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Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of
compact objects. It has been recently argued that the postmerger ringdown waveform of exotic
ultracompact objects is initially identical to that of a black hole, and that putative corrections at the
horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis
in three important directions: (i) we show that this result applies to a large class of exotic compact objects
with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in
more detail, showing that it is universally characterized by a modulated and distorted train of “echoes”of
the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-
on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced
by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision
up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole.
This suggests that—in some configurations—the coalescence of compact boson stars might be almost
indistinguishable from that of black holes. On the other hand, generic configurations display peculiar
signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.
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I. INTRODUCTION

The relativistic collision of two compact objects is the
Rosetta Stone of the strong-gravity regime. The gravita-
tional-wave (GW) signal emitted during the process contains
a wealth of information on the nature of the colliding bodies.
Following the recent LIGOdetections [1–3], in the next years
GW astronomy will deepen our understanding of the
gravitational interaction and of astrophysics in extreme-
gravity conditions to unprecedented level, playing a role
similar to that of atomic spectroscopy in advancing quantum
theory during the past century.
The comparison to atomic spectroscopy seems particu-

larly apt at least in two respects: (i) the postmerger
ringdown phase is governed by a series of damped
oscillatory modes [4–6] that can be computed very pre-
cisely in perturbation theory, and are akin to the energy
levels of the hydrogen spectrum; (ii) the precise modeling
of the gravitational waveform allows us to search for

smoking-gun anomalies due to new physics, similarly to
the celebrated Lamb shift in atomic spectroscopy.
GW spectroscopy will play an increasingly important

role as more and more events at large signal-to-noise ratio
are detected. These observations provide novel ways to test
strong gravity [7–10], black-hole (BH) no-hair results [11],
the existence of event horizons [12], possible quantum
effects at the horizon scale [12,13], dark matter and
environmental effects [13,14], and also exotic compact
objects (ECOs) which might reveal themselves for the first
time in the GW band [12,15,16]. All these tests require a
precise modeling of the gravitational waveform in strong-
gravity processes.
It has been recently argued [12] that the postmerger

ringdown phase of an ECO in the high-compactness limit is
initially almost identical to that of a BH, and that any
correction at the horizon scale due to a surface [17] or to
quantum effects [18–21] will reveal itself in secondary
pulses that appear in the late-time ringdown waveform.
This result was obtained by studying the radial plunge of a
test particle into a thin-shell wormhole. If the wormhole
throat is located at r0 ∼ 2M, the initial ringdown signal is
due to the vibration modes of the photon sphere (PS), and is
the same as those of BHs, even though their quasinormal
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mode (QNM) spectrum—defined as the poles of the
relevant Green’s function [5,6]—differ dramatically. BHs
have QNMs which can be identified with the PS. There
being no other scale in the problem and with ingoing
conditions at the horizon, the PS modes are identical to
the QNMs and no other mode is excited. For ECOs, on
the other hand, the PS modes still exist and they ring in the
same way as BHs, but are not QNMs, as they do not belong
to the spectrum of the relevant operator anymore. Instead,
the spectrum contains a series of trapped modes, which
describe the vibration of the inner stable PS, which is
absent in BH spacetimes.
With the exception of BSs—which we know to form

naturally as a consequence of collapse of scalar fields—
there is no known formation mechanisms for ECOs. In
addition, there are some indications that horizonless, ultra-
compact objects (what we have termed as ECOs) are
linearly or nonlinearly unstable [22] although the time
scales involved are model dependent or unknown.
Nevertheless, the time has come to expect the unexpected,
and a good understanding of alternatives allows us to search
for new physics in GW data. The understanding of ECOs is
also important to quantify our confidence in the existence
of BHs and event horizons.
The purpose of this work is to extend the analysis of

Ref. [12] in different independent directions. On the one
hand, we consider different models of ECOs, generic
trajectories of test particles, as well as the scattering of
Gaussian wave packets off these objects, showing that a
generic feature of microscopic-scale corrections near the
horizon is the presence of a modulated series of “echoes”of
the PS vibration modes. On the other hand we study, for the
first time, the head-on collision of two solitonic boson stars
(BSs) with a self-interacting potential including terms up to
sixth order in the scalar field [23,24]. The latter are chosen
because they can reach a compactness comparable to that of
the PS, are relatively easy to evolve numerically, and can
naturally form in dynamical scenarios [25]. To the best of
our knowledge, no other model of ECO is known to enjoy
all these properties. Thus, solitonic BSs stand out as the
most natural model of ECOs and an important question is
whether they can mimic the GW signal of a BH-BH
coalescence. Through this work we use c ¼ G ¼ 1 units.

II. ECHOES OF ECOS

In this section, we investigate the (ringdown) response of
several models of ECOs in different scattering processes.
Most of our results are derived for the same wormhole
model studied in Ref. [12], for thin-shell gravastars [17,26],
and for a simple toy model of an empty, spherical thin shell
of matter (model II of matter-bumpy BH in Ref. [13] with
M ¼ 0). The list is not meant to be exhaustive, but merely
to show that, qualitatively, the response of ultracompact
objects is universal and simple, regardless of the specifics
of the object. All these models are characterized by some

exotic form of matter that prevents gravitational collapse
and, most importantly, have a radius r0 that can be
arbitrarily close to the would-be Schwarzschild radius.
We focus on models in which

r0 ¼ 2M þ l; ð1Þ
with l ≪ M, which can qualitatively describe putative
microscopic corrections at the horizon scale (cf., e.g.,
Refs. [17–20,27] for some proposals).
In the spherically symmetric case, the line element for

these models can be collectively written as

ds2 ¼ −FðrÞdt2 þ 1

BðrÞ dr
2 þ r2dΩ2; ð2Þ

where F and B depend on the model [12,13,22]. Matter is
localized only in the region r ≤ r0 whereas, in the region
r > r0, Birkhoff’s theorem guarantees that spherically
symmetric solutions are described by the Schwarzschild
metric, FðrÞ ¼ BðrÞ ¼ 1 − 2M=r. Details on each model
are given in Appendix A.

A. Scattering of wave packets

The most relevant signatures of these models are already
evident in the simplest scattering process, namely a test
scalar wave packet being scattered off the gravitational
potential of the ECO. The scattering is governed by the
(Klein-Gordon) master equation [6] □Φ ¼ 0. Using angu-
lar variables ðθ;ϕÞ on the sphere, and expanding the scalar
in spherical harmonics as Φ ¼ P

lmYlmðθ;ϕÞΨlmðrÞ=r
we get �

−
∂2

∂t2 þ
∂2

∂r2� − VlðrÞ
�
Ψlmðt; rÞ ¼ 0; ð3Þ

where dr=dr� ¼
ffiffiffiffiffiffiffi
FB

p
. In the exterior region, r > r0,

the tortoise coordinate r� and the potential Vl coincide
with their Schwarzschild values, whereas their expressions
in the interior region r < r0 are model-dependent
(cf. Appendix A). The potential for some representative
cases is shown in Fig. 1.
We solve Eq. (3) with initial conditions

∂Ψlm

∂t ð0; rÞ ¼ e−ðr�−rgÞ2=σ2 ; Ψlmð0; rÞ ¼ 0: ð4Þ

The waveform obtained by solving Eq. (3) with rg ¼
10M; σ ¼ 6M is shown in Fig. 2 for various models and
compared to the BH case.
As discussed in Ref. [12], the initial ringdown signal is

basically identical to that of a BH. This part of the signal
corresponds to unstable modes at the outermost PS, which
is present when r0 < 3M, and which are associated with the
maximum of the potential Vl near r ∼ 3M. The outermost
PS is typically unstable on short timescales, explaining the
rapid damping of this ringdown stage.
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On the other hand, when the Schwarzschild horizon is
replaced by a surface (as, e.g., in the gravastar case) or by a
throat (as in the wormhole case), the potential also develops
a minimum (i.e., an innermost stable PS) which can trap
low-frequency modes [12,15,28–30] (cf. Fig. 1). This inner
PS can also be thought of as being caused by the centrifugal
barrier, and it may become nonlinearly unstable [12]. These
modes make their way to the waveforms in Fig. 2 in the
form of “echoes” of the initial PS modes after they leak
through the potential barrier: the radiation pulse generated
at the potential barrier peak (the PS modes) is then trapped
in a semipermeable cavity bounded between the two PSs.
Indeed, the time delay between two consecutive echoes is
roughly the time that light takes for a round trip between the
potential barrier. In general, this delay time reads

Δt ∼ 2

Z
3M

rmin

drffiffiffiffiffiffiffi
FB

p ; ð5Þ

where rmin is the location of the minimum of the potential
shown in Fig. 1. If we consider a microscopic correction at
the horizon scale (l ≪ M), then the main contribution to
the time delay comes near the radius of the star and
therefore,

Δt ∼ −nM log

�
l
M

�
; l ≪ M; ð6Þ

where n is a factor of order unity that takes into account the
structure of the objects. For wormholes, n ¼ 8 to account
for the fact that the signal is reflected by the two maxima in
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FIG. 2. Left: A dipolar (l ¼ 1, m ¼ 0) scalar wave packet scattered off a Schwarzschild BH and off different ECOs with l ¼ 10−6M
(r0 ¼ 2.000001M). The right panel shows the late-time behavior of the waveform. The result for a wormhole, a gravastar, and a simple
empty shell of matter are qualitatively similar and display a series of “echoes” which are modulated in amplitude and distorted in
frequency. For this compactness, the delay time in Eq. (6) reads Δt ≈ 110M for wormholes, Δt ≈ 82M for gravastars, and Δt ≈ 55M for
empty shells, respectively.
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FIG. 1. Qualitative features of the effective potential felt by
perturbations of a Schwarzschild BH compared to the case of
wormholes [12] and of starlike ECOs with a regular center [22].
The precise location of the center of the star is model dependent
and was chosen for visual clarity. The maximum and minimum of
the potential corresponds approximately to the location of the
unstable and stable PS, and the correspondence is exact in the
eikonal limit of large angular number l. In the wormhole case,
modes can be trapped between the PSs in the two “universes.” In
the starlike case, modes are trapped between the PS and the
centrifugal barrier near the center of the star [28–30]. In all cases
the potential is of finite height, and the modes leak away, with
higher-frequency modes leaking on shorter timescales.
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Fig. 1, whereas for our thin-shell gravastar model and the
empty-shell model it is easy to check that n ¼ 6 and n ¼ 4,
respectively. The results shown in Fig. 2 for l ¼ 10−6M are
perfectly consistent with this picture, with the wormhole
case displaying longer echo delays than the other cases with
the same compactness. Our results show that the depend-
ence on l is indeed logarithmically for all the ECOs we
studied.
As argued in Ref. [12], the logarithmic dependence

displayed in Eq. (6) implies that even Planckian corrections
(l ≈ LP ¼ 2 × 10−33 cm) appear relatively soon after the
main burst of radiation, so they might leave an observable
imprint in the GW signal at late times. From Eq. (6), a
typical time delay reads

Δt ∼ 54ðn=4ÞM30

�
1 − 0.01 log

�
l=LP

M30

��
ms; ð7Þ

where M30 ≔ M=ð30 M⊙Þ.
The picture of GW signal scattered off the potential

barrier is also supported by two further features shown in
Fig. 2, namely the modulation and the distortion of the
echo signal. In general, modulation is due to the slow
leaking of the echo modes, which contain less energy than
the initial one. In the wormhole case, this effect is stronger
due to the fact that modes can also leak to the “other
universe” through tunneling at the second peak of the
potential. While the amplitude of the echoes is model
dependent, for a given model it depends only mildly on l.
Distortion is also due to the potential barrier, which acts as
a low-pass filter and reflects only the low-frequency,

quasibound echo modes. This implies that each echo is
a low-frequency filtered version of the previous one and the
original shape of the mode gets quickly washed out after a
few echoes.1

B. Waves generated by infalling or scattered particles

The features above are observed in a simple scattering
process, but are also evident in the GW signal produced by
head-on collisions or close encounters, in the test-particle
limit. The latter differ from the radial plunge studied in
Ref. [12] in that their pericenter rmin > 3M, i.e. the particle
does not cross the radius of the PS (in fact, scattered
particles in the Schwarzschild geometry can never get
inside the r ¼ 4M surface). In order to compute the GW
signal, we use the Regge-Wheeler-Zerilli decomposition
reviewed in Appendix B (cf. Ref. [31] for details).
We have studied the GW emitted during collisions or

scatters between point particles and ECOs; again the
general qualitative features are the same as those discussed
in Sec. II A and independent of the nature of the ECO. To
be specific, we show in Fig. 3 the Zerilli wave function for a
point particle plunging into (left panel) or scattering off a
wormhole with l ¼ 10−6M, with initial Lorentz boost
E ¼ 1.5. The coordinate system we use is such that the
particles are moving along the equator, and it differs—by a
π=2 rotation—from the coordinate axis used in Ref. [12].
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FIG. 3. Left panel: The waveform for the radial infall of a particle with specific energy E ¼ 1.5 into a wormhole with l ¼ 10−6M,
compared to the BH case. The BH ringdown, caused by oscillations of the outer PS as the particle crosses through, are also present in the
wormhole waveform. A part of this pulse travels inwards and is absorbed by the event horizon (for BHs) or then bounces off the inner
(centrifugal or PS) barrier for ECOs, giving rise to echoes of the initial pulse. This is a low-pass cavity which cleans the pulse of high-
frequency components. At late times, only a lower frequency, long-lived signal is present, well described by the QNMs of the ECO.
Right panel: the same for a scattering trajectory, with pericenter rmin ¼ 4.3M, off a wormhole with l ¼ 10−6M. The main pulse is
generated now through the bremsstrahlung radiation emitted as the particle approaches the pericenter. The remaining main features are
as before. We show only the real part of the waveform, the imaginary part displays the same qualitative behavior.

1Incidentally, we note that all these features (namely time
delay, echoes, modulation, and high-frequency filtering) are
precisely what one would expect by the scattering of sound
waves in a finite-size cavity.
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As such, the l ¼ 2 Zerilli-Moncrief wave function, for
example, has contributions from azimuthal numbers
m ¼ 0;�2. Note also that it is easy to express these results
in a rotated frame [32,33], and we checked that the
waveforms agree up to numerical errors with our previous
study [12].2

The left panel of Fig. 3 shows the l ¼ m ¼ 2 GW
waveform generated by point particle plunging radially
into a BH and a wormhole with l ¼ 10−6M. The main
features were already shown before [12], but they are much
clearer here: as the particle crosses the outer PS, a pulse of
radiation is emitted. This pulse, identical for all ultra-
compact ECOs, has both an outgoing and ingoing compo-
nent. When the central object is a BH, the ingoing pulse
disappears towards the event horizon and the outgoing
pulse is all that an outside observer receives. When the
central object is an ECO, the ingoing pulse is now trapped
between the outer and inner PSs and bounces back and
forth, “echoing” through the cavity. Because the pulse is of
relatively high frequency, there is leakage at each bouncing,
and outside observers are able to detect many echoes. At
late times the echo acquires a smaller frequency compo-
nent, identical to the QNMs of the ECO.
This same process is triggered by more generic orbits,

even by particles which do not cross the outer PS, but that
approach it sufficiently closely. This time however, it is the
bremsstrahlung radiation that excites the outer PS modes.
An example is shown in the right panel of Fig. 3 for a
pericenter at rmin ¼ 4.3M. The remaining steps are the
same as before: echoes are observed, delayed by an amount

that depends exclusively on l, or in other words, on how
big the cavity is. The amplitude of the echoes does not seem
to be sensitive to l but only to the details of the process
exciting the main pulse.
In other words, the angular momentum of the infalling

particle does not influence significantly the echo structure,
and we therefore expect it to be a generic feature of ECOs:
even particles on the last stages of merger will excite echoes
as the they plunge through the PS.
Finally, it is clear that a crucial ingredient for the

appearance of echoes in the GW signal is the presence
of a PS in the spacetime as well as a sufficiently large
“cavity.” As shown in Fig. 4, ECOs without a PS display a
ringdown different from that of BHs even at early times.
Furthermore, because of the absence of trapped states in the
spectrum [12,22] (which, in turn, is due to the absence of a
potential well, or an inner PS), the late-time ringdown is
simply characterized by a damped sinusoid, without the
echo structure.

III. HEAD-ON COLLISIONS OF COMPACT
BOSON STARS

In this section we go beyond the point-particle limit
previously considered to study the head-collision of two
equal-mass ultracompact objects which are initially at rest.
First numerical studies in this scenario [34,35] already
showed the solitonic behavior of boson stars. Later studies
have investigated the outcome of highly relativistic colli-
sions between BSs [36] in the context of the so-called Hoop
Conjecture (crucial for the trans-Planckian collision prob-
lem). The orbiting case was considered within the con-
formally flat approximation, which neglects gravitational
waves, in [37]. Studies concerning gravitational wave-
forms, directly motivated by GW science, include
Refs. [32,38]; nevertheless, studies of collisions of BSs
aimed at understanding how well their signal can mimic
BHs, are missing. As discussed in the Introduction,
solitonic BSs are a natural candidate for this purpose.
BSs are equilibrium, self-gravitating solutions of the

Einstein-Klein-Gordon theory with a minimally coupled,
complex scalar field (cf. Ref. [25] for a review),

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

− gab∂aΦ�∂bΦ − VðjΦj2Þ
�
: ð8Þ

The Einstein equations read Gab ¼ 8πTΦ
ab, with

TΦ
ab ¼ 2∂ðaΦ�∂bÞΦ − gab½∂cΦ�∂cΦþ VðjΦj2Þ�; ð9Þ

whereas the Klein-Gordon equation is □Φ ¼ dV
djΦj2 Φ,

together with its complex conjugate. We consider solitonic
BSs supported by the self-interacting potential [23,24]

VðjΦj2Þ ¼ μ2jΦj2ð1 − 2jΦj2=σ20Þ2: ð10Þ
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FIG. 4. GW signal produced by a test particle falling radially
into a wormhole with E ¼ 1.01. We consider the same setup as in
Ref. [12] but for a wormhole without a PS. Without outer (and
inner) PS, the ringdown signal is, clearly, different from that of a
BH. Because there is no longer a good resonating cavity, echoes
do not appear to be excited.

2Note however the following typo in the original publication:
the bottom right panel of Fig. 4 in Ref. [12] refers to a Lorentz
factor E ¼ 1.01 and not to E ¼ 1.5 as reported in the paper. This
has since been corrected in an Erratum.
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The massmS of the scalar is related to the mass parameter μ
above through μ ¼ mS=ℏ. Here, σ0 is a constant, generi-
cally assumed to be of the same order as μ. This is the
simplest potential that can support, in the absence of
gravity, nontopological solitonic solutions [23,24].
Solitonic BSs can be very compact, with the minimum

radius of stable, spherically symmetric configurations
comparable to the radius of the PS,3 i.e. R ≈ 3M [15].
Their maximum mass reads [23,39]

Mmax ∼ 0.0198
m4

P

μσ20
; ð11Þ

where the scaling ofMmax with μ is exact, while the scaling
with σ20 is only approximate and valid when σ0 ∼ μ ≪ mP
(with mP the Planck mass). The field equations for the
static, spherically symmetric case are given in Appendix C,
while the numerical setup of the simulations is briefly
described in Appendix D. A representative mass-radius
relation for solitonic BSs is shown in Fig. 5.
The field equations for the solitonic potential (10) are stiff,

and the scalar field has a very steep profile across a surface
layer of thickness ∼μ−1. This stiffness makes the numerical
integration particularly challenging.Here,we use themethod
presented in Ref. [15] to prepare initial data for the spheri-
cally symmetric case. The initial state for the binary head-on
collision is simply constructed by superposition of two

solitonic BSs. The simulations presented below refer to
BSs with the same mass and radius, initially at rest and
separated by a distance ≈2.7R; we have also tried different
configurations finding qualitatively similar results.
The theory (8) is symmetric under Φ → −Φ and under a

Uð1Þ transformation. By using these symmetries, we can
straightforwardly change the sign of the Noether charge
and/or the phase of the scalar field in either of the two BSs
in the initial data. We will present results for three different
configurations covering the most extreme interaction
dynamics between BSs: (1) a binary of two identical
BSs in phase (bs-bs), (2) a binary with a BS and an
anti-BS with opposite Noether charge (bs-abs), and (3) a
binary with two BSs in phase opposition (bs-bsop) corre-
sponding to a shift of π in the phase of one of the stars.
Notice that these cases have also been studied in the context
of binary mini-BSs [32,38].
The gravitational waveforms of these three configura-

tions are presented in Fig. 6 for two representative values of
the total mass. In the left panel, we consider the evolution of
two relatively light BSs with M=R ≈ 0.118 (red marker in
Fig. 5), whose head-on collision could form in principle a
BS with nearly maximum mass and withM=R ≈ 1=3 (blue
marker in Fig. 5). In all the cases considered here the
waveforms display a qualitative behavior different from
that of the head-on collisions of two (nonspinning) BHs
with the same masses. We argue that this is mainly due to
three reasons. First, in order to form a BS which does not
exceed the maximummass in Fig. 5, the compactness of the
initial BSs has to be relatively low, so they start merging
much before the BH case. Secondly, the radius of the final
BS (if it eventually forms after a transient stage) roughly
coincides with the PS, and does not meet the requirements
to mimic well a BH ringdown at early times [12] (as also
shown in Fig. 4). Finally, the scalar fields composing the
BSs interact in a nontrivial way during the merger which
depends on its specific configuration (i.e., phase shift and
Noether charge sign). This behavior manifests more clearly
in the maximum of the scalar field norm, which is displayed
in Fig. 7. The only scenario with a clear merger and
relaxation to another BS configuration is the (bs-bs) case.
The opposite Noether charges of the (bs-abs) case annihi-
late during the merger, dispersing and radiating all the
scalar field. The (bs-bsop) case is probably the most exotic
scenario, since the scalar field interaction induces a
repulsive force. Therefore, the stars suffer several inelastic
collisions, bouncing back and forth, before losing all their
kinetic energy. At late times the two stars are at rest, next to
each other, without merging.
In the right panel of Fig. 6 we show the case of two BSs

with moderately high compactness, M=R ≈ 0.184 (green
marker in Fig. 5). For all the configurations considered, the
final product of the merger is a Schwarzschild BH.
However, the relative phase of the scalar field and the
BS charges have again a dramatic impact in the waveform.
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marker indicates a stable BS with nearly maximum mass and
M=R ≈ 1=3. The horizontal line in the right panel denotes the
compactness of the Schwarzschild PS, M=R ¼ 1=3.

3Strictly speaking, BSs extend all the way to infinity; however,
the scalar energy density decreases exponentially at large dis-
tances and it is standard practice—which we follow—to define its
radius as the point at which 99% of the BS mass is contained.
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When the two BSs have initially the same phase, their
waveforms are qualitatively different from that of two
colliding BHs, regardless the relative sign of the BS
charges. In particular, high frequency oscillations, resulting
from the interaction of the BSs scalar fields, appear soon
after the merger. The resulting star promptly collapses to a

BH, producing the well-known ringdown signal after the
merger. However, when the initial BSs have opposite
phases the interaction between the scalar fields does not
produce any interference pattern and the signal is much
more similar to that of a BH. In this latter case, we expect
that the small differences arise from the compactness of the
initial BSs (which is anyway smaller than the BH case
roughly by a factor 2.7) and by the related fact that the mass
of the final BH is not exactly the same in the two cases.
Finally, notice that further increasing the total mass of

the system will result in a faster collapse of the final object
into a BH, reducing the anomalous signatures of the scalar
fields interference on the emitted GWs.

IV. DISCUSSION AND CONCLUSION

The recent direct detection of GWs [1,2] has opened two
intriguing opportunities related to ECOs, namely con-
straining these objects as alternatives to BHs and using
them as a proxy to probe quantum corrections at the
horizon scale. In this paper, we have explored some GW
signatures that emerge in both scenarios, finding a number
of interesting results.

A. Quantum corrections

First of all, we have extended and clarified the picture
proposed in Ref. [12]. The ringdown signal of an ECO
whose compactness is parametrically close to that of a BH
displays some universal features. The main burst of
radiation during the early-time ringdown phase is only
associated with the vibration modes of the PS and does not
depend on whether or not the spacetime has a horizon. The
pulse of radiation at the PS travels unimpeded towards the
event horizon, if the object is a BH. Thus the late stages in

FIG. 6. GW (i.e., represented by the l ¼ m ¼ 2 mode of the Newman-Penrose Ψ4 scalar), as a function of time, emitted during the
head-on collision of two solitonic BSs. Left panel (low mass): The final object is not massive enough to collapse to a BH, so the final fate
of the system will depend on the BS configuration; a perturbed BS (bs-bs), annihilation of the stars (bs-abs) or two individual stars after
multiple inelastic collisions (bs-bsop). Right panel (medium mass): The final object promptly collapses to a BH, although previously—
for some of the configurations, i.e., the bs-bs and the bs-abs—there is a signature on the GWs produced by the scalar field interaction.

FIG. 7. Maximum value of the scalar field norm, as a function
of time, for the head-on collision of two low-mass solitonic BSs.
The bs-bs collision forms, after a relatively long transient, a single
perturbed BS. The bs-abs configuration has opposite Noether
charges that annihilate soon after they merge, destroying the stars
and dispersing/radiating their scalar fields. The scalar field
interaction in the bs-bsop is repulsive and larger than the
gravitational attraction, so the system undergoes several inelastic
collisions—which compresses the star and leads to small bumps
on the scalar field norm that can be observed at
t ≈ f60; 160; 240g—before relaxing to a binary at rest with the
surfaces barely touching.
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the dynamics of BHs are simple. By contrast, ECOs have
an outer and inner PS: they represent a cavity for pertur-
bations, able to trap them and leak them away on very large
timescales. An outside observer will see characteristic
imprints of the absence of horizons under the form of
distorted echoes of the original pulse, which can live orders
of magnitude longer than the timescales usually associated
to BHs. The scattering of wave packets or of point particles
confirms this picture and shows that the modulation of the
ringdown signal is associated with the reflection of the
main burst of radiation off the potential barrier at the PS,
producing a characteristic train of “echoes” at interval Δt.
For a given model, the amplitude of the echoes depends
only mildly on the compactness in the l → 0 limit.
Reflections of the potential barrier give also rise to a
distortion of each echo mode, since high-frequency com-
ponents are filtered out. This is an unfortunate feature for
GW searches, because it implies that the signal is quickly
washed out after a few echoes. In this context, it will be
interesting to find an analytical template for the late-time
ringdown waveform, in order to search for these echoes in
actual GW data through matched filters.
It is also interesting to study the echo structure in the

presence of rapidly rotating objects. This will presumably
give rise to rich structure in the echoes, since the lifetime of
the main burst generated at the PS can be much longer for
spinning BHs.

B. Hairy black holes

The discussion above also sheds some light on the issue of
looking for hairy BHs with GWs [11]. Some—if not all—of
these solutions are associated with an extra scale in the
problem. For example, a minimally coupled massive scalar
field theory gives rise to nontrivial spinning hairy BHs,
which describe a scalar “cloud” outside the horizon [40], the
spatial extent of which is linked to the mass scale of the field.
What our results teach us is that the GW response of such
geometries may be identical—at early times—to those of
Kerr, if their near-horizon geometry is sufficiently close to it:
the early time response depends mostly on the properties of
the PS. Only at late times will the effect of a different
geometry or environment become noticeable (see also the
overview [13]). The lesson is therefore that more sensitive
detectors are needed to probe the late-time behavior of the
dynamical response of hairy BHs, the bonus being that GR
will be also tested during the process.

C. Boson star strawmen

Having investigated the ringdown signatures of micro-
scopic deviations at the horizon scale, the complementary
problem of ECOs as BH mimickers is also interesting. BHs
enjoy two remarkable features. Not only does their com-
pactness exceed that of neutron stars, quark stars and BSs,
but they also have an arbitrary mass. The former feature
implies that two BHs typically merge when they are just a

few Schwarzschild radii apart, whereas the latter feature
implies that the merger product is a (stable) BHwhose mass
is roughly the total mass of the binary (modulo GW
energy loss).
In light of our results, this simple consideration shows

that the limitation of ECOs are more theoretical than
phenomenological. Contrived models like wormholes
and gravastars can be as massive and compact as BHs
and can therefore mimic the inspiral phase up to the merger.
However, their dynamics in a comparable-mass, two-body
collision and their formation in dynamical processes are
difficult to study. The formation and dynamics of BSs, on
the other hand, are relatively simple and well established,
but these models are limited by their relatively low
maximum compactness and maximum mass. Static BSs
seem to be considerably less compact than a Schwarzschild
BH, and only very fine-tuned models (marginally) possess
a PS [15]. This seems to be associated with the finite
compressibility of a scalar field, although it would be
interesting to find a general bound “à la Buchdahl” [41] for
generic BSs. Thus, while BSs are viable ECOs, they are of
less interest to mimic quantum corrections at the horizon
scale and to test the findings of Ref. [12] in the comparable-
mass regime.
Nonetheless, we find that—in some configurations—the

collision of solitonic BSs can mimic that of two BHs. In
particular, two BSs with opposite phase and relatively large
compactness produce an initial waveform which is similar
to that of two BHs with the same mass, but they merge to
form a BH. On the other hand, if the final object is a BS, the
initial compactness needs to be sufficiently small and this
produces qualitative differences in the premerger wave-
forms. Furthermore, for generic configurations, the GW
signal is markedly different from that of a pair of BHs and
even the outcome of the merger does not need to be either a
BH or a BS.
A natural extension of our work is to study the

quasicircular coalescence of two solitonic BSs and to
check whether the picture that emerges from the head-on
collisions remains valid, especially for what concerns the
role of the initial phases of the BSs and the existence of
configurations that can mimic the entire BH-BH coales-
cence waveform. In this context, an important discriminator
is provided by the tidal deformability that enters the inspiral
waveform at fifth post-Newtonian order (cf., e.g, Ref. [42]
and Ref. [43] for a review). Work on the tidal deformability
of BSs is underway (see also the recent Ref. [44]). For the
case of gravastars, the tidal Love numbers vanish in the BH
limit [45,46] which suggests that some—but not all—
models of ECOs can be constrained by a GWmeasurement
of the tidal deformability.
Finally, although the effects discussed heremight be rather

exotic, we advocate a proactive view: not only has GW
astronomy thepotential to constrain thesemodels, but there is
the exciting prospect for novel, unexpected detections.
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APPENDIX A: SOME MODELS OF ECOS

In this appendix we provide some details on the models
of ECOs used in the main text. All models are spherically
symmetric and described by the line element (2). Some
models are discontinuous across the surface and require a
thin shell of matter at r ¼ r0. In this case, Israel’s junction
conditions [47] relate the discontinuities of the extrinsic
curvature on the surface with the stress-energy tensor of the
thin layer. From these conditions, the surface energy Σ and
surface pressure p of the shell read [26]

⟦
ffiffiffiffi
B

p
⟧ ¼ −4πRΣ; ⟦F0 ffiffiffiffi

B
p

=F⟧ ¼ 8πðΣþ 2pÞ; ðA1Þ

where the symbol ⟦AðRÞ⟧≡ limϵ→0½AðRþ ϵÞ − AðR − ϵÞ�
denotes the discontinuity of a generic function AðrÞ across
the shell.

1. A toy model: Empty thin shell

The simplest model that displays ringdown echoes is an
empty thin shell of matter located at r ¼ r0. The line
element is Eq. (2) with

F ¼ B ¼
�
1 − 2M=r r > r0
1 r < r0

: ðA2Þ

Equation (A1) implies Σ > 0 for any r0 > 2M, whereas the
dominant energy condition on the shell, jpj ≤ σ, implies

r0 ≥ 25M=12 ≈ 2.08M. Note that this solution is unstable
against radial perturbations when r0 ≲ 2.37M [48].
In order to avoid a discontinuity of the metric at the shell,

here we consider a slightly different model in which the
metric is smooth everywhere [13]. We take the ansatz (2)
with FðrÞ ¼ BðrÞ ¼ 1 − 2mðrÞ=r and

FðrÞ ¼ BðrÞ ¼ 1 −
M
r
ð1þ erf½ðr − r0Þ=L�Þ; ðA3Þ

where erf is the error function. This metric describes matter
fields localized at r0, which we take to be r0 ¼ 2M with a
spatial extent L. The metric above corresponds to a
particular case of model II of matter-bumpy BHs studied
in Ref. [13].

2. Thin-shell, traversable wormholes

We consider the same model of a traversable wormhole
[49,50] used in Ref. [12], which is obtained by identifying
two Schwarzschild metrics with the same mass M at the
throat r ¼ r0 > 2M. In Schwarzschild coordinates, the
two metrics are identical and described by Eq. (2) with
F ¼ B ¼ 1 − 2M=r. Because Schwarzschild’s coordinates
do not extend to r < 2M, we use the tortoise coordinate
dr=dr� ¼ �F, where the upper and lower signs refer to the
two different universes connected at the throat at r0 ¼ 0.
The surgery at the throat requires a thin shell of matter with
surface density and surface pressure [50]

Σ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r0

p
2πr0

; p ¼ 1

4πr0

ð1 −M=r0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2M=r0

p ; ðA4Þ

respectively. The weak energy condition is violated
(Σ < 0), whereas the strong and null energy conditions
are satisfied when the throat is within the PS, r0 < 3M.

3. Thin-shell gravastars

We consider the thin-shell gravastar model [26] studied,
e.g., in Ref. [51], which is described by the line element (2)
with

F ¼ B ¼
�
1 − 2M=r r > r0
1 − Λr2=3 r < r0

; ðA5Þ

when Λ ¼ 6M=r30, both F and B are continuous across the
shell (more generic, thin-shell gravastar models have been
recently studied in Ref. [46]). Note that the empty shell
model discussed above is a particular case of this gravastar
model when Λ ¼ 0. Although F and B are continuous, their
derivatives are not and this requires a thin shell with
vanishing energy density and negative surface pressure [45].

4. Boundary conditions at the shell

Some of the models presented above require thin shells
of matter across which the metric functions are
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discontinuous. Gravitational perturbations of discontinuous
geometries can be studied by using the thin-shell formalism
developed in Ref. [51]. In the main text we considered the
scattering of scalar wave packets, for which the junction
conditions are easier to obtain.
In the frequency domain (FD), the Klein-Gordon

equation on the background (2) can be written as

�
d2

dr2�
þ ω2 − VlðrÞ

�
XlmωðrÞ ¼ 0; ðA6Þ

with dr=dr� ¼
ffiffiffiffiffiffiffi
FB

p
and

VlðrÞ ¼ F

�
lðlþ 1Þ

r2
þ B0

2r
þ BF0

2rF

�
: ðA7Þ

Here, primes stand for derivative with respect to r.
Therefore, the potential is generically discontinuous if F,
B, or their derivatives have a jump across the shell. Given
that Eq. (A6) is homogeneous, we can assume that Xlmω is
continuous without loss of generality. In this case, even if
Vl has some finite jump, the integral of VlXlmω across the
shell is continuous. Therefore, by integrating all terms in
Eq. (A6) across the shell we obtain the junction condition

⟦dXlmωðrÞ=dr�⟧ ¼ 0; ðA8Þ

i.e., the first derivative (with respect to the tortoise
coordinate) of the scalar wave function is continuous.
However, note that in Schwarzschild coordinates the first
derivative might be discontinuous due to the definition of
rðr�Þ. For example, for the wormhole considered above
dr=dr� ¼ �F and therefore the first derivative (with
respect to the Schwarzschild coordinate) changes sign
across the shell. In the main text, we imposed the junction
condition (A8) when solving Eq. (3).
A similar procedure was done for gravitational pertur-

bations, where now assumptions on the stiffness of the
matter at the shell have to be dealt with. In practice, we
implemented a condition akin to (A8) for the Zerilli-
Moncrief wave function [12].

APPENDIX B: REGGE-WHEELER-ZERILLI
FORMALISM

Our numerical perturbation theory results shown in
Fig. 3 are found by solving the first-order field equations
in Regge-Wheeler gauge using a FD code. In what follows
one would typically use Schwarzschild r to express spatial
dependence. However, given that in this work we consider
the wormhole model in addition to a Schwarzschild back-
ground, we make use the tortoise coordinate, as explained
in Sec. A 2. In both the wormhole and BH cases r� → ∞ as
r → ∞ in the primary universe. On the other hand, in the
BH case r� → −∞ as r → 2M, while for the wormhole
model r� → −∞ corresponds r → ∞ in the other universe.

In both cases, for a given radiative lm mode the field
equations reduce to a single 1þ 1 wave equation,

�
−

∂2

∂t2 þ
∂2

∂r2� − Vlðr�Þ
�
Ψlmðt; r�Þ ¼ Slmðt; r�Þ: ðB1Þ

Here Vlðr�Þ is either the Zerilli potential (lþm even) or the
Regge-Wheeler potential (lþm odd). The particle is
assumed to be confined to the equator θ ¼ π=2 and then
the source contains terms proportional to the Dirac delta
function and its first derivative

Slmðt; r�Þ ¼ GlmðtÞδðr� − r�pÞ þ FlmðtÞδ0ðr� − r�pÞ; ðB2Þ

where r�p ¼ r�pðtÞ is the particle’s radial location mea-
sured in r�. The time dependent functions GlmðtÞ and
FlmðtÞ result from the tensor spherical harmonic decom-
position of the stress-energy tensor of the point mass and
subsequently evaluating r → rpðtÞ and φ → φpðtÞ. Their
specifics will be discussed in further detail below.
We move to the FD with a Fourier transform

Xlmωðr�Þ ¼
Z

∞

−∞
Ψlmðt; r�Þeiωtdt;

Zlmωðr�Þ ¼
Z

∞

−∞
Slmðt; r�Þeiωtdt; ðB3Þ

and the inverse relations

Ψlmðt; r�Þ ¼
1

2π

Z
∞

−∞
Xlmωðr�Þe−iωtdω;

Slmðt; r�Þ ¼
1

2π

Z
∞

−∞
Zlmωðr�Þe−iωtdω: ðB4Þ

Given these, the master equation (B1) takes on the
following FD form:

�
d2

dr2�
þ ω2 − Vlðr�Þ

�
Xlmωðr�Þ ¼ Zlmωðr�Þ: ðB5Þ

We assume retarded boundary conditions and asymptoti-
cally unit-amplitude homogeneous solutions,

X̂�
lmωðr� → �∞Þ ¼ e�iωr� : ðB6Þ

The solution to Eq. (B5) follows from the method of
variation of parameters,

Xlmωðr�Þ ¼ cþlmωðr�ÞX̂þ
lmωðr�Þ þ c−lmωðr�ÞX̂−

lmωðr�Þ; ðB7Þ

where
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cþlmωðr�Þ ¼
1

Wlmω

Z
r�

−∞
dr0�X̂−

lmωðr0�ÞZlmωðr0�Þ;

c−lmωðr�Þ ¼
1

Wlmω

Z
∞

r�
dr0�X̂þ

lmωðr0�ÞZlmωðr0�Þ; ðB8Þ

and Wlmω is the (constant-in-r�) Wronskian. Extending the
integrals in Eq. (B8) over all space provides the normali-
zation coefficients

C�
lmω ¼ 1

Wlmω

Z
∞

−∞
dr�X̂

∓
lmωðr�ÞZlmωðr�Þ: ðB9Þ

Finally, inserting the specific form of the source from
Eqs. (B3) and (B2) this becomes an integral over time [31].
While a full solution to Eq. (B5) requires the functions
c�lmωðr�Þ, the constants C�

lmω are all that are required to
compute the total radiated energy and angular momentum,
as well as the waveform at infinity.
From a practical standpoint, repeated evaluations of the

integral (B9) for a range of l,m, and ωmake up the brunt of
our calculation. The integral converges if the source
coefficients GlmðtÞ and FlmðtÞ die off as t → �∞, or
equivalently, as r� → �∞. These source coefficients are
unique to the specific master function used, and while all
master function sources decay rapidly at the horizon (for
the BH case), at infinity they have differing behaviors. For
bound motion it is best to use the Zerilli-Moncrief [52]
(ZM) function (for lþm even) and the Cunningham-Price-
Moncrief [53] (CPM) function (for lþm odd) because
they allow for simple time domain reconstruction of the
metric perturbation amplitudes. However, for unbound
motion these variables are less than ideal. The ZM source
tends to a constant at infinity while the CPM source falls off
slowly as r−1p . Therefore, in the even-parity sector it is
better to use Zerilli’s original variable [54], which has a
source that decays as r−1p . Meanwhile, in the odd-parity
sector Regge and Wheeler’s [55] original variable is
preferable, since its source decays as r−3p . These original
variables are essentially the time derivatives of the ZM and
CPM variables, which accounts for the more-rapid source
falloff. It is possible to take further time derivatives and
define new master functions with source terms that decay
even faster. In particular, the time derivative of the Zerilli
function has a source which falls off as r−3p at large distance,
making it far more efficient than the Zerilli variable. In an
upcoming work [56] the relation between all these master
functions will be explored and the specific details of their
sources will be given.
When using the ZM and CPM variables, the total energy

radiated for a given lm mode to infinity is

Eþ
lm ¼ 1

128π2
ðlþ 2Þ!
ðl − 2Þ!

Z
ω2jC�

lmωj2dω: ðB10Þ

The gauge invariant waveform can also be computed from
our code As r� → ∞ the FD particular solutions go to

Xþ
lmωðr� → ∞Þ ¼ Cþ

lmωe
iωr� : ðB11Þ

Thus, in order to evaluate these at retarded time u ¼ t − r�
and r� → ∞ we compute

Ψlmðu; r� → ∞Þ ¼ 1

2π

Z
∞

−∞
Cþ
lmωe

−iωudω: ðB12Þ

As shown in Ref. [57], these can be summed over l and m
to form the transverse-traceless metric perturbation. In
practice, the integrals (B10) and (B12) must be discretized.
In order to obtain our results we sampled Δω as small as
2.5 × 10−5=M in a frequency range as wide as −1=M ≤
ω ≤ 1=M, skipping only the zero frequency mode which
contributes no radiation and provides only a constant offset
to the waveform.

APPENDIX C: SPHERICALLY SYMMETRIC BSS

To describe spherically symmetric BSs we consider the
line element

ds20 ¼ −evðrÞdt2 þ euðrÞdr2 þ r2dΩ2 ðC1Þ

and the harmonic ansatz for scalar field reads

Φ0ðt; rÞ≡ ϕ0ðrÞe−iωt; ðC2Þ

where ϕ0ðrÞ is a real function. Although the scalar field is
time dependent, the Einstein-Klein-Gordon system admits
static and spherically symmetric metrics [25,58–63]. With
the ansatz above, the field equations read

1

r2
ðre−uÞ0 − 1

r2
¼ −8πρ; ðC3Þ

e−u
�
v0

r
þ 1

r2

�
−

1

r2
¼ 8πprad; ðC4Þ

ϕ0
00 þ

�
2

r
þ v0 − u0

2

�
ϕ0

0 ¼ euðU0 − ω2e−vÞϕ0; ðC5Þ

where a prime denotes the derivative with respect to r and
U0 ≡ dVðxÞ=dxjx¼ϕ0

. The stress-energy tensor of the scalar
field corresponds to that of an anisotropic fluid with density
ρ, radial pressure prad, and tangential pressure ptan given by

ρ≡ −TΦ
t
t ¼ ω2e−vϕ2

0 þ e−uðϕ0
0Þ2 þ V0; ðC6Þ

prad ≡ TΦ
r
r ¼ ω2e−vϕ2

0 þ e−uðϕ0
0Þ2 − V0; ðC7Þ

ptan ≡ TΦ
θ
θ ¼ ω2e−vϕ2

0 − e−uðϕ0
0Þ2 − V0; ðC8Þ
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where V0 ¼ Vðϕ0Þ. Unlike the case of perfect fluid stars,
the complex scalar field behaves like an anisotropic
fluid, prad ≠ ptan.
It is convenient to rescale the equations in units of Λμ,

with Λ ¼ ð8πÞ1=2σ0. We use [15,23,39]

r →
~r
Λμ

; mðrÞ → ~mð~rÞ
Λμ

;

ω → ~ωΛμ; ϕ0ðrÞ →
σ0 ~ϕ0ð~rÞffiffiffi

2
p ;

where m is the mass function, defined through
e−u ¼ 1 − 2m=r. The BS configuration is found by integrat-
ing the above equations from the origin, with the boundary
conditions vð0Þ ¼ v0, ~mð0Þ ¼ 0, and ~ϕ0ð0Þ ¼ σc. We can
perform a time rescaling, setting v0 ¼ 0. By imposing that
the scalar field goes to zero at infinity and the spacetime tends
to the Schwarzschild one, the problem becomes a one-
parameter boundary value problem for the frequency ~ω. We
follow Ref. [15], using a shooting method to solve the
differential equations. Note that, differently from other BS
potentials, for solitonic BSs there may be two solutions with
the same central field σc, as can be evident from the inset
of Fig. 5.

APPENDIX D: BSS NUMERICAL SETUP

We solve the Einstein-Klein-Gordon equations to
describe self-gravitating scalar fields modeling binary BS
systems. We use the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation [64,65] to implement the
Einstein equations, which we have employed
and tested in other studies involving BHs and neutron
stars (see for instance [66,67]). We then write down the

Klein-Gordon equations in terms of the evolution variables
of this formulation.
We consider the head-on dynamics of binary, equal-

mass, solitonic BSs initially at rest. We adopt initial data
constructed by the superposition of spherically symmetric
stars (i.e., as described in the Appendix C) separated by a
distance of ≈2.7R, implying that the Hamiltonian con-
straint is only approximately satisfied. To extract physical
information, we monitor the Newman-Penrose Ψ4 radiative
scalar, which is computed by contracting the Weyl tensor
respectively with a suitably defined null tetrad. This scalar
accounts for the energy carried off by outgoing gravita-
tional waves at infinity.
We adopt finite difference techniques on a regular

Cartesian grid to solve the overall system numerically in
full 3D without assuming any symmetry. To ensure
sufficient resolution in an efficient manner we employ
adaptive mesh refinement (AMR) via the HAD computa-
tional infrastructure [68] that provides distributed, Berger-
Oliger style AMR [69] with full subcycling in time. A
fourth-order accurate spatial discretization satisfying a
summation by parts rule, together with a third-order
accurate in time Runge-Kutta integration scheme, are used
to help ensure stability of the numerical implementation
[70]. We adopt a Courant parameter of λ ¼ 0.25 so that
Δtl ¼ 0.25Δxl on each refinement level l. On each level,
one has full subcycling in time and therefore ensures that
the Courant-Friedrichs-Levy condition dictated by the
principal part of the equations is satisfied. This code has
been used extensively for a number of other projects and it
has already been rigorously tested. Nevertheless, we have
also checked for convergence and Noether charge con-
servation on the simulations presented in this work.
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