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Abstract

Allowing for the possibility of extra dimensions, there are two paradigms: either the extra dimensions are

hidden from observations by being compact and small as in Kaluza-Klein scenarios, or the extra dimensions

are large/non-compact and undetectable due to a large warping as in the Randall-Sundrum scenario. In

the latter case, the five-dimensional background has a large curvature, and Isaacson’s construction of the

gravitational energy-momentum tensor, which relies on the assumption that the wavelength of the metric

fluctuations is much smaller than the curvature length of the background spacetime, cannot be used. In

this paper, we construct the gravitational energy-momentum tensor in a strongly curved background such

as Randall-Sundrum. We perform a scalar-vector-tensor decomposition of the metric fluctuations with

respect to the SO(1, 3) background isometry and construct the covariantly-conserved gravitational energy-

momentum tensor out of the gauge-invariant metric fluctuations. We give a formula for the power radiated

by gravitational waves and verify it in known cases. In using the gauge-invariant metric fluctuations to

construct the gravitational energy-momentum tensor we follow previous work done in cosmology. Our

framework has applicability beyond the Randall-Sundrum model.
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I. INTRODUCTION AND SUMMARY

In this paper, we address the energy-momentum of the gravitational field in the context of a

strongly curved background. Historically, gravitational waves were understood as ripples across

spacetime, with the wavelength of the ripples much smaller than the curvature length of the back-

ground. The most commonly used definition of the energy-momentum tensor of the gravitational

waves is due to Isaacson [1, 2]. In a couple of seminal papers, Isaacson performed an expansion of

the Einstein equations to the lowest order in non-linearities and interpreted the terms quadratic

in fluctuations as an energy-momentum source due to the gravitational field, backreacting on the

spacetime geometry. With the image of ripples propagating across spacetime implying a separa-

tion of scales between the high-frequency gravitational waves and the large scale on which the

background is changing, Isaacson added an averaging to his definition of the energy-momentum

tensor

〈Tµν(x)〉I =
∫
ddx′

√
gf(x, x′)vµ

′

µ (x, x′)vν
′

ν (x, x′)Tµ′ν′(x
′) , (1.1)

where the integration region is defined by the choice of the compact support function f(x, x′), cen-

tered at x, such that it has a characteristic size smaller than the curvature scale of the background,

but larger than the wavelength of the radiation. Furthermore, in order for the outcome of the

integration to be a tensor, the integrand Tµ′ν′ needs to be contracted with the bitensors vµ
′

µ and

vν
′

ν which transform as vectors under coordinate transformations performed at either x or x′. On

the one hand, the small wavelength assumption means that covariant derivatives commute. On

the other hand, the averaging (1.1) brings with it the freedom to perform integration by parts1.

Together they imply that the simplified expression of the (quasi-local) energy-momentum tensor

〈Tµν〉I =
1

4
〈hρσ;µhρσ ;ν〉I (1.2)

is background-covariantly conserved in vacuum, and gauge-invariant, which, of course, is a desired

feature of any definition of the energy-momentum tensor. Another definition of the gravitational

1E.g. 〈hµσ
;ρhνρ

;σ〉I = −〈hµσhνρ
;σρ〉I. After such integrations by parts are performed, further simplifications arise as

a result of either applying a gauge fixing condition or through the use of the equations of motion.
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field energy-momentum tensor T µνLL which is due to Landau and Lifshitz [3] has the advantage of

being conserved ∂µT
µν
LL = 0. However, it suffers from two major drawbacks: it is not a tensor

(hence it is often referred to as the Landau-Lifshitz pseudo-tensor) and it is not gauge-invariant.

There is at least one situation of interest when the approximations used by Isaacson are not

applicable, that is, gravitational waves in extra dimensions. Gravitational waves from binary black

holes and neutron stars detected by LIGO and Virgo have been used to test strong-field gravity

in various ways [4–9]. One such test is to probe the existence of extra dimensions. For example,

the presence of a large extra dimension modifies how the gravitational wave amplitude falls off as

a function of the distance it traveled, so the luminosity distance measured by gravitational waves

would be inconsistent with those from electromagnetic counterparts if one assumes 4d General

Relativity [10–12]. In [13] we studied a simple Kaluza-Klein model and showed that the luminosity

of gravitational waves emitted from a binary black hole is smaller than that of the 4d case, leading

to a relatively large phase shift that is inconsistent with observations.

One paradigm of large extra dimensions is the Randall-Sundrum model, with a 3-brane curving

the 5d spacetime around it until it looks like a slab of Anti-de Sitter space [14]2. Matter sources are

localized on the brane. The background geometry has SO(1, 3) isometry and the fifth dimension

is warped

ds2 = exp(−2κ|y|)dxµdxνηµν + dy2 , (1.3)

with κ proportional to the inverse curvature length. Gravity is localized near the brane and

deviations from four-dimensional Newtonian potential are parametrized in terms of κ as [14, 15]

VN(r) = −GM
r

(
1 +

2

3κ2r2

)
. (1.4)

Given that the Newtonian potential has been probed by Cavendish-type torsion scale experiments

to micrometer scale [19, 20] that means that the curvature length of the background must be

smaller than this scale. We are thus looking at a strongly curved background, where its curvature

length is smaller than the typical wavelength of the gravitational waves generated by a black-hole

binary source, which is in the 102 − 104 km range.

Our paper proposes a definition of the energy-momentum tensor of the gravitational field which

does not rely on the WKB approximation nor the spatial averaging introduced by Isaacson, which

2Other applications of gravitational waves in Randall-Sundrum model have been studied e.g. in [16–18].
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cannot be used in the case of strongly curved backgrounds3. Instead, we are constructing the

energy-momentum tensor from gauge-invariant metric fluctuations. Our procedure is similar to [23],

which dealt with the energy-momentum tensor for cosmological perturbations, though how one

foliates the spacetime and decomposes the metric fluctuations is different. Namely, within the

cosmological context, it is natural to foliate the 4d spacetime with fixed-time 3d spatial slices.

Since we are interested in the case of the extra dimensions, for one large extra dimension, y,

we foliate the 5d spacetime with fixed-y 4d spacetime slices, and we similarly decompose the

metric fluctuations in scalar-vector-tensors (SVT) with respect to the SO(1, 3) isometry group.

The gravitational energy-momentum tensor is constructed out of the gauge-invariant fluctuations.

The resulting expression is manifestly gauge-invariant, and it is background-covariantly conserved.

Without the benefit of the averaging procedure, the expression is quite involved. Nonetheless, it

can be simplified significantly when computing the radiated power (radiated energy per unit time)

asymptotically, far away from the sources.

In studying physical problems in the Randall-Sundrum model, a common approach is to use

the reduced 4d Einstein’s equation supplemented by the Israel’s junction condition. E.g. in [24–

29] the 5d effects are encoded in various additional terms in the 4d reduced Einstein’s equation,

relative to the usual one, and the additional junction condition. This method treats the brane

and the bulk differently and it can be effective when studying problems on the brane. However,

separating the brane from the bulk seems less appropriate when studying the propagation of the

gravitational waves, which propagate equally on the brane and into the bulk. The physical picture

can be murky since the meaning of those additional terms in the reduced equation is not very

intuitive. In the literature, in order to solve the reduced 4d equations, various terms are dropped

for practical purposes, though the reason behind this is not often clear. Our work comes directly

from a 5d setup which treats the bulk and the brane on an equal footing, and has a clear physical

picture. The gravitational energy-momentum tensor we calculated here can be used in applications

other than computing the radiated power. Lastly, due to the gauge-invariant nature of the method

we used here, our work has a larger applicability outside the Randall-Sundrum set-up.

The paper is organized as follows. In Section II we give our main formulae for the gravitational

energy-momentum tensor (2.24), and radiated power (2.18) and (2.19). In Section III we discuss

gravitational waves in a curved maximally symmetric spacetime such as Anti-de Sitter and in

3See e.g. [21, 22] for other works on computing the energy-momentum tensor for gravitational waves in theories beyond

General Relativity using the Isaacson averaging.
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Randall-Sundrum geometry. In Section IV we perform various SVT decompositions for the metric

fluctuations in 4d and 5d flat spacetimes, and in the 5d Randall-Sundrum background. In each

case, we construct the gravitational energy-momentum tensor and give a formula for the radiated

power. As we will see, one of the main differences with respect to previous results in the literature

[30] is that the radiated power is expressed not only in terms of the tensor metric fluctuations. This

is to be expected given how the graviton degrees of freedom are accounted for in the various SVT

decompositions. In Appendix F we are explicitly verifying that our approach yields the expected

result for the power radiated by gravitational waves away from a binary source in flat 4d spacetime.

Appendix G deals with a compact extra dimension flat 5d scenario and recovers a previous result

for the radiated power, using the approach presented in Section II. Technical details are relegated

to the other appendices.

II. GRAVITATIONAL WAVE ENERGY-MOMENTUM TENSOR IN A CURVED BACK-

GROUND

We begin by considering a curved background ḡµν , with a non-vanishing cosmological constant

Λ, solution to the source-free Einstein equations

Ḡµν + ḡµνΛ ≡ R̄µν −
1

2
ḡµν(R̄− 2Λ) = 0. (2.1)

Next consider another metric,

gµν = ḡµν + hµν , (2.2)

which is a solution to the source-free Einstein equations as well:

Gµν + gµνΛ ≡ Rµν −
1

2
gµν(R− 2Λ) = 0. (2.3)

Note that (2.2) is exact, in other words hµν represents the difference between two spacetime metrics.

Expanding in hµν leads to the following definition of the energy-momentum tensor Tµν of the

gravitational field [31]

δ(1)Gµν + Λhµν = −
(
δ(2)Gµν + δ(3)Gµν +O(h4)

)
≡ Tµν (2.4)

where δ(1)Gµν is linear in the difference between the two metrics hµν , δ
(2)Gµν is quadratic, etc.
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The linearized Einstein tensor evaluates to:

δ(1)Gµν = δ(1)Rµν −
1

2
ḡµνδ

(1)Rρσ ḡ
ρσ +

1

2
ḡµνR̄ρσh

ρσ − 1

2
hµνR̄

=
1

2

(
− �̄hµν − h;µ;ν + hρν;µ

;ρ + hρµ;ν
;ρ − ḡµν(−�̄h+ hρσ

;ρ;σ) +
2Λ

d− 2
(ḡµνh− dhµν)

)
,

(2.5)

where d is the number of spacetime dimension and we used that

R̄µν =
2

d− 2
Λḡµν . (2.6)

Reshuffling the background-covariant derivatives and using (2.6), one can show that

∇̄µ

(
δ(1)Gµν + Λhµν

)
= 0 , (2.7)

for any two-index symmetric tensor hµν .

This in turn implies that Tµν is a background-conserved tensor [31]

∇̄µTµν = 0 . (2.8)

Not only that, but Tµν is invariant under background linearized gauge transformations δhµν =

∇̄µξν + ∇̄νξµ since the left hand side of (2.4) is invariant under these transformations.

Furthermore consider a background that admits a time-like Killing vector (e.g. for the RS

model, such a Killing vector would be ∂0 = kµ∂µ)

∇̄µkν + ∇̄νkµ = 0 . (2.9)

Then

V µ ≡ T µνkν (2.10)

is a background-conserved vector

∇̄µV
µ = 0 . (2.11)

This implies a conservation law:

0 =

∫
ddx

√−ḡ ∇̄µV
µ =

∫
ddx∂µ(

√−ḡ V µ). (2.12)

The presence of sources alters slightly the previous scenario. From

δ(1)Gµν + Λhµν = Tµν −
(
δ(2)Gµν + δ(3)Gµν +O(h4)

)
≡ Tµν + Tµν , (2.13)
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where Tµν is the matter energy-momentum tensor, using (2.7) we find the conservation law obeyed

by the total (sources plus gravitational field) energy-momentum tensor

∇̄µ(Tµν + Tµν) = 0. (2.14)

Given a time-like Killing vector kµ, one can construct a conserved current

V µ ≡ kν(T
µν + T µν), ∇̄µV

µ = 0. (2.15)

The total energy in some region of space M is

E =

∫

M
dd−1x

√−ḡV 0 =

∫

M
dd−1x

√−ḡkµ(T 0µ + T 0µ). (2.16)

The rate of change of the energy in this region of space can be expressed in terms of the flux of V i

through the boundary:

dE

dt
=

∫

M
dd−1x∂0(

√−ḡV 0) = −
∫

M
dd−1x∂i(

√−ḡV i) = −
∫

∂M
dd−2x

√−ḡniV i (2.17)

where ni is an outward pointing, unit vector on the boundary.

If there are no sources on the boundary of the spatial regionM , then the radiated power through

the boundary ∂M is given by:

P = −dE
dt

=

∫

∂M
dd−2x

√−ḡnikµT µi. (2.18)

Furthermore, assuming that the sources are generating gravitational waves and that the period

of the gravitational waves is T , we will compute the averaged radiated power through the boundary

∂M which we take to be asymptotically far away from all sources. Thus

〈P 〉 = 1

T

∫ T

0
dt

∫

∂M
dd−2x

√−ḡnikµT µi. (2.19)

This expression is background gauge-independent since as we have already discussed Tµν is

invariant under background gauge transformations.

In general, though, we are interested in problems where the metric gµν is a small perturbation

of some exact background metric, due to sources and gravitational waves. Then the metric gµν =

ḡµν + hµν is typically solved in perturbation theory, with ḡµν an exact background, and with hµν

expanded in a perturbative series

hµν = ǫh(1)µν + ǫ2h(2)µν + . . . , (2.20)

where ǫ is some small expansion parameter (e.g. in thinking about the gravitational waves sourced

by a binary the small parameter could be the post-Newtonian expansion parameter, ǫ = |~v|/c
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where ~v is the velocity of binary sources). Then, the Einstein equation can be solved order by

order in ǫ. To the lowest orders in perturbation theory, setting the sources to zero for clarity, we

have

δ(1)Gµν [h
(1)]− Λh(1)µν =

1

2

(
− �̄h(1)µν − h(1);µ;ν + h(1)ρν;µ

;ρ + h(1)ρµ;ν
;ρ − ḡµν(−�̄h(1) + h(1)ρσ

;ρ;σ)

)
− Λh(1)µν

= 0 , (2.21)

δ(1)Gµν [h
(2)]− Λh(2)µν = −δ(2)Gµν [h(1)] . (2.22)

One way to interpret the equation (2.22) is that the metric fluctuation h
(1)
µν , solution to the linearized

equation of motion, backreacts on the background geometry, with the right-hand side of (2.22)

playing the role of an energy-momentum tensor source:

ǫ2Tµν = −ǫ2δ(2)Gµν [h(1)] +O(ǫ3) . (2.23)

Using the results derived in Appendix A, to leading order in ǫ, the energy-momentum tensor of

the gravitational field takes the form4

Tµν = −1

2
h(1)αβ(h

(1)
µν;α;β − h

(1)
να;µ;β − h

(1)
µα;ν;β + h

(1)
αβ;µ;ν) +

1

2
h
(1)
νβ;α(h

(1)
µ

α;β − h(1)µ
β;α)

−1

4
h
(1)
αβ;µh

(1)αβ
;ν −

1

4
(h(1)να;µ + h(1)µα;ν)(h

(1);α − 2h
(1)
β

α;β) +
1

4
h(1)µν

;α(h(1);α − 2h
(1)
αβ

;β)

+
1

4
ḡµν

(
h(1)αβ(h(1);α;β + h

(1)
αβ

;γ
;γ − 2h(1)αγ

;γ
;β)−

1

2
h(1);αh

(1);α − 2h
(1)
αβ

;αh(1)βγ ;γ

+2h(1);αh
(1)αβ

;β − h
(1)
αγ;βh

(1)αβ;γ +
3

2
h
(1)
αβ;γh

(1)αβ;γ

)
. (2.24)

Given that Tµν is the right-hand side of (2.22), the same argument of Abbott and Deser [31],

which we reviewed earlier, applies: the gravitational energy-momentum tensor (2.24) is background

covariantly-conserved. However, due to the perturbative expansion we have just performed, this

expression is no longer invariant under background gauge transformations. As noticed by [23],

we can remedy this: by using only the gauge-invariant pieces of the metric fluctuation h
(1)
µν , the

gravitational energy-momentum tensor defined in (2.24) becomes manifestly gauge-invariant. We

will elaborate on this in the next sections.

4It it important that in solving for h
(1)
µν we consistently keep all the terms of the same order in ǫ. For example, in

solving for fluctutations sourced by a binary to leading order in the velocity expansion in [13], the spatial fluctuations

h
(1)
IJ received two contributions, both of the same order in ǫ: one contribution from the linearized Einstein equation

sourced by the matter energy-momentum tensor and a second contribution, from the backreaction of the Coulombic

part of h
(1)
00 .
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We can compare (2.24) with known expressions of the energy-momentum tensor in flat space:

replace all the background covariant derivatives with partial derivatives, choose the Lorenz gauge

∂µh
(1)µν = 0, and fix the remaining gauge freedom by setting h(1) = 0. If an averaging is performed

as in [2] then one can do integration by parts to take advantage of the gauge choice. Lastly, using

the equation of motion of the linearized, gauge-fixed fluctuations �h
(1)
µν = 0, the energy-momentum

tensor simplifies to

Tµν =
1

4
〈h(1)ρσ ;µh(1)ρσ;ν〉 I, (2.25)

where the brackets denote the averaging done by Isaacson [2].

If the background is curved, choose instead the de Donder gauge ∇̄µh
(1)
µν = 0. Under the

assumption that the metric fluctuation varies on a scale λ (e.g. ∇̄.h
(1)
.. ∼ 1/λ), while the background

metric varies on a scale L (R̄ ∼ 1/L2, where L is a curvature scale) such that λ ≪ L, then we

can commute the background covariant derivatives, just like we would commute partial derivatives

(since the error made is of the order λ2/L2). Note that the same assumptions would render the

cosmological constant term Λh(1).. h
(1)
.. irrelevant to the order we are working because ∇̄.h

(1)
.. ∇̄.h

(1)
.. ∼

1/λ2 while Λh(1).. h
(1)
.. ∼ 1/L2, and therefore it is suppressed by λ2/L2 relative to the former terms.

If an averaging is performed, as in [2], then we can integrate by parts under the averaging sign and

arrive at (2.25), where the derivatives are background-covariant.5 (See for example the equations

(5.37-5.39) in [32].)

If the curvature scale of the spacetime is small, the wavelength of the gravitational waves must

be even smaller in order for the approximations and averaging performed by Isaacson [2] (see also

Chapter 35 in Misner, Thorne and Wheeler [33]) to be applicable. This is certainly not the case

for the Randall-Sundrum background,

ds2 = dy2 + exp(−2κ|y|) dxµdxνηµν , µ, ν = 0, 1, 2, 3, (2.26)

where R̄ ∼ κ2, and where κ is constrained by corrections to Newton’s law to be such that κr ≫ 1

for r ∼ 1µm in a Cavendish-type experiment. In this scenario, the curvature scale is 1/κ ≪ 1µm,

while for the gravitational waves detected by LIGO the wavelength λ ∼ 102 − 104 km is much

larger than the curvature scale.

5The boundary terms vanish because the averaging function is chosen to vanish at the boundary of the integration

region. Also, equally important for the averaging procedure performed in curved backgrounds are the bitensors

which, when contracted with Tµν , render the integrand a background scalar, and make possible the integration by

parts.
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Nonetheless, the formula derived earlier for the radiated power (2.19), with the gravitational

field energy-momentum tensor given by (2.24), can still be used in a Randall-Sundrum setup.

One of the goals for the next sections is to bring (2.24) and (2.19) to a more manageable form.

III. GRAVITATIONAL WAVES IN A CURVED SPACETIME: AdS5 AND RANDALL-

SUNDRUM

Consider a background ḡµν , perturbed by gravitational waves h
(1)
µν , and set matter sources to

zero (Tµν = 0). Allowing for a non-vanishing cosmological constant, the background satisfies the

Einstein equations

R̄µν −
1

2
ḡµν(R̄ − 2Λ) = 0, R̄ =

2d

d− 2
Λ , (3.1)

where d is the number of spacetime dimensions. The linearized Einstein equations can be written

in a simpler form in terms of

ψµν ≡ h(1)µν − 1

2
ḡµνh

(1) (3.2)

as

�̄ψµν + ḡµν∇̄ρ∇̄σψρσ − ∇̄ρ∇̄µψρν − ∇̄ρ∇̄νψρµ +
4Λ

d− 2
ψµν = 0 . (3.3)

This can be further manipulated into

�̄ψµν + ḡµν∇̄ρ∇̄σψρσ − ∇̄µ∇̄ρψρν − ∇̄ν∇̄ρψρµ − 2R̄σ(µν)ρψ
ρσ = 0 . (3.4)

Choosing the de Donder gauge (∇̄µψµν = 0) leads to

�̄ψµν − 2R̄σ(µν)ρψ
ρσ = 0 . (3.5)

At this point one could follow Isaacson and use the WKB approximation for the gravitational

waves (assume that the wavelength is much shorter than the background curvature length) and

drop the curvature term from (3.5) and approximate (3.5) by �̄ψµν ≈ ḡρσ∂ρ∂σψµν ≈ 0.

However, we are interested in cases when this approximation is invalid, and therefore we refrain

from ignoring the curvature and Christoffel contributions. For concreteness let us consider a

maximally symmetric background:

R̄σµνρ =
2Λ

(d− 1)(d− 2)
(ḡσν ḡρµ − ḡµν ḡσρ). (3.6)
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Substituting into (3.5) leads to

�̄ψµν −
4Λ

(d− 1)(d − 2)
ψµν +

4Λ

(d− 1)(d − 2)
ḡµνψ

ρ
ρ = 0. (3.7)

If, as we do in flat space, we fix the residual gauge freedom by imposing tracelessness ψρρ = 0, then

the linearized Einstein equation, in the now transverse (de Donder) and traceless gauge, reads

�̄ψµν −
4Λ

(d− 1)(d − 2)
ψµν = 0. (3.8)

Despite the apparent simplicity of this equation, the various components of the metric fluctuation

remain coupled. An alternative approach which leads to decoupled equations of motion starts by

decomposing the metric in scalar, vector, tensor (SVT) fluctuations with respect to background

isometries. As a bonus, we will be able to extract the gauge-invariant metric fluctuations, and use

them to construct the gravitational energy-momentum tensor according to (2.24). We will discuss

this at length in section IV.

In the remaining parts of this section we discuss plane waves (vacuum gravitational wave solu-

tions) in 5d Anti de-Sitter (AdS) and Randall-Sundrum geometries, and construct spherical wave

solutions relevant for gravitational waves far away from sources.

A. Vacuum solutions (plane waves)

Consider the 5d metric fluctuations

h
(1)
MNdx

MdxN = h(1)yy dy
2 + 2h(1)yµ dydx

µ + h(1)µν dx
µdxν , (3.9)

where M,N = 0, 1, 2, 3, 5 while µ, ν = 0, 1, 2, 3 and y ≡ x5. The background AdS metric in the

Poincare patch can be written as

ḡMNdx
MdxN = dy2 + e−2κyηµνdx

µdxν , κ > 0 , (3.10)

and the background Randall-Sundrum metric was given earlier in (1.3): ḡMNdx
MdxN = dy2 +

e−2κ|y|dxµdxν . Next we decompose the metric fluctuations into scalar, vector, and tensor fluctua-

tions with respect to the 4d Lorentz isometries:

h
(1)
MNdx

MdxN = 2φdy2 + 2(∂µB − Sµ)dx
µdy + (∂µ∂νE + 2ηµνψ + ∂µFν + ∂νFµ + fµν)dx

µdxν ,

(3.11)

where ηµν∂µSν = 0, ηµν∂µFν = 0, ηµν∂µfνρ = 0, fµνη
µν = 0. When performing a gauge trans-

formation δξh
(1)
MN = ∇̄MξN + ∇̄NξM we can decompose the gauge parameter in a similar way

12



ξM = (ξ
(T )
µ + ∂µξ

(L), ξ), with ∂µξ
(T )µ = 0. The tensor metric fluctuations are gauge invariant

[34]: δξfµν = 0 . Given a monochromatic plane wave exp(ikµx
µ), with kµ a time-like 4-vector

(k2 = kµkνη
µν < 0), we can define three space-like vectors ǫ

(p)
µ , transverse to kµ and to each other

ǫ(p)µ kνη
µν = 0, ǫ(p)µ ǫ(q)ν ηµν = δpq, p, q = 1, 2, 3. (3.12)

The metric tensor fluctuations can be written as

fµν = ǫ(p)µ ǫ(q)ν eikλx
λ

fpq(y), fpqδpq = 0 , (3.13)

where fpq obey the following decoupled equations: for (i) AdS5
[
d2

dy2
− 4κ2 − k2e2κy

]
fpq(y) = 0, (3.14)

and for (ii) Randall-Sundrum [14, 15]6 :

[
d2

dy2
− 4κ2 + 4κδ(y) − k2e2κ|y|

]
fpq(y) = 0 . (3.15)

The equation (3.14) admits two linearly independent solutions, expressed in terms of Bessel

functions:

fpq = cpqJ2(e
κy
√

−k2/κ2) + dpqY2(e
κy
√

−k2/κ2), cpqδpq = 0, dpqδpq = 0 . (3.16)

This solution exhibits oscillatory (wave-like) behavior in y as well, with an amplitude which de-

creases with y. Of the two Bessel functions, only Y2(
√

−k2/κ2 exp(κy)) blows up in the interior of

AdS5, for y → ∞. If instead we were solving in the WKB limit to leading order we would begin

with the ansatz

f ∼ exp(iS),
d

dy
S ≫ 1

d2

dy2
S ≪ 1 . (3.17)

Then the equation (3.14) simplifies to

d

dy
S = ±

√
−k2eκy . (3.18)

The WKB phase is

S = ± exp(κy)

√
−k2
κ

. (3.19)

6These authors did not perform an SVT decomposition, rather they chose the so-called Randall-Sundrum gauge

hyy = hµy = 0, hµ
µ = 0, ∂µh

µν = 0 which essentially projects onto the tensor fluctuations. See also [35] regarding

comments about the implementation of the Randall-Sundrum gauge. Of note is that in order to reach this gauge in

general one needs to perform gauge transformations that will change the position of the brane at y = 0.
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This captures the asymptotic (large argument) behavior of the Bessel functions. TheWKB solution

is a good approximation only deep in the interior of AdS5 space, as long as
√

−k2/κ2 exp(κy) ≫ 1.

If k2 = 0, the solutions to (3.14), exp(±2κy), blow up either at the boundary y → −∞, or deep

in the interior of AdS5. Consequently, there are no normalizable zero-modes in AdS, but there

is one discrete normalizable zero-mode in Randall-Sundrum. Similarly, for k2 > 0 there are no

normalizable solutions.

The solution to (3.15) takes a similar form to (3.16),

fpq = cpq+ J2(e
κy
√

−k2/κ2) + dpq+ Y2(e
κy
√

−k2/κ2), cpq+ δpq = 0, dpq+ δpq = 0, y > 0 ,

fpq = cpq− J2(e
−κy
√

−k2/κ2) + dpq− Y2(e
−κy
√
−k2/κ2), cpq− δpq = 0, dpq− δpq = 0, y < 0 ,

(3.20)

and satisfy the additional matching condition

d

dy
fpq
∣∣∣∣
y→0+

− d

dy
fpq
∣∣∣∣
y→0−

= −4κfpq(0). (3.21)

B. Retarded Green’s functions

The equation of motion of the tensor mode fluctuation is related to the equation of motion of

a massless, minimally coupled scalar field ϕ in AdS5

�5d,AdS ϕ = e4κy
[
d

dy
e−4κy d

dy
− k2e−2κy

]
ϕ =

[
d2

dy2
+ 4κ

d

dy
− k2e2κy

]
ϕ = 0 , (3.22)

or Randall-Sundrum

�5d,RS ϕ = e4κ|y|
[
d

dy
e−4κ|y| d

dy
− k2e−2κ|y|

]
ϕ =

[
d2

dy2
− 4κ sign(y)

d

dy
− k2e2κ|y|

]
ϕ = 0 , (3.23)

through the following scaling: ϕ = exp(2κy)f or ϕ = exp(2κ|y|)f , for AdS5 or Randall-Sundrum

respectively, where f is a placeholder for fpq in (3.14) or (3.15). In writing the above equations,

we have Fourier-transformed along the 4d xµ coordinates. The scalar Green’s function satisfies

�5d,AdS/RSGscalar(y, y
′; kµ) = (−ḡ)−1/2δ(y − y′) , (3.24)

where �5d,AdS/RS refers to the scalar d’Alembertian in the curved geometries, and −ḡ = − det(ḡ) is

exp(−8κy) for AdS5 and exp(−8κ|y|) for Randall-Sundrum. The corresponding Green’s function

for the tensor mode metric fluctuations

G(y, y′; kµ) = exp(−2κ|y|) exp(−2κ|y′|)Gscalar(y, y
′; kµ) (3.25)
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obeys
[
∂2y − 4κ2 − k2e2κ|y|

]
G(y, y′; kµ) = δ(y − y′) , (3.26)

for AdS5, and
[
∂2y − 4κ2 + 4κδ(y) − k2e2κ|y|

]
G(y, y′; kµ) = δ(y − y′) , (3.27)

for Randall-Sundrum. There are several methods we can use to construct the retarded propa-

gator (or retarded Green’s function). Starting from the Euclidean propagator, we can arrive at

the retarded propagator by analytical continuation [36]. We can use (if known) the position-

space Euclidean propagator as follows. For example, in 4d flat space, the Euclidean propaga-

tor is 1/(4π2(t2E + r2)), where tE is the Euclidean time. Switching to Minkowski signature, the

retarded propagator is obtained from iθ(t)/(4π2)

(
1/(−(t − iǫ)2 + r2) − 1/(−(t + iǫ)2 + r2)

)
,

with ǫ → 0 and where θ(t) is the Heaviside step function. The iǫ prescription identifies the two

terms as Wightman two-point functions, with the retarded propagator written as the difference

of the two Wightman two-point functions times the step-function θ(t). The 4d flat spacetime

retarded propagator evaluates to θ(t)/(2π2) ǫ/(ǫ2 + (r2 − t2)2) which in the limit ǫ → 0 yields

(1/2π)θ(t)δ(t2 − r2) = 1/(4πr)θ(t)δ(t − r). Alternatively, we can start from the momentum-space

Euclidean propagator, which in 4d flat space is 1/(k2) and obtain the momentum-space retarded

propagator by doing the analytical continuation 1/(−(k0 + iǫ)2 + ~k · ~k). Then Fourier-transform

to position space and arrive at the result quoted earlier, 1/(4πr)θ(t)δ(t − r). While the defining

feature of the 4d flat space retarded propagator is its support on the forward light-cone, this fea-

ture is lost in flat odd-dimension spacetimes, when the retarded propagator has support inside the

forward light-cone (as expected, based on causality arguments).

The Euclidean boundary-to-bulk scalar propagator for AdS5, from the boundary point (t′E =

0, ~r ′ = 0, y′) with eκy
′
= ε≪ 1 to some point in the bulk (tE , ~r, y), is given by [37, 38]:

Gscalar,Eucl AdS =
6κ3e4κy

π2(e2κy + κ2(r2 + t2E))
4
ε4 . (3.28)

Then the corresponding retarded propagator, derived as described above, is (see also the Appendix

C in [36]):

Gret, scalar, AdS = lim
ǫ→0

48κ3e4κyǫ
(
e2κy + κ2(r2 − t2)

)3

π2
(
(e2κy + κ2(r2 − t2))2 + ǫ2

)4 ε
4θ(t) . (3.29)

This leads to the tensor mode boundary-to-bulk retarded propagator

Gret, AdS = lim
ǫ→0

48κ3e2κyǫ
(
e2κy + κ2(r2 − t2)

)3

π2
(
(e2κy + κ2(r2 − t2))2 + ǫ2

)4 ε
2θ(t) , (3.30)
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which is proportional to ∂3∆δ(∆), with ∆ = e2κy + κ2(r2 − t2).

For the Randall-Sundrum background, the tensor mode retarded propagator was derived by

Garriga and Tanaka [15]. The idea behind their formula is that the Green’s function can be

written in terms of eigenfunctions of the corresponding differential operator. For the Randall-

Sundrum geometry we have the following eigenvalue problem:

[−k2 + e2κ|y|∂y(e
−4κ|y|∂y)]f(λ) = −λ2f(λ) , (3.31)

or, equivalently,

e2κ|y|∂y(e
−4κ|y|∂y)f(q) = −q2f(q) , (3.32)

where we defined q =
√
λ2 − k2 and with −λ2 being the eigenvalues. The Euclidean signature

Green’s function in momentum (k-) space has the generic form

G(y, y′) =

∫∑

q

f(q)(y)f
∗
(q)(y

′)

k2 + q2
e−2κ|y|e−2κ|y′| , (3.33)

where one sums over the discrete eigenvalues and integrates over the continuum ones. The retarded

Green’s function is obtained by doing the analytic continuation

Gret,RS(y, y
′) =

∫∑

q

f(q)(y)f
∗
(q)(y

′)

(−k0 + iǫ)2 + ~k 2 + q2
e−2κ|y|e−2κ|y′| . (3.34)

The eigenvalue problem (3.32) has one discrete q = 0 mode, the bound state being f(0) =
√
κ, and

a continuum set of modes for q > 0

f(q) =

√
q

2κ(1 + α2
(q))

e2κ|y|
[
J2

( q
κ
eκ|y|

)
+ α(q)Y2

( q
κ
eκ|y|

)]
, (3.35)

where α(q) = −J1(q/κ)/Y1(q/κ) was determined from the matching condition at y = 0. These

modes obey the normalization conditions:
∫ ∞

−∞
dy e−2κ|y|f(0)(y)f(0)(y) = 1 ,

∫ ∞

−∞
dy e−2κ|y|f(q)(y)f(q′)(y) = δ(q − q′) . (3.36)

Putting everything together one arrives at the result of [15]

Gret, RS(x
µ, y;x′µ, y′) =

∫
d4k

(2π)4
eik·(x−x

′)

[
κ

−(k0 + iǫ)2 + ~k2

+

∫ ∞

0
dq

1

−(k0 + iǫ)2 + ~k2 + q2
f(q)(y)f(q)(y

′)

]
e−2κ|y|e−2κ|y′| .(3.37)

From a 4d perspective, the 5d bound state is a massless mode, while the 5d continuum states are

massive modes.
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C. Static, spherically-symmetric solutions

If we consider a static source, point-like and localized at the boundary, j(x′) = Mδ3(~x ′)δ(y′ −
(ln ε)/κ) with ε≪ 1, the tensor fluctuations in AdS5 are of the form

∫
d5x′Gret, AdS(x

′, x)j(x′) =

∫
dt′M

48κ3e2κyǫ
(
e2κy + κ2r2 − κ2(t− t′)2

)3

π2
(
(e2κy + κ2r2 − κ2(t− t′)2)2 + ǫ2

)4 ε
2θ(t− t′)

= M
15κ2

2π2
e2κy

(e2κy + κ2r2)7/2
ε2 . (3.38)

Next, assume that a point-like static source, localized at y = 0 in the Randall-Sundrum geometry

sources the tensor modes equation (3.15). We are doing a similar calculation to the one done

earlier in AdS, but now we are using the retarded propagator (3.37). First, the integral over t′

sets k0 = 0. The integral over ~k results in an exponential suppression factor exp(−qr).7 We were

unable to perform the last integral, over q, analytically. However, we come close for large enough r.

Then the exponential suppression exp(−qr) factor localizes the integral over q in the small q-range.

Using the small argument expansion of the Bessel functions J1(q/κ), Y1(q/κ), and performing the

q-integral results in the following solution:

∫
d5x′Gret, RS(x

′, x)j(x′) ≃Mκ2
[(

2κ2r2 + 3e2κ|y|

8π
(
e2κ|y| + κ2r2

)3/2

+
15e4κ|y| log

(√
κ2r2

e2κ|y|
+ 1 + κr

eκ|y|

)

16π
(
e2κ|y| + κ2r2

)7/2 +
2κ4r4 + 9κ2r2e2κ|y| − 8e4κ|y|

16πκr
(
e2κ|y| + κ2r2

)3
)
e−2κ|y|

]
, (3.39)

where the zero mode contribution was canceled by part of the massive mode contribution.

We would like to point out that in using the Randall-Sundrum geometry as a model for large

extra dimensions, we are already requiring that κr ≫ 1. This is exactly the regime when our small-

argument approximation for J1(q/κ) and Y1(q/κ) is applicable, since on the one hand rκ≫ 1 and

on the other hand qr < O(1) due to the exponential suppression factor. Put together this implies

that q/κ ≪ 1, thus justifying our small argument expansion of the Bessel functions J1(q/κ),

Y1(q/κ). In evaluating the integrals in (3.39) we did not make any further approximations to the

other two Bessel functions J2(qe
κ|y|/κ) and Y2(qe

κ|y|/κ).

For y = 0, which would correspond to both source and fluctuation on the brane, and to leading

order in r this approximates to M κ/(4πr)(1 + 1/(2κ2r2)) [15].

7Use that (1/2π2)
∫∞

0
dk sin(kr) k/(r(k2 + q2)) = exp(−qr)/(4πr). This expression is the familiar Yukawa-type static

Green’s function of massive modes in flat 4d space. This result is an intermediate step in our 5d Randall-Sundrum

calculation, where the q-modes appear massive from a 4d perspective.
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Stripping off the factor of M from the expressions in (3.38, 3.39) we get the Green’s functions

for the time-independent Laplacian operators. This can be explicitly verified. For example, we

can show that the action of ∂2y + e2κy ~∇2 − 4κ2 on the right hand side of (3.38) is zero when y is

not on the boundary, and the action of ∂2y + e2κ|y|~∇2 − 4κ2 on the right hand side of (3.39) is zero

for y 6= 0. We can also show by using Gauss’ theorem that the delta-function source term in the

Green’s function equation is accounted for appropriately. Using (3.25) together with (3.38, 3.39)

we find the static scalar Green’s function Gscalar of either AdS5 or Randall-Sundrum spacetimes,

solution to

1√−ḡ ∂I(
√−ḡgIJ∂J)G scalar(y,~r; y

′ = 0, ~r ′ = 0) =
δ3(~r)δ(y)√−ḡ , I, J = 1, 2, 3, y . (3.40)

Then we can integrate over the spatial coordinates ~r, y. Using the analogy of cylindrical coordinates

in flat space, we compute the flux through the surface at infinity; there are two regions: one at

fixed, large r with y integrated over (this is like integrating over the length of the 3d cylinder in our

analogy) and the other surface with r integrated over and fixed, large |y| (this is like integrating

over the two caps of the cylinder). With an infinitely long cylinder we only need to compute the

flux through the sides of the cylinder. For the Randall-Sundrum case, truncating to the leading

order term in (3.39), the flux through the side of the cylinder yields

2× 4πκ2
∫ ∞

0
dy

[
e−4κyr2e2κy

∂

∂r

(2κ2r2 + 3e2κy)

8π(e2κy + r2)3/2

]∣∣∣∣
r=R∞

=
κ3R3

∞

(1 + κ2R2
∞)3/2

, (3.41)

which, in the limit κr ≫ 1 when (3.39) is applicable, gives the expected result.

D. Spherical waves

To illustrate the propagation of gravitational waves in AdS5, assuming that a periodic source is

at the boundary, we consider solving the tensor modes equation, with a point-like periodic source

j(x′) =Mδ3(~x ′)δ(y′ − (ln ε)/κ)eiωt
′
:

∫
d5x′Gret, AdS(x

′, x)j(x′) =

∫
dt′Mκ3

48κ3e2κyǫ
(
e2κy + κ2r2 − κ2(t− t′)2

)3

π2
(
(e2κy + κ2r2 − κ2(t− t′)2)2 + ǫ2

)4 ε
2θ(t− t′)

=M
1

2π2
15κ2 + 15iRκω − 6R2ω2 − iR3ω3κ−1

8R7 eiω(t−R/κ) ε2 , (3.42)

where R =
√

exp(2κy) + κ2r2. If we were to perform a WKB approximation, the leading-order

WKB approximation would have captured only eiω(t−R/κ) part of the exact result (3.42).
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Similarly, a periodic, point-like source localized at y = 0 which sources the tensor mode equation

(3.15) yields the following fluctuation

∫
d5x′Gret, RS(x

′, x)j(x′) ≃ κ2M

2π2

(
2κ2r2 + 3e2κ|y|
(
κ2r2 + e2κ|y|

)3/2 +
iωe2κ|y|

κ(κ2r2 + e2κ|y|)

)
e−2κ|y|e

iω
(

t−
√
r2+e2κ|y|/κ2

)

(3.43)

under the same assumption that the distance r (measured along the brane) from the source is

sufficiently large such that the q-integral is localized at small values of q, and where we kept terms

up to first order in ω.

IV. THE GRAVITATIONAL ENERGY-MOMENTUM TENSOR AND THE RADIATED

POWER IN TERMS OF GAUGE-INVARIANT FLUCTUATIONS

In this section we give explicit expressions for the energy-momentum tensor of gravitational

waves and for the power radiated away from a source by gravitational waves. Similar to the

approach of [23], our expressions are made manifestly gauge-invariant by using the gauge-invariant

part of the metric fluctuations, which is found through a scalar-vector-tensor (SVT) decomposition.

We study three cases: (A) 4d flat spacetime, (B) flat 5d spacetime with one compact dimension,

and (C) Randall-Sundrum. Further checks on our results can be found in Appendices F and G.

A. 4d flat spacetime

As we have seen, in general, the metric fluctuations obey coupled equations of motion. One way

to decouple them is to use the symmetries of the background. In [23], Abramo et al. considered

the following scenario, which is relevant for cosmological backgrounds:

ḡµνdx
µdxν = −dt2 + a2(t)δijdx

idxj .

Given the rotational isometries of the background, they decomposed the metric fluctuation hµν in

components which transform as scalars, vectors and tensors under the rotation group SO(3). For

simplicity, we review some their analysis in the context of flat 4d spacetime and set a(t) = 1. We

decompose the metric according to SO(3) rotation group:

hµν =


 2φ ∂jB + Sj

∂iB + Si 2ψδij + ∂i∂jE + ∂iFj + ∂jFi + fij


 , (4.1)

where Si, Fi and fij are transverse: ∂iS
i = ∂iF

i = ∂if
ij = 0, and fij is traceless: fijδ

ij = 0.
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The following expressions are gauge invariant: Φ,Ψ,Si, fij where
8:

Φ = φ− ∂0(B − 1
2∂0E),

Ψ = ψ,

Si = Si − ∂0Fi. (4.2)

Then we fix the gauge such that the metric fluctuations contain only the gauge-invariant pieces

hµν |g.i. =


 2Φ Sj

Si 2Ψδij + fij


 . (4.3)

Consider next the Einstein equations in the presence of matter sources:

Gµν = Tµν . (4.4)

We perform the same SVT decomposition for both sides,

Gµν =


 G00 ∂jG

(L)
0 +G

(T )
j0

∂iG
(L)
0 +G

(T )
i0 2G(Y )δij + ∂i∂jG

(LL) + ∂iG
(LT )
j + ∂jG

(LT )
i +G

(TT )
ij


 ,

Tµν =


 T00 ∂jT

(L)
0 + T

(T )
j0

∂iT
(L)
0 + T

(T )
i0 2T (Y )δij + ∂i∂jT

(LL) + ∂iT
(LT )
j + ∂jT

(LT )
i + T

(TT )
ij


 .

The linearized equations of motion for the scalar gauge-invariant fluctuations Φ and Ψ come from

the components δ(1)G00 , δ
(1)G

(L)
0 , δ(1)G(Y ) and δ(1)G(LL),

δ(1)G00 = −2δij∂i∂jΨ = T00 , (4.5)

δ(1)G
(L)
0 = −2∂0Ψ = T

(L)
0 , (4.6)

2δ(1)G(Y ) = −2∂20Ψ− δij∂i∂jΦ+ δij∂i∂jΨ = 2T (Y ), (4.7)

δ(1)G(LL) = Φ−Ψ = T (LL) . (4.8)

The equations of motion for the transverse vector gauge-invariant fluctuations Si come from the

components δ(1)G
(T )
i0 and δ(1)G

(LT )
i :

δ(1)G
(T )
i0 = −1

2
δjk∂j∂kSi = T

(T )
i0 , (4.9)

δ(1)G
(LT )
i = −1

2
∂0Si = T

(LT )
i . (4.10)

8This can be explicitly verified by considering a linearized gauge transformation δξhµν = ∂µξν +∂νξµ and substituting

a similar SO(3) scalar-vector decomposition of the gauge parameter ξµ = (ξ, ξ(T ) i + ∂iξ(L)), with ∂iξ
(T ) i = 0.

Additionally one can easily check that the linearized Einstein equations (which are invariant under linearized gauge

transformations) can also be packaged only in terms of the gauge-invariant functions given in (4.2) without making

any restriction on the metric fluctuations.

20



The equations of motion for the transverse traceless tensor gauge-invariant fluctuations fij come

from G
(TT )
ij :

δ(1)G
(TT )
ij =

1

2
∂20fij −

1

2
δpq∂p∂qfij = T

(TT )
ij . (4.11)

We can quickly count the degrees of freedom by considering the equations of motion in vacuum:

δij∂i∂jΨ = 0 , ∂0Ψ = 0 , Φ = Ψ , (4.12)

δjk∂j∂kSi = 0 , ∂0Si = 0 , (4.13)

�fij = 0 . (4.14)

The scalar and vector fluctuations are not dynamical, unlike the tensor modes fij. Since the

tensors are transverse ∂if
ij = 0 and traceless δijf

ij = 0, this matches the counting of the degrees

of freedom for a 4d graviton.

After fixing the gauge in (4.3), the gravitational energy-momentum tensor can be computed

from (2.24). Since (2.24) is quadratic in the metric fluctuations which are now in the gauge (4.3),

we indicate which fluctuations are contributing to the various terms in the energy-momentum

tensor as follows:

Tµν = T (S)
µν + T (V )

µν + T (T )
µν + T (SV )

µν + T (ST )
µν + T (V T )

µν , (4.15)

where T (S)
µν , T (V )

µν , T (T )
µν are terms involving scalar, vector, tensor modes only and T (SV )

µν , T (ST )
µν ,

T (V T )
µν are terms that mix different modes. We will focus on T0i since it is needed to compute the

radiated power:

T (S)
0i = 2(∂0Ψ)∂iΦ− 4∂0(Ψ∂iΨ)

T (V )
0i =

1

2
Sj∂0(∂iSj + ∂jSi)

T (T )
0i =

1

2
f jk∂0∂kfij −

1

2
f jk∂0∂ifjk −

1

4
∂0fjk∂if

jk

T (SV )
0i = −Si∂0∂0Ψ−Ψ∂j∂

jSi − Sj∂j∂iΦ

+
1

2
∂jΦ(∂iS

j + ∂jSi) +
1

2
∂jΨ(∂iS

j − ∂jSi)

T (ST )
0i = fij∂0∂

jΨ− 1

2
∂0fij∂

jΦ− 1

2
∂0fij∂

jΨ

T (V T )
0i = −1

2
∂0(S

j∂0fij) +
1

2
(∂0S

j)∂0fij +
1

2
fjk∂

j(∂iS
k − ∂kSi)

+
1

2
(∂jSk)∂kfij −

1

2
(∂jfik)∂

jSk. (4.16)
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As shown in appendix B, the energy-momentum tensor for gravitational waves will only receive

contributions from the tensor mode. Thus we have

T0i =
1

2
f jk∂0∂kfij −

1

2
f jk∂0∂ifjk −

1

4
∂0f

jk∂ifjk. (4.17)

We can now compute the averaged radiated power

〈P 〉 = 1

T

∫ T

0
dt

∫
dΩ2R

2
∞

xi

R∞
T0i , (4.18)

where T is the period of the gravitational waves and we substituted the normal unit vector as

ni = xi/R∞. Far away from the sources, the waves are spherical waves9

fij ∼
sin[ω(t−R∞)]

R∞
. (4.19)

To leading order in 1/R∞, the spatial derivatives can be replaced by

∂ifjk ∼
xi
R∞

∂R∞fjk ∼ − xi
R∞

∂0fjk . (4.20)

Next we note that T0i can be written as

T0i =
1

4
∂0f

jk∂ifjk −
1

2
∂i(f

jk∂0fjk) +
1

2
∂k(f

jk∂0fij) . (4.21)

Asymptotically far away from the sources, the last two terms in (4.21) will average to zero as we

will now show. Consider one of those terms and start by trading off the spatial derivative for a

time derivative

∫ T

0
dt

∫
dΩ2R

2
∞

xi

R∞
∂i(f

jk∂0fjk) = −
∫ T

0
dt

∫
dΩ2R

2
∞∂0(f

jk∂0fjk) +O
(

1

R∞

)
. (4.22)

This vanishes since the integral in (4.22) is the integral of a total derivative, and the integrand is

a periodic function with period T . Therefore the averaged radiated power simplifies to

〈P 〉 = 1

T

∫ T

0
dt

∫
dΩ2R

2
∞

xi

R∞

1

4
∂0f

jk∂ifjk =
1

T

∫ T

0
dt

∫
dΩ2R

2
∞

1

4
∂0f

jk∂0f
jk . (4.23)

This is a familiar result, which in the literature is obtained after going to the transverse-traceless

gauge (see [39] for disambiguation regarding the various meanings of the ”transverse traceless

9One may wonder if, indeed, the transverse traceless tensor modes fµν which are the result of applying a projector

which is local in momentum space and non-local in position space, are indeed spherical waves asymptotically far from

sources. In Appendix C we solve the SO(1, 3) gauge-invariant fluctuations due to a static source. In Appendix F we

solve for the SO(1, 2) gauge-invariant fluctuations asymptotically far away from a binary source. In either case the

gauge-invariant fluctuations retain the generic feature of falling off with 1/r, where r is the distance to the source,

and are spherical waves in the second case.
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gauge”), as it is usually done for 4d flat spacetime gravitational waves, and performing the Isaacson

average discussed in Section I.

However we have arrived at it in a different way: we used only the gauge-invariant parts of

the metric fluctuation to turn (2.24) into a manifestly gauge-invariant expression, and we only

performed a time average over the period of the gravitational waves.

For yet another take on the same problem, in Appendix E we perform an SO(1, 2) SVT decom-

position of the metric fluctuations and in and Appendix F we solve explicitly for the gauge-invariant

SVT components asymptotically far away from a binary source. Then using the gauge-invariant

metric fluctuations in the gravitational energy-momentum tensor (2.24) and the formula for the

radiated power (2.19) we recover the known expression for the radiated power.

B. 5d flat spacetime

Anticipating further applications to models of extra dimensions such as Kaluza-Klein theories

(small extra dimensions) or the Randall-Sundrum model (large extra dimension), next we will

decompose the metric fluctuations about a 5d background into SVT components, with respect to

the SO(1, 3) Lorentz group. In this section we have in mind a 5d flat spacetime, with one compact

dimension x5 ∼ x5+ l; this breaks the isometry group from SO(1, 4) to SO(1, 3). We proceed then

with the following SVT decomposition:

hMN =


 2ψηµν + ∂µ∂νE + ∂µFν + ∂νFµ + fµν ∂µB + Sµ

∂νB + Sν 2φ


 , (4.24)

where we have introduced the 5d indices M,N = 0, 1, 2, 3, 5, and ∂µS
µ = ∂µf

µν = ∂µF
µ = 0 and

fµνη
µν = 0.10

The gauge-invariant metric fluctuations are Φ, Ψ, Sµ and fµν , where

Φ = φ− ∂5(B − 1
2∂5E) ,

Ψ = ψ ,

Sµ = Sµ − ∂5Fµ . (4.25)

We gauge-fix such that the metric fluctuations contain only these gauge-invariant components:

hMN |g.i. =


 2Ψδµν + fµν Sν

Sµ 2Φ


 . (4.26)

10We performed a similar decomposition in 4d non-compact flat spacetime in Appendix E and Appendix F.
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Consider next the Einstein equations GMN = 8πG5dTMN , where G5d is the 5d Newton’s con-

stant. To streamline our equations we adopt the same convention and set 8πG5d = 0. We perform

the SVT decomposition

GMN =


 2G(Y )ηµν + ∂µ∂νG

(LL) + ∂µG
(LT )
ν + ∂νG

(LT )
µ +G

(TT )
µν ∂νG

(L)
5 +G

(T )
ν5

∂µG
(L)
5 +G

(T )
µ5 G55


 ,

TMN =


 2T (Y )ηµν + ∂µ∂νT

(LL) + ∂µT
(LT )
ν + ∂νT

(LT )
µ + T

(TT )
µν ∂νT

(L)
5 + T

(T )
ν5

∂µT
(L)
5 + T

(T )
µ5 T55 .


 . (4.27)

The equations of motion for the scalar fluctuations Φ and Ψ arise from

δ(1)G55 = 3ηαβ∂α∂βΨ = T55 ,

δ(1)G
(L)
5 = −3∂5Ψ = T

(L)
5 ,

2δ(1)G(Y ) = 3∂25Ψ+ ηαβ∂α∂βΦ+ 2ηαβ∂α∂βΨ = 2T (Y ) ,

δ(1)G(LL) = −Φ− 2Ψ = T (LL) . (4.28)

The equations of motion for the transverse vector fluctuations Sµ arise from

δ(1)G
(T )
µ5 = −1

2
ηαβ∂α∂βSµ = T

(T )
µ5 , (4.29)

δ(1)G(LT )
µ =

1

2
∂5Sµ = T (LT )

µ . (4.30)

Lastly, the equations of motion for the transverse traceless tensor fluctuations fµν come from

δ(1)G
(TT )
µν :

δ(1)G(TT )
µν = −1

2
∂25fµν −

1

2
ηαβ∂α∂βfµν = T (TT )

µν . (4.31)

We can quickly count the degrees of freedom by considering the vacuum equations of motion

ηαβ∂α∂βΨ = 0 , ∂5Ψ = 0 , Φ = −2Ψ ,

ηαβ∂α∂βSµ = 0 , ∂5Sµ = 0 ,

∂25fµν + ηαβ∂α∂βfµν = 0 . (4.32)

When Ψ (and therefore Φ) is x5-independent, Ψ describes a 4d massless scalar, which has 1 degree

of freedom. For x5-independent vector fluctuations, Sµ describes a 4d massless vector which has

2 degrees of freedom. The x5-independent tensor fµν describes a 4d massless graviton which has

2 degrees of freedom. This is the scenario for Kaluza-Klein reduction, when 5d gravity reduces to
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a 4d Einstein-Maxwell-dilaton theory.11 Otherwise, for x5-dependent fluctuations, only the tensor

fµν is non-zero and describes a 4d massive graviton, which has five degrees of freedom.

Next, we construct the energy-momentum tensor of gravitational waves. We follow the same

procedure as in the previously discussed 4d case. We write the energy-momentum tensor for

gravitational waves as

TMN = T (S)
MN + T (V )

MN + T (T )
MN + T (SV )

MN + T (ST )
MN + T (V T )

MN , (4.33)

where T (S)
MN , T

(V )
MN , T

(T )
MN are terms involving scalar, vector, tensor modes only and T (SV )

MN , T (ST )
MN ,

T (V T )
MN are terms that mix different modes. Based on our earlier counting of degrees of freedom,

the massive modes contribute only to T (T )
MN . We will focus on T0i since it needed to compute the

radiated power at infinity. We do not need T05 due to the periodicity of the fifth dimension.

T (S)
0i = −∂0Ψ∂iΦ− ∂iΨ∂0Φ+ ∂0Φ∂iΦ− 2∂0Ψ∂iΨ− 2∂0(Φ∂iΦ)− 4∂0(Ψ∂iΨ)

T (V )
0i = −1

2
∂α(S0∂

αSi) +
1

2
S0∂α∂

αSi +
1

2
∂α(Sα(∂0Si + ∂iS0))

+
1

2
∂0Sα∂iS

α − ∂0(Sα∂iS
α)

T (T )
0i = −1

2
(∂5(f0α∂5f

α
i ) + ∂β(f0α∂

βfαi )− f0α(∂5∂
5 + ∂β∂

β)fαi )

+
1

2
∂α∂β(f0βfiα − fαβf0i) +

1

2
∂α(fαβ(∂0f

β
i + ∂if

β
0 ))

+
1

4
∂0fαβ∂if

αβ − 1

2
∂0(fαβ∂if

αβ)

T (SV )
0i = ∂5(Si∂0Ψ+ S0∂iΨ+Φ∂iS0 +Φ∂0Si)−

1

2
(∂0Si + ∂iS0)∂5(Φ + 2Ψ)

T (ST )
0i = −1

2
∂5(Φ∂5f0i)−

1

2
Φ(∂5∂

5 + ∂α∂
α)f0i

+
1

2
∂α(Φ∂

αf0i − Φ∂0f
α
i − Φ∂if

α
0 ) + ∂α(fiα∂0Ψ+ f0α∂iΨ− f0i∂αΨ)

T (V T )
0i = −∂α(Sα∂5f0i) +

1

2
∂5(Sα∂0f

α
i + Sα∂if

α
0 )

+
1

2
∂α(S0∂5fiα + Si∂5f0α − f0i∂5Sα) (4.34)

These expressions can be greatly simplified under certain conditions. For example let us assume

that all the source terms have compact support and are localized at x5 = 0. We will extract all

the parts of T0i that give a non-vanishing contribution when computing the radiated power. Since

the sources have compact support and are localized at x5 = 0, at spatial infinity the fluctuations

will take the following form, to leading order in 1/r: (i) spherical waves for the zero-modes (ii)

exponentially suppressed with r for the massive modes. For a binary source this behavior is: (i)

11For a more careful analysis of the zero-mode case leading to the same conclusion, see Appendix D.
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exp(2iΩ(t−r))/r, where Ω is the frequency of the binary sources, for the zero-modes, (ii) exponen-

tially suppressed exp(2iΩt) exp(i 2πnx5/l) exp(−r
√

(2πn/l)2 − 4Ω2)/r, where l is the periodicity

of the fifth dimension, and n is an integer, for the massive modes [13]. Because the fifth dimension

is periodic, and we integrate over x5 in computing the radiated power, we can drop any term that

has only one derivative with respect to x5. Furthermore, because we compute the power at spatial

infinity we only need the leading order in 1/r for any fluctuation. As a consequence, we can trade

∂i for ni∂0 for the zero modes just like in previous section IVA. Even though the massive modes

do not depend on time through the combination t− r, given that the ∂r derivative must act on the

exponential or else it will give a contribution which vanishes at spatial infinity, we can still trade

∂r for ∂0 (appropriately multiplied by a frequency and n dependent numerical factor). Under time

averaging, any term that is a total derivative with respect to time drops out. We are left with:

T (S)
0i → −∂0Ψ∂iΦ− ∂iΨ∂0Φ+ ∂0Φ∂iΦ− 2∂0Ψ∂iΨ

T (V )
0i → 1

2
∂0Sα∂iS

α

T (T )
0i → 1

4
∂0fαβ∂if

αβ

T (SV )
0i → 0

T (ST )
0i → 0

T (V T )
0i → 0. (4.35)

Combining all the parts, the formula for the radiated power simplifies to

〈P 〉 =
1

T

∫ T

0
dt

∫
dx5

∫
dΩ2R

2
∞n

iT0i
∣∣∣∣
r=R∞

=
1

T

∫ T

0
dt

∫
dx5

∫
dΩ2R

2
∞

xi

R∞

(
− ∂0Ψ∂iΦ− ∂iΨ∂0Φ+ ∂0Φ∂iΦ− 2∂0Ψ∂iΨ

+
1

2
∂0Sα∂iS

α +
1

4
∂0fαβ∂if

αβ

)∣∣∣∣
r=R∞

=
l

T

∫ T

0
dt

∫
dΩ2R

2
∞

(
6∂0Ψ∂0Ψ+

1

2
∂0Sα∂0S

α +
1

4
∂0fαβ∂0f

αβ

∣∣∣∣
massless

)∣∣∣∣
r=R∞

+
1

T

∫ T

0
dt

∫
dx5

∫
dΩ2R

2
∞

(
1

4
∂0fαβ∂rf

αβ

∣∣∣∣
massive

)∣∣∣∣
r=R∞

, (4.36)

where we have highlighted the contributions of the massless and massive sectors and we have

used that asymptotically far from the sources the scalars are related by the vacuum equation

Φ + 2Ψ = 0. Due to the exponential suppression with r in the massive mode sector for source

frequencies Ω > 2π/l, it is reasonable to approximate (4.36) by keeping only the massless sector

contribution. We complete the check of the formula for the radiated power in Appendix G by
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concretely solving for the gauge-invariant fluctuations and computing the luminosity of a binary

source. We show that we reproduce previous results in the literature.

C. Randall-Sundrum model

For the Randall-Sundrum model we start with the Einstein’s equation,

RMN − 1

2
gMN (R− 2Λ) +

1

2
λ

√
− det(∗gµν)√
− det(gMN )

δµM δ
ν
N

∗gµνδ(y) = TMN , (4.37)

where TMN are the matter sources, ∗gµν is the pull-back of the bulk metric to the 3-brane located

at y = 0, and where the brane tension λ and the cosmological constant Λ are tuned such that

Λ = −6κ2 and λ = 12κ . (4.38)

Given the SO(1, 3) isometry of the background metric, ds2 = dy2 + e−2κ|y|ηµνdx
µdxν , we start by

decomposing the metric perturbation into scalar-vector-tensor fluctuations as follows:

hMN =


 2ψηµν + ∂µ∂νE + ∂µFν + ∂νFµ + fµν ∂µB + Sµ

∂νB + Sν 2φ


 . (4.39)

The gauge invariant fluctuations are Φ, Ψ, Sµ and fµν , where

Φ = φ− ∂y

(
B − 1

2e
−2κ|y|∂y(e

2κ|y|E)

)
,

Ψ = ψ − 1
2(∂ye

−2κ|y|)(B − 1
2e

−2κ|y|∂y(e
2κ|y|E)) ,

Sµ = Sµ − e−2κ|y|∂y(e
2κ|y|Fµ) . (4.40)

Next we perform the same SVT decomposition on the left-hand-side of Einstein’s equation (4.37)

which we denote here by EMN

EMN =


 2E(Y )ηµν + ∂µ∂νE(LL) + ∂µE(LT )

ν + ∂νE(LT )
µ + E(T )

µν ∂νE(L)
y + E(T )

νy

∂µE(L)
y + E(T )

µy Eyy


 , (4.41)

and to the matter sources on the right-hand-side of (4.37) (note that we included the brane con-

tribution in EMN ):

TMN =


 2T (Y )ηµν + ∂µ∂νT

(LL) + ∂µT
(LT )
ν + ∂νT

(LT )
µ + T

(T )
µν ∂νT

(L)
y + T

(T )
νy

∂µT
(L)
y + T

(T )
µy Tyy


 . (4.42)

Then we expand in fluctuations and write the linearized equations of motion for the gauge-invariant

fluctuations. The linearized equations of motion for the scalars Φ and Ψ arise from the components

δ(1)Eyy, δ
(1)E(L)

y , δ(1)E(Y )and δ(1)E(LL):

δ(1)Eyy = e2κ|y|
[
3e2κ|y|ηαβ∂α∂β + 12eκ|y|(e−κ|y|)′∂y − 12e2κ|y|((e−κ|y|)′)2 + 4eκ|y|(e−κ|y|)′′
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+
2

3
λδ(y) +

8

3
Λ

]
Ψ+

[
− 2

3
λδ(y) − 2

3
Λ− 12e2κ|y|((e−κ|y|)′)2 − 4eκ|y|(e−κ|y|)′′

]
Φ

= e2κ|y|
[
3e2κ|y|ηαβ∂α∂β − 12κsign(y)∂y − 24κ2

]
Ψ− 12κ2Φ = Tyy ,

δ(1)E(L)
y =

[
− 3e2κ|y|∂y + 6e3κ|y|(e−κ|y|)′

]
Ψ+ 3eκ|y|(e−κ|y|)′Φ

= e2κ|y|
[
− 3∂y − 6κ sign(y)

]
Ψ− 3κ sign(y)Φ = T (L)

y ,

2δ(1)E(Y ) =

[
2e2κ|y|ηαβ∂α∂β + 3∂2y − 4eκ|y|(e−κ|y|)′′ +

1

3
λδ(y) +

4

3
Λ

]
Ψ

+ e−2κ|y|

[
ηαβ∂α∂β +

1

6
λδ(y) +

2

3
Λ− 2eκ|y|(e−κ|y|)′′ − 6e2κ|y|((e−κ|y|)′)2 − 3eκ|y|(e−κ|y|)′∂y

]
Φ

=

[
2e2κ|y|ηαβ∂α∂β + 3∂2y − 12κ2 + 12κ δ(y)

]
Ψ

+ e−2κ|y|

[
ηαβ∂α∂β + 3κ sign(y)∂y − 12κ2 + 6κδ(y)

]
Φ = 2T (Y ) ,

δ(1)E(LL) = −Φ− 2e2κ|y|Ψ = T (LL) , (4.43)

where we used primes to denote differentiation with respect to y. The linearized equations of the

vector fluctuation Sµ come from the components δ(1)E(T )
µy and δ(1)E(LT )

µ :

δ(1)E(T )
µy =

[
− 1

2
e2κ|y|ηαβ∂α∂β − eκ|y(e−κ|y|)′′ − 3e2κ|y|((e−κ|y|)′)2 − 2

3
λδ(y)− 2

3
Λ

]
Sµ

=

[
− 1

2
e2κ|y|ηαβ∂α∂β − 6κδ(y)

]
Sµ = T (T )

µy ,

δ(1)E(LT )
µ =

[
1

2
∂y − e−κ|y|(e−κ|y|)′

]
Sµ =

[
1

2
∂y − κsign(y)

]
Sµ = T (LT )

µ . (4.44)

The tensor fµν equation of motion is:

δ(1)E(T )
µν =

[
− 1

2
e2κ|y|ηαβ∂α∂β −−1

2
∂2y −

1

6
λδ(y) − 2

3
Λ− 2e2κ|y|((e−κ|y|)′)2

]
fµν

=

[
− 1

2
e2κ|y|ηαβ∂α∂β −

1

2
∂2y + 2κ2 − 2κδ(y)

]
fµν = T (T )

µν . (4.45)

and originates in δ(1)Eµν . In the absence of matter sources we recognize here our earlier equation

(3.15).

In vacuum, the set of equations obeyed by the gauge-invariant fluctuations reduces to

ηαβ∂α∂βΨ = 0 , ∂yΨ = 0 , Φ+ 2e2κ|y|Ψ = 0 ,

e2κ|y|ηαβ∂α∂βSµ = −12κδ(y)Sµ ,

[
1

2
∂y − κsign(y)

]
Sµ = 0 ,

[
− 1

2
e2κ|y|ηαβ∂α∂β −

1

2
∂2y + 2κ2 − 2κδ(y)

]
fµν = 0 . (4.46)

28



The linearized vector vacuum equations admit no solution due to the delta-function present on

the right-hand-side of the equations (4.46) and the absence of any ∂y derivatives, which imply

that Sµ vanishes on the brane. The tensor equation however does not suffer from this problem and

admits solutions. The scalar equations admit solutions for null 4-momenta, but the Ψ scalar metric

fluctuations are |y|-independent, and the Φ fluctuations are growing with |y|. Both fluctuations

are non-normalizable, exponentially growing with |y| relative to the background metric.

We are now turning our attention to constructing the gravitational energy-momentum tensor

Tµν . It is quadratic in fluctuations: we denote the scalar, vector and tensor contributions by

T (S)
ρσ ,T (V )

ρσ ,T (T )
ρσ and the mixed contributions by T (SV )

ρσ , for the mixed scalar-vector contribution,

etc. We give each one of these expressions below:

T (S)
ρσ =ηρσ

[
− 4e−κ|y|(e−κ|y|)′Φ∂yΦ− 4eκ|y|(e−κ|y|)′Ψ∂yΦ+ 6∂yΨ∂yΦ

− 4e−κ|y|(e−κ|y|)′Φ∂yΦ− 12Φ2((e−κ|y|)′)2 − 8e2κ|y|((e−κ|y|)′)2ΦΨ

+ 8e4κ|y|((e−κ|y|)′)2Ψ2 − 8eκ|y|(e−κ|y|)′Φ∂yΨ− 3∂yΦ∂yΨ

+ 16eκ|y|(e−κ|y|)′Φ∂yΨ− 8e3κ|y|(e−κ|y|)′Ψ∂yΨ− 4e−κ|y|(e−κ|y|)′′Φ2

− 8e3κ|y|(e−κ|y|)′′Ψ2 + 2Φ∂y∂yΨ+ 4e2κ|y|Ψ∂y∂yΨ+ ηαβ∂αΦ∂βΦ− ηαβe2κ|y|∂αΦ∂βΨ

+ 3e4κ|y|ηαβ∂αΨ∂βΨ+ ηαβΦ∂β∂αΦ+ e2κ|y|ηαβΨ∂β∂αΦ+ 4e4κ|y|ηαβΨ∂β∂αΨ

]

− ∂ρΦ∂σΦ− e2κ|y|(∂ρΨ∂σΦ+ ∂ρΦ∂σΨ)− 6e4κ|y|∂ρΨ∂σΨ− 2Φ∂σ∂ρΦ− 4e4κ|y|Ψ∂σ∂ρΨ ,

− ηρσλδ(y)

[
1
4Φ

2 + 3ΦΨ

]
, (4.47)

T (V )
ρσ =ηρσ

[
− 3

2e
2κ|y|SαS

α((e−κ|y|)′)2 − 3eκ|y|(e−κ|y|)′Sα∂ySα − 3
2e
κ|y|SαS

α(e−κ|y|)′′

+ 3
4e

2κ|y|ηβγ∂βS
α∂γSα + 1

2e
2κ|y|ηβγSα∂γ∂βS

α − 1
4e

2κ|y|∂αS
β∂βS

α − 1
2λδ(y)SαS

α

]

+ 1
2e

2κ|y|Sα∂α(∂ρSσ + ∂σSρ)− 1
2e

2κ|y|ηαβ∂αSρ∂βSσ − 1
2e

2κ|y|∂ρS
α∂σSα − e2κ|y|Sα∂σ∂ρS

α

T (T )
ρσ =ηρσ

[
− 3

2e
3κ|y|(e−κ|y|)′fαβ∂yfαβ +

3
8e

2κ|y|ηαβηγκ∂yfαγ∂yfβκ +
3
8e

4κ|y|ηγκ∂γf
αβ∂κfαβ

+ e4κ|y|((e−κ|y|)′)2fαβf
αβ + 1

4e
2κ|y|fαβ∂2yfαβ − 1

2e
3κ|y|fαβf

αβ(e−κ|y|)′′

+ 1
4e

4κ|y|fαβη
γκ∂κ∂γf

αβ − 1
4e

4κ|y|∂βf
αγ∂γfα

β

]

+ e3κ|y|(e−κ|y|)′(fσ
α∂yfρα + fρ

α∂yfσα)− 1
2e

2κ|y|ηαβ∂yfρα∂yfσβ − 2e4κ|y|((e−κ|y|)′)2fραfσ
α

+ e4κ|y|
[
1
2∂αfσ

β∂βfρ
α − 1

2f
αβ∂β∂αfρσ +

1
2fα

β∂β∂ρfσ
α + 1

2fα
β∂β∂σfρ

α

− 1
2η

βγ∂βfρ
α∂γfσα − 1

4∂ρf
αβ∂σfαβ − 1

2fαβ∂σ∂ρf
αβ

]
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− 1
4ηρσλδ(y)fαβf

αβ , (4.48)

T (SV )
ρσ =e2κ|y|ηρσS

α∂y∂αΨ+ e2κ|y|ηαβηρσ∂ySβ∂αΨ

+Φ∂y∂ρSσ + e2κ|y|Sσ∂y∂ρΨ+Φ∂y∂σSρ + e2κ|y|Sρ∂y∂σΨ+ 1
2∂yΦ∂ρSσ + 2eκ|y|(e−κ|y|)′Φ∂ρSσ

+ 2e3κ|y|(e−κ|y|)′Ψ∂ρSσ − e2κ|y|∂yΨ∂ρSσ + e2κ|y|∂ySσ∂ρΨ+ 1
2∂yΦ∂σSρ + 2eκ|y|(e−κ|y|)′Φ∂σSρ

+ 2e3κ|y|(e−κ|y|)′Ψ∂σSρ − e2κ|y|∂yΨ∂σSρ + e2κ|y|∂ySρ∂σΨ , (4.49)

T (ST )
ρσ =1

2e
2κ|y|fαβηρσ∂β∂αΦ+ 1

2∂yΦ∂yfρσ − ∂yfρσ∂yΦ− 4e2κ|y|((e−κ|y|)′)2fρσΦ

− 8e4κ|y|((e−κ|y|)′)2fρσΨ+ 4e3κ|y|(e−κ|y|)′fρσ∂yΨ− Φ∂y∂yfρσ +
1
2e

2κ|y|ηαβ∂αΦ∂βfρσ

− e4κ|y|ηαβ∂αΨ∂βfρσ − e4κ|y|ηαβΨ∂β∂αfρσ − 1
2e

2κ|y|∂αΦ∂ρfσ
α + e4κ|y|fσ

α∂ρ∂αΨ

− 1
2e

2κ|y|∂αΦ∂σfρ
α + e4κ|y|fρ

α∂σ∂αΨ

+ λδ(y)fρσ

[
1
2Φ+ 2Ψ

]
, (4.50)

T (V T )
ρσ =e2κ|y|

[
− 1

2ηρση
βγ∂yfαβ∂γS

α − Sα∂y∂αfρσ − 1
2f

αβηρσ∂y∂βSα + 1
2S

α∂y∂ρfσα

+ 1
2S

α∂y∂σfρα + eκ|y|(e−κ|y|)′Sα∂αfρσ − eκ|y|(e−κ|y|)′fσ
α∂αSρ − eκ|y|(e−κ|y|)′fρ

α∂αSσ

− 1
2η

αβ∂ySα∂βfρσ +
1
2η

αβ∂yfσα∂βSρ +
1
2η

αβ∂yfρα∂βSσ +
1
2∂ySα∂ρfσ

α + 1
2∂ySα∂σfρ

α

]
,

(4.51)

where the 4d indices α, β on the vector and tensor fluctuations have been raised with the Minkowski

metric e.g. Sα = ηαβSβ. The delta-function terms arise due to the presence of the brane.

Under the same assumption that all sources have compact support, let us extract those parts in

Tµν which are relevant for computing the radiated power. For κr ≫ 1 we derived in Section IIID

the profile of spherical waves in Randall-Sundrum background. We see that the same arguments

we have been using earlier still apply. First, for the radiated power we only need T0i if we chose

to compute the rate of the energy flux through the surface of an infinitely long cylinder (we are

thus keeping r = R∞ large and fixed and integrating over y). This is merely a convenient choice

of the surface enclosing the sources, and keeping with our assumption that we are measuring the

radiated power far away from the sources. Second, the relevant terms in T0i which contribute to

the averaged radiated power can be be found by (i) dropping all total ∂i derivatives (since these

can be turned in (xi/r)∂r in T (S)
0i and T (V )

0i ; the ∂r derivative must act on the phase of the spherical

wave otherwise it will lead to a flux which vanishes asymptotically far away (r = R∞ → ∞); at

this point ∂r can be converted into ∂t; lastly the time average will set this term to zero); similarly,

total derivatives can be dropped from T (T )
0i ; (ii) dropping all the terms which are odd in y such as
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single ∂y derivatives. What is left is

T (S)
0i → ∂0Φ∂iΦ− 2e4κ|y|∂0Ψ∂iΨ− e2κ|y|(∂0Ψ∂iΦ+ ∂0Φ∂iΨ)

T (V )
0i → 1

2S0e
2κ|y|ηαβ∂α∂βSi +

1
2e

2κ|y|∂0Sα∂iS
α ,

T (T )
0i → −1

2e
−2κ|y|∂y(e

2κ|y|f0α)∂y(e
2κ|y|fαi )− 1

2e
4κ|y|fα0 �

(4d)fiα + 1
4e

4κ|y|∂0fαβ∂if
αβ ,

T (SV )
0i → 0 ,

T (ST )
0i → 1

2
∂yΦ∂yf0i − ∂yf0i∂yΦ− 4κ2f0iΦ

−8κ2e2κ|y|f0iΨ− 4κ sign(y) e2κ|y|f0i∂yΨ− Φ∂2yf0i +
1

2
e2κ|y|ηαβ∂αΦ∂βf0i

−e4κ|y|ηαβ∂αΨ∂βf0i − e4κ|y|Ψηαβ∂α∂βf0i −
1

2
e2κ|y|∂αΦ∂0f

α
i + e4κ|y|fαi ∂0∂αΨ

−1

2
e2κ|y|∂αΦ∂if

α
0 + e4κ|y|fα0 ∂i∂αΨ

+

(
2Ψf0i +

1

2
Φf0i

)
λδ(y) ,

T (V T )
0i → 0 . (4.52)

The luminosity (radiated power) of the gravitational waves is obtained by substituting the

expressions in (4.52) into (2.19)

〈P 〉 =
1

T

∫ T

0
dt

∫ ∞

−∞
dy e−4κ|y|

∫
dΩ2R

2
∞e

2κ|y|

[
T (S)
0i + T (V )

0i + T (T )
0i + T (SV )

0i + T (V T )
0i + T (ST )

0i

]
.

(4.53)

Lastly, this expression can be further simplified: since we are asymptotically far away from

sources we will use the vacuum relations satisfied by the scalars: Φ + 2 exp(2κ|y|)Ψ = 0 and

ignored the vector contribution since it does not couple to matter on the brane:

〈P 〉 =
1

T

∫ T

0
dt

∫ ∞

−∞
dy e−4κ|y|

∫
dΩ2R

2
∞e

2κ|y|

[
6e4κ|y|Ψ̇Ψ̇

+e4κ|y|
xi

R∞

(
− 1

2e
−6κ|y|∂y(e

2κ|y|f0α)∂y(e
2κ|y|fαi )− 1

2f
α
0 η

µν∂µ∂νfiα + 1
4∂0fαβ∂if

αβ

)

+e4κ|y|
xi

R∞

(
e−4κ|y|∂y(e

2κ|y|Ψ)∂yf0i + ηαβ(−2∂αΨ∂βf0i −Ψ∂α∂βf0i)

+ηαβ∂α∂i(Ψf0β) + 2e−2κ|y|Ψ∂2yf0i − 4κsign(y)e−2κ|y|f0i∂yΨ+ 12κδ(y)Ψf0i

)]
.

(4.54)
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Appendix A: The second order expansion of the Ricci tensor

In this appendix we perform explicitly the second order expansion of the Einstein equations,

given a metric gµν which differs from a background metric ḡµν by a small fluctuation

gµν = ḡµν + hµν . (A1)

Expanding order-by-order in the fluctuation hµν , the inverse metric and Christoffel symbols are

gµν = ḡµν − hµν + [h2]µν − [h3]µν + . . . ,

Γρµν = Γ̄ρµν + δ(1)Γρµν + δ(2)Γρµν + . . . ,

δ(1)Γρµν =
1
2 ḡ
ρσ(−hµν;σ + hσν;µ + hµσ;ν) ,

δ(2)Γρµν = −1
2h

ρσ(−hµν;σ + hσν;µ + hµσ;ν) , (A2)

where [h2]µν = hµρhνσ ḡρσ etc, and all the indices are raised and lowered with the background metric.

Consequently, the Ricci tensor and Ricci scalar, expanded to second order in the fluctuation hµν

are

Rµν = R̄µν + δ(1)Rµν + δ(2)Rµν + . . . ,

δ(1)Rµν = ∇̄ρδ
(1)Γρµν − ∇̄µδ

(1)Γρρν

= 1
2 (−hµν;ρ

;ρ − h;µ;ν + hρν;µ
;ρ + hµρ;ν

;ρ) ,

δ(2)Rµν = ∇̄ρδ
(2)Γρµν − ∇̄µδ

(2)Γρρν + δ(1)Γρµνδ
(1)Γσσρ − δ(1)Γρµσδ

(1)Γσρν

= 1
4∇̄µ∇̄ν(h

ρσhρσ)− 1
4h

ρσ
;µhρσ;ν − 1

2h
ρσ(hσν;µ;ρ + hµσ;ν;ρ − hµν;σρ)

−1
2h

ρσ
;ρ(hσν;µ + hµσ;ν − hµν;σ)− 1

2(hµσ
;ρhρν

;σ − hµσ
;ρhσν;ρ)

+1
4h

;σ(hσν;µ + hµσ;ν − hµν;σ) ,

R = gµνRµν = R̄+ δ(1)R+ δ(2)R+ . . . ,

δ(1)R = −hµνR̄µν − h;ρ
;ρ + hρσ;

;σ;ρ ,

δ(2)R = [h2]µνR̄µν − hµνδ(1)Rµν + ḡµνδ(2)Rµν , (A3)

where h = hµν ḡ
µν , and the background covariant derivatives are denoted either through ∇̄µ or are

implied by an index preceded by a semicolon (;µ).
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Appendix B: The contribution of the scalar and vector modes to the radiated power in 4d

flat space, with an SO(3) SVT decomposition

First, consider the scalar mode Ψ which satisfies the equations

G00 = −2δij∂i∂jΨ = −2∇2Ψ = T00 , (B1)

G
(L)
0 = −2∂0Ψ = T

(L)
0 . (B2)

Due to the compact support of the source, equation (B1) tells us that far away from the source,

Ψ is at most of order O(1/r) with its phase depending on time t instead of retarded time (t− r).

Thus ∂iΨ will be at most of order O(1/r2), which means any term in T0i that contains ∂iΨ will

not contribute to the calculation of radiated power.

Let us now move on to equation (B2). T
(L)
0 can be solved as

T
(L)
0 = − ∂i

∇2
T0i . (B3)

Since the source has compact support, at large distance r, we can see that T
(L)
0 will be at most of

O(1/r2), which means any term in T0i that contains ∂0Ψ will not contribute to the calculation of

radiated power.

Next, consider the scalar mode Φ which relates to Ψ by the equation

G(LL) = Φ−Ψ = T (LL) . (B4)

T (LL) can be solved as

T (LL) =
3

2

∂i∂j

(∇2)2
Tij −

1

2∇2
δijTij , (B5)

which means when far away from the source, similar to Ψ, T (LL) will also be at most of order

O(1/r) with its phase depending on time t instead of retarded time (t− r). Thus any term in T0i
that contains ∂iΦ will not contribute to the calculation of radiated power.

The analysis for the vector mode Si is the same as that for Ψ, which leads to the conclusion

that any term that contains ∂jSi or ∂0Si will not contribute to the calculation of radiated power.

In addition, since we need to take a time averaging over the period of the gravitational wave

to compute the radiated power, any term in T0i that is a total derivative of time will not give any

contribution.

Therefore none of the terms in (4.16) that involve any of the scalar modes, Φ and Ψ, or the

vector mode, Si will contribute to the calculation of radiated power.
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Appendix C: The non-locality of the SVT decomposition

Whenever we perform a decomposition of SVT type, the resulting metric components are ex-

tracted with projectors that are non-local in position space. The same operators when applied to

a delta-function localized energy-momentum source will also result in a non-local set of SVT Tµν

components. To gain a better understanding of the action of the non-local projectors and the con-

sequences of a non-local energy-momentum source we consider a flat background, a static source

and perform an SO(1, 3) SVT decomposition both for the metric and the Einstein equations. Let

us begin with the metric fluctuations:

hµν = ηµνΨ+ ∂µh
(LT )
ν + ∂νh

(LT )
µ + ∂µ∂νh

(LL) + h(TT )µν , (C1)

where h
(LT )
µ is a transverse vector and h

(TT )
µν is a transverse traceless tensor

∂µh
(LT )µ = 0, ηµνh

(TT )
µν = 0, ∂µh

(TT )µν = 0. (C2)

The indices are raised with the background (Minkowski) metric.

Given hµν we can solve for each of Ψ, h(LL), h
(LT )
µ and h

(TT )
µν :

Ψ = − ∂µ∂ν
d− 1

1

�
hµν +

h

d− 1
, (C3)

where h = hµνη
µν ,

h(LL) =
d

d− 1

∂µ∂ν
�2

hµν − 1

(d− 1)

1

�
h, (C4)

h(LT ) ν =
1

�

(
∂µh

µν − ∂ν
∂ρ∂σ

�
hρσ

)
, (C5)

and where d = 4 here. Lastly, h
(TT )
µν is obtained substituting the previous expressions into (C1).

While a bit more cumbersome than the usual SO(3) SVT decomposition, this SO(1, 3) decompo-

sition arises naturally in the context of a 5d spacetime that has 4d Lorentz symmetry.

Consider next a static source and solve for the linearized fluctuation in the usual fashion (define

the trace-reversed metric fluctuations, impose the Lorentz gauge, and solve the resulting decoupled

equations):

T00 =Mδ3(~r), hµνdx
µdxν =

2MG

r
dt2 + δij

2MG

r
dxidxj . (C6)

Then we can extract the SVT metric components by applying the non-local projectors as above:

Ψ =
2MG

3r
, h(LL) = −MG

3
r, h(LT )µ = 0,
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h
(TT )
00 =

8MG

3r
, h

(TT )
0i = 0, h

(TT )
ij =

2MG

3r
(δij + ninj), (C7)

where ni = xi

r . The matter energy-momentum tensor is decomposed in a similar fashion:

Tµν = ηµνT
(Ψ) + ∂µT

(LT )
ν + ∂νT

(LT )
µ + ∂µ∂νT

(LL) + T (TT )
µν , (C8)

with

T (Ψ) = −MG

3
δ3(~r), T (LL) =

MG

12πr
, T (LT )

µ = 0,

T
(TT )
00 =

2MG

3
δ3(~r), T

(TT )
ij =

2MG

9
δ3(~r)δij −

MG

12πr3
(δij − 3ninj). (C9)

As a check, we verify that the SVT fluctuations obey decoupled linearized Einstein equations12

�Ψ = −8πGT (ψ), �h(TT )µν = −16πGT (TT )
µν . (C10)

There is one more linearized Einstein equation that involves Ψ:

∂µ∂νΨ = −8πG∂µ∂νT
(LL). (C11)

However this equation is satisfied due the transversality of Tµν which implies that �T (LL)+T (Ψ) = 0

and T
(LT )
ν = 0.

Notice also that the Einstein equations constrain only the gauge-independent fluctuations, Ψ

and h
(TT )
µν . The other two fluctuations h

(LT )
µ and h(LL) are pure gauge. Given the expressions for

Ψ and h
(TT )
µν in (C7) and the SVT energy-momentum tensor components in (C9), we can proceed

to verify that the equations (C10) are satisfied.

We can now take stock of what we have learned. While source terms for the equations (C10)

obeyed by the decoupled SVT fluctuations are non-local, the only consequence of this non-locality

is that the linearized SVT metric fluctuations, which still fall off as 1/r, acquire a dependence on

ninj.

Appendix D: Zero mode sector

1. Maxwell field

The SVT decomposition requires a slight modification in the case of null eigenvectors of the

d’Alembertian. As a warm-up we consider first the Maxwell field in a d-dimensional flat space.

12Use that � 1
r
= −4πδ3(~r), �

ninj

r
= − 4π

3
δijδ

3(~r)− 1
r3
(6ninj − 2δij).
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The scalar-vector (SV) decomposition with respect to the SO(1, d − 1) Lorentz group

Aµ = ∂µA
(L) +A(T )

µ , ηµν∂µA
(T )
ν = 0, (D1)

or in terms of Fourier modes,

Aµ = ikµA
(L) +

d−1∑

p=1

ǫ(p)µ Ap, ǫ(p) · k = ηµνǫ(p)µ kν = 0, ǫ(p) · ǫ(q) = δpq, (D2)

maps the d components of the vector field into a longitudinal vector ∂µA
(L) and a d−1 component

transverse vector A
(T )
µ . The latter components are gauge-invariant. However, this breaks down

when A(L) is a null eigenvector of the d’Alembertian, i.e. �A(L) = 0, since in this case ∂µA
(L) is

transverse (or, in Fourier space, kµ is null). In this case, we proceed with

Aµ = ikµa+ ik̃µã+
d−2∑

p=1

ǫ(p)µ Ap,

kµ = (k0, ~k), k̃µ = (k0,−~k), k · k = k̃ · k̃ = ǫ(p) · k = ǫ(p) · k̃ = 0, ǫ(p) · ǫ(q) = δpq.(D3)

The gauge-invariant components are ã and Ap. Furthermore, Maxwell’s equations set ã = 0. For

an on-shell gauge field, we can write then

Aµ = ∂µA
(L) +A(T )

µ , (D4)

where the gauge-invariant components are transverse A
(T )
µ = (0, ~A(T )), ~∇ · ~A(T ) = 0.

Next, let us consider a Maxwell field in d + 1 dimensions and perform an SV decomposition

with respect to the SO(1, d − 1) Lorentz group

AM = (Aµ, Ad+1) (D5)

Aµ = ∂µA
(L) +A(T )

µ , ηµν∂µA
(T )
ν = 0, (D6)

where M is a d + 1-index and µ = 0, 1, 2, . . . , d − 1. Such an expansion would be appropriate if

we are working with one compact dimension, xd+1. In terms of Fourier modes exp(ikµx
µ) (scalar

eigenfunctions of the d-dimensional d’Alembertian) we can write

AM =


ikµA(L) +

d−1∑

p=1

ǫ(p)µ Ap , Ad+1


 , ǫ(p) · k ≡ ηµνkµǫ

(p)
ν = 0. (D7)

This assumes that k · k = ηµνkµkν 6= 0. The gauge-invariant components are Ad+1 − ∂d+1A
(L) and

A(T ). Furthermore Maxwell’s equations set the scalar gauge-invariant combination Ad+1−∂d+1A
(L)

to zero and require that (−k · k + ∂2d+1)A
p = 0.
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If the Fourier momenta are null (k · k = 0), then we proceed as we did earlier, with

Aµ = ikµa+ ik̃µã+

d−2∑

p=1

ǫ(p)µ Ap, (D8)

with the polarization vectors ǫ
(p)
µ transverse to both null vectors kµ and k̃µ. Maxwell’s equations set

ã = 0 and require that the scalar gauge-invariant combinations Ad+1−∂d+1a and A
p be independent

of xd+1. To conclude, for an on-shell Maxwell field we can write

Aµ = ∂µA
(L) +A(T )

µ , (D9)

where A
(T )
µ satisfies ∂µA

(T )
µ = 0 if the Fourier momentum is not null, or A

(T )
µ = (0, ~A(T )) with

~∇ · ~A(T ) = 0 if the Fourier momentum is null. The additional physical degree of freedom is the

scalar Ad+1 − ∂d+1a.

2. GR

For concreteness, we begin by considering 4d GR in a flat background and perform an SVT

decomposition with respect to the Lorentz isometry group SO(1, 3). We decompose the metric

fluctuations in terms of eigenvectors of the 4d d’Alembertian and focus on the zero eigenvalues

sector (e.g. the scalar eigenvectors satisfy �4de
ik·x = 0 etc.) After Fourier-transforming, the

metric fluctuations are decomposed as

hµν = 2ψηµν − kµkνE − (kµk̃ν + kν k̃µ)Ẽ − k̃µk̃ν
˜̃E + i(kµFµ + kνFµ) + i(k̃µF̃ν + k̃νF̃µ) + fµν ,

(D10)

where µ, ν = 0, 1, 2, 3, the momenta kµ and k̃µ are null: k · k = k̃ · k̃ = 0 and where

Fµ =
∑

p=1,2 ǫ
(p)
µ F p, F̃µ =

∑
p=1,2 ǫ

(p)
µ F̃ p, fµν =

∑
p,q=1,2 ǫ

(p)
µ ǫ

(q)
ν fpq,

∑
p=1,2 f

pp = 0, and ǫ
(p)
µ kµ =

ǫ
(p)
µ k̃µ = 0, ǫ(p) · ǫ(q) = δpq. The gauge-invariant fluctuations are ψ, fµν , F̃µ,

˜̃E. The rest are

gauge-dependent: δFµ = ξ⊥µ , δE = 2ξ, δẼ = ξ̃, where we decomposed the gauge parameter in a

similar way: ξµ = ξ
(T )
µ + ikµξ + ik̃µξ̃, with ξ

(T )
µ =

∑
p=1,2 ǫ

(p)
µ ξp. The equations of motion set

˜̃E = 0, F̃µ = 0, ψ = 0. The two degrees of freedom of the on-shell graviton are contained in the

transverse and traceless tensor fµν . 13 Of course, there are no solutions to the equations of motion

for non-null momenta.

13Since the vectors ǫ
(p)
µ are transverse to both kµ and k̃µ, this means that ǫ

(p)
µ = (0,~ǫ(p)). So the non-zero components

of the tensor fµν are purely spatial, and as a result, fµν is transverse with respect to the 3d gradient ~∇.
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We consider next a 4d flat background with one compact dimension and we perform the SVT

decomposition with respect to the SO(1, 2) Lorentz isometry group. This is the same scenario

we will discuss further in Appendix E. Here we focus only on the zero-mode sector of the 3d

d’Alembertian. After Fourier-transforming and restricting to null 3d momenta (k·k ≡ ηµνkµkν = 0)

we proceed with

hµν = 2ψηµν − kµkνE − (kµk̃ν + kν k̃µ)Ẽ − k̃µk̃ν
˜̃E + i(kµFµ + kνFµ) + i(k̃µF̃ν + k̃νF̃µ)

h3µ = ikµB + ik̃µB̃ + Sµ, h33 = 2φ, (D11)

where µ, ν = 0, 1, 2, Sµ = ǫµS, Fµ = ǫµF, F̃µ = ǫµF̃ , ǫµ · k = ǫµ · k̃ = 0, and we recall that

k̃ · k̃ = 0. Note that there is no transverse traceless tensor contribution fµν since in 3d there is

only one vector ǫµ, perpendicular to both kµ and k̃µ. The six gauge-invariant combinations are:

ψ,Φ = φ− ∂3(B− ∂3E/2),Sµ = Sµ− ∂3Fµ, F̃µ,
˜̃E, B̃ = B̃− ∂3Ẽ. The vacuum linearized equations

of motion impose the following conditions ˜̃E = 0, F̃ = 0, ∂23ψ = 0, ∂3B̃ = 0, 4∂3ψ + (k · k̃)B̃ =

0, Φ = 0, ∂3Sν = 0. The two degrees of freedom of the 4d graviton are contained in the scalar ψ and

the transverse gauge-invariant vector Sµ, which are both null eigenvectors of the 3d d’Alembertian

and x3-independent.

Similarly, for the case of a d + 1 flat background with one compact dimension and d > 3 we

make the decomposition

hµν = 2ψηµν − kµkνE − (kµk̃ν + kν k̃µ)Ẽ − k̃µk̃ν
˜̃E + i(kµFµ + kνFµ) + i(k̃µF̃ν + k̃ν F̃µ) + fµν

hd+1µ = ikµB + ik̃µB̃ + Sµ, hd+1 d+1 = 2φ, (D12)

where µ, ν = 0, 1, 2, . . . d − 1, Sµ =
∑d−2

p=1 ǫ
(p)
µ Sp, Fµ =

∑d−2
p=1 ǫ

(p)
µ F p, F̃µ =

∑d−2
p=1 ǫ

(p)
µ F̃ p, ǫ(p) · k =

ǫ(p) · k̃ = 0, ǫ(p) · ǫ(q) = δpq, fµν =
∑d−2

p,q=1 ǫ
(p)
µ ǫ

(q)
ν fpq,

∑d−2
p=1 f

pp = 0, and k · k = k̃ · k̃ = 0.

The gauge-invariant fluctuations are ψ, ˜̃E, F̃µ, Φ = φ − ∂d+1(B − ∂d+1E/2), B̃ = B̃ −
∂d+1Ẽ, Sµ = Sµ − ∂d+1Fµ and fµν . The vacuum linearized equations of motion set ˜̃E = 0, Φ =

−(d− 2)ψ, F̃ = 0, ∂2d+1ψ = 0, ∂d+1B̃ = 0, 2(d− 1)∂d+1ψ + (k · k̃)B̃ = 0, ∂d+1Sµ = 0, ∂d+1fµν = 0.

The (d − 1)(d − 2)/2 − 1 degrees of freedom of the d + 1 dimensional graviton are parametrized

by the transverse (in a (d − 1)-spatial sense since e
(p)
µ = (0, ~e

(p)
µ ) ) and traceless tensor fµν , the

transverse vector Sµ and the scalar ψ, all of which are independent of the compact coordinate

xd+1. This is what we expect to see when performing a Kaluza-Klein reduction of d+1 gravity, in

the massless sector.

Thus, in the zero-mode sector, for the on-shell linearized fluctuation, we can reach a gauge
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where all the gauge-dependent terms are zero and write

hµν |g.i. = 2ψηµν + fµν

hd+1µ|g.i. = Sµ, hd+1 d+1|g.i. = 2Φ. (D13)

which is of the form used in (E3). The one caveat is that the transverse tensors fµν are transverse

in a d− 2 sense for the zero modes, while for the massive modes (kd+1 6= 0 which implies k · k 6= 0)

the tensor fluctuations are transverse in a d − 1-sense (and the scalar and vector fluctuations are

zero).

Appendix E: The SO(1, 2) SVT decomposition of the metric fluctuations about a 4d flat

background

In this appendix we want to use the familiarity of 4d gravity to study a less standard way to

decompose the metric fluctuations, namely using the SO(1, 2) background isometry rather than

the rotational isometry SO(3). As we will see, unlike the SO(3) case analyzed in Section IV A,

the tensor modes are not the only dynamical ones, and both scalar and vector modes contribute

together with the tensor modes to the gravitational energy-momentum tensor.

We begin by writing the metric perturbation as

hµν =


 2ψηµ̄ν̄ + ∂µ̄∂ν̄E + ∂µ̄Fν̄ + ∂ν̄Fµ̄ + fµ̄ν̄ ∂ν̄B + Sν̄

∂µ̄B + Sµ̄ 2φ


 , (E1)

where we denote the 4d indices by µ, ν = 0, 1, 2, 3, while µ̄, ν̄ = 0, 1, 2. The gauge invariant pieces

are Φ,Ψ,Sµ̄ and fµ̄ν̄ , where

Φ = φ− ∂3(B − 1
2∂3E)

Ψ = ψ

Sµ̄ = Sµ̄ − ∂3Fµ̄ . (E2)

As in [23] we can restrict to the gauge-invariant fluctuations by going to the gauge:

hµν |g.i. =


 2Ψηµ̄ν̄ + fµ̄ν̄ Sν̄

Sµ̄ 2Φ


 . (E3)

We apply the same SVT SO(1, 2) decomposition to the Einstein equations Gµν = Tµν :

Gµν =


 2G(Y )ηµ̄ν̄ + ∂µ̄∂ν̄G

(LL) + ∂µ̄G
(L)
ν̄ + ∂ν̄G

(L)
µ̄ +G

(TT )
µ̄ν̄ ∂ν̄G

(L)
3 +G

(T )
ν̄3

∂µ̄G
(L)
3 +G

(T )
µ̄3 2G33 ,


 (E4)
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Tµν =


 2T (Y )ηµ̄ν̄ + ∂µ̄∂ν̄T

(LL) + ∂µ̄T
(LT )
ν̄ + ∂ν̄T

(LT )
µ̄ + T

(TT )
µ̄ν̄ ∂ν̄T

(L)
3 + T

(T )
ν̄3

∂µ̄T
(L)
3 + T

(T )
µ̄3 2T33


 . (E5)

The linearized equations of motion for the scalar fluctuations Φ and Ψ come from the components

δ(1)G33, δ
(1)G

(L)
3 , δ(1)G(Y )and δ(1)G(LL):

2δ(1)G33 = 2ηᾱβ̄∂ᾱ∂β̄Ψ = 2T33

δ(1)G
(L)
3 = −2∂3Ψ = T

(L)
3

2δ(1)G(Y ) = 2∂23Ψ+ ηᾱβ̄∂ᾱ∂β̄Φ+ ηᾱβ̄∂ᾱ∂β̄Ψ = 2T (Y )

δ(1)G(LL) = −Φ−Ψ = T (LL) . (E6)

The equations of motion for the transverse vector Sµ̄ come from the components δ(1)G
(T )
µ̄3 and

δ(1)G
(LT )
µ̄ :

δ(1)G
(T )
µ̄3 = −1

2
ηᾱβ̄∂ᾱ∂βSµ̄ = T

(T )
µ̄3

δ(1)G
(LT )
µ̄ =

1

2
∂3Sµ̄ = T

(LT )
µ̄ . (E7)

Lastly, the equation of motion for the transverse traceless tensor fµ̄ν̄ comes from δ(1)G
(TT )
µ̄ν̄ ,

δ(1)G
(TT )
µ̄ν̄ = −1

2
∂23fµ̄ν̄ −

1

2
ηᾱβ̄∂ᾱ∂β̄fµ̄ν̄ = T

(TT )
µ̄ν̄ . (E8)

Next, we count the degrees of freedom by considering the vacuum equations of motion:

ηᾱβ̄∂ᾱ∂β̄Ψ = 0 , ∂3Ψ = 0 , Φ = −Ψ

ηᾱβ̄∂ᾱ∂β̄Sµ̄ = 0 , ∂3Sµ̄ = 0 ,

∂23fµ̄ν̄ + ηᾱβ̄∂ᾱ∂β̄fµ̄ν̄ = 0 . (E9)

Due to the constraints ∂3Ψ = 0 and ∂3Sµ̄ = 0, it is natural to separately consider the case p3 = 0

and the case p3 6= 0. When p3 = 0: Ψ describes a 3d massless scalar, which has one degree of

freedom; Sµ̄ describes a 3d massless vector, which has one degree of freedom; fµ̄ν̄ describes a 3d

massless graviton, which has zero degrees of freedom. When p3 6= 0: Ψ has no solution, hence

its degree of freedom is 0; Sµ̄ has no solution and its degree of freedom is 0; fµ̄ν̄ describes a 3d

massive graviton, which has two degrees of freedom. This again adds up to the correct number

of degrees of freedom of the 4d graviton. However, our analysis was not rigorous. If p3 = 0 then

the equations of motion require that the 3-momentum pµ is null (ηµ̄ν̄pµ̄pν̄ = 0) which means that

the SVT decomposition starting point (E1) is invalid. Nonetheless, as we showed in Appendix D,
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the conclusion reached here stands: the two degrees of freedom of the 4d graviton are the massless

scalar Ψ and the massless vector Sµ̄.

The point to be made is that unlike the SO(3) SVT decomposition, where only the SO(3)-

tensor fluctuation is dynamical, when performing an SO(1, 2) decomposition all types of fluctua-

tions (scalar, vector and tensor) are dynamical. Thus, the energy-momentum tensor can receive

contributions from all three types of fluctuations. If the x3 dimension were compact, the Fourier

spectrum along x3 is discrete and indeed all three types of fluctuations do contribute, with the

scalar and vector modes part of the massless sector of a Kaluza-Klein reduction. If on the other

hand the x3 dimension is non-compact, the Fourier spectrum along x3 is continuous and only the

tensor modes contribute to the radiated power as we will see in Appendix F.

Appendix F: The SO(1, 2) SVT modes sourced by a binary in 4d flat space and the luminosity

of the gravitational waves

In this appendix we derive concrete expressions for the SO(1, 2) SVT modes in 4d flat space,

asymptotically far away from sources, and verify that we correctly reproduce known results for the

radiated power using the results from Section II.

We begin with a known form of the 4d metric perturbation far away from a binary source

(see for example eqn. (5.24) in [13]). Keeping only the time-dependent parts, hµν , which are the

relevant pieces for the computation of the radiated power, we write

hµν = h̃µν − 1
2ηµνη

αβh̃αβ =




1
2 h̃00 −n1h̃11 − n2h̃12 −n1h̃12 − n2h̃22 0

−n1h̃11 − n2h̃12 h̃11 +
1
2 h̃00 h̃12 0

−n1h̃12 − n2h̃22 h̃12 h̃22 +
1
2 h̃00 0

0 0 0 1
2 h̃00



, (F1)

where h̃µν is the so-called trace-reversed metric fluctuation, and ni = xi/r are the Cartesian

components of a radial pointing, unit vector ~n = ~r/r. In writing (F1) we have used that for the

binary solution h̃3µ = 0 and h̃11+ h̃22 = 0. Note that the x3 direction is perpendicular to the plane

of the binary. This metric perturbation satisfies the harmonic gauge ηµν∂µh̃νρ = 0, which implies

that h̃00 can be written as

h̃00 = (n1)
2h̃11 + 2n1n2h̃12 + (n2)

2h̃22 . (F2)

Each of the components h̃00, h̃11, h̃12, h̃22 are in the form of spherical waves. For example,

h̃12 = µr212Ω
2 sin(2Ω(t − r))/(2πr), where µ is the reduced binary mass, r12 is the separation
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distance between the binary components, Ω is the angular frequency of the binary, and we set

8πG = 1.

Next let us consider the SO(1, 2) decomposition of the perturbation (E1) and the gauge-invariant

fluctuations given in (E2). We recall that µ̄, ν̄ = 0, 1, 2. Later we will also use indices ī, j̄ = 1, 2.

From (F1), we can see that B = 0 and Sµ̄ = 0. In terms of the SVT decomposed fields, the

harmonic gauge condition ∂µh̃
µν̄ = ∂µ̄h̃

µ̄ν̄ = ∂µ̄(h
µ̄ν̄ + (1/2)ηµ̄ν̄ h̃) = 0 becomes

∂ν̄(�3dE + 2Ψ− 2φ) +�3dFν̄ = 0, (F3)

where �3d = −(∂0)
2 + (∂1)

2 + (∂2)
2. We also used that

2φ = 1
2 h̃00, h̃ = h̃µνη

µν = −h̃00 . (F4)

By tracing hµ̄ν̄ with ηµ̄ν̄ we learn

�3dE + 6Ψ = 2φ . (F5)

From (F3) and (F5) we infer that �3dFν̄ = 4∂ν̄Ψ, which given the transversality of Fν̄ implies

�3dΨ = 0. However, given the spherical symmetry of the problem we are led to conclude Ψ = 0,

and Fν̄ = 0.

Thus, the SO(1, 2) decomposition becomes

hµν =


 ∂µ̄∂ν̄E + fµ̄ν̄ 0

0 2φ


 . (F6)

Next we solve for E and fµ̄ν̄ by further assuming E is in the form of a spherical wave. We can

verify our assumption later by checking the consistency of our solution. This method works when

the solution is supposed to be unique. With this assumption for E and keeping everything to

leading order in 1/r, we have

�3dE ≃ (n3)
2ω2E ≃ 1

2
h̃00 . (F7)

Thus, to leading oder in 1/r

E =
1

2(n3)2ω2
h̃00 ,

fµ̄ν̄ = hµ̄ν̄ − ∂µ̄∂ν̄E = hµ̄ν̄ +
nµ̄nν̄
2(n3)2

h̃00 , (F8)

where we have defined

nµ̄ = (−1, n1, n2) . (F9)
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Since (n1)
2 + (n2)

2 + (n3)
2 = 1 we have

ηµ̄ν̄nµ̄nν̄ = −(n3)
2 . (F10)

We are now checking that the gauge-invariant tensor fluctuation fµ̄ν̄ is indeed transverse and

traceless. For tracelessness, we have

ηµ̄ν̄fµ̄ν̄ = ηµ̄ν̄hµ̄ν̄ +
ηµ̄ν̄nµ̄nν̄
2(n3)2

h̃00

=
1

2
h̃00 −

1

2
h̃00 = 0 . (F11)

For transversality,

∂µ̄fµ̄ν̄ = ∂µ̄hµ̄ν̄ +
nµ̄nν̄
2(n3)2

∂µ̄h̃00

= −nµ̄ḣµ̄ν̄ −
nµ̄nν̄
2(n3)2

nµ̄
˙̃
h00

= −ḣ0ν̄ − nīḣīν̄ +
1

2
nν̄

˙̃
h00 (F12)

must vanish. Substituting ν̄ = 0 in (F12) yields

∂µ̄fµ̄0 = −ḣ00 − nīḣī0 +
1

2
n0

˙̃h00

= −1

2
˙̃
h00 − nī

˙̃
h0̄i −

1

2
˙̃
h00 = 0 , (F13)

where in the last step we used the transversality of h̃µν and the spherical wave nature of the

fluctuations. Similarly, if ν̄ = j̄ we find

∂µ̄fµ̄j̄ = −ḣ0j̄ − nīḣīj̄ +
1

2
nj̄

˙̃
h00

= − ˙̃h0j̄ − nī
(
˙̃hīj̄ +

1

2
δ̄ij̄

˙̃h00

)
+

1

2
nj̄

˙̃h00 = 0 . (F14)

This concludes the check on our asymptotic solution for fµ̄ν̄ .

We compute next the gauge-invariant scalar Φ. We find that it vanishes

Φ = φ− ∂3(B − 1
2∂3E) = φ+ 1

2(∂3)
2E = 0 . (F15)

We see that the relation which the two gauge-invariant scalars obey in vacuum Φ = −Ψ is satisfied

by our asymptotic solution. The vanishing of scalar and vector modes may not be a coincidence

but could be a general feature of uncompactified flat spacetime. Since in the analysis performed

in this appendix the extra dimension (x3) is non-compact, the spectrum of Fourier modes of the

gauge-invariant fluctuations is continuous. Because the scalar and vector modes consist of only

zero modes of the 3d d’Alembertian, they vanish in such cases.
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At last, we can compute the radiated power, substituting the gauge-invariant fluctuations in the

formula for the gravitational energy-momentum tensor. We need T0̄i and T03 which can be easily

extracted from (2.24) substituting

hµν

∣∣∣∣
g.i.

=


 fµ̄ν̄ 0

0 0


 . (F16)

To compute the radiated power we start by integrating over a 3d sphere as in (2.19) and use the

same simplifications of turning spatial-derivatives into time-derivatives (to leading order in 1/r)

when acting on spherical waves at spatial infinity. Explicitly, we write:

〈P 〉 =
1

T

∫ T

0
dt

∫
dΩ2R

2
∞n

iT0i|r=R∞

=
1

T

∫ T

0
dt

∫
dΩ2R

2
∞

1

4
ḟµ̄ν̄ ḟ

µ̄ν̄

=
1

4T

∫ T

0
dt

∫
dΩ2R

2
∞

(
ḣµ̄ν̄ +

nµ̄nν̄
2(n3)2

˙̃
h00

)2

=
1

4T

∫ T

0
dt

∫
dΩ2R

2
∞

(
˙̃
hµ̄ν̄ +

1

2
ηµ̄ν̄

˙̃
h00 +

nµ̄nν̄
2(n3)2

˙̃
h00

)2

=
1

4T

∫ T

0
dt

∫
dΩ2R

2
∞

(
˙̃hµ̄ν̄

˙̃hµ̄ν̄ +
3

4
˙̃h00

˙̃h00 +
1

4
˙̃h00

˙̃h00 + ηµ̄ν̄ ˙̃hµ̄ν̄
˙̃h00 +

nµ̄nν̄

(n3)2
˙̃hµ̄ν̄

˙̃h00 −
1

2
˙̃h00

˙̃h00

)

=
1

4T

∫ T

0
dt

∫
dΩ2R

2
∞

(
1

2
˙̃
h00

˙̃
h00 − 2

˙̃
h0̄i

˙̃
h0̄i +

˙̃
hīj̄

˙̃
hīj̄

)

=
R2

∞

20G
〈 ˙̃hīj̄ ˙̃hīj̄〉 =

32

5
Gµ2Ω6(r12)

4 , (F17)

where we used the transversality of h̃µν and that the fluctuations are spherical waves to set nµ̄ ˙̃hµ̄ν̄ =

0. In the last step we reintroduced the dependence on Newton’s constant (recall that we have been

working with 8πG = 1). We have thus recovered a well known 4d result (see for example footnote

10, with D = 4, leading further to eqn. (6.11) in [13]).

Appendix G: The SO(1, 3) SVT modes sourced by a binary in 5d flat space with compact

x5 and the luminosity of the gravitational waves

In this appendix we aim to recover the power radiated away by gravitational waves in a 5d

flat space, with one compact dimension x5 ∼ x5 + l [13]. As discussed in [13], for a small extra

dimension, the contribution from the 5d graviton modes with p5 6= 0 can be safely ignored far

away from the sources, since it is exponentially suppressed. This fact can be easily understood

from a 4d perspective where these modes appear massive, with the 4d mass proportional to the p5

momentum. Thus, the radiated power receives its dominant contribution from 5d graviton modes
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with p5 = 0. This translates in 5d fluctuations which are independent of x5. Far away from a

binary source, the metric fluctuations are given in the equation (5.24) in [13], and the radiated

power, which was computed using Isaacson’s averaging scheme, is given in the equation (6.8) and

(6.10) in [13].

Given the symmetry of the problem, we proceed with performing an SO(1, 3) SVT decomposi-

tion of the metric fluctuations.

hµν = 2ψηµν + ∂µ∂νE + ∂µFν + ∂νFµ + fµν ,

hµ5 = ∂µB + Sµ ,

h55 = 2φ . (G1)

The analog of the 4d trace-reversed fluctuations in 5d is h̃MN where

h̃MN = hMN − 1

2
ηMNh , h = hMNη

MN , (G2)

hMN = h̃MN − 1

3
ηMN h̃ h̃ = h̃MNη

MN . (G3)

The 5d solution in [13] is of the form

h̃MN ∼


 h̃µν 0

0 0


 ∼ 3

4


 h̃

(4d)
µν 0

0 0


 , (G4)

where we used the squiggle line to indicate that we only take into account components that are

explicitly time dependent and drop the static (Coulombic) metric fluctuation, just as we did in

the previous Appendix F. The time-independent terms are irrelevant in the computation of the

radiated power.

Assuming no x5-coordinate dependence, the harmonic gauge condition

∂M h̃MN = 0 (G5)

reduces to

∂µhµν =
1

2
∂νh . (G6)

After comparing (G1) with the solution in [13] we identify

Φ = φ = 1
2h55 = −1

6 h̃ . (G7)

The harmonic gauge condition becomes

∂ν

(
1

2
�4dE − 1

2
h55 − 2ψ

)
+�4dFν = 0 . (G8)
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Next, while remaining in the harmonic gauge, we use the residual gauge freedom to set �4dE

to be 0. We use the gauge parameter

ξM = (ξ0, 0, 0, 0, 0) . (G9)

Since the harmonic gauge constrains ξM by �4dξ
M = 0, then far away from the sources we take

with ξ0 to be of the form of a (4d) spherical wave. After performing this gauge transformation,

the new metric is hnewMN :

h
(new)
MN = hMN + ∂MξN + ∂NξM . (G10)

We consider the trace of the 4d part of the metric perturbation

ηµνh(new)
µν = ηµνhµν − 2∂0ξ0 = 8ψ(new) +�4dE

(new) (G11)

and we require that �E(new) = 0. We recall that since ψ is gauge-independent then ψ(new) = ψ = Ψ.

We use the vacuum equations for the scalar fluctuations to relate Ψ and Φ: Ψ = −(1/2)Φ and

solve for the gauge-parameter from (G11)

2∂0ξ0 = ηµνhµν + 2h55 = ηµν h̃µν + 2h̃55 − 2h̃ = −h̃ . (G12)

We proceed to compute the gauge-transformed metric perturbation:

h
(new)
00 = h00 + 2∂0ξ0 = h̃00 −

2

3
h̃ ,

h
(new)
0i = h0i + ∂iξ0 = h̃0i +

ni
2
h̃ ,

h
(new)
ij = hij = h̃ij −

1

3
δij h̃ ,

h
(new)
5µ = 0 ,

h
(new)
55 = h55 = −1

3
h̃ . (G13)

Now, we have the gauge invariant pieces

Φ = −1

6
h̃ =

1

6
h̃00 , (G14)

Ψ =
1

12
h̃ = − 1

12
h̃00 , (G15)

Sµ = 0 , (G16)

fµν = h(new)
µν − 1

6
h̃ηµν . (G17)
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We can explictly check that fµν is indeed transverse and traceless14. Finally we can compute the

power radiated by gravitational waves far away, at a distance R∞, from a binary source using

(4.36):

〈P 〉 =
lR2

∞

T

∫ T

0
dt

∫
dΩ2

(
6Ψ̇Ψ̇ +

1

4
ḟµν ḟ

µν

)
(G18)

=
lR2

∞

4T

∫ T

0
dt

∫
dΩ2

[(
4 · 6
144

˙̃
h00

˙̃
h00

)
+

(
˙̃
h00 −

1

2
˙̃
h

)(
˙̃
h00 −

1

2
˙̃
h

)

−2
(
˙̃h0i +

ni
2
˙̃h
)(

˙̃h0i +
ni
2
˙̃h
)
+

(
˙̃hij −

1

2
δij

˙̃h

)(
˙̃hij −

1

2
δij

˙̃h

)]

=
lR2

∞

4T

∫ T

0
dt

∫
dΩ2

[
+

(
1

6
+

9

4

)
˙̃
h00

˙̃
h00

+

(
−2

˙̃
h0i

˙̃
h0i − 2

˙̃
h00

˙̃
h00 −

1

2
˙̃
h00

˙̃
h00

)
+

(
˙̃
hij

˙̃
hij +

3

4
˙̃
h00

˙̃
h00

)]

=
lR2

∞

4T

∫ T

0
dt

∫
dΩ2

(
2

3
˙̃h00

˙̃h00 − 2 ˙̃h0i
˙̃h0i +

˙̃hij
˙̃hij

)

=
19 l R2

∞

360G5d
〈 ˙̃hij ˙̃hij〉 , (G19)

where we recall that l is the length of the compact dimension and where in the last step we have

restored the dependence on the 5d gravitational constant G5d. and used the transversality of the

trace-reversed metric h̃µν . After accounting for an overall negative sign which we introduced in

our earlier definition of the radiated power (2.19), we have thus recovered the previous 5d result

given in the equation (6.8) in [13]. We also notice that the contributions from scalar and tensor

fluctuation match the corresponding parts in Einstein-Maxwell-dilaton theory respectively [40].
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[29] M. A. Garćıa-Aspeitia and C. Escamilla-Rivera, “Gravitational waves in braneworlds after multi-

messenger events,” Eur. Phys. J. C 80 (2020) no.4, 316 doi:10.1140/epjc/s10052-020-7895-9

[arXiv:2001.08745 [gr-qc]].

[30] R. G. Cai, X. Y. Yang and L. Zhao, “On the energy of gravitational waves,” [arXiv:2109.06864 [gr-qc]].

[31] L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant,” Nucl. Phys. B 195,

76-96 (1982) doi:10.1016/0550-3213(82)90049-9

[32] E. E. Flanagan and S. A. Hughes, “The Basics of gravitational wave theory,” New J. Phys. 7, 204

(2005) doi:10.1088/1367-2630/7/1/204 [arXiv:gr-qc/0501041 [gr-qc]].

[33] C. W. Misner, K. S. Thorne and J. A. Wheeler, “Gravitation,” W. H. Freeman, 1973, ISBN 978-0-

49

http://arxiv.org/abs/1711.06628
http://arxiv.org/abs/hep-ph/0611223
http://arxiv.org/abs/hep-ph/0611184
http://arxiv.org/abs/1012.3144
http://arxiv.org/abs/1710.08863
http://arxiv.org/abs/gr-qc/9704037
http://arxiv.org/abs/gr-qc/9910076
http://arxiv.org/abs/hep-th/9912233
http://arxiv.org/abs/gr-qc/0505011
http://arxiv.org/abs/1004.3962
http://arxiv.org/abs/1306.1283
http://arxiv.org/abs/2001.08745
http://arxiv.org/abs/2109.06864
http://arxiv.org/abs/gr-qc/0501041


7167-0344-0, 978-0-691-17779-3

[34] S. Mukohyama, “Gauge invariant gravitational perturbations of maximally symmetric space-times,”

Phys. Rev. D 62, 084015 (2000) doi:10.1103/PhysRevD.62.084015 [arXiv:hep-th/0004067 [hep-th]].

[35] Z. Kakushadze, “Gravity in Randall-Sundrum brane world revisited,” Phys. Lett. B 497 (2001), 125-135

doi:10.1016/S0370-2693(00)01348-4 [arXiv:hep-th/0008128 [hep-th]].

[36] E. Barnes, D. Vaman, C. Wu and P. Arnold, “Real-time finite-temperature correlators from AdS/CFT,”

Phys. Rev. D 82 (2010), 025019 doi:10.1103/PhysRevD.82.025019 [arXiv:1004.1179 [hep-th]].

[37] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998), 253-291

doi:10.4310/ATMP.1998.v2.n2.a2 [arXiv:hep-th/9802150 [hep-th]].

[38] E. D’Hoker, D. Z. Freedman and L. Rastelli, “AdS / CFT four point functions: How to succeed at z

integrals without really trying,” Nucl. Phys. B 562 (1999), 395-411 doi:10.1016/S0550-3213(99)00526-X

[arXiv:hep-th/9905049 [hep-th]].

[39] A. Ashtekar and B. Bonga, “On the ambiguity in the notion of transverse traceless modes of gravita-

tional waves,” Gen. Rel. Grav. 49 (2017) no.9, 122 doi:10.1007/s10714-017-2290-z [arXiv:1707.09914

[gr-qc]].
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