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Abstract. We study the so-called Gravitational Wave luminosity distance-redshift relation
dGWL (z) during cosmological eras driven by non-perfect fluids. In particular, we show that
the presence of a shear viscosity in the energy momentum tensor turns out to be the most
relevant effect. Within this scenario, a constant shear viscosity imprints the gravitational wave
propagation through a friction term δ(z) with a uniquely given redshift dependence. This
peculiar evolution predicts a specific shape for the ratio dGWL /dEML which tends to a constant
value when the sources are at z & 1, whereas scales linearly with the shear viscosity at lower
redshifts, regardless of the value of Ωm0. According to our final discussion, the predicted
redshift dependence δ(z) provided by a shear viscosity could be tested by upcoming surveys of
multi-messenger sources against analogous scenarios provided by some widely studied theories
of modified gravity.
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1 Introduction

The detection of Gravitational Waves (GWs) from black holes coalescence [1–5] has opened a
new window for exploring new phenomena of interest for astrophysics and cosmology. More-
over, the subsequent detection of GWs emitted by the binary neutron stars [6], associated to
the analysis of the electromagnetic (EM) counterpart [7] (in particular γ-ray burst [8–10]) led
us to the era of the GWs astrophysics and multimessenger cosmology. In this regards, GWs
have opened a new window to understand the nature of gravity [11–16]. Among all these
new kinds of observations, the possibility to have an absolute measurement of the luminosity
distance of coalescing compact binaries has gained an increasing interest [17]. Indeed, the
signal of coalescing binaries combines intrinsic and apparent luminosity in order to have a
determination of the luminosity distance (from which the name standard sirens) [18–31].

On the other hand, detection of signals like GW170817, observed at z ' 0.009, can be
used to constrain deviations from ΛCDM model for what concerns either the nature of gravity
or the features of the sources. One of the most remarkable cases consists of the simultaneous
study of electromagnetic and gravitational signals emitted by the same source: this has
provided stringent constraints about differences in their speed of propagation [32–36] which,
for instance, ruled out entire classes of models such as scalar-tensor and vector-tensor theories
of gravity [32, 34–36]. Another idea to be mentioned has been proposed in [31], where it has
been shown that GWs could be used as an independent tool to study the Hubble-Lemaître
diagram. In fact, the localization of the host galaxy for GW170817 allows to determine H0

by the gravitational luminosity distance whereas the electromagnetic counterpart provides
the redshift. Another interesting but futuristic idea regards the possibility to study different
messengers from the same source through the so-called time-of-flight distance [37, 38].

The different nature of the gravitational signals can shed light on the structure and the
evolution of the universe up to early epochs (from the inflationary period to the recombination)
that we are unable to probe directly using EM waves. However, for “near” sources, in the next
future we could be able to compare both EM and GW signals. It is known that distances in
astronomy are calibrated using different techniques, the so-called distance ladder. For near
astronomical objects (z ≈ 1), measurements are usually done using the so called Standard
Candles (Supernova IA), from which the accelerated expansion of the universe was firstly
observed in 1998 [39]. It is possible to use also binary mergers as standard sirens, which
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could emit GW and also EM when probably one of the objects is a neutron star. These
events are known as Ultranovas and Kilonovas and in [40] it is argued how the latter can
be standardized (like Supernova IA) and how the analysis of the distance given by the GW
measurements (which does not rely on any distance ladder nor cosmological model), with the
redshift, given by the EM counterpart, might provide new probes for measuring the Hubble
constant H0. For the sake of completeness, we mention also the possibility that a GW can be
emitted by a source without an EM counterpart. These sources are the so called dark sirens
and their use for the estimation of cosmological parameters is nowadays largely increasing
[41].

In this work we discuss how these new observational probes can be investigated to detect
modifications on the gravitational luminosity distance as provided by a cosmological viscous
fluid. Indeed, the idea that viscosity might play a role in the cosmological dynamics has been
discussed already in the middle 60’s [42], where its presence was originally addressed to the
gravitational radiation (see also the pioneering works [43–46]). Recently, the renewed interest
in cosmological viscous fluids has increased for different reasons. An interest in the damping
of GWs due to the free streaming of neutrinos has been discussed already in the early years of
21st century [47]. However, in this work the focus was in the primordial spectrum of tensor
perturbations. In this work, we rather focus on GWs as emitted in the late time Universe.

The most agnostic reason to allow for the presence of viscous fluids is that the perfect
fluid description might be a simplistic approximation of the actual Universe. Physically, the
emergence of a viscosity might occur in particular scenarios where interaction among the
fluids relaxes the thermal equilibrium. According to the specific model in mind, viscosity has
been investigated on very early (examining the viscosity effects on the various inflationary
observables [48]) and late-time Universe [49].

Clearly, different kind of viscosity can be considered and the specific nature depends
on the particular physical mechanims invoked in the cosmic dynamics. As regards the bulk
viscosity, it might play an interesting role in the Universe evolution [50–53], since it is com-
patible with the symmetry requirements of the homogeneous and isotropic FLRW models.
From the theoretical point of view, the bulk viscosity may be due to the deviation from the
local thermodynamic equilibrium: in this context, the presence of bulk viscosity would lead to
an effective pressure in order to restore the thermal equilibrium, broken by the cosmological
fluid expanding (or contracting) too much quick. According to this view, hence the effective
pressure due to the bulk viscosity would reduce to the "standard" pressure given by the EoS
of a perfect fluid as soon as the fluid itself reaches the equilibrium condition. Also the Dark
Energy may be connected with viscosity in the Universe. For instance, [52] studies the possi-
bility that the present acceleration of the universe might be driven by a kind of bulk viscous
fluid. However, despite the role of a bulk viscosity might be of interest, along this work we
will not consider it, since a bulk viscosity does not lead to an GW attenuation [54–56].

On the other hand, we will consider the viscosity in the form of a shear one since it
affects directly the evolution of tensor perturbations, leaving the background unaltered. The
reason for this choice is that we do not want to study a particular model exhibiting a kind
of viscosity but we aim to understand which general features can be understood about the
viscous model by analysing the GWs evolution.

For the sake of completeness, we mention that the interest in the shear viscosity occurs
in some particular scenarios such as the Self Interacting Dark Matter (SIDM) model. Indeed,
the SIDM model is able to generate the shear viscosity in the Universe [53, 55, 57] and explain
some features in the small scale structure. More generally, other studies consider Viscous Dark

– 2 –



Matter where only shear viscosity is considered (see for example [58]).
Having this in mind, the machinery that we will adopt to our ends is in line with to

the one developed for the study of the GWs distance-redshift relation concerning theories of
modified gravity [59–61]. The key aspect that we will show is that a viscous fluid can provide a
non-trivial ratio between the GW and the EM luminosity distance already within the ΛCDM
model. This interesting aspect emerges when a pure shear viscosity is considered in the
cosmic fluid. Indeed, such a modification of the perfect fluid description leaves unchanged the
Friedmann equations but can affect the linear part of the perturbations related to the Weyl
components of the Riemann tensor, as one would expect by a traceless perturbations of the
energy-momentum tensor like a shear viscosity.

After having discussed the general framework for the GWs luminosity distance in the
above-mentioned scenario, we will discuss possible observational tests and forecasts for the
detection/exclusion of the shear viscosity, according to the specifics of futuristic surveys, such
as LISA and Einstein Telescope (ET).

This paper is organized as follows: in Sect. 2, we recall the evolution equation for
linear gravitational waves in presence of viscous fluids and provide the general expression for
dGWL (z). In Sect. 3, we first study our results with a generic power-law solution for the scale
factor. Hence we provide an analytical expression for dGWL (z) in presence of a shear viscosity
in a ΛCDM-like cosmological model. Possible observational tests and forecasts regarding the
presence of shear viscosity are discussed in Sect. 4. Conclusions and discussions are finally
provided in Sect. 5.

Conventions: in this paper we will use the metric signature gµν = diag(+,−,−,−); the
Riemann tensor is defined as Rµνα β = ∂µΓνα

β+Γµρ
βΓνα

ρ−(µ↔ ν), the Christoffel symbols
as Γµν

α = 1
2g
αβ(∂µgνβ + ∂νgµβ − ∂βgµν), the Ricci tensor is given by Rνα = Rµνα

µ and the
covariant derivatives act as ∇µAν... = ∂µAν − Γµν

αAα... + . . . .

2 The Gravitational Wave luminosity distance in viscous scenarios

Let us suppose to describe the contents of the Universe as a dissipative fluid. From a physical
point of view the energy momentum tensor of such fluid must depend on the shear viscosity
coefficient ηV and the bulk viscosity coefficient ζ. By introducing the effective pressure

p̃ = p−
(
ζ − 2

3
ηV

)
∇λuλ, (2.1)

we have the full energy-momentum tensor of the viscous fluid [62–65] in the following conve-
nient form1 (see e.g. [67, 68] for recent discussions)

T̃αβ = (ρ+ p̃)uαuβ − p̃ gαβ − ηV [uαu
ρ∇ρuβ + uβu

ρ∇ρuα −∇αuβ −∇βuα] , (2.2)

where uα is the time-like fluid four-velocity (uαuα = 1). The above energy momentum tensor
is known to lead to acausal propagation of first order perturbations. Indeed there exists
viable alternatives that have been formulated which do not possess this anomaly such as the
Muller-Israel-Stewart theories [69–71] that are compatible with our expression for the viscous

1Signs in Eq. (2.2) follow from our metric conventions (see also the derivation provided in [66]). Examples
of different signatures in Eq. (2.2) due to different metric conventions can be found in [62–65].
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energy momentum tensor when the microscopic relaxation time is much smaller than the time
of the macroscopic dissipative process [65], so we will assume this hypothesis throughout the
work since we are not considering any particular microphysical model. Moreover even in MIS
theories it is not known if causality is preserved under general initial conditions beyond the
linear regime [72] and generalized theories are being developed [72, 73]. Despite the above
mentioned critical aspect of viscous hydrodynamics, it is customary to describe SIDM as a
viscous fluid in terms of a first order gradient expansion as the one we used [53, 74]. For
the purposes of this work, we will only consider the presence of shear viscosity ηV . This
is a simple but interesting case study since only a bulk viscosity can modify the isotropic2

background equations (see [56]). Hence, neglecting its presence will allow us to study the
GWs propagation by using the standard solutions for the background expansion.

Having this in mind, in this section we will analyze what physical consequences arise
from the presence of a shear viscous component in the stress-energy tensor of the cosmolog-
ical matter fluid: more precisely, we will study how the gravitational luminosity distance is
affected and how the gravitational waves propagates in this background. The presence of a
shear viscous source introduces an additional friction term in the standard gravitational wave
equation in an Friedmann-Lemaître-Robertson-Walker (FLRW) universe, so we expect that
the overall differences will be in an increased damping effect of the GW amplitude. We start
from the results of Sect. 3.3 of [56]. It has been shown there that the perturbed Einstein-
Hilbert action and the energy momentum tensor of a comoving viscous fluid to the second
order in the metric, for a conformal FLRW background metric

gFLRWµν = a2(η)diag (1,−1,−1,−1) ,

and by making use of the TT gauge, leads to the following propagation equation for the tensor
perturbations

h′′i
j

+ 2
(
H+ λ2

p ηV a
)
h′i

j −∇2hi
j = 0 , (2.3)

where λ2
p = 8πG, H = a′/a, the prime is referred to derivative with respect to conformal time

η, ∇2 = δij∂i∂j and a(η) is the FLRW scale factor.
To lighten the notation, let us define α = λ2

p ηV as the viscosity parameter. We remark
that α is a dimensional quantity, scaling as an inverse length. It is worth then to compare
its value to H0, in order to discuss the regimes when shear viscosity could play a role. For
instance, interesting physical values for the shear viscosity have been given in [75], where
upper-bounds for α < 10−2 Mpc−1 ≈ 50H0 have been given by the GW150914 data analyzed
supposing a viscous background and by viscous dark matter in galaxies,. To be mentioned is
also the upper bound α < 10−6 Mpc−1 ≈ 5 × 10−3H0, obtained by estimation of the cross
section per unit mass mass σ/m from Abell 3827 [76] in a self-interaction model of dark
matter. For the sake of simplicity, let us then omit the spatial indices in Eq. (2.3) and

h′′ + 2H [1− δ(η)] h′ −∇2h = 0. (2.4)

2The small anisotropy at the last-scattering surface is typically suppressed in the late-time Universe already
if only perfect fluids are considered. When non-perfect fluids are taken into account, relaxing the hypothesis
of an isotropic background introduces a coupling between the anisotropy in the metric and the shear viscosity
which may indirectly affect the background dynamics. However, in the late-time expanding Universe this
anisotropy is exponentially suppressed by the presence of a constant shear viscosity (see Sect. II of [48] for a
detailed related discussion).

– 4 –



where, following [59], we have defined δ(η) ≡ −αaH−1. From Eq. (2.4), we get that the only
effect of a shear viscosity is to alter the evolution equation of a gravitational wave by damping
its amplitude through the term δ(η). Since the speed of propagation is not modified, we can
follow the same procedure outlined in [60] to study the GW luminosity distance, where the
authors precisely take into account a modified evolution equation for the GW’s which has
the same form of Eq. (2.4). The interesting aspect concerning the viscous model is that the
evolution of δ is fixed. We then recall the main steps in the following.

To this end, it is useful to express h (η,x) in terms of its Fourier transform defined as
follows3

h (η,x) =
1

(2π)3

∫
d3k eik·x hk (η) . (2.5)

From Eq. (2.4) we obtain the time evolution equation for each mode k

h′′k + 2H h′k + 2αah′k + k2 hk = 0, (2.6)

where we denote k = |k| and assume hk (η) = hk (η). It is convenient to rewrite Eq. (2.6) by
introducing a new auxiliary variable vk(η) as

vk (η) ≡ ã(η)hk(η), (2.7)

where we required that the friction term proportional to v′k(η) in the evolution equation for
vk(η) is null. Substituting Eq. (2.7) in Eq. (2.6), we are left with two coupled evolution
equations for vk and ã {

v′′k +
(
k2 − ã′′

ã

)
vk = 0

ã′

ã = H+ αa .
(2.8)

Interestingly, first of Eq. (2.8) shows that vk(η) behaves as the canonical Mukhanov variable
where ã(η) plays the role of the so-called pump field. Eqs. (2.8) clearly show that GWs in
presence of shear viscosity couple to an effective scale factor which fully encodes the viscous
content. First of Eqs. (2.8) also shows that on small scales, when k2 � ã′′/ã, vk propagates
as free-wave. From Eq. (2.7), we then conclude that hk oscillates as well but its amplitude
scales as ã−1.

On the other hand, general relativistic light-like geodesics in a FLRW geometry are
not affected by the presence of shear viscosity. Hence, the photon wave-vector scales as a−1

[15, 59–61]. It follows that we can directly apply the same results for the GW luminosity-
distance relation already discussed for modified gravity theories. We then have

dGWL
dEML

(z) =
a (η)

ã (η)
, (2.9)

where the equality is obtained by imposing ã (η0) = a (η0) = ã0 = a0 as initial condition in
Eq. (2.8).

Strictly speaking, Eq. (2.9) is fully meaningful when k2 � ã′′/ã, where we can write

ã′′

ã
=
a′′

a
+ 3αaH+ α2a2 . (2.10)

3From the technical point of view, Eq. (2.5) should contain also the polarization tensor εij(k) accounting
for the two independent polazation modes of hji . With any loss of generality, we have omitted it, since Eq. (2.4)
provides the same equation for the two polarization states. A massive longitudinal mode can arise in case the
GW propagates across molecular medium. A further damping of this mode may occur in particular classes of
modified gravity theories [77, 78].
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Moreover, the GWs that we can actually probe propagates on sub-horizon scales. This condi-
tion gives kη � 1 for a class of cosmological models such as power-law scale factor or ΛCDM,
where it also holds a′′/a ∼ η−2 and H ∼ η−1. This means that the requirement k2 � ã′′/ã
translates to (

k

H

)2

� 1 + 3 a
α

H
+ a2

( α
H

)2
. (2.11)

Since a < 1, for the redshift of interest for upcoming observations such as LISA [79, 80] and
ET [81], i.e. z . 2, Eq. (2.11) tells us that sub-horizon modes can be safely considered for
our models as long as αH−1

0 . 1. Instead, for higher values of α our results are meaningful
for k � α. It is worth to remark that when α & H0, not all the subhorizon modes are
compatible with our discussion, since the scale introduced by α lays within the horizon itself.
However, our analysis is still viable for the range of wavelengths compatible with the current
and forthcoming interferometers. Indeed, for the case of quite large shear viscosity α = 10H0,
we would have that the spatial scale of α−1 is roughly 10 times smaller than the horizon.
This scale is anyway much larger than the wavelength range that Earth and Space based
interferometers are able to probe, ensuring then that the condition k � α is always safely
satisfied for the modes of our interest.

In the following sections we will discuss the explicit cases for a power-law scale factor
and for the ΛCDM model.

3 Viscous models

In this section, we study the GW distance-redshift relation for some particular cases of physical
interest. Firstly, we analyze the case of a generic power law behaviour for the scale factor. An
interesting application for this case could provided by models where also the bulk viscosity
is not null. Indeed, in this case the Friedmann equations are modified by the bulk viscosity
and some interesting deviation from the Cosmic Concordance model might occur. Secondly,
we will discuss the case of a viscous extension of ΛCDM model, where only shear viscosity is
allowed.

3.1 Power-law solution

We first present the illustrative case of a power-law solution for the cosmological background.
Under these assumptions, the scale factor in term of the conformal time η reads

a (η) = a0

(
η

η0

)β
, (3.1)

and this yields to H = β
η , where η0 is the conformal time today. Inserting the last two

equalities in the second line of Eq. (2.8) we then have

ã′

ã
=
β

η
+ αa0

(
η

η0

)β
(3.2)

– 6 –



with the initial condition given by ã (η0) = a (η0). We have done this choice in order to
recover dGWL (0) = dEML (0) (see Eq. (2.9). For β 6= −1, we then have

ã (η) = a(η) exp

αa0

(
ηβ+1 − ηβ+1

0

)
(β + 1)ηβ0

 . (3.3)

A direct comparison between Eqs. (3.1) and (3.3) shows that the damping effects introduced
by the shear viscosity is an exponential suppression in the past of the effective scale factor ã,
which governs the GWs propagation.

Finally, we substitute Eq. (3.3) in Eq. (2.9) to obtain

dGWL (η)

dEML (η)
= exp

{
αa0η0

(β + 1)

[
1−

(
a

a0

)(β+1)/β
]}

. (3.4)

Since our observations relate distances to redshift, the last equation (3.4) can be further
manipulated in order to make explicit the dependence on z. To this purpose, we first recall
that 1 + z = a0

a . Hence by expressing the conformal time today in terms of the Hubble
constant H0 we obtain

dGWL
dEML

(z) = exp

[
β

β + 1

α

H0

(
1− 1

(1 + z)
β+1
β

)]
. (3.5)

This is the most general equation that relates the gravitational luminosity distance to the
redshift in a power law Universe with constant shear viscosity. Setting β = 2, we apply the
general result given in Eq. (3.5) to the physical scenario of a matter dominated Universe
(Einstein-de Sitter Universe). In Fig. 1 we show the relative correction between the gravita-
tional and the electromagnetic luminosity distance-redshift relation as given by Eq. (3.5) for
different values of viscosities.

0.001 0.010 0.100 1 10 100

10-4

1

z

d L
G
W
/d
LE
M
-
1

α = 10 H0

α = H0

α = 10-1 H0

α = 10-2 H0

α = 10-3 H0

Figure 1. Luminosity distance ratio for different values of α in unit of H0 for CDM model.

Regardless of the value of α, we notice that all the solutions tend to a constant value of
the ratio beyond a certain redshift z∗. For a generic value of β, this overall offset is given by

dGWL
dEML

≈ e
α
H0

β
(β+1) , (3.6)
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which clearly shows that is controlled by the ratio α/H0. Before moving on, a comment about
the behavior for large α/H0 in Fig. 1 is in order. The intermediate bump emerging when
α = 10H0 is due to the nonlinear modification of ã with respect to a, as accounted for in
the second of Eqs. (2.8). With the proviso that k2 � ã′′/ã, hk scales as ã−1, regardless of
k. Hence we get that the scaling of the GW amplitude is entirely given by Eq. (3.5), as a
consequence of the second of Eqs. (2.8). When α� H0, Eq. (3.5) gives

dGWL
dEML

(z) = 1 +
α

H0

β

β + 1

[
1− (1 + z)

−β+1
β

]
+O

((
α

H0

)2
)
, (3.7)

which only exhibits two regimes when z is compared to 1. However, when α & H0, the
nonlinear dependence of dGWL /dEML cannot be neglected. In particular, since both small
(z � 1) and large (z � 1) redshift behaviors are universal in regard to the value of αH−1

0 ,
the intermediate range at z ∼ 1 is precisely the only range where the nonlinear dependence
on the shear viscosity can change the qualitative form of Fig. 1.

Although an Einstein-de Sitter universe is a very good approximation of the evolution
of the Universe after the CMB, it fails to reproduce the recent Dark Energy epoch and a
better model of the Universe is required. In the next subsection we will discuss the effects of
viscosity within a ΛCDM-like model.

3.2 A viscous ΛCDM model

After recombination, the radiation contribution to the expansion of the Universe has be-
come negligible. Ignoring the radiation component may underestimate observables related
to the primordial tensor perturbations (such as 2-point correlation of the lensing shear [82]),
especially on scales small enough to have re-entered the horizon before the recombination.
However, the GW’s analysed with the dGWL (z) are not related to the primordial tensor spec-
trum, as they are emitted only in recent epochs (up to z ∼ 5), where the radiation component
can be safely neglected.

The first difficulty we have to deal with is the absence of an analytic expression for
a(η) in the Cosmic Concordance model. In order to circumvent this technical aspect, it is
convenient to rewrite the second line of Eq. (2.8) in terms of the redshift. With this in mind,
we first provide the following well-known relations (a0 = 1)

d

dη
= −H(z)

d

dz
and H(z) =

H(z)

1 + z
, (3.8)

where
H(z) = H0

√
Ωm0(1 + z)3 + ΩΛ0 , (3.9)

and clearly ΩΛ0 + Ωm0 = 1. Therefore, first of Eqs. (2.8) becomes4

d ln ã

dz
= − 1

1 + z
− α(z)

H(z)(1 + z)
. (3.10)

By integrating the lhs between ã0 = a0 = 1 and ã and the rhs between 0 and z we obtain

ã(z) =
1

1 + z
exp

(
−
∫ z

0

α(z′)

(1 + z′)H(z′)
dz′
)
, (3.11)

4Here a possible time dependence in α is considered for a sake of generality. This case will not be considered
along this work but might be of interest for other scenarios, where it has been claimed that a running value
α could emerge from the coarse graining of the small-scales inhomogeneities [58, 83].
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Once inserted in Eq. (2.9), Eq. (3.11) gives

dGWL
dEML

(z) = exp
[∫ z

0

α(z′)

(1 + z′)H(z′)
dz′
]
. (3.12)

Last equation is a general expression that holds true in any FLRW cosmology with a vis-
cous fluid component in the stress-energy tensor, where the shear viscosity parameter is not
constant. All the information about the background gravitational sources is encoded in H(z).

We remark that Eq. (3.12) holds true also for values of H(z) which are more general of
Eq. (3.9). Indeed, as long as the Hubble function is evaluated accordingly to the total stress-
energy tensor, it follows that the equation is valid even if the fluids do not have a barotropic
equation of state (e.g. polytropic fluids) and it remains valid also in the presence of bulk
viscous contributions. However, since now on, we will only consider background dynamics
driven by dark matter and Λ, in agreement with the value of H(z) provided in Eq. (3.9).

With this in mind, we then combine Eq. (3.12) and with Eq. (3.9) and consider a constant
α(z) = α. We underline that the shear viscous parameter α in a model with a mixture of
viscous fluids is given by α =

∑
A αA, where A is an index that runs over the different viscous

fluids. As a consequence, with this condition, in a ΛCDM-like model it is not possible to
distinguish which fluid component between Dark Energy, Dark Matter or both is responsible
for the shear viscous effects on the gravitational wave propagation. However, if one has in
mind a minimal extension to the ΛCDM model, the viscous property should be addressed
only to the Dark Matter fluid. This is because a Dark Energy as given by a cosmological
constant is the only term compatible with General Relativity, according to the hypothesis of
the Lovelock theorem. This minimal description admits then an EoS for Λ which is nothing
but the one of a perfect fluid. The integral in Eq. (3.12) hence becomes∫ z

0

1

(1 + z′)H(z′)
dz′ =

1

3H0

√
ΩΛ0

ln

(
H(z)/H0 −

√
ΩΛ0

H(z)/H0 +
√

ΩΛ0

1 +
√

ΩΛ0

1−
√

ΩΛ0

)
(3.13)

bringing then to

dGWL
dEML

(z) =

(√
Ωm0(1 + z)3 + ΩΛ0 −

√
ΩΛ0√

Ωm0(1 + z)3 + ΩΛ0 +
√

ΩΛ0

1 +
√

ΩΛ0

1−
√

ΩΛ0

) α

3H0
√

ΩΛ0

. (3.14)

Just as discussed in the previous section, we have again a critical redshift z∗ such that,
when z > z∗, we have:

Ξ0 ≡
dGWL
dEML

(z � z∗) =

(
1 +
√

ΩΛ0

1−
√

ΩΛ0

) α

3H0
√

ΩΛ0
. (3.15)

Here we have called this limit value Ξ0 since we have in mind the widely used parametrization
of dGWL /dEML proposed in [60]

dGWL
dEML

(z) = Ξ0 +
1− Ξ0

(1 + z)n
. (3.16)

According to Eq. (3.14), the parametrization in Eq. (3.16) is not expected to work perfectly
for any value of α. Indeed, as we can see from Fig. 2, for high value of α/H0, the emergence
of an intermediate slope at redshifts ∼ 1 renders Eq. (3.16) hard to be used. However, when
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Figure 2. Luminosity distance ratio for different values of α in unit of H0 for ΛCDM where Ωm0 =
0.307 has been taken in accordance to the local estimation from the Pantheon sample [84].
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Figure 3. Relative error between the exact expression in Eq. (3.14) and the parametric expression
in Eq. (3.16). We fix Ωm0 = 0.307 in accordance to the local estimation of the Pantheon sample [84].
This plot shows that the widely used parametrization in Eq. (3.16) is reliable only for small values of
αH−1

0 .

α is perturbatively smaller than H0, Eq. (3.16) works quite well. This is more evident in
Fig. 3, where the slope n in Eq. (3.16) has been modeled as (see [85] for a detailed discussion
about different parametrization of n)

n ≡ δ(0)

1− Ξ0
. (3.17)

The dependences of Ξ0 and n on the ratio α/H0 are shown in Fig. 4, where Ωm0 = 0.307 has
been taken in accordance to [84]. From both these panels, we notice that the discrepancy
between the gravitational and electromagnetic luminosity distance deviates exponentially
when the shear viscosity becomes of order of H0.

What emerges from Figs. 3 and 4 is that the parametrization of Eq. (3.16) can be safely
adopted also for the viscous models when its value is at maximum of few percent of the H0.
Accordingly, also the constraints on the value of α from Eq. (3.16) are not trustworthy beyond
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parametrization given in Eq. (3.16). The value of Ωm0 = 0.307 has been taken in accordance to the
local estimation from the Pantheon sample [84].

this regime. The reason for this discrepancy stands in the fact that Eq. (3.16) holds when
dGWL /dEML exhibits only two regimes: top curve of Fig. 2 clearly shows that this is not the
case when α � H0. We remark that in this case the estimation of n becomes meaningless
whereas Ξ0 can still be interpreted as the limit value of dGWL /dEML .

As a final remark we show that in the limit ΩΛ0 → 0 we retrieve the Einstein-de Sitter
solution given in Eq. (3.5) by setting β = 2. To this end, it is more straightforward to expand
in terms of ΩΛ0 Eq. (3.13), having in mind the constraint Ωm0 = 1 − ΩΛ0. Since we are
interested in the leading term and the logarithm is divided

√
ΩΛ0, we neglect terms of order

O(ΩΛ0) or higher. First fraction in the argument of the logarithm of Eq. (3.13) then becomes√
Ωm0(1 + z)3 + ΩΛ0 −

√
ΩΛ0√

Ωm0(1 + z)3 + ΩΛ0 +
√

ΩΛ0

=

√
1− ΩΛ0 + ΩΛ0(1 + z)−3 −

√
ΩΛ0(1 + z)−3/2√

1− ΩΛ0 + ΩΛ0(1 + z)−3 +
√

ΩΛ0(1 + z)−3/2

=
1−
√

ΩΛ0(1 + z)−3/2

1 +
√

ΩΛ0(1 + z)−3/2
+O (ΩΛ0)

=1− 2
√

ΩΛ0 (1 + z)−3/2 +O (ΩΛ0) . (3.18)

In the same way, for the second fraction in Eq. (3.13) we have

1 +
√

ΩΛ0

1−
√

ΩΛ0
= 1 + 2

√
ΩΛ0 +O(ΩΛ0) . (3.19)

Hence, thanks to Eqs. (3.18) and (3.19), the expansion of the logarithm in Eq. (3.13) is

ln

(
H(z)/H0 −

√
ΩΛ0

H(z)/H0 +
√

ΩΛ0

1 +
√

ΩΛ0

1−
√

ΩΛ0

)
= 2
√

ΩΛ0

[
1− (1 + z)−3/2

]
+O

(
Ω

3/2
Λ0

)
. (3.20)

By inserting this last expansion in Eq. (3.13), we then arrive at∫ z

0

1

(1 + z′)H(z′)
dz′ =

2

3H0

[
1− (1 + z)−3/2

]
+O (ΩΛ0) . (3.21)

Finally, by using Eq. (3.12) with a constant α, we recover the result of Eq. (3.5).
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4 A smoking gun for the shear viscosity?

An interesting feature emerging from the discussion in the previous section is the neat dis-
tinction between two regimes of the ratio dGWL /dEML for small values of α/H0. The crossing
from one regime to the other occurs at a given redshift, where a knee between the linear and
constant behaviour is evident. To quantify this transition, we first expand Eq. (3.14) for low
redshift

dGWL
dEML

= 1− δ(0) z +O
(
z2
)

= 1 +
α

H0
z +O

(
z2
)
, (4.1)

where, following [59], we have used δ(0) = −αH−1
0 . It is already interesting to notice from

Eq. (4.1) that the linear regime appearing at low redshift of Fig. 2 is independent of Ωm0: a
detection of a linear increasing behaviour for close sources is entirely addressed to a non-null
shear viscosity in this scenario, regardless of the value of α. However, the amplitude still look
prohibitive according to the forecasted precision at those redshifts. Indeed, following [60], we
can use the the stringent limit on δ(0) coming from combined observations of the standard
siren GW170817 [6] and electromagnetic counterpart of its host galaxy NGC4993 [86, 87].
This provides the bounds δ(0) = −7.8+9.7

−18.4. Despite this is a test to directly constrain αH−1
0 ,

the provided bound is unfortunately not so stringent.
Stronger constraints can be put by considering the forecasts for LISA [85] and ET [60].

To this end, we make use of the parametrization in Eq. (3.16) and consider the forecasted
error ∆Ξ0 respectively given by 0.044 for LISA [85] and 0.008 for ET [60]. Indeed, for small
values of αH−1

0 , Eq. (3.15) gives

Ξ0 ≈ 1 +
1

3

α

H0
ln

(
1 +
√

ΩΛ0

1−
√

ΩΛ0

)
. (4.2)

Eq. (4.2) we can then be inverted to get the ratio α/H0 as a function of the parameters Ωm0

and Ξ0. In this way, the precision on the estimation of α/H0 propagating from the error bars
of Ξ0 and Ωm0 is

∆

(
α

H0

)
=

3 ∆Ξ0

ln
(

1+
√

ΩΛ0

1−
√

ΩΛ0

) +
3 |1− Ξ0|∆Ωm0

√
ΩΛ0 Ωm0 ln2

(
1+
√

ΩΛ0

1−
√

ΩΛ0

) . (4.3)

Around the fiducial values of the standard cosmic concordance model (Ξ0 = 1), we then have
that α/H0 could be constrained by future missions with an error given by

∆

(
α

H0

)
≈ 3 ∆Ξ0

ln
(

1+
√

ΩΛ0

1−
√

ΩΛ0

) ≈ ∆Ξ0 , (4.4)

where we have used the value Ωm0 = 0.307 ± 0.012 as given by the independent estimation
from Pantheon sample [84]. We remark that Eq. (4.4) follows from the optimistic case Ξ0 = 1
where the contribution of ∆Ωm0 to the ultimate forecasts cancels out. However, our result is
reliable also for more conservative scenarios. Indeed, if we let Ξ0 deviate from 1 by the same
order of magnitude permitted by the error bars (namely |1 − Ξ0| ∼ ∆Ξ0), we get that our
forecast in Eq. (4.4) is worsen only by ∼ 1%, according to our chosen cosmological parameters.

Interestingly, the forecasted error α/H0 is almost of the same order of magnitude as the
one for Ξ0. This opens a new window to investigate whether a shear viscosity of order of few
percents of H0 is present in the cosmological fluids. We also remark that these constraints are
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more stringent than the ones provided by the same analysis for particular classes of modified
gravity theories, where the forecasted errors for the free parameters are worsen by almost one
order of magnitude wrt to ∆Ξ0 [88].

As a further remark, an interesting idea would be to use Eq. (4.4) as a forecast for
α itself, rather than just αH−1

0 . This could be achieved by combining Eq. (4.4) with the
analysis of the expected Hubble-Lemaître diagram from Superluminous Supernovae [89] for
forthcoming Large-Scale Structure surveys at higher redshift (up to z = 4). Indeed, it has
been shown in [90] that this analysis could provide a (model dependent) estimation of H0 at
a precision level of ∼ 0.1%.

Finally, we discuss another test that could be done by looking at the transition between
the linear evolution and the constant offset given by Eq. (3.15). This transition would occur
at the redshift z∗ when the linear growth in Eq. (4.1) reaches the offset value in Eq. (3.15).
This simple reasoning returns an expression for z∗ given by

z∗ =
H0

α

[(
1 +
√

1− Ωm0

1−
√

1− Ωm0

) α

3H0
√

1−Ωm0 − 1

]
. (4.5)

We remark that Eq. (4.5) is meaningful only for small values of the ratio α/H0, since the
transition between the linear and the constant regime occurs directly only in this case. Indeed,
Fig. 2 for values α/H0 > 1, a third intermediate regime appears and this breaks the validity of
the discussed case study. Fortunately, the values of α when this limitation occurs are too high
to be seriously considered. It is worth to notice that when α� H0, within the uncertainties
of Ωm0 = 0.307±0.012 given by [84], the value of z∗ is quite stable around the value of z∗ = 1.

5 Conclusions and outlook

In this paper we have studied the influence of shear viscosity on the so-called gravitational
luminosity distance. The main property of the shear viscosity is that it leaves unchanged the
Friedmann equations and modifies the linear tensor perturbations by an additional friction
terms. As a consequence, the most stringent constraints on the speed of GWs propagation
are satisfied but a lot of room for other effects can be investigated.

In particular, the friction term δ(η) arising from the viscosity impacts the GW luminosity
distance-redshift relation in two specific ways:

• the shear viscosity introduces a new length scale α;

• the friction term depends on the Hubble function through the ratio α/H.

From these two properties we infer that the relevant parameter to study and/or discard the
presence of the shear viscosity in the cosmological fluid is the relative amplitude between α and
H0. In this regard, we have shown that when αH−1

0 � 1, most of the well known techniques
for the study of GW luminosity distance in modified gravity theories can be directly applied.

More specifically, for a ΛCDM-like viscous model, the gravitational distance given in
Eq. (3.14) exhibits a constant asymptotic value at redshifts z > 1 as given by the parameter
Ξ0. For the case of perturbative amplitude of α/H0, Ξ0 can actually be interpreted as usually
done [60] for the parametrization of Eq. (3.16) and consequently forecast whether it will be

– 13 –



possible to discriminate the presence shear viscosity from futuristic surveys, such as LISA
and ET. Our analysis indicates that non-perfect fluids with a shear viscosity could be studied
in details up to values of the α of few percents of H0.

On the contrary, non-perturbative values of the shear viscosity (α & H0) could be easily
distinguished from all the class of models compatible with Eq. (3.16) and there are two reasons
for that:

• first of all, the offset value Ξ0 exponentially grows with α/H0. This means that a large
deviation of dGWL from the EM luminosity distance could be easily detectable, if present.

• Secondly, the redshift dependence of dGWL /dEML largely differs from the parametric
fitting functions in Eq. (3.16), also at intermediate redshifts around z ∼ 1 (see the
curve for α = 10H0 in Fig. 2).

As a final remark, we stress that the behaviour of dGWL /dEML for small redshifts (z � 1), is
insensitive to Ωm0 and depends only linearly on the ratio α/H0, regardless of its amplitude.
For this kind of close sources, the independent estimation of z, dEML and dGWL may allow to
have independent measurements of H0 and α rather than just their ratio. This is also likely
in view of the use the three-dimensional cross-correlation technique for GWs sources and
galaxies [91, 92]. Such a scenario could provide a highly promising test to estimate the shear
viscosity if the precision concerning the measurement of dGWL would dramatically increase in
the next years.
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