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Abstract Motivated by the recent gravitational wave detec-
tion by the LIGO–VIRGO observatories, we study the Love
number and dimensionless tidal polarizability of highly mag-
netized stars. We also investigate the fundamental quasi-
normal mode of neutron stars subject to high magnetic fields.
To perform our calculations we use the chaotic field approx-
imation and consider both nucleonic and hyperonic stars. As
far as the fundamental mode is concerned, we conclude that
the role played by the constitution of the stars is far more
relevant than the intensity of the magnetic field, and if mas-
sive stars are considered, the ones constituted by nucleons
only present frequencies somewhat lower than the ones with
hyperonic cores. This feature that can be used to point out the
real internal structure of neutron stars. Moreover, our studies
clearly indicate that strong magnetic fields play a crucial role
in the deformability of low mass neutron stars, with possible
consequences on the interpretation of the detected gravita-
tional waves signatures.

1 Introduction

On August 17, 2017 the LIGO–VIRGO collaboration obser-
ved the gravitational wave event GW170817, which con-
sisted in the detection of a binary neutron star merger and,
as consequence established a new channel to study the high
density equation of state (EOS) that describes neutron stars.
In these kinds of events, before the merging, the neutron
star components begin to react to their mutual tidal fields,
and this effect can be detected in the phase modification of
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the gravitational wave impinging on the detector. This tidal
response depends strongly on the neutron star composition
and therefore important information can be obtained about
the EOS [1,2]. In addition another source of information can
be inferred from neutron star oscillations. In principle, before
the merging, tidal interactions can excite the fluid modes by
resonance [3,4], and also during and after the neutron star
fusion, the fundamental mode can be greatly excited, with a
strong influence on the respective gravitational wave emis-
sion [5–8]. Besides gravitational waves, the associated IR,
optical, UV, X-ray and γ -ray electromagnetic radiations were
also detected [9], giving rise to the multimessenger astron-
omy era. Five years before the first detection of a neutron
star merger, the possibility that the resonant excitation of
neutron star modes by tides could also be seen as a source of
short gamma-ray bursts had already been proposed [10] as a
complementary way to probe the neutron star structure.

At present, a trustworthy determination of the EOS of
strongly interacting matter at densities above a few times the
nuclear saturation density remains a challenge. The EOS can
be reliably obtained up to the nuclear saturation density, but
at densities typical of neutron star interiors, which can be up
to 6 times higher, its determination depends crucially on the
knowledge of strong interactions in a regime that cannot be
reached in earthly experiments. For this reason, the validity
of both non-relativistic (Skyrme-type) and relativistic (RMF)
models has to be checked according to verifiable constraints.
In the present work we restrict our comments and calculations
to relativistic models.

Not too long ago, 263 RMF models were confronted with
nuclear bulk properties inferred from experiments. Three dif-
ferent sets of constraints were built in accordance with largely
accepted properties related to compressibility, pressure, sym-
metry energy and its derivatives. Although all those models
were originally proposed to describe specific nuclear physics
quantities, when analyzed with respect to these general sets

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08705-1&domain=pdf
http://orcid.org/0000-0002-7017-1791
mailto:cesarovfsky@gmail.com
mailto:llopes@varginha.cefetmg.br
mailto:lrb.castro@ufma.br
mailto:bcastro.luisr@gmail.com
mailto:debora.p.m@ufsc.br


1142 Page 2 of 15 Eur. Phys. J. C (2020) 80 :1142

of constraints, only 35 of them satisfied all of them [1]. These
35 models were then investigated with respect to stellar mat-
ter properties in [11] and only 12 parametrizations resulted
in neutron stars with a maximum mass in the range of 1.93–
2.05 M�, as the ones measured in the present decade [12,13].
Recently, an even more massive pulsar was detected, MSP
J0740+6620, which has a mass of 2.14+0.10

−0.09 at 68% credibil-

ity interval and 2.14+0.20
−0.18 at 95% credibility interval [14]. If

it turns out to be above 2.1 M�, and another mechanism may
be necessary to account for this pulsar and for similar ones,
not detected yet.

As far as the constraints imposed by GW170817 are con-
cerned, 34 out of the 35 models were also confronted with
them [15] (we come back to these constraints later in the
text) and 24 were shown to satisfy these constraints. Never-
theless, only five RMF parametrizations can simultaneously
describe massive stars and GW170817 constraints. If hyper-
ons are included in the calculations, the situation becomes
even more complicated because the EOS must be soft at sub-
saturation densities and hard at higher densities to predict
massive stars, but hyperons soften the EOS. There are differ-
ent ways to circumvent this problem and one of them is by
introducing the magnetic field in the Lagrangian density that
describes the model, a field which is capable of stiffening the
EOS.

However, the main reason to consider magnetic field
effects on the EOS is the existence of magnetars, which are a
special class of neutron stars bearing surface magnetic fields
that are three orders of magnitude stronger than the ones
present in their non-magnetized counterparts [16] (1012 G).
So far, only 30 of them have been clearly identified [17], but
the launching of NICER [18] in 2017 and ATHENA [19],
expected to take place in 2030, will certainly provide more
information on these compact objects. Moreover, most of
the known magnetars detected so far as either transient X-
ray sources, known as soft-gamma repeaters or persistent
anomalous X-ray pulsars, are isolated objects. Although pos-
sible manifestations of accreating magnetars have been found
[20], all the analyses done in the present work in relation with
GW170817 constraints, coming from a binary system, have
to be taken with care.

At this point, it is important to mention that there is some
controversy on how strong magnetic fields can be incorpo-
rated to the Lagrangian density and the stress tensor. While
some authors advocate that the EOS should be isotropic and
no magnetization could appear in the EOS [21,22], others
claim that the anisotropy is indeed present and magnetiza-
tion effects should be considered [23–25]. For a discussion on
this subject, the reader can refer to [26], where the different
results obtained with the two formalisms can be seen. There
is no doubt that the ideal situation is to use the LORENE code
[27], which performs a numerical computation of the neutron

star by taking into account the Einstein–Maxwell equations
and equilibrium solutions self-consistently with a density-
dependent magnetic field. Unfortunately, this calculation is
not always feasible for all purposes and it gives some esti-
mates that may not be correct, as the case of the neutron star
crust thickness discussed in [28]. However, the latter work
shows clearly that although not too strong magnetic fields
have a negligible effect on the EOS itself, it strongly affects
properties related to the crust, as the cases discussed next.

Another feature worth investigating in magnetars is the
possible oscillations they can produce. These oscillations
result in quasi-normal modes and a family of modes exist,
which offers a great opportunity to test the gravitational wave
asteroseismology approach in neutron stars. Future third gen-
eration detectors, like the Einstein Telescope [29], will have
enough sensitivity to observe the quasi-normal modes of
compact objects. From the point of view of detectability,
the most promising modes are the crustal modes, g-modes,
f -modes and r -modes. It is well known that in the dynami-
cal behavior of binary systems periodic disturbances can be
present. If the period of these disturbances is of the same order
as the rotation period of each component, resonant non-radial
oscillations can emerge. That resonance is small for oscilla-
tion modes whose periods are larger when compared with the
dynamical time scale of the neutron star, and it can be shown
that the fluid displacement of the fundamental mode is reso-
nantly forced only very near coalescence. For other modes the
resonant excitation is very small (for further details see e.g.
[30,31]). It is worthwhile to mention that the l quadrupole
modes have damping time proportional to (1/ω)(2l−1) and
therefore it is easily seen that modes with l > 2 cannot sur-
vive the tidal excitation. In this work we focus only on the
f -mode because it is more easily excited and it is expected
to be the first one to be detected.

In the present paper, we use the chaotic field approxima-
tion introduced by Zel’dovich [32] and applied in [26,33–35]
to account for strong magnetic fields in NS. In our calcula-
tions we have considered the magnetic field energy not to be
sufficient to modify the spherical geometry inside and out-
side the star, as done in much other work [36–42]. Hence it is
justified to consider magnetic field effects only on the EOS
and not on the metric. The EOS is calculated for nuclear mat-
ter and hyperonic matter and both situations are investigated
in the context of non-radial oscillations and tidal polarizabil-
ities.

The paper is organized as follows: in Sect. 2 we review
some basic aspects of the EOS. In Sect. 3, the formalism
used to compute tidal deformability and related quantities is
resumed and in Sect. 4 we present the equilibrium configura-
tion and the non-radial oscillation equations for neutron stars.
In the course of these three sections the results are displayed
and discussed. In Sect. 5 we make our final remarks.
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2 Magnetized equation of state

If the standard model is correct, the physics of strong interact-
ing matter is described by quantum chromodynamics (QCD).
However, QCD provides no meaningful results in the region
of the neutron star interior, i.e., high density and low temper-
ature. To overcome this issue, we use an effective model, the
quantum hadrodynamics (QHD). Originally developed in the
early 70s [43], QHD considers the baryons, not the quarks, as
the fundamental degrees of freedom. Also, the strong inter-
action is simulated by the exchange of massive mesons. In
this work we use an extended version of the QHD whose
lagrangian density reads [44]

LQHD =
∑

b

ψ̄b

[
γ μ(i∂μ − eb Aμ − gbvωμ − gbρ

1

2
τ · ρμ)

−(mb − gbsσ)

]
ψb+ 1

2
m2

vωμωμ+ 1

2
m2

ρρμ · ρ μ

+ 1

2
(∂μσ∂μσ − m2

sσ
2) −U (σ ) − 1

4
FμνFμν

− 1

4
ΩμνΩμν − 1

4
Pμν · Pμν ,

(1)

in natural units. The sum in b stands just for the nucleons or
for the whole baryon octet, depending on our choice for the
star constituents, ψb are the Dirac fields of the baryons, σ , ωμ

and ρμ are the mesonic fields, and Aμ is the electromagnetic
four-potential. The g are the Yukawa coupling constants that
simulate the strong interaction, mb and eb are the mass and
the electric charge of the baryon b; ms , mv , and mρ are the
masses of the σ , ω, and ρ mesons, respectively. The anti-
symmetric field tensors are given by their usual expressions
as presented in [45]. U (σ ) is the self-interaction term intro-
duced in Ref. [46] to fix some of the saturation properties of
the nuclear matter. We also define M∗

b as the effective mass
of the baryon b: M∗

b = Mb − gbsσ .
In the presence of a background magnetic field B in the z

direction, the energy eigenvalue Eb, and the number density
nb of charged baryons are quantized:

Eb =
√
M∗2

b − k2
z + 2s|e|B, nb =

∑

ν

|e|B
2π2 kz, (2)

where the discrete parameter s is called the Landau level
(LL). The uncharged baryon energies are not modified by the
magnetic interaction and keep their usual expressions [45].
The mesonic fields are obtained by a mean field approx-
imation [44,45,47] and the EOS by thermodynamic rela-
tions [48]. To construct β stable matter, we also include lep-
tons as a free Fermi gas and impose zero net charge and
chemical equilibrium.

Table 1 Slightly modified GM1 parametrization. Parameters of the
model and nuclear bulk property previsions. N represents both nucleons

Parameters Previsions at n0

(gNω/mv)
2 7.148 fm2 n0 (fm−3) 0.153

(gNσ /ms)
2 11.785 fm2 K (MeV) 300

(gNρ/mρ)2 3.880 fm2 B/A (MeV) −16.3

κ/MN 0.005894 S0 (MeV) 30.5

λ −0.006426 L (MeV) 87.9

To describe the properties of nuclear matter, we use a
slightly modified version of the well-known GM1 parametriza-
tion [49], which is a widely accepted parametrization [50,51]
that is able to reasonably describe both nuclear matter and
stellar structure, consistent with experimental and astrophys-
ical observations [52]. Here, we just reduce the strength of
the ρ coupling, reducing the symmetry energy slope L from
the original 94 to 87.9 MeV [53], a value closer to what
is inferred in recent observations [54,55]. We expect that
the same qualitative behavior of magnetized neutron stars is
obtained with any other parametrization.

In Table 1 we show the parameters of the model and its
previsions for five nuclear matter properties at saturation
density: saturation density point (n0), incompressibility (K ),
binding energy per baryon (B/A), symmetry energy (S0) and
its slope (L).

Now, we discuss the presence (or the absence) of hyper-
ons in the neutron star’s core. The possibility of the hyperon
onset in neutron stars is an old [56] but yet very active sub-
ject of study [57]. This is the so-called hyperon puzzle. The
main problem is that we have very little knowledge of how
the hyperons interact with nucleons and with each other, or
in QHD terms: what are the hyperon-meson coupling con-
stants? Since we have six hyperons and three mesons, we
have, in principle 18 free parameters besides those presented
in Table 1. To overcome this profusion of parameters, we rely
on symmetry group techniques. Following Ref. [52], we use
the hybrid symmetry group SU(6) to fix all hyperon–vector
meson coupling constants and a nearly SU(6) symmetry
to fix the hyperon–scalar meson coupling constants. This
reduces the 18 free parameters to just one, which in turn,
is fixed using the Λ hyperon potential depth: UΛ = −28
MeV. The values we obtain are

gΛω

gNω

= gΣω

gNω

= 0.667,
gΞω

gNω

= 0.333,

gΣρ

gNρ

= 2.0
gΞρ

gNρ

= 1.0,
gΛρ

gNρ

= 0.0,

gΛσ

gNσ

= 0.610,
gΣσ

gNσ

= 0.396,
gΞσ

gNσ

= 0.113. (3)
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Before finishing this section, we discuss the influence
of the magnetic field itself on the EOS. As pointed out
earlier, the ideal situation would be to use the LORENE
code [27], but its use is not possible in computing all desir-
able quantities investigated in the present work. Hence, here
we use an alternative, the so-called chaotic magnetic field
approximation. As treated by Zel’dovich [32], we can only
use the concept of pressure, when we are dealing with a
small-scale chaotic field. In this case, the stress tensor reads
diag = (B2/6, B2/6, B2/6). The chaotic magnetic field
approximation, as pointed in Ref. [33] has the advantage
of restoring the thermodynamic consistency of the model as
it deals with the scalar concept of pressure [21]. Also, when
compared with results obtained with the LORENE [27] code,
we see that the chaotic magnetic field does not overestimate
the maximum mass either, in contrast with other prescrip-
tions. We comment next on our results and the validity of
the chaotic magnetic field approximation in the light of a
study published in Ref. [58] concerning the magnetic field
distribution in magnetar interiors. Using a full relativistic
numerical calculation, it was found that the magnetic field
can be expressed as a multipolar expansion that accounts for
the monopole contribution, the dipole term, the quadrupole
and so on. Now, the important fact here is that the chaotic
magnetic field formalism is the monopole approximation for
the magnetic field profile. As shown in Fig. 3 of Ref. [58],
the monopole term is dominant throughout almost the entire
star. Moreover, the monopole term is specially dominant in
the neutron star core, when the magnetic field is stronger. So,
in the limit of a very strong field, when its influence is big-
ger, our results are very close to those obtained with a more
sophisticated formalism. Moreover, one of the main prob-
lems of using the TOV equations in the presence of strong
magnetic fields is the possible appearance of anisotropies in
the momentum-energy tensor. As pointed out in Ref. [58]
in most cases, Tθθ �= Trr . However, exactly due to the
monopole nature of the chaotic magnetic field, we always
obtain Tθθ = Trr , which guarantees that the TOV approxi-
mation can be used in this case.

We also briefly discuss the limitations of the chaotic mag-
netic field approximation: as a truly isotropic, spherically
symmetric approximation, anisotropies in both neutron star
structure [59–61] and in the microscopic EOS [62,63] are
beyond the scope of this manuscript. Notice, however, that, to
obtain significant deformation on the neutron stars [59,61],
the use of unrealistic fields up to 3 × 1017 G at the sur-
face seems to be necessary. These values can be literally a
thousand times stronger than what is observed in magne-
tars. Moreover, a density-dependent magnetic field violates
Maxwell equations as discussed in [64] and a rearrangement
term, never calculated, would be necessary.

In our case, the EOS reads

εT = εM + B2

2
, PT = PM + B2

6
, (4)

where the subscript M stands for the matter contribution to
the EOS.

As mentioned in the Introduction, magnetars bear a mag-
netic field of the order of 1015 G at the surface, but accord-
ing to the virial theorem stronger fields can be expected
in their interior. To account for the growing of the mag-
netic field strength towards the neutron star core, we follow
Ref. [26,33,34] and use an energy density-dependent mag-
netic field:

B = B0

(
εM

εc

)α

+ Bsur f , (5)

where εc is the energy density at the center of the maximum
mass neutron star with zero magnetic field and α is any pos-
itive number, reducing the number of free parameters from
two to only one. Moreover, as explained in detail in Ref. [33],
if we take α > 2, the model becomes practically parameter
free. In Eq. (5), B0 is then a fixed value of the magnetic field
that is taken next as 1.0 × 1018G, 3.0 × 1018G, or zero.
With this recipe, the magnetic field is no longer fixed for
all neutron star configurations. Each EOS produces a dif-
ferent value for εc that enters in Eq. (5). For our particular
case, εc = 4.98fm−4 for neutron stars with hyperons and
εc = 5.65fm−4 for neutron stars without hyperons in the
core, ensuring that the magnetic field does not exceed B0. In
this work we use α = 3.

Before we proceed, we show in Fig. 1 all the EOS that
we use in the present work. As is always the case, hyper-
ons soften the EOS and magnetic fields within the chaotic
approximation change the EOS only slightly, generally mak-
ing them a bit stiffer. We can see two groups of curves, each
one with three EOS, the softer ones describing matter with
hyperons and the stiffer one nucleonic matter.

3 Tidal deformability and GW170817 constraints

3.1 The neutron star equilibrium configuration

At first we consider the star to be composed of a perfect fluid,
whose stress-energy momentum tensor is given by

T 0
μν = (ε0 + p0)uμuν + p0gμν. (6)

We also consider the background space-time of a static spher-
ical star whose metric is expressed as

g0
μν = diag(−eν0 , eλ0 , r2, r2 sin2 θ) . (7)
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Fig. 1 EOS obtained with nucleons only (labeled N) and with the
baryon octet (labeled H) for non-magnetized matter and with B0 equal
to 1.0 × 1018G (labeled B118) and 3.0 × 1018G (labeled B318)

Then in order to obtain the equilibrium or background
configuration, we put the previous expressions inside the
Einstein field equations and we finally obtain the Tolman–
Oppenheimer–Volkoff (TOV) equations

dp0

dr
= −ε0m0

r2

(
1 + p0

ε

) (
1 + 4πp0r3

m0

) (
1 − 2m0

r

)−1

,(8)

dν0

dr
= − 2

ε0

dp0

dr

(
1 + p0

ε0

)−1

, (9)

dm0

dr
= 4πr2ε0, (10)

wherem0, ν0, p0 and ε0 are the quantities for the background
or equilibrium configuration. The pressure p0 and the mass-
energy density ε0 are given by the equations of state given
in Sect. 2. The initial conditions at the center r = rc are
m0(rc) = 0, p0(rc) = pcenter and ν0(rc) = νcenter. We
stop the integration when the pressure becomes zero, and
at this point we define the surface of the star whose radius
is R. We also apply the junction condition to the metric
ν0(R) = ln(1 − 2M/R). We next use the EOS described in
the last section as input to the TOV equations [65] to obtain
the macroscopic properties of the neutron stars. The mass–
radius relations are plotted in Fig. 2 and the main properties
are displayed in Table 2.

Before continuing with the theory of tidal deformations
we will discuss here the results related to the equilibrium
configuration, i.e., the total mass and radius of the star. We
see that the effect of the chaotic magnetic field is to increase
a little the maximum mass of stars with hyperonic core, but
it causes no significant variation on the neutron stars without
hyperons. This small increase on the maximum mass is in
agreement with results obtained with the LORENE code [27].
We can also see that the canonical mass star bears a magnetic
field that is not too high, never surpassing 1 × 1017 G. Such a
value agrees with estimates for realistic stable canonical mass

Fig. 2 The mass–radius relation is plotted for the six EOS shown in
Fig. 2

stars [66], although in the very early stages of a magnetar’s
life it may exceed this value through dynamo activity and
Kelvin–Helmholtz or MRI instabilities [67]. We can also see
from Fig. 2 that the low mass neutron stars with magnetic
field bear slightly smaller radii when compared with the stars
without magnetic field. For a strong magnetic field (B0 =
3 × 1018G) the radii of the canonical stars (the ones with 1.4
M�) are always smaller. We can also see that with the GM1
model, even with hyperons, the maximum masses are very
close to 2.0 solar masses, a necessary constraint considering
the observations of massive NS [12–14].

After the computation of the equilibrium configuration we
proceed to the study of tidal deformations, which depend on
the internal structure of neutron stars, and our purpose is to
use it to constrain the equation of state of the magnetars. For
this objective we present, in the following, some comments
about the theory of tidal deformabilities, the main equations
and relationships that are necessary for our calculations. At
first to gain more insight we will discuss the Newtonian the-
ory of tidal Love numbers and then its version in General
Relativity.

3.2 Tidal Love number in Newtonian theory

The theory of Love numbers emerges naturally from the
theory of tidal deformation. A tide is a deformation effect
induced on a body by another one because of the variation of
the gravitational force that acts on it. In the absence of exter-
nal perturbations a spherical body of mass M and radius R
is in an initial hydrostatic equilibrium with an unperturbed
internal structure. The spherical body is placed in a tidal
field (composed of one or more remote bodies), the body
acquires a deformation due to the gravitational interaction
with the external environment so that the hydrostatic equi-
librium becomes disrupted resulting in modifications of its
internal and multipolar structure. In Newtonian gravity, the
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Table 2 Neutron stars main
properties for each one of the six
EOS. Indicating the maximum
mass, the respective radius,
central density, the radius of the
canonical 1.4M� star and the
central magnetic field for the
maximum mass and the
canonical one

EOS Mmax (M�) R (km) εc (fm−4) Bc (G) R1.4 (km) Bc(1.4) (G)

H 1.95 12.46 4.98 – 13.63 –

N 2.37 11.91 5.65 – 13.63 –

HB118 1.95 12.47 4.96 8.8 × 1017 13.64 3.0 × 1016

HB318 1.98 12.47 4.94 2.7 × 1018 13.58 1.0 × 1017

NB118 2.36 11.96 5.60 8.8 × 1017 13.64 2.3 × 1016

NB318 2.36 12.10 5.45 2.6 × 1018 13.58 7.4 × 1016

Love numbers are defined as the constants of proportionality
between an external tidal field and the multipolar response
of the object that is perturbed.

Let us consider a Newtonian star placed in an external
static tidal gravitational field. If we consider a quadrupolar
tidal field, the external potential is given by

Utidal = −1

2
Ei j x i x j , (11)

where

Ei j = −∂i jUext (12)

is called the gravitational tidal moment and it characterizes
the external tidal environment. The tidal moment Ei j is a
symmetric tensor and, as the external potential satisfies the
Laplace equation, implies that Ei j is a symmetric tracefree
tensor. The star will deform in response to the tidal field and
settle down to a new static configuration. Since we consider
a quadrupolar external tidal potential, the body will acquire a
quadrupolar deformation. The quadrupole moment is given
by

Qi j =
∫

d3x ρ(x)

(
xi x j − δi j

r2

3

)
. (13)

Hereρ is the mass density, xi is the i th coordinate with respect
to the center of mass of the body and r2 = δi j xi x j . Consid-
ering the case of a weak tidal field, the quadrupole distortion
will be a linear response as follows:

Qi j = −λEi j , (14)

where λ is the tidal deformability parameter of the star and
is given by

λ = 2

3
k2R

5, (15)

with k2 being the second tidal Love number associated to
quadrupolar tidal deformation.

3.3 Tidal Love number in General Relativity

The relativistic theory of tidal effects was deduced by
Damour and Nagar, Binnington and Poison [68,69] and since
then intense research has been invested on the computing of
Love numbers of neutron stars [70–75]. To generalize the
Newtonian definition of Love numbers to general relativity,
we continue to consider a self-gravitating body of mass M
and radius R immersed in a tidal environment created by
remote bodies. But now we need to replace the Newtonian
potential formulation interaction by a geometrical descrip-
tion that takes into account the external gravitational effects.
In this way, there are two types of tidal moments: polar E and
axial B moments, which can be defined in terms of the Weyl
tensor. The polar and axial moments can be decomposed in
a basis of even and odd parity spherical harmonics, respec-
tively. Each tidal moment is associated to a Love number, the
polar (axial) moment is associated to electric-type (magnetic-
type) Love number kel

l (kmag
l ). Following the procedure of

Ref. [75], we focus on the relativistic expression of the tidal
Love number for an l = 2 perturbation, i.e., kel

l = k2.
In the framework of General Relativity, in the weak field

limit we obtain

− (1 + g00)

2
= − M

r
− 3

r5
Qi j xi x j + O(r−3)

+ 1

2
Ei j xi x j + O(x3)

(16)

where Ei j and Qi j have the same physical meaning as in
Eqs. (12) and (13). Equation (14) is valid in Newtonian and
General Relativity and therefore it is also possible to define
the Love number for relativistic stars. As the quantities Qi j

andEi j are symmetric tracefree tensors, they can be expanded
in the following form:

Qi j =
m=2∑

m=−2

QmY2m
i j , (17)

Ei j =
m=2∑

m=−2

EmY2m
i j , (18)
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where the Y2m
i j are symmetric tracefree tensors satisfying

Y2m(θ, φ) = Y2m
i j ni n j (19)

and −→n is the unit vector of a point in three-dimensional space.
With the above considerations Eq. (14) gives us

Qm = −λEm . (20)

To obtain k2 for the case of relativistic stars we can proceed
as in Refs. [74,75]. Because of the external tidal field, we
have a perturbation in the metric given by

gμν = g0
μν + hμν (21)

where hμν is the metric perturbation given by

hμν = Y2m diag(−e2νH0, e2λH2, r
2K , r2 sin2 θK ) (22)

where ν, λ, H0, H2 and K are functions of the radius.
At the same time the background star fluid, represented

by ε and p, is affected by the tidal external field and their
perturbations are given by δε and δp.

The perturbed quantities are used as an input for the lin-
earized Einstein equations δGμ

ν = 8πδTμ
ν , and from them

the following equation can be obtained:

H
′′ + H

′
{

2

r
+ e2λ

[
2m

r2 + 4πr(p − ε)

] }

+H

[
− 6e2λ

r2 + 4πe2λ

(
5ε + 9p + (ε + p)

dP/dε

)]
(23)

where the primes mean derivatives with respect to the radial
coordinate. The equation above can be integrated from the
star center to the surface, with a given regularity condition
for H .

On the other hand outside and near the star surface Eq.
(23) can be written as

H
′′ +

(
2

r
− λ

′
)
H

′ −
(

6e2λ

r2 + (2λ
′
)2

)
H = 0 (24)

where λ is given by the Schwarzschild solution. The solution
to the equation above is given by

H(r) =8

5

(
M

r

)3

c1 + O

((
M

r

)4
)

+ 3
( r

M

)2
c2

+ O
( r

M

)
,

(25)

where c1 and c2 can be obtained by equating Eq. (25) with
Eq. (16), and using Eq. (20). Then we can obtain

c1 = 15

8

1

M3 λE, c2 = 1

3
M2E . (26)

Finally by consistence Eq. (25) can be matched, at the star
surface, with the solution from Eq. (23) (the same for H

′
(R)).

The change of variables can be made of y = r H
′
/H and

Eq. (23) is reordered to obtain

r
dy

dr
+ y2 + yF(r) + r2Q(r) = 0, (27)

where the coefficients are given by

F(r) = [1 − 4πr2(ε − p)]/E (28)

and

Q(r) = 4π

[
5ε + 9p + (ε + p)

(
∂p

∂ε

)
− 6

4πr2

]
/E

− 4

[
m + 4πr3 p

r2E

]2

, (29)

where E = 1−2m/r , ε and p are the energy density and pres-
sure profiles inside the star. Equation (27) has to be solved
coupled to the TOV equations and the integration is made
from the center to the star surface. After that process we can
finally obtain yR ; then the Love number k2 is given by

k2 = 8C5

5
(1 − 2C)2[2 + C(yR − 1) − yR]×

×
{

2C[6 − 3yR + 3C(5yR − 8)]
+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]
+ 3(1 − 2C2)[2 − yR + 2C(yR − 1)]ln(1 − 2C)

}−1
,

(30)

where yR = y(r = R) and C = M/R are the star com-
pactness, M and R are the total mass and radius of the star,
respectively. Equation (27) has to be solved coupled to the
TOV equations.

The dimensionless tidal deformability Λ (i.e., the dimen-
sionless version of λ) is connected with the compactness
parameter C through

Λ = 2k2

3C5
. (31)

In Fig. 3a, b the Love number is plotted as a function of
the compactness and stellar mass and in Fig. 3c the dimen-
sionless tidal polarizability is shown as a function of the
stellar mass. If we compare Fig. 3a with the ones produced
with other models in the literature, we observe that the sec-
ond Love number lies in about the same range as many of
the results obtained with other RMF parametrizations [15]
(notice the difference in the × scale), but below most of the
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(a) (b)

(c) (d)

Fig. 3 Top figures: Love number as a function of a the compactness and b of the stellar mass. Bottom figures: Dimensionless tidal polarizability
c as a function of the stellar mass and d (Λ1,Λ2) window obtained from the LIGO and Virgo collaboration

results found with different versions of the quark–meson cou-
pling model [76]. These results are clearly model dependent,
but our point here is to confirm that most of the differences
reside in the constitution of the star (containing hyperons
or not) and the effects of the magnetic field are noticeable,
but minor. These observed features are certainly expected
because in our choice of modeling the magnetic field, its
value at the crust is set to be B = 1015 G and this low mag-
netic field hardly affects the EOS. In Fig. 3c, Λ is plotted
alongside recent results of the canonical Λ1.4 = 190+390

−120
obtained by the LIGO and Virgo collaborations [77] and we
see that our results barely touch the error bar. Again, it is
worth pointing out that a similar result is obtained in [76]
and it is due to the choice of parameters. More experimental
results should be obtained before any strong conclusion can
be drawn.

In Fig. 3d we show the tidal deformabilities (Λ1,Λ2) for
the binary system (m1,m2), with m1 > m2. The plots are
calculated using the equation for the chirp mass,

Mchirp = (m1m2)
3/5(m1 + m2)

−1/5, (32)

and the diagonal solid line corresponds to the case m1 = m2.
The lower and upper solid orange lines correspond to 50%
and 90% confidence limits, respectively, which are obtained
from the GW170817 event. The shadow region represents

recently published theoretical results [15], obtained with non-
magnetized EOS. We see, once again, that most of our results
lie within the confidence limits and the effects of the magnetic
field are strong enough to make our results in agreement with
the experimental region values. It is worth mentioning that
we do not expect such high magnetic fields to be present in
most of the observed stars. Nevertheless, we can see that all
the results presented in Fig. 3a–c are sensitive to the presence
of hyperons and are affected by the intensity of the magnetic
field, at least for less massive stars.

To understand better our results, we display both the
deformability and the Love number for the maximum mass
and the canonical stars in Table 3. As we can see, strong mag-
netic fields can reduce the deformability Λ by almost 19%.
The influence of the magnetic field in the deformability is
far bigger than in the radius, whose reduction is less than
1%. This can indicate that measurements of the Λ can put a
strong constraint in the EOS. The same can be said about the
Love number k2 whose reduction was about 17%. It is worth
noticing that, for the canonical mass, there are no hyperons
in the core. The small difference between Λ for NB318 and
HB318 is due to different values of the εc at Eq. (5). There
is also a difference of 21% in the maximum mass due to the
effect of the strong magnetic field. However, we have to keep
in mind that these maximum masses are not identical.

123



Eur. Phys. J. C (2020) 80 :1142 Page 9 of 15 1142

Table 3 Deformabilities and Love numbers for the maximum and the
canonical star

EOS Λ (Mmax) k2 (Mmax) Λ (1.4M�) k2 (1.4M�)

N 5.99 0.0193 684 0.0851

NB118 6.52 0.0198 621 0.0768

NB318 7.38 0.0205 559 0.0711

H 39.47 0.0387 684 0.0851

HB118 36.67 0.0363 621 0.0766

HB318 30.57 0.0334 564 0.0719

A more recent constraint concerns the radii of the canon-
ical stars, the ones with M = 1.4M�. Although in the past
studies suggested that the radii of the canonical stars could
be as large as 17 km [78], nowadays this value is believed to
be significant lower. More conservative results point towards
a maximum radius of 13.9 km [79,80], while more radi-
cal studies point to 13 km as the maximum radius [81,82].
Recently, the LIGO and Virgo collaboration stated that the
tidal polarizability of canonical stars should lie in the range
70 ≤ Λ1.4 ≤ 580 [77] and this restriction imposed another
constraint to the radii of the corresponding stars. Accord-
ing to [71], the values should lie in the region 11.82 km
≤ R1.4M� ≤ 13.72 km and according to [77], in the range
10.5 km ≤ R1.4M� ≤ 13.4 km. Whichever constraint we
consider correct, we see that our results for the radii are very
close to the border of these ranges. Nevertheless, a very new
result indicates that the canonical neutron star radius cannot
exceed 11.9 km [83]. If it is to be confirmed, this could imply
a revision of the known EOS or the gravity theory itself, as
done in [84], for instance.

3.4 Lower mass limit

Now, let us take a closer look at the other edge of the neutron
star family—the low mass neutron stars. The minimum sta-
ble neutron star is about 0.1 M�, although a more realistic
minimum stems from the neutron star origin in a supernova.
Lepton-rich proto-neutron stars are unbound if their masses
are less than about 1.0 [85,86] M�. We show here how a
strong magnetic field affects neutron stars with masses lying
from 1.0 to 1.25 solar masses. At such a low value no hyperon
is present, so we are only dealing with nucleonic neutron
stars.

We plot in Table 4 the radii, the tidal deformability Λ, the
Love number k2 and the central densities of these stars for
different values of the magnetic field.

When compared with the canonical mass, the influence
of strong magnetic field in neutron star radii is about three
times stronger than for the low mass edge. For a 1.04 M� the
radius drops from 13.52 km (non-magnetized stars) to 13.38
km (B0 = 3.0 × 1018 G). A reduction of 0.14 km occurs,

as against only 0.05 km in the canonical mass star. As we
increase the mass, the influence of the magnetic field becomes
smaller even if the strength of the magnetic field becomes
higher, according to Eq. (5), and the differences in the radii
are 0.06 km and 0.04 km to 1.14M� and 1.25M�, while the
maximum central magnetic field (for B0 = 3.0 × 1018 G)
are 5.1, 6.3 and 7.6 ×1016 G, respectively. This indicates
that the magnetic field plays a more important role at the low
density limit than at the high density limit. A magnetic field
around 5 × 1016 G is enough to produce effects on low mass
stars, while a 50 times stronger field does not affect massive
stars.

While for the radii the bigger difference is about 1.1%, for
the deformability, this difference achieves 24%, as its value
drops from 3361 to 2552 for a strong magnetic field. For the
Love number k2 the difference can reach 21%. Our results
imply that strong magnetic field plays an important role in
the deformability of the neutron stars, specially for the low
masses one, with possible consequences on the interpretation
of the detected gravitational waves signatures.

4 Neutron star oscillations

Oscillations in neutron stars can be excited by the violent
dynamics of the binary system. The theory to study the quasi-
normal modes of compact stars is well established [87–89]. In
this work we use the Lindblom and Detweiler method, which
is widely used to compute the fluid modes. In this section we
briefly present the perturbative formalism generally used to
compute neutron star oscillations.

Before presenting the non-radial oscillations equations,
we would like to discuss why we use spherical symmetry in
the treatment of Einstein’s equations. This is a very impor-
tant issue when we study tidal deformability and the QNM
formalism in neutron stars. As we explained in the discus-
sion, corresponding to the magnetized equation of state, the
monopole nature of the chaotic magnetic field inside the star
validates the use of the spherical symmetry for the back-
ground metric. On the other hand, it is well known that next
to the star surface, the magnetic field intensity has lower val-
ues than in the star inner regions. Therefore its energy is
considerably smaller than the gravitational field energy [90];
for this reason the backreaction of the magnetic field on the
metric can be neglected, as seen in the following equation
(which can be used next to the surface of the star):

B2

4π〈ρ0〉c2 
 2.2×10−7
(

B

1015G

)2 (
1.4M�
M

)(
R

15Km

)3

(33)
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Table 4 Properties of low mass
neutron stars for different values
of magnetic field

EOS M (M�) R (km) Λ k2 εc (fm−4) Bc (G)

N 1.04 13.52 3361 0.0993 1.34 –

NB118 1.04 13.53 2880 0.0873 1.33 1.7 ×1016

NB318 1.04 13.38 2552 0.0796 1.31 5.1 ×1016

N 1.14 13.56 2028 0.0961 1.42 –

NB118 1.14 13.56 1844 0.0850 1.42 2.0 ×1016

NB318 1.14 13.50 1628 0.0784 1.40 6.3 ×1016

N 1.25 13.60 1288 0.0922 1.52 –

NB118 1.25 13.61 1156 0.0823 1.52 2.5 ×1016

NB318 1.25 13.56 1018 0.0762 1.49 7.6 ×1016

where 〈ρ0〉 is the mean density of the star. Therefore if we can
neglect the magnetic field backreaction near the surface of
the star, it is reasonable to neglect the magnetic field reaction
outside it. Then in the deduction of the tidal deformability
and QNM equations, it is plausible to assume a spherical
symmetric background metric inside and outside the star.

The polar non-radial perturbations of a non-rotating star
can be described through a set of equations presented in
[89,91]. We have assumed a perturbation on the metric,
which is a rank 2 tensor, therefore the contributions to oscilla-
tions comes only from tensor modes. Those metric perturba-
tions are coupled to the fluid perturbations through the field
equations, and as a consequence the equations correspond
to even parity (for more details see [75,87]). The perturbed
metric tensor reads

ds2 = −eν(1 + h1)dt
2 − h2dtdr + eλ(1 − h3)dr

2

+r2(1 − h4)(dθ2 + sin2 θdφ2), (34)

where the metric perturbations are given by

h1 = r�H0Y
�
me

iωt (35)

h2 = 2iωr�+1H1Y
�
me

iωt (36)

h3 = r�H0Y
�
me

iωt (37)

h4 = r�KY �
me

iωt (38)

and the polar perturbations in the fluid are given by the fol-
lowing Lagrangian displacements:

ξ r = r�−1e−λ/2WY �
me

iωt , (39)

ξθ = −r�−2V ∂θY
�
me

iωt , (40)

ξφ = −r�(r sin θ)−2V ∂φY
�
me

iωt , (41)

where Y �
m(θ, φ) are the spherical harmonics, and l is

restricted to the l = 2 component, which dominates the emis-
sion of gravitational waves.

Non-radial oscillations are then described by the following
set of first order linear differential equations [91] (even parity
modes):

H ′
1 = −r−1[� + 1 + 2Meλ/r + 4πr2eλ(p − ε)]H1

+eλr−1 [H0 + K − 16π(ε + p)V ] , (42)

K ′ = r−1H0 + �(� + 1)

2r
H1 −

[
(� + 1)

r
− ν′

2

]
K

−8π(ε + p)eλ/2r−1W , (43)
W ′ = −(� + 1)r−1W + reλ/2[e−ν/2γ −1 p−1X

−�(� + 1)r−2V + 1
2 H0 + K ] , (44)

X ′ = −�r−1X + (ε + p)eν/2

2

[ (
r−1 + ν′/2

)
H0 +

(
rω2e−ν

+ �(� + 1)

2r

)
H1 +

(
3
2 ν′ − r−1

)
K

−�(� + 1)r−2ν′V − 2r−1
(

4π(ε + p)eλ/2 + ω2eλ/2−ν

− r2

2
(e−λ/2r−2ν′)′

)
W

]
, (45)

where the prime denotes a derivative with respect to r and γ

is the adiabatic index. The function X is given by

X = ω2(ε + p)e−ν/2V − p′

r
e(ν−λ)/2W + 1

2 (ε + p)eν/2H0,

(46)

and H0 fulfills the algebraic relation

H0 = 1

b1
(b2X − b3H1 + b4K ), (47)

with

b1 = 3M + 1
2 (l + 2)(l − 1)r + 4πr3 p, (48)

b2 = 8πr3e−ν/2, (49)

b3 = 1
2 l(l + 1)(M + 4πr3 p) − ω2r3e−(λ+ν), (50)

b4 = 1
2 (l + 2)(l − 1)r − ω2r3e−ν

−r−1eλ(M + 4πr3 p)(3M − r + 4πr3 p). (51)
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(a) (b)

(c) (d)

Fig. 4 Top figures: Fundamental mode frequency as a function of a the stellar mass and b of the redshift. Bottom figures: Damping time c as a
function of the stellar mass and d of the redshift

Outside the star, the perturbation functions that describe
the motion of the fluid vanish and the system of differential
equations reduces to the Zerilli equation:

d2Z

dr∗2 = [VZ (r∗) − ω2]Z , (52)

where Z(r∗) and dZ(r∗)/dr∗ are related to the metric per-
turbations H0(r) and K (r) by the transformations given
in Refs. [89,91]. The “tortoise” coordinate is r∗ = r +
2M ln(r/(2M) − 1), and the effective potential VZ (r∗) is
given by

VZ (r∗) = (1 − 2M/r)

r3(nr + 3M)2 [2n2(n + 1)r3 + 6n2Mr2

+18nM2r + 18M3], (53)

with n = (l − 1)(l + 2)/2.
The quasi-normal modes have to be determined by a two

stage process, one inside the star and the other outside. Inside
the star we have to obtain the coefficients of the differential
equations, which are defined at each point. Those coefficients
depend directly on the mass, metric, pressure, energy den-
sity, etc., and these quantities can be obtained from the stellar
structure equations. The integration outside the star is per-
formed with the use of the Zerilli equations. The whole pro-

cedure has to respect boundary conditions at the center, at the
surface of the star and at infinity. All the equations are numeri-
cally integrated for the quadrupole oscillations (l = 2). More
details as regards the method can be found in Ref. [92]. This
procedure allows us to obtain ω for each value of the cen-
tral density of the star, or equivalently for each value of the
stellar mass. The real part of ω is the pulsation frequency
( f = Re(ω)/2π ) and the imaginary part is the inverse of
the damping time of the mode due to the gravitational wave
emission (τ = 1/Im(ω)).

As stated in the Introduction, we only focus on the f -
mode, because it is easily excited in astrophysical events
while it is expected to be detected by third generation detec-
tors in the near future. In the next lines we present and discuss
our main results.

In Fig. 4a, b we show the plots for the frequency of the
quadrupole fundamental fluid mode as a function of the stel-
lar mass and redshift, from which we observe that only the
magnetic field with B0 = 3×1018G produces a small effect on
the frequency (not always obvious from the figures) and this
result can be noted for both types of stars, with and without
hyperons. This effect is related to the small increase in mass
obtained with highly magnetized matter and this increase is
larger for hyperonic than for nucleonic matter, as seen in
Table 2.
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Table 5 Frequency and damping time for the maximum mass and the
canonical star

EOS f (Mmax) τ (Mmax) f (1.4M�) τ (1.4M�)

N 2.13489 185.364 1.51173 336.6089

NB118 2.10878 182.074 1.50948 336.7872

NB318 2.08084 178.495 1.51260 334.2141

H 1.97587 167.886 1.51126 339.2875

HB118 1.97332 170.4868 1.50900 338.3175

HB318 1.99720 167.0384 1.51303 331.4330

The same qualitative behavior is observed for the fre-
quency as a function of the redshift. On the other hand, it
is clear that the constitution of the star plays a very impor-
tant role and the frequency generated by massive hyperonic
stars (larger than 1.8 M�) is greatly increased as compared
with their nucleonic counterparts. It is also observed that the
gravitational wave frequencies of the fundamental modes for
our models fall in the range of 1.4 and 2 kHz for stars with
masses between 1.4 and 2.4 M�; these values correspond
with previous results in the literature [92,93] obtained with
less realistic EOS. We can see that in general a high magnetic
field produces little effect on the frequency window.

We also present in Fig. 4c, d the plots of the damping
time as a function of the mass and gravitational redshift. The
damping time for a typical 1.4 M� neutron star is near 350
ms, as previously obtained in [92] for strange stars and a
high magnetic field does not affect this value. Once again,
we observe that only the strongest magnetic field produces
non-negligible effects, better noticed in hyperonic stars. As
can be seen in Fig. 4c, the presence of hyperons produces a
decrease in the damping time for stars with masses beyond
(to the left on the mass–radius diagram) the maximum mass,
but those stars are not expected to be stable.

In Table 5 we plot the fundamental mode frequencies
and the damping time for the canonical and the maximum
mass stars obtained with different magnetic fields. Unlike
the deformability Λ, the frequencies and time damping do
not vary significantly, even for strong magnetic fields.

4.1 Lower mass limit

For the sake of completeness, we also plot the fundamental
mode frequencies and the time damping for the low mass
limit in Table 6. As we can see, even in the low mass limit
there is no significant modification in the frequencies and
time dumping due to the magnetic field.

Table 6 Properties of low mass neutron stars for different values of the
magnetic field

EOS M (M�) f (kHz) τ (ms)

N 1.04 1.3840 568.0611

NB118 1.04 1.3813 560.2122

NB318 1.04 1.3927 559.8997

N 1.14 1.4257 476.1311

NB118 1.14 1.4174 476.9140

NB318 1.14 1.4284 463.3985

N 1.25 1.4644 400.8562

NB118 1.25 1.4602 400.0862

NB318 1.25 1.4657 396.0027

4.2 On the amplitude and detectability of the gravitational
wave signal

It is well known that in the QNM formalism the gravitational
signal has the form

h(t) = he−t/τ sin[2π f t] (54)

where h is the amplitude, f is the fundamental mode fre-
quency, τ is the damping time and h is given by

h ∼2.4 × 10−20
(

Egw

10−6M�c2

)1/2 (
10kpc

d

)

×
(

1kHz

f

) (
1ms

τ

)1/2

.

(55)

Here Egw is the energy released through the fundamental
mode and d is the distance to the source [94,95].

The signal-to-noise ratio at the detector reads [94,95]

(
S

N

)2

= 4Q2
F

1 + 4Q2
F

h2τ

2Sn
, (56)

where Q2
F ≡ π f τ is the quality factor and Sn is the noise

power spectral density.
From Eqs. (55) and (56) we obtain

(
Egw

M�c2

)
=3.47 × 1036

(
S

N

)2 1 + 4Q2
F

4Q2
F

(
d

10kpc

)2

×
(

f

1kHz

)2 (
Sn

1Hz−1

)
.

(57)

We will consider two detectors: the first with S1/2
n ∼ 2 ×

10−23 Hz−1/2 (Advanced LIGO/VIRGO) at ∼kHz [96], and
the second with S1/2

n ∼ 10−24 Hz−1/2 ( Einstein telescope) at
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the same frequencies [97]. We now consider that gravitational
radiation of a magnetar could be observed in our galaxy (d ∼
10 kpc). If the star has a mass of 2.0 M�, f = 1.75 kHz and
τ =200 ms, then we can see that Egw > 2.67×10−10M�c2

for a (S/N)> 5 at the Einstein telescope and Egw > 1.06 ×
10−7M�c2 for a (S/N)> 5 at Advanced LIGO/VIRGO.

5 Summary and final remarks

In the present work we have analyzed the influence of strong
magnetic fields on the equations of state that describe both
nucleonic and hyperonic matter and the resulting effects on
the Love number, tidal polarizabilities, stellar radii and the
fundamental quasi-normal oscillation mode. To compute the
EOS, the chaotic field approximation has been used and
an energy density-dependent magnetic field prescription has
been utilized so that the magnetic field of the crust never
exceeds the observed 1015 G. We have seen that the constitu-
tion of the stars (nucleonic or hyperonic) plays an important
role in the computation of the Love number and the tidal
polarizability. Very large magnetic fields (of the order of
3×1018 G are present only in very massive stars). We see that,
even if magnetic fields are around 50–60 times higher than
those found in lower mass stars, their effects are not so impor-
tant. Nevertheless, magnetic fields around 5 × 1016 G affect
in a significant way low mass neutron stars (M < 1.4M�).
While the radii decrease just a little, the deformability Λ

drops by about 19% for the canonical star and more than
23% in the low mass limit. The same can be said about the
Love number k2. Magnetic fields around 1017 G are in the
limit for stable canonical stars [66]; therefore, neutron stars
within this configuration are expected to be very rare in the
universe.

It is of paramount importance to fully investigate the grav-
itational wave frequencies of the most important modes of
neutron stars because they are expected to be detected in
the near future by third generation detectors, like the Ein-
stein Telescope. Among the whole family of modes, we have
studied the fundamental mode, which has been the focus of
attention for many years, because it has a frequency of nearly
2 kHz and could be detected with an amplitude of 
 10−23

at 10 Kpc. For this objective we have also calculated the
effect of the magnetic field on the fundamental mode. We
have observed that the frequencies practically coincide in
all cases for stars with masses below 1.8M�. However, if
more massive stars are considered, the ones constituted by
nucleons only present frequencies lower than the ones with
hyperonic cores and this feature might be a way of pointing
out the real constituents of neutron stars.

In all cases, only the strongest magnetic field, i.e., B0 =
3×1018 G alters the frequency. The same behavior is found if
we consider the frequency as a function of the redshift. The

damping time is typically above 250 ms for masses lower
than 1.6 M� and for very massive star the damping time is
between 100 and 200 ms. We conclude that by the use of
the fundamental mode, highly magnetized stars are rare and
could be discriminated only in the limiting case when we
use B0 = 3 × 1018 G, but we reinforce the statement that
the different constitutions of the liquid core can be easily
tracked.
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