BP statistic T ∗

� was calculated, as was p∗, and we
determined the detection probability for a given α by counting the number of p∗ � α. Figure 3
gives the detection probabilities as a function of α (the receiver operating characteristic curve)
for ρ = 8, 10 and 12. For comparison, we also give an ROC curve obtained using matched
filtering to detect the signal. For these curves ρ has been chosen to give a good match to the
ROC curve obtained via the BP test. From this it can be seen that the BP statistic is about half
as sensitive as matched filtering. Since the distance D to the source is inversely proportional
to the overall signal amplitude, we can consider the BP test to have a seeing distance about
half that of matched filtering.

In figure 3 we also give the detection probability as a function of ρ (or equivalently,
inverse distance to the source) for α = 0.05, 0.01 and 0.001. The corresponding distances at
ρ = 10 are D = 100 Mpc for M = 45 M
,D = 80 Mpc for M = 30 M
 and D = 65 Mpc
for M = 20 M
. This shows that, for example, at a false alarm probability of α = 0.001 we
can see an event out to ∼100 Mpc with a false dismissal probability of about 10%. Note that
since we have averaged the signal amplitude over sky positions and orientations, an optimally
aligned and positioned source could be detected much farther away.

In the above comparison we are injecting a known signal into noise and using the same
(normalized) signal as our template for matched filtering. Real signals in interferometer data
will have unknown parameters, and a bank of templates using discrete values of the parameters
(mass, spin etc) is needed to cover the range of physically plausible coalescences. Since a
real signal has parameters drawn from a continuum there will usually be some degree of
mismatch between the signal and templates in the bank. As such, the comparison above is
very conservative in comparing the BP test with the most favourable matched filter detection
scenario, one which is unlikely to be attained in practice. A more realistic benchmark is
obtained by examining the performance of the BP test when the signal parameters are chosen
at random from a range of values. Here we present a comparison of the BP test with detection
via a bank of templates, and with another method employed in searches for unmodelled signals,
the excess power statistic [13].

We first created a bank of templates using discrete values for the parameters. Although
our complete signal model contains a large number of free parameters, for simplicity we chose
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Figure 3. Detection probability as a function of ρ and false alarm probability for BBH coalescences
with total mass (a) M = 45 M
, (b) M = 30 M
 and (c) M = 20 M
. In each case we give an
estimate for the ρ which gives a similar curve using matched filtering.

to only vary m1,m2 and a, as these have the greatest effect on the waveform. For the same
reason we have used equal spacing in all parameters, rather than attempting to construct a
template bank spaced to give equal overlap between adjacent templates. While methods exist
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Figure 4. Detection probability as a function of false alarm probability for random signals in the
mass ranges (a) 20.5–30.4 M
, (b) 13.5–20.4 M
 and (c) 9.5–13.4 M
. In each case we give an
estimate for the ρ which gives a similar curve using matched filtering with a bank of templates and
the excess power statistic.

to construct optimally-spaced template banks, our templates have the additional complication
of including merger and ringdown components.

For each of the signal lengths N = 512, 1024 and 2048 we generated a bank of normalized
templates using the criteria that

(1) The range of masses m1 and m2 is chosen so that the length of the signals ranges from
N/2 to N samples.

(2) The spin ranges from a = 0.18 to 0.98.
(3) The spacing between masses and spins is chosen so that the minimal match of a signal

with parameters drawn from the range of parameters is at least 0.97.

For each N we then generated 1000 test signals with mass and spin parameters drawn at
random from the appropriate range, and injected them into simulated LIGO noise with ρ = 10.
The resulting data were used to calculate a BP statistic for each segment. Comparing the BP
statistics with the empirical null distribution as above, we obtained the ROC curves shown in
figure 4. Searching for the same signals via matched filtering, we found that the ROC curves
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matched well when the signals were injected with ρ around 6.5—in other words, the BP test
sees about 2/3 as far as the template bank.

We performed a similar analysis using the excess power statistic, which is optimal when
the only known features of the signal are the duration and bandwidth [13]. The excess power
statistic is simply the power 〈u, u〉 calculated using (4) where the integration is performed over
the bandwidth of the expected signals, taken to be 40–1024 Hz in this instance. Under H0 this
has a χ2 distribution with degrees of freedom twice the number of frequency bins. Using the
excess power statistic, we found that the ROC curves matched those of the BP test in figure 4
well when ρ was around 14.

5. Conclusion

Chirplet path pursuit has previously been shown to be effective at detecting a broad class of
chirp-like but otherwise unmodelled signals in coloured noise [19]. In this paper we have
demonstrated that the method can be successfully applied to the problem of detecting test
signals with similar characteristics to those expected from binary black hole coalescence. The
method is able to detect a range of signals of modest strength hidden in simulated LIGO noise,
and exhibits somewhat better statistical power than the excess power test.

As with other methods for detecting bursts, in real LIGO noise there is the difficulty
of distinguishing genuine gravitational wave signals from instrumental and environmental
events. For matched filter searches the χ2 discriminator can be used to reject signals that do
not have the correct distribution of power across frequency bands, however this requires that
the gravitational waveform be known [28]. This discriminator is not applicable to chirplet
path pursuit since the signal is not known and we do not impose any assumptions on the
distribution of power. Instead we would rely on the methods being employed in current
searches: requiring events to be coincident across multiple detectors, vetoing events based on
environmental channels and testing if waveforms measured in different detectors are consistent
[18, 29].

As expected for a non-parametric method, chirplet path pursuit is not as sensitive as
matched filtering using a template bank, nevertheless our comparison shows that the method
has similar effectiveness to matched filtering for a signal that is roughly 1.5 times as strong.
Significantly, since the method is sensitive to a wide range of chirp-like signals, an exact
model of the signals to be detected is not necessary. This makes the method particularly of
interest in situations where the signal is unmodelled or poorly modelled, as is the case for the
late inspiral and merger components of intermediate mass black hole coalescences.
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Appendix

In this appendix we present the scheme used for calculating chirplet coefficients of discretized
data. The data u[n] = u(n�t) are discretely sampled at N = 2S intervals of duration �t .
Notionally, this discretizes the time–frequency plane into points (ti , fk), where ti = i�t and
fk = k�f = k/(N�t). Points in the time–frequency plane are considered to be vertices
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in a directed graph where the weight of the arc connecting two vertices is given by the local
correlation of u(t) with the corresponding chirplet.

Consider chirplets supported on the interval [0, 2−sT ). At scale s, 0 � s < S this interval
has length Ns = 2−sN samples. While there are many ways to discretize chirplets on this
interval, it is convenient to choose the spacing of the frequency parameter to correspond with
the bins of a discrete Fourier transform, and choose the spacing of the chirp parameter so that
at the end of the interval the instantaneous frequency has changed by a whole number of bins.
Thus our dictionary of chirplets is indexed by scale index s, frequency index k and chirp index
l, and the (unnormalized) discrete chirplet is given by

cs,k,l[n] = ei2πφs,k,l [n] 0 � n < Ns, 0 � k � N/2, (A.1)

where the phase is

φs,k,l[n] = k
n

N
+ l

n2

2NNs

. (A.2)

The discretized instantaneous frequency is

φ̇s,k,l[n] = k + l
n

Ns

. (A.3)

Such a chirplet has initial frequency k�f Hz and rises to frequency (k + l)�f Hz at a
rate of l�f/(Ns�t) Hz s−1. Since we only deal with real signals, the range of the chirp
index l is chosen to restrict the chirplets to non-negative frequencies up to Nyquist, thus
−k � l � N/2 − k.

In general, the inner product (4) for a noise process with covariance matrix � is
u∗�−1v, where u∗ is the conjugate transpose of u. For our noise model the Fourier
matrices Fmn = e−i2πmn/N diagonalize �, and so 〈u, v〉 = u∗F ∗D−1Fv = ũ∗D−1ṽ where
D = diag

(
σ 2

0 , σ 2
1 , . . . , σ 2

N−1

)
and σ 2

k = 〈|ñk|2〉 are the eigenvalues of �. Calculating 〈u, c〉
for a chirplet supported on a dyadic interval Is,j = [j2−sT , (j + 1)2−sT ) is equivalent to
calculating the inner product of u(t + j2−sT ) with a chirplet supported on [0, 2−sT ). As the
time index of the first sample in Is,j is jNs , let us,j = (u[jNs], u[jNs+1], . . . , u[(j+1)Ns−1])
be the samples of u(t) restricted to Is,j . Then to find 〈u, c〉 we pad us,j and c to length N with
zeros and FFT. In discrete form, the inner product then reduces to

〈u, c〉 = �t

N

N−1∑
n=0

ũ∗
s,j [n]c̃[n]

S[n]
(A.4)

where S[n] = S(n�f ). If c has indices k, l then after normalizing, |〈u, c〉|2/|〈c, c〉|2 is the
weight of the arc connecting (tjNs

, fk) to (t(j+1)Ns
, fk+l ).

To calculate the BP statistic we must find the total weight of connected, non-overlapping
chirplet paths in the time–frequency plane starting at t = 0 and ending at t = T . To keep
the number of arcs manageable we further restrict our chirplet paths to those supported on a
recursive dyadic partition (RDP) of I constructed using the following definition [30]:

(1) The trivial partition P = {I } is an RDP.
(2) If P = {I1, I2, . . . , Ip} is an RDP, then so is the partition obtained by splitting any interval

Ij into two adjacent dyadic intervals.

This means that, for example, {[0, 1/4), [1/4, 1/2), [1/2, 1)} is a recursive dyadic
partition of [0, 1), but {[0, 1/4), [1/4, 1)} is not. The total weight of a chirplet path
P = {c1, c2, . . . , cp} supported on P = {I1, I2, . . . , Ip} is then

TP =
∑

p

|〈u, cp〉|2
|〈cp, cp〉|2 . (A.5)
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