
Gravitational waves from binary supermassive black holes missing in pulsar 

observations 

Authors:  R. M. Shannon
1,2*

, V. Ravi
3*

, L. T. Lentati
4
, P. D. Lasky

5
, G. Hobbs

1
, M. Kerr

1
,  

R. N. Manchester
1
, W. A. Coles

6
, Y. Levin

5
, M. Bailes

3
, N. D. R. Bhat

2
, S. Burke-Spolaor

7
, S. 

Dai
1,8

, M. J. Keith
9
, S. Osłowski

10,11
, D. J. Reardon

5
, W. van Straten

3
, L. Toomey

1
, J.-B. Wang

12
, 

L. Wen
13

, J. S. B. Wyithe
14

, X.-J. Zhu
13 

Affiliations: 

1
 CSIRO Astronomy and Space Science, Australia Telescope National Facility, P.O. Box 76, 

Epping, NSW 1710, Australia. 

2
 International Centre for Radio Astronomy Research, Curtin University, Bentley, WA 6102, 

Australia. 

3 
Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 

218, Hawthorn, VIC 3122, Australia. 

4 
Astrophysics Group, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK. 

5
 Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, PO 

Box 27, VIC 3800, Australia. 

6
 Department of Electrical and Computer Engineering, University of California at San Diego, La 

Jolla, CA 92093, USA. 

7
 National Radio Astronomical Observatory, Array Operations Center, P.O. Box O, Socorro, NM 

87801-0387, USA. 

8
 Department of Astronomy, School of Physics, Peking University, Beijing, 100871, China. 

9
 Jodrell Bank Centre for Astrophysics, University of Manchester, M13 9PL, UK. 

10
 Department of Physics, Universitat Bielefeld, Universitatsstr 25, D-33615 Bielefeld, Germany. 

11
 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany. 

12
 Xinjiang Astronomical Observatory, CAS, 150 Science 1-Street, Urumqi, Xinjiang 830011, 

China. 

13
 School of Physics, University of Western Australia, Crawley, WA 6009, Australia.

 

14
 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. 

*Correspondence to:  Ryan Shannon (ryan.shannon@csiro.au), Vikram Ravi 

(v.vikram.ravi@gmail.com) 

  



Abstract: Gravitational waves are expected to be radiated by supermassive black hole binaries  

formed during galaxy mergers.  A stochastic superposition of gravitational waves from all such 

binary systems will modulate the arrival times of pulses from radio pulsars.    Using observations 

of millisecond pulsars obtained with the Parkes radio telescope, we constrain the characteristic 

amplitude of this background, Ac,yr,  to be < 1.0×10
-15 

with 95% confidence.  This limit excludes 

predicted ranges for Ac,yr from current models with 91-99.7% probability.  We conclude that 

binary evolution is either stalled or dramatically accelerated by galactic-center environments, and 

that higher-cadence and shorter-wavelength observations would result in an increased sensitivity 

to gravitational waves. 



 Studies of the dynamics of stars and gas in nearby galaxies provide strong evidence for 

the ubiquity of supermassive (> 10
6
 solar mass) black holes (SMBHs) (1).   Observations of 

luminous quasars indicate that SMBHs are hosted by galaxies throughout the history of the 

universe (2) and affect global properties of the host galaxies (3).  The prevailing dark energy – 

cold dark matter cosmological paradigm predicts that large galaxies are assembled through the 

hierarchical merging of smaller galaxies. The remnants of mergers can host gravitationally 

bound binary SMBHs with orbits decaying through the emission of gravitational waves (GWs) 

(4).  

Gravitational waves from binary SMBHs, with periods between ~ 0.1 and 30 yr (5), can 

be detected or constrained by monitoring, for years to decades, a set of rapidly rotating 

millisecond pulsars (MSPs) distributed throughout our galaxy.   Radio emission beams from 

MSPs are observed as pulses that can be time-tagged with as small as 20 ns precision (6). When 

traveling across the pulsar-Earth line of sight, GWs induce variations in the arrival times of the 

pulses (7). 

 The superposition of GWs from the binary SMBH population is a stochastic background 

(GWB), which is typically characterized by the strain-amplitude spectrum hc(f)=Ac,yr[f/(1 yr
-1

)]
-

2/3
, where f is the GW frequency, Ac,yr is the characteristic amplitude of the GWB measured at f = 

1 yr
-1

, predicted to be Ac,yr > 10
-15

 (5, 8-12), and –2/3 is the predicted spectral index (5, 8-12). 

The GWB will add low-frequency perturbations to pulse arrival times. While the detection of the 

GWB would confirm the presence of a cosmological population of binary SMBHs, limits on its 

amplitude constrain models of galaxy and SMBH evolution (8).  

As part of the Parkes Pulsar Timing Array project to detect GWs (6), we have been 

monitoring 24 pulsars with the 64-m Parkes radio telescope.  We have produced a new data set, 

using observations taken at a central wavelength of 10 cm and previously reported methods (6,8), 

that spans 11 yr, which is 3 yr longer than previous data sets analyzed at this wavelength.  In 

addition to having greater sensitivity to the GWB because of the longer duration, the data set was 

improved by identifying and correcting for some instrumental offsets (see supplementary section 

S1, 13).    

We searched for a GWB in observations of the four pulsars (Fig. 1) that have the highest 

timing precision and therefore are most sensitive to the GWB.  Observations of these pulsars at 

other wavelengths contain excess noise inconsistent with the 10 cm observations, and were 

therefore excluded from this analysis (see supplementary section S2.1, 13).  This does not bias 

our analysis because GWs produce achromatic variations in arrival times.   Observations of other 

pulsars are not presented here because they have insufficient timing precision, relative to the best 

pulsars, to influence the search (see supplementary section S2, 13). We also have not corrected 

for chromatic arrival-time variations associated with propagation through a varying column of 

interstellar plasma, because these effects are small in the 10 cm band (14).  Additionally, using 

uncorrected observations can only reduce our sensitivity to the GWB, making our analysis 

conservative. 

We used a Bayesian methodology (15) to marginalize over the pulsar rotational 

ephemerides and search for stochastic contributions to the arrival times.   The stochastic terms 

include excess white noise associated with intrinsic pulse-shape changes and instrumental 

distortions uncorrelated between observations.    They also include excess low-frequency timing 

noise that is uncorrelated between pulsars, which could be intrinsic to the pulsars or caused by 



interstellar propagation effects. Finally, the model includes the GWB, which produces timing 

perturbations that are correlated between the pulsars (7). The methodology also enables us to 

quantitatively compare models by providing evidence, in the form of a probability, which can be 

used to select a preferred model (see supplementary section S2, 13). 

We find no evidence for the GWB in our data set. We therefore place an upper limit on 

the amplitude of the GWB by analyzing its posterior distribution. The pulsar that individually 

provides the best limit on the GWB, PSR J1909‒3744 (Fig. 1), shows no evidence for excess 

low-frequency timing noise. The pulsar that provides the third most constraining limit, PSR 

J0437-4715 (Fig. 1), shows evidence for a low-frequency signal that is inconsistent both with the 

predicted GWB spectral shape (99.0% probability), and in amplitude (99.4% probability) with 

the limit derived from PSR J1909‒3744.   

For the GWB strain-amplitude spectrum hc(f)=Ac,yr[f/(1 yr
-1

)]
-2/3

, we find Ac,yr < 1.0×10
-15

 

with 95% probability  (Fig. 2). As a fraction of the critical density of the universe, per 

logarithmic GW frequency, the limit is ΩGW < 2.3×10
-10

 at a frequency of 0.2 yr
-1

 (see 

supplementary section S2.2, 13). This is a factor of six lower than any previous limit (Fig. 2).  

Other PTA experiments with comparable data spans, but observe at longer wavelengths, do not 

achieve the same sensitivity to GWs (16) because of the higher timing precision in our 

observations, and the presence of low frequency noise in theirs.  Our limit is inconsistent with 

current models for the GWB (9-12) with between 91% and 99.7% probability (see 

supplementary section S3, 13). 

Our limit on the GWB therefore suggests that at least one of the physical assumptions 

underlying these models is incorrect. Models for the binary SMBH population rely on 

measurements of the galaxy merger rate. They also assume that all galaxy mergers form binary 

SMBHs that coalesce well before a subsequent galaxy merger, and that binary orbital decay is 

driven only by losses of energy to GWs when radiating in the pulsar-timing frequency band (Fig. 

3, black curve). 

Fig. 3 displays schematically the evolution of a binary SMBH in which each component 

has a mass of 10
9
 solar masses, evolving under standard assumptions (Fig. 3, blue curve) and in 

other ways that produce a weaker GWB. 

Larger galaxy merger timescales would result in a lower inferred merger rate (Fig. 3, 

green curve), fewer binary SMBHs, and hence a lower GWB amplitude.  While predictions for 

merger timescales vary by a factor of three (17), models that include this uncertainty (9,11) are in 

tension with our limit. Shorter predicted timescales result from the inclusion of more 

sophisticated physical mechanisms and are favored (17). Therefore, galaxy mergers are expected 

to rapidly form gravitationally bound binaries. 

Models for the GWB also assume that all large galaxies host SMBHs.  A low SMBH 

occupation fraction beyond the local Universe (z > 0.3) could result from exceedingly rare high-

redshift SMBH seed formation (18). For this to be the case, seed SMBHs would have to occupy 

~1% of the most massive galaxies at z ~ 6  (19).   The models also assume that, post-

coalescence, SMBHs remain gravitationally bound to their host galaxies.  However, it is unlikely 

that the acceleration of post-coalescence SMBHs beyond galactic escape velocities through 

gravitational-radiation recoil (Fig. 3, purple-dashed curve) results in a significant number of 

galaxies being devoid of SMBHs (20).  



The GWB amplitude would also be reduced if SMBH binaries do not efficiently reach the 

GW-emitting stage (Fig. 3, red curve).    Dynamical friction is expected to bring the SMBHs in a 

merging galaxy pair close enough to form a bound binary (4), with an orbital major axis aform ~ 

60 M9
0.54

 pc, where M9 is the mass of the larger SMBH in units of 10
9
 solar masses (see 

supplementary section S4, 13).    The time to coalescence through GW emission is tgw = 18 M9
-

3
[aform/(1 pc)]

4
 Gyr in the lower-limiting case of an equal-mass binary, which is longer than the 

age of the universe. Hence another mechanism, besides GW emission, is required to drive 

binaries to coalescence.  

Observations and theoretical models, however, indicate that binary SMBHs can coalesce 

within the age of the universe through the coupling of binary SMBHs to their environments (21). 

Proposed coupling mechanisms include the three-body scattering of stars on radial orbits and 

viscous friction against circumbinary gas. The action of environments (Fig. 3, gray curve) would 

cause binaries to spend less time emitting GWs, reducing the GWB amplitude at low 

frequencies. Our non-detection of the GWB may therefore result from the efficient coupling of 

binary SMBHs to their environments (10,22,23).  

Modeling of the stellar environments of the cosmological population of binary SMBHs 

(22) indicates that the GWB characteristic-strain spectrum may be attenuated at frequencies up to 

0.3 yr
-1

 (Fig. 2); similar results are obtained when the possible gas-rich environments of binary 

SMBHs are considered (23). Our GWB constraint, placed at 0.2 yr
-1

, is consistent with some 

models that predict the extreme efficiency of environments in shrinking SMBH binary orbits 

(Model R14, Fig. 2).   However other environmentally driven models that include higher galaxy 

merger rates (10) are inconsistent with our limit (Model Exp, Fig. 2) 

Distinguishing between explanations for our limit requires further observations and better 

models of SMBH evolution. The characterization of a substantial population of binary or 

recoiling SMBHs (24) would better delineate the coalescence rate. The coalescence events 

themselves may produce strong millihertz-frequency GWs that could be detected by space-based 

laser interferometers (5). The detection of the GWB at frequencies ≳ 0.2 yr
-1

 with the currently 

predicted amplitude would provide strong evidence for the high efficiency of binary 

environments in shrinking orbits (25). This hypothesis also predicts an enhanced prospect for 

detecting low-frequency GWs from the most massive individual binary SMBHs, which are less 

affected by their environments (22,23).   The alternate explanation for our limit is that the 

SMBH-SMBH coalescence rate is lower than current estimates suggest; in this case the GWB 

may still have a power-law spectrum. 

This limit implies that a change in observational strategy could increase the sensitivity of 

pulsar timing arrays to gravitational waves. One approach is to obtain more observations of 

pulsars with comparable sensitivity to those of our four best pulsars. If the observed excess noise 

at longer radio wavelengths is astrophysical, observations will need to be conducted at shorter 

wavelengths (≲ 10 cm). In this case, GWB detection may require observations with a sensitive 

radio telescope such as the Square Kilometre Array (SKA, Ref. 26), because MSP emission is 

weaker at these wavelengths. If binary SMBH environments are driving orbital evolution, a high-

cadence campaign is required to detect the GWB at frequencies ≳ 0.2 yr
-1

. Alternatively, the 

GWB could have a power-law spectrum but be weak in amplitude.  Our limit implies that there is 

a 50% probability that Ac,yr < 2.4×10
-16

.    In this case, the first evidence for the GWB will be 

low-frequency perturbations to timing observations of the most stable pulsar, PSR J1909‒3744, 



when longer data spans are achieved. In any case, the predicted time to detection of the GWB 

with pulsar timing arrays (27) has been underestimated. 

It is also possible that there is a more exotic reason for our non-detection.  We have not 

yet tested GWBs expected from alternate theories of gravity.  Our limit is consistent with GWs 

being absorbed on cosmological scales (28).  Until GWs are detected, our limits will continue to 

improve with data span, as more pulsars are added into the sample, and improved analysis 

methods are developed (Fig. 2, blue pentagon). These limits will provide even stronger 

constraints on models of supermassive black hole formation and evolution. 
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Fig. 1. Residual pulse times of arrival, Δt, for the four pulsars used in our analysis. These 

are PSR J1909-3744 (panel A), PSR J0437-4715 (panel B), PSR J1713+0747 (panel C), and PSR 

J1744-1134 (panel D). 

  



   

  

 

Fig. 2. Predictions and limits on the GWB strain spectrum.  The black asterisks (labeled P15) 

shows the 95%
 
confidence limit we obtain, assuming hc(f)=Ac,yr[f/(1 yr

-1
)]

-2/3
.  The other symbols 

show previously published limits from the European Pulsar Timing Array (triangle, labeled E15, 

Ref. 20), the North American Nanohertz Observatory for Gravitational Waves (circle, labeled 

N13, Ref. 29) collaborations, and our previous limit (square, labeled P13, Ref. 8).  Each panel 

shows a different prediction for the GWB as a shaded region that represents the 1-σ uncertainty, 

including four models for SMBH evolution, labeled S13 (9), M14 (10), K15 (12),  and R15 (11), 

which predict a power-law form for hc(f).  Models Exp (See supplementary section S2.2, Ref. 13) 

and R14 (22) include the effects of environmentally driven binary evolution and therefore predict 

more complex strain spectra.   The black curves show the nominal single-frequency sensitivities 

of our observations (see supplementary section S2.2, 13), and is above our limit because of the 

statistical penalties applied when searching individual frequencies.   In Panel D, the blue 

pentagon (labeled A95,SKA) shows the projected upper limit on Ac,yr obtained with a single-pulsar 

timing campaign with a next generation radio telescope (the SKA; see supplementary section 

S2.2, Ref. 13), and excludes all models considered with greater than 98% probability.  

  



 

Fig. 3.   Illustrative evolutionary paths for a pair of 10
9
 solar-mass SMBHs in a galaxy 

merger.  The figure shows the pair separation and the GW emission frequency fGW, assuming the 

binary is in a circular orbit.   The blue curve shows the evolution of the separation of the SMBHs 

using fiducial assumptions, which results in a GWB that is inconsistent with our data.  The cyan 

curve labeled Fiducial,GW  is the portion of the evolution when GW-emission dominates orbital 

decay.  We also show scenarios that could explain our GWB limit.  First, the galaxy merger rate 

could be lower, as represented by the slow merger curve (green curve). Alternatively, after the 

SMBHs form a binary (red circle), the orbital evolution may stall prior before emitting GWs (red 

curve).  The gray curve shows a scenario in which a dense binary SMBH environment drives 

orbital decay through the GW frequency band at which we are sensitive.  In this case, GW 

emission dominates only for fGW > 0.5 yr
-1

  (pink curve, labeled Env,GW). Finally, it is possible 

that the post-coalescence SMBH could undergo gravitational recoil and escape its host galaxy 

(purple dashed curve), negating the possibility of it again forming a binary SMBH.   

  



Supplementary Text 

 

S1. Data set 

 

We analyzed observations obtained with the 64-m Parkes Telescope as part of the Parkes 

Pulsar Timing Array (PPTA) project (6).  Our data set spans approximately 11 years, from MJD 

53041 to 56992, which is approximately 3.5 years longer than a previously analyzed multi-

wavelength data set (8).    All of the observations reported here were made in the 10 cm band of 

the 10-cm/50-cm receiver, at a central frequency of 3100 MHz, with bandwidths of 512 or 1024 

MHz and individual durations of usually 3840 s.  The observations were recorded with a set of 

autocorrelation and digital-filterbank spectrometers.  The data were analyzed using previously 

described procedures (6).   Observations were referred to the solar-system barycentre using the 

DE421 solar-system ephemeris and the 2014 realization of terrestrial time published by BIPM 

(30).    We used observations of four pulsars that had the highest timing precision: PSRs J0437‒

4715, J1713+0474, J1744‒1134, and J1909‒3744.     Inclusion of other PPTA pulsars does not 

change the limit, and their exclusion does not bias the results, because they are not sensitive to a 

GWB of the amplitude at the level bounded by these four pulsars.  While we record data at other 

frequencies (6) we do not include it in this analysis, as justified in section S2.2.   

  

 Discrete phase offsets in pulse arrival times (referred to as jumps) can occur when 

changes in the signal-processing instrumentation (referred to as backends) are made which are 

the result of either hardware (e.g., cable length) or digital signal processing changes (e.g., 

changes to the digital-filterbank firmware).  Previously, these offsets were estimated 

independently from the pulsar timing observations (6) by injecting a pulsed signal into the 

telescope receiver and measuring the delays between backend systems.  For the best pulsars, the 

offsets were further modified by shifting the analytic standards to compensate for apparent 

inaccuracies in the a priori delay measurements.   The combination of these corrections was 

found to have insufficient accuracy in the latest dataset.  With the additional data, the offsets of 

the largest jump could be seen “by-eye” in the dataset.  Three offsets were included to model 

data of old backends (WBCORR, PDFB1, PDFB2) relative to the most recent instrument. Two 

additional jumps were identified at epochs where the most recent backend was used (PDFB4).  

The first occurred at MJD 55319.8 when an update to the backend software changed the location 

within the program where the data were time stamped.   These jumps are not common between 

pulsars because different pulsars were observed with different backend software . 

 

We included these offsets as free parameters in the timing model.  In Bayesian 

methodology, these jumps are fully accounted for through analytic marginalization.  As verified 

through simulations discussed in the next section, this does not bias the limit placed on the GWB 

amplitude. 

 

For PSR J1909‒3744, which dominates the limit, we reprocessed the data from raw files 

as recorded at the telescope, using a second independent pipeline, and found consistent results 

between the two pipelines.  

 

 

 



S2.  Timing analysis and calculating a limit for the GWB amplitude 

 

We used Bayesian methodologies to model the pulse arrival times (15,31-32). The timing 

model includes the deterministic ephemeris of the pulsar and stochastic parameters that describe 

noise processes in the pulsar.  The stochastic parameters include white-noise and red-noise 

components.  The white-noise terms are temporally uncorrelated contributions that model excess 

noise (beyond the formal TOA uncertainties) and may be associated with instrumental errors 

such as polarization calibration (33) or intrinsic pulse profile instability (34-35).  We modeled 

the white noise by modifying the TOA uncertainties through the transformation !F
2
 = F!M

2
 + Q

2
, 

where !M is the uncertainty derived from the profile-fitting used to measure the TOAs (36), and 

F and Q (referred to respectively as EFAC and EQUAD) are the white-noise parameters.   The 

red-noise terms are time-correlated contributions (with excess power at low frequencies) and 

include both a GWB and power-law red noise of unknown spectral index that could be 

associated with, for example, intrinsic rotational instabilities (37).  The red noise was assumed to 

have a power law form of Pr(f) =  Mr(f/1 yr
-1

)
!
, where Mr  is the amplitude of the noise and  ! is 

its spectral index, while the GWB, unless otherwise stated, is assumed to have the form  Pr(f) 

=  (Ac,yr 
2
/12!

2
)(f/1 yr

-1
)

-13/3
. 

 

We marginalized analytically over the deterministic spin ephemeris of the pulsar.  This 

ephemeris includes the pulsar spin frequency and its first derivative, the relativistic orbit of the 

pulsar about its companion (if the pulsar is in a binary system, as is the case for three of the 

pulsars in our sample), and instrumental offsets between the backends.  We used the multinest 

algorithm (38) as implemented in temponest (39), as well as a Markov-Chain Monte Carlo 

method as implemented in the code piccard (40), to sample the likelihood of the stochastic 

parameters.   The maximum-likelihood residuals for all four pulsars are displayed in Fig 1.  A 

95% limit was determined from the posterior distribution of Ac,yr.  To place a limit on the GWB 

we used a flat prior on Ac,yr. 

 

We used Bayesian evidence to compare models of stochastic contributions to the TOAs. 

The inclusion of additional parameters is supported if the evidence increases substantially, which 

is usually defined as an increase in the logarithm of the evidence of greater than 3 (which 

represents a probability of 95%). The multinest approach to parameter estimation (15,38-

39) directly provides this evidence.   In Table S1, we show the evidence for models that contain 

excess white noise, excess red noise, and a GWB for individual pulsars in the sample.   

 

For PSRs J1909‒3744 and J1744‒1134, we find no evidence for red noise or a GWB in 

the data set.   For PSR J1713+0747, we find evidence for red noise but none for a GWB of the 

assumed form.  The red noise has a shallow spectrum (the spectral index is ! ≈ -1) and is 

inconsistent in amplitude with limits on red noise observed (with 99% probability) in PSR 

J1909‒3744, so it is unlikely to be a GWB, or evidence for a GWB of a different form to that 

considered here. We defer the results of searches for GWBs with different spectral forms to a 

future work. 

 

For PSR J0437‒4715, we find evidence for a steeper red spectrum, with a spectral index 

that is marginally consistent with a GWB.  However, when we compare models that explain the 



noise as being associated with a GWB (with a fixed power law spectrum with ! = -13/3), to those 

that search for the spectral index of the power law, we find that, despite the penalty associated 

with searching over a larger parameter space, the former is disfavoured in evidence by a factor of 

e
-4.5

, which is 99.0% probability.    Additionally, if we assume that the red noise in PSR J0437‒

4715 is the result of a GWB, we find that the inferred posterior distribution is inconsistent with 

99.4% probability with the limit on Ac,yr derived from PSR J1909‒3744.   The higher level of 

noise is likely to be intrinsic spin noise.  The spectral index is consistent with spin noise 

observed in young pulsars, and some millisecond pulsars (37).  Models for timing noise in the 

pulsar population predict that PSR J0437‒4715 predict larger levels of intrinsic noise than for 

PSRs J1909-3744 and J1713+0747, primarily because of the larger amplitude of the spin 

frequency derivative (37,41).   

 

Our maximum-likelihood pulsar ephemerides, displayed in Tables S2-S5, are consistent 

with previously published ephemerides obtained at Parkes and with other telescopes.  In 

particular, our ephemeris for PSR J1713+0747 provides consistent spin and astrometric 

measurements to that derived from 18 yr of timing with the Arecibo and Green Bank telescopes 

(42), after converting units and observing epochs.   The absences of red noise in PSRs J1744‒
1134 and PSR J1909‒3744 are also consistent with 9 yr of observations from the Green Bank 

telescope (43).  We detect modest levels of red noise in PSR J1713+0747.    This is unlikely to 

be DM noise as it is larger by a factor of 3 than the noise measured in longer wavelength 

observations extrapolated to the 10 cm band (14).  

 

In Table S1, we also list the limits on the amplitude of the GWB derived from individual 

data sets.  We find that the limit placed using PSR J1909‒3744 is the same as the joint limit, 

indicating that it is the dominant pulsar in the sample.   When excluding PSR J0437‒4715 from 

the analysis, we set a 95% confidence limit of Ac,yr  < 8×10
-16

.  When including PSR J0437‒4715 

in the analysis, we set a 95% confidence limit of  Ac,yr  < 1.0×10
-15

.  The inclusion or exclusion of 

PSR J1744‒1134, which individually provides the fourth most constraining limit in the 10 cm 

band, does not significantly change the limit we derive.  Because the remaining pulsars in the 

PPTA sample have poorer timing precision in this band (and hence individually set poorer limits 

on the strength of the GWB), we conclude that their inclusion does not affect our results. The 

limit is dominated by the uncorrelated noise in the best pulsars.   This is consistent with previous 

searches for GWs in pulsar timing data sets, which have found that only a few pulsars dominate 

the limit (44) or have only focused on only the dominant pulsars (15) 

 

Our limit on Ac,yr was also confirmed by using a second Bayesian algorithm (32,40) to 

place a limit. This independent code uses a similar model for the data set, but instead uses 

Monte-Carlo methods instead of nested sampling for parameter estimation. 

 

The validity of the limit method was also tested through simulations.  In one set of 

simulations, the data sets were identical in cadence and TOA uncertainty to the one we observed 

in PSR J1909‒3744, but also included a GWB of amplitude Ac,inj=1.1×10
-15

, close in 

amplitude  to the 95% limit that we set.  The GWB was injected using a series of 10000 single 

gravitational-wave sources that were then added to the TOAs (45).   Out of 100 realisations of 

this data set, we found that in only 4 realisations, the 95% limit inferred from the posterior 

distribution was lower than Ac,inj, indicating that the limit we placed was consistent with a 95% 



confidence limit (see Fig. S1). Similarly, we found that the 50th percentile of the posterior 

distribution is consistent with a 50% confidence limit.   To further confirm that our limit was 

valid, we again conducted simulations, but included larger simulated jumps at the epochs of the 

measured jumps.  In each simulation the jumps were randomly chosen from a uniform 

distribution with a width 10 times larger than the inferred jumps.   In these simulations included 

a GWB of amplitude 1.0×10
-15

. We again found that the simulations provided a valid limit at the 

stated confidence with the 95% limit being greater than the injected background in 98 of the 100 

simulations.   

 

We also applied a previous simulation-based method to the dataset (8). In this method a 

GW detection statistic (DSobs) was formed from power spectral density estimates of the residual 

TOAs.   The power spectral density estimates were calculated after searching for and modelling 

red noise.   DSobs was compared to the DS calculated from simulated datasets (DSsim) with 

identical white-noise characteristics, but containing no red noise and only a power-law GWB of 

a specified strength Ainj.  The 95% confidence limit is set where 95% of the time DSsim > DSobs. 

With this method, we found a higher upper limit of 1.5×10
-15

.  Firstly, the method was designed 

to set a conservative limit on the GWB because the simulated datasets did not include any red 

noise.  Secondly the method relies on searching for red noise in the power spectra of the residual 

time series, which is suboptimal in datasets containing modelled offsets. In simulated datasets 

with fewer jumps the simulation-based method produces upper limits in better agreement with 

the Bayesian methods.  Thirdly the noise modelling allowed for non-power law red noise, which 

again is sub-optimal when searching for a GWB of a specified shape.  

 

Our limit is better than that derived from a comparable data set produced by the European 

Pulsar Timing Array (17).  They analyze observations of 6 pulsars that span 8‒18 yr.   They find 

evidence for red noise in their best pulsars.  For example, in PSR J1909‒3744 the red noise 

detected in the EPTA data set is inconsistent with 90% confidence with the limit on red noise 

inferred from our observations (we tested this consistency using the model comparison method 

described in S3). Our observations also have higher timing precision as we obtain a weighted 

rms residual of 100 ns compared to 130 ns obtained by the EPTA.  The noise observed in the 

EPTA data is consistent with DM variations in the pulsar (17); the lack of short-wavelength 

observations makes it difficult to distinguish red signals (intrinsic or from GWs) from DM 

variations.  

 

Compared to our previous analysis (8), we have improved the limit by both extending the 

data set and modelling the instrumental offsets.  To compare the relative benefit of both 

improvements we compare limits obtained individually from PSR J1909‒ 3744, over data 

spanning our previous data release (DR1, Ref. 6) and the current data set, and fixing the offsets 

at the values previously used (8) and fitting for them as part of the timing model.  In both cases 

we analyse 10 cm observations (the previous analysis used a combination of 10 cm and 20cm 

band observations).   Over the DR1 data span, we find that the individual limit from J1909‒3744 

improves from  Ac,yr  < 7.0×10
-15

 to 3.5×10
-15

 when modelling the  jumps.    With the current data 

set the limit improves from Ac,yr  <  4.2×10
-15

  to 1.0×10
-15

  when we model the jumps.   

 

 

 



S2.1 Choice of high-frequency observations 

 

We use data at 10 cm and do not correct for dispersion measure (DM) variations.    It is 

common to conduct observations at multiple radio wavelengths to correct for variations in radio-

wave propagation time associated with variation in total electron content along the line of sight, 

referred to as DM variations.   Because the effects of DM variations on pulse arrival times scale 

with the square of wavelength, the 10 cm observations are not strongly affected by DM 

variations and we can set a superior non-DM corrected single-frequency limit on the amplitude 

of the GWB.   For the pulsars considered here, DM variations both published by us (14) and by 

other groups (49) are subdominant to our timing precision and lower than the limit we derive on 

the GWB. 

 

The longer wavelength observations were affected by excess noise that, even after 

modeling DM variations, resulted in a poorer limit on the GWB. There are two possible origins 

for the excess noise.  It could be either instrumental in nature, such as polarization calibration 

errors (33), or associated with interstellar propagation that could not be corrected using standard 

techniques (14,34,46).  

 

 Preliminary analysis of the noise indicates that it is strongest in the lowest frequency 

data, suggesting that it is associated with interstellar propagation.   As an example, we use 

Bayesian methodology to characterize the excess low frequency noise in PSR J1909‒3744.   In 

addition to considering the 10 cm data as described above, we included 20 cm observations 

obtained with the same set of spectrometers, and 50 cm observations obtained with the CPSR2, 

PDFB3 and CASPSR backends (6) that spanned the same MJD range as our 10 cm observations.  

 

We search for red noise that is associated with DM variations, achromatic red noise that 

is common to all three bands (such noise could be associated with intrinsic spin noise or a 

GWB), ‘band noise’ that is common to all backend systems within a band but different between 

bands, and ‘system noise’ that is common to only one backend instrument.  In all cases, we 

model the noise to be a power law process with unknown amplitude and spectral index.  This 

method will be explored further in subsequent papers. 

 

In the three-band analysis, we find that there is strong evidence (probability > 98%) for 

excess noise in the 50cm band (see Table S1).   There is insufficient evidence to determine if the 

noise is associated with band noise, or noise associated with 50 cm observations with the CPSR2 

backend.   If we account for this noise, we can set a limit on the GWB in the three-frequency 

dataset that is comparable to limit we can set using only the 10 cm observations.      

 

If we consider only the 10 cm and 20 cm observations, after accounting for the 

instrumental offsets, we find that there is no evidence for band or system noise (see Table S7).   

If we include the 20cm data, we find a 10% improvement in the limit with the PSR J1909‒3744 

data alone providing a 95% confidence limit on Ac,yr of 9×10
-16

.   Techniques that account for 

this excess noise and properly account for DM variations are currently being developed.   

 

 

 



S2.2. PTA frequency response and PTA sensitivity curves  

 

In order to calculate a limit on the fractional closure density of the Universe,  ΩGW, we 

need to determine the frequency of mean sensitivity, fGW.  We calculated this frequency using 

three techniques that give consistent results.   

 

The first technique has previously been applied to PTA data sets to determine the 

frequency of mean sensitivity (8,29) and enables limits on different power-law spectra to be 

derived from our result.   Under the assumption that the limit is set in a narrow frequency range, 

and the characteristic strain spectrum has the form hc  ∝ (fc)
⍺
, the limiting strain amplitude, A95, 

will be proportional to (fGW)
⍺
 (see right panel of Fig. S2).  For our data set, we find good 

agreement with this scaling, and find fGW  = 1/5.1 yr
-1

.  This is shorter than the total data length 

because of the need to model both the pulsar spin down and varying TOA quality through the 

data set, with the earlier data having poorer timing precision.    Our limit is at a higher frequency 

than a previous limit on the GWB obtained with PPTA data (square P13 in Figure 2),  because 

we have excluded early 20 cm data that is of poorer quality and likely contains low frequency 

noise associated with dispersion-measure variations.  

 

The sensitivity of the data sets can be also observed through analysis of the power-

spectral density estimates of the data sets.  In the left panel of Fig. S2, we show for the dominant 

pulsar J1909‒3744 the sensitivity (defined to be the 1-σ upper limit) of the power spectral 

density (PSD) estimates (black curve) formed from a weighted Lomb-scargle periodogram that is 

calculated in the presence of the timing model.  At low frequencies, the sensitivity is greatly 

degraded because these periods are covariant with parameters that model the pulsar spin period 

and period derivative.  The frequency that is most sensitive to a power law GWB (displayed as 

the blue line) is at approximately fGW.  

 

In the third case, we use a model-independent method to search for a GWB (15) that 

enables us to place limits on the strain amplitude hc in a series of harmonically related 

frequencies.  This is in contrast to other searches in which we constrain the strain-amplitude 

spectrum to follow a functional form (i.e., power-law for a purely GW-driven background).  For 

our data set, the two lowest frequency channels were the most sensitive to the GWB, indicating 

that the frequency of greatest sensitivity is < 0.3 yr
-1

.  

 

In Fig. 2, we show the sensitivity curve generated using the first technique, converted to a 

characteristic strain spectrum, for our observations (black curve).  To generate this curves, we 

converted the power-spectral density estimates to 2-σ false-alarm probabilities.  We assumed that 

the PSD had 325 degrees of freedom (corresponding to the number of points in our data set), 

which is a reasonable assumption because our data are relatively uniformly spaced.   

 

We also estimated the sensitivity of a potential observing campaign with the Square 

Kilometre Array Telescope (SKA, ref. 26).   We assume a timing campaign of 5.5 yr duration 

with the cadence achieved by the PPTA, but with nominal timing precision of ~ 12 ns 

uncertainty per observation.  This uncertainty represents the single pulse jitter limit in 1~hr of 

observation estimated for this pulsar (35).   The limit on the GWB obtained by this campaign is 

displayed as the blue pentagon in panel d of Figure 2.   



 

S3.  Model Comparison 

 

We compared our limit with the five most recent predictions for the GWB (9-12, 

22).    Each of the models predicts the amplitude with some uncertainty and presents the result as 

a probability density function !M(AM).  Each model also predicts a specific strain-spectral 

shape. We calculated the probability that these models agree with the data in two ways, which 

were found to give consistent results. 

 

In the first technique, we used a Bayesian evidence-based method to calculate the 

probability that the predicted GWB was consistent with the data.  Instead of placing a uniform or 

log-uniform prior on the amplitude Ac,yr, we used the predicted amplitude range given by a 

specific model, !M(AM),   as a physical prior for a given model when searching for a GWB in our 

data set.   The probability-density functions (PDFs) !M(AM) are specific to each model 

considered.   We then compared the Bayesian evidence for these searches to that from an 

analysis that did not include a search for a GWB. The probability that the model is consistent 

with the data is then the ratio of the evidences, Pevid.  These values are found in Table S2. 

 

We also used a previously used technique to compare limits to models (8) that yields 

consistent results.  Here, we assume that AM and Alim are independent random variables, drawn 

respectively from PDFs !M(AM) and !lim(Alim). The PDF !M(AM)  describes a model prediction 

and  !lim(Alim) is the posterior PDF for A calculated from the data.  For the two distributions to be 

consistent with each other we require Alim > AM.  Therefore the probability of consistency 

between a model and the data is 

 

Pmodel(Alim> AM) =  P(Alim-AM > 0)  = ∫0
∞
dAM !M(AM)  ∫Am

∞
dAlim  !lim(Alim).     (S1) 

 

If the second integral is evaluated, equation (S1) is the integral of the product of the PDF of the 

model and the CDF of the limit, and matches expressions previously used to compare limits to 

models (8). 

 

For all of the models, the predicted values of Ac,yr
  
followed lognormal distributions: 

 

ρM(Ac,yr)= (2!!
2
Ac,yr

2
)

-1/2
 exp[ -(log(Ac,yr) - !)

2
/2!

2
]      (S2) 

 

where ! and ! are, respectively, the mean and standard deviation of the distributions.  

 

In Table S8, for each model we list both its parameters and the probability P that it is in 

agreement with the limit.   

 

In one case (10), the strain spectrum has been modeled to include a low-frequency cutoff 

due to both the coupling between binary SMBHs and their stellar environments, and stalled 

mergers of the SMBH binaries.  The cutoff is modeled by adding a pre-factor to the strain 

spectrum of the form exp[-(f/fc)
-4

], where fc is a cutoff frequency and is modeled to be  0.20 yr
-1

.   



This prefactor modifies the shape of the power spectral density induced by the GWB to 

be 

 

PGW(f) = Ac,yr
2
/(12!

2
) (f/1 yr

-1
)

-2/3
 exp[-2(f/fc)

-4
].    (S3) 

 

Because this cut-off frequency is at least partially motivated by evolution driven by the scattering 

of environmental stars off binary SMBHs (a process we wish to consider independently) we 

calculate the probability that the model is in agreement with the limit both including and 

excluding the pre-factor. We assumed that the uncertainty for the power-law model applies to the 

exponential model.  In both cases, we find the model is inconsistent with the data with high 

probability (see Table S8).    Despite having a cut off at a frequency above our frequency of 

maximum sensitivity, we are able to exclude this model because it predicts a very strong signal 

at higher frequencies.  

 

In another case (22), the effects of mergers driven by stellar environments result in the 

prediction of an altered strain spectrum, with two spectral breaks:   

 

hc,env(f) = Ac,yr f2
-2/3

/[ (f/f1)
-2

 + (f/f2)
-1/2

 + (f/f2)
-4/3

]
1/2

.
     

(S4) 

 

The lowest spectral break occurs at f1 ≈ 0.01 yr
-1

 and corresponds to the frequency at which 

SMBH binaries start to decouple from their environments.  The second occurs at f2 ≈ 0.3 yr
-1

, 

and defines the frequency at which decoupling completes.    The power spectral density 

associated with this model is 

 

PGW(f) = hc,env(f)
2
 f 

-3
/(12!

2
).        (S5) 

 

S4.  Evolution of binary separation 

 

Fig. 3 schematically presents various evolutionary scenarios of a system comprising two 

10
9
 solar-mass SMBHs, following general arguments (4) that have been recently reviewed 

(21).   We assume that the binaries are initially separated by 10
4
 pc.    We further assume for the 

purposes of demonstration in Fig. 3 that the evolution depends only on the masses of the SMBHs 

and their surrounding stellar environment. In this scenario, the mechanism for solving this “final-

parsec problem” is assumed to be three-body interactions between the binary and stars on radial 

orbits (4, 47-48). While some of the most massive binary SMBHs that likely dominate the GW 

signal are also expected to be gas-poor (i.e., “dry”, Refs. 11, 12), the role of gas in shrinking 

binary orbits could be crucial in other systems (21, 24, 49-50).   In the following, we outline the 

physically motivated assumptions behind Fig. 3.      

 

Through dynamical friction (51), the binaries are driven to coalescence at a rate given by 

 

ȧDF/a = 5×10
-6 

 yr
-1

  log(N★) ( Mtot/2M9) (a/100 pc)
-2

 (200 km s
-1

/ !★ ), (S6) 

 

where a is the pair separation,  ȧDF is its first time derivative corresponding to the effects of 

dynamical friction, Mtot  is the total mass of the SMBHs, M9 is the 10
9
 solar masses,  N★ is the 



number of stars comprising the environment and  !★ is the velocity dispersion of the stars.  We 

assume that the environment comprises 2×10
8

 stars and that  !★= 200 km s
-1

 in the fiducial case.  

 

The SMBHs will form a bound system when the stars enclosed in the orbit have mass 

comparable to the mass of the more massive SMBH (M1). This occurs when the separation 

between the SMBHs is equivalent to the gravitational influence radius of the more massive 

SMBH. For a simple stellar density model (52) of a cusp with power-law index γ within the 

gravitational influence radius of the more massive SMBH and an isothermal sphere beyond the 

influence radius with velocity dispersion σ★, the influence radius is given by  

 

rinf = (3 - γ) G M1 / σ★,             (S7) 

 

where G is the universal gravitational constant.   Relating M1 with σ★ using the empirical relation 

between SMBH masses and the velocity dispersions of galaxy bulges (1), we obtain the 

expression presented in the main text for a typical formation separation of a binary SMBH (aform 

= 60M9
0.54

 pc).  

 

When the binary velocity becomes comparable to the velocity dispersion of the 

surrounding stars, dynamical friction becomes ineffective at guiding the merger of the system. 

This occurs at  

ahard = 50 pc q/(1+q)
2
 (Mtot / 2 M9) (!★/ 200 km s

-1
)

-2
,   (S8) 

 

where q is the mass ratio of binaries.  

 

At this point the effects of dynamical friction are greatly inhibited, but the system can 

still be driven to smaller separation through the scattering of stars. Circumbinary gas can play a 

similar role. In this regime, the orbital separation evolves as 

 

ȧhard/a
 
= 7×10

-6 
 yr

-1
 (200 km s

-1
/!★) (10

4
 Msun pc

-3
 / !★ )  (a / pc),   (S9) 

 

where !★ is the stellar density and is assumed to be 10
4
 Msun pc

-3
 in the fiducial case, and Msun is 

one solar mass.  

 

In the final stages, the system is driven through GW emission: 

 

ȧGW/a = 1.5×10
-4

 yr
-1

 q/(1+q)
2  

(a/ 0.1 pc)
-4 

(Mtot/ 2 M9)
3
.
            

(S10)  

 

Equation (S10) applies only to binaries in circular orbits. We note that large orbital 

eccentricities, potentially incited by binary environments (52), redistribute the spectral-energy 

distribution of the GWB from lower to higher frequencies, further enhancing the low-frequency 

attenuation of the GWB caused by the environments (22). For a range of realistic distributions of 

binary eccentricities, the attenuation of the GWB signal due to eccentricities is subdominant to 

effects of the environments themselves in accelerating binary evolution, regardless of the orbits 

(22).  

 



 

 

 

The curves in Fig. 3 were constructed as follows: 

 

Fiducial case (blue curve): We assume that dynamical friction and stellar-driven binary 

hardening occur according to Equations (S6) and (S9) respectively.  

 

Slow merger (green curve):  We assume that dynamical friction (Equation S6) is a factor 

of 10
-4

 weaker than the fiducial case.  As a result the, SMBHs do not form a binary as rapidly as 

in the fiducial case and may not merge within a Hubble time.  This is also representative of the 

case where the galaxy merger timescale has been overestimated, which similarly lengthens the 

time it takes SMBH binaries to form gravitationally radiating binaries. 

 

Strong binary environment (gray curve): We assume that, after the SMBHs form a binary 

that hardening (Equation S9) is a factor of 10
2
 greater than the fiducial case.  As a result, the 

SMBH binary inspiral more quickly, and that environment drives inspirals to smaller separations. 

 

Stalled binary SMBH (red curve): We assume that, after the SMBHs form a binary, 

inspiral due to hardening is 10
-2

 weaker than the fiducial case.   As a result, binary inspiral does 

not occur within the age of the Universe.   

 

SMBH recoil (pink curve):  The purple-dashed curve shows the trajectory of the 

coalesced SMBH, relative to the centre of the galaxy, if a kick of 500 km s
-1

 (53, 54) is applied 

after the merger. The SMBH becomes gravitationally unbound from the system because this is in 

excess of the escape velocity of the galaxy.  

 

In Fig. 3, we also highlight (in light blue and pink respectively) the portions of the 

‘Fiducial’ and ‘Strong environment’ curves where ȧGW > ȧhard, which is where GW emission 

dominates the energy loss.  



 
 

Fig. S1: Histogram of 95% (red thick histogram) and 50% confidence limits (blue thin 

histogram) for 100 simulated data sets with identical cadence and white noise to our PSR J1909‒

3744 observations, but with an injected GWB with Ac,inj=1.1×10
-15

 (dashed black vertical line).    

 

 
 

Fig. S2:  Left panel:  Sensitivity of power spectral density estimates of PSR J1909‒3744 (black 

curve). The blue line shows the power spectral density of a GWB, showing that the data set is 

most sensitive to a GWB at frequencies of 0.2 yr
-1

.   The peak at 1 yr
-1

 is associated with fitting 

for pulsar position and proper motion. Right panel: Limit on the GWB for power-law strain 

spectra hc(f) = Ac (f/ 1 yr
-1

)
!

 set at different ! (open boxes), and the best-fitting curve (black 

curve).  

 

 

 

 

 



 

 ! log (E) 

Noise Model J1909‒3744 J1713+0747 J1744‒1134 J0437‒4715 

White 0 0 0 0 

White + Red -0.2 6.1 -0.3 329.1 

White + GWB 0.1 -0.7 0.0 324.6 

White + Red + GWB -0.5 5.4 -0.7 326.9 

Ac,yr,95/10
-15

 1.0 3.9 10.6 7.4 

 

Table S1: Evidence comparison for pulsar timing models, relative to a white noise only model. 

Evidence is measured relative to models containing only excess white noise. The favoured 

models, selected because they have the largest evidence, are displayed in bold typeface.  We also 

list the 95% confidence limits on the GWB obtained from individual pulsars in our sample.   

 

  

 

  



Right ascension (hh:mm:ss):   04:37:15.8961747(6) 

Declination (dd:mm:ss)  −47:15:09.11071(6) 

Pulse frequency (s
−1

 ):  173.6879458121831(3) 

First derivative of pulse frequency  (s
−2

 ):  −1.728359(5) ×10
−15

 

Dispersion measure  (cm
−3

 pc)   2.648(5) 

Proper motion in right ascension  (mas yr
−1

):  121.4401(16) 

Proper motion in declination  (mas yr
−1

):   −71.4732(17) 

Parallax (mas):   6.43(7) 

Orbital period (d):  5.7410460(6) 

Epoch of periastron (MJD):   54530.1727(5) 

Projected semi-major axis of orbit (lt-s):   3.36671473(11) 

Longitude of periastron  (deg.):  1.39(3) 

Orbital eccentricity:  1.91820(19) ×10
−5

 

First derivative of orbital period:  3.721(12) ×10
−12

 

Periastron advance (deg. yr
-1

):  0.014(3) 

Companion mass (M⊙ ):  0.211(19) 

Longitude of ascending node  (deg.):   205.8(15) 

Orbital inclination angle (deg.):  137.3(10) 

Epoch (MJD):   54500 

Table S2:  Ephemeris for PSR J0437−4715.  For each parameter, the 1-σ uncertainties in the last 

digit(s) are listed in parentheses.  

 

 

 

 
Right ascension (hh:mm:ss):  17:13:49.5327232(16) 

Declination (dd:mm:ss):   +07:47:37.49790(5) 

Pulse frequency (s
−1

):   218.8118404347997(5) 

First derivative of pulse frequency (s
−2

 ):  −4.08383(5)×10
−16

 

 Dispersion measure, DM (cm
−3

 pc):  16.003(8) 

Proper motion in right ascension (mas yr
−1

 ):  4.925(7) 

Proper motion in declination (mas yr
−1

) :  −3.928(13) 

Parallax (mas):   0.75(9) 

Orbital period (d):   67.82515(3) 

Epoch of periastron (MJD):   51997.5785(15) 

Projected semi-major axis of orbit (lt-s):   32.3424217(5) 

Longitude of periastron (deg.):  176.191(8) 

Orbital eccentricity:   7.49408(20)×10
−5

 

Companion mass (M⊙ ):   0.27(4) 

Longitude of ascending node,  (deg.)   88(7) 

Orbital inclination angle  (deg.)  74(2) 

Epoch:  54500 

Table S3:  Ephemeris for PSR J1713+0747. For each parameter, the 1-σ uncertainties in the last 

digit(s) are listed in parentheses.  

  



 

 

 

 
Right ascension (hh:mm:ss):  17:44:29.405794(4) 

Declination (dd:mm:ss):  11:34:54.6809(3) 

Pulse frequency  (s
−1

):  245.4261197130577(9) 

First derivative of pulse frequency, (s
−2

):  −5.38158(7)×10
−16

 

 Dispersion measure (cm
−3

 pc):   3.131(16) 

Proper motion in right ascension (mas yr
−1

):  18.782(12) 

Proper motion in declination (mas yr
−1

):   −9.47(6) 

Parallax (mas):  2.7(1) 

Epoch:  54500 

Table S4:  Ephemeris for PSR J1744−1134.  For each parameter, the 1-σ uncertainties in the last 

digit(s) are listed in parentheses.  

 

 

 
Right ascension: 19:09:47.4346740(6) 

Declination: −37:44:14.46670(3) 

Pulse frequency (s
-1

): 339.31568728824556(16) 

First derivative of pulse frequency (s
−2

): −1.6148237(12) ×10−15 

 Dispersion measure (cm
−3

 pc): 10.3955(19) 

Proper motion in right ascension (mas yr
−1

 ): −9.5204(19) 

Proper motion in declination (mas yr
−1

 ): −35.768(7) 

Parallax (mas): 0.855(18) 

Orbital period (d): 1.5334494747(3) 

Epoch of periastron (MJD): 53631.47(4) 

Projected semi-major axis of orbit (lt-s): 1.89799117(5) 

Longitude of periastron  (deg.): 176(9) 

Orbital eccentricity: 9(1) ×10
−8

 

First derivative of orbital period: 5.02(5) ×10
−13

 

Companion mass  (M⊙): 0.209(3) 

Longitude of ascending node (deg.): 150(100) 

Orbital inclination angle (deg.): 93.44(11) 

Epoch (MJD): 54500 

Table S5:  Ephemeris for PSR J1909−3744.  For each parameter, the 1-σ uncertainties in the last 

digit(s) are listed in parentheses.  

 

  



 

Model !log(E)     A95/10
-15

 

Red + DM  0 2 

Red + DM + Group Noise 3.8 1 

Red + DM + Band Noise 4.5 1 

Table S6:  Evidence comparison for three-band dataset for PSR J1909‒3744.   A significant (P > 

98%) increase in evidence is found by including extra noise terms.  There is insufficient change 

in evidence to distinguish band noise from group noise.  

 

 

 

Model !log(E)     Ac,yr,95/10
-15

 

Red+DM 0 0.9 

Red + DM  + Group Noise -1.4 0.9 

Red + DM + Band Noise -0.5 0.9 

Table S7:  Evidence for comparison for two-band analysis for PSR J1909‒3744 using only 20 

cm and 10cm observations.   Models including extra noise processes are disfavoured because the 

evidence decreases.   

 

 

 

Model μ σ Pmodel !log(E)      Pevid 

S13 -14.96 0.28 0.09 -2.3 0.09 

R14
(a)

 -14.90 0.40 0.21 -1.7 0.20 

R15 -14.95 0.18 0.06 -3.0 0.05 

M14 -14.39  0.26     0.002 -5.7 0.003 

Exp
(b)

 -14.39 0.26 0.04 -2.7 0.06 

K15 -14.70 0.10 0.005     -5.3             0.005 

Notes:   (a)  Broken power-law model defined in Equation (4) (b)  M14 model, including an 

exponential cut-off. 

Table S8:  Predicted amplitudes of the GWB for models for the GWB (9-12, 8), and the 

probabilities Pmodel that they are consistent with the limit derived from our observations.  We 

show the probability calculated using equation (S1), labeled Pmodel, and using the difference in 

the logarithm of the evidence  !log(E) between each model and a model that does not contain a 

GWB, labeled Pevid. 
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