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A B S T R A C T

In this paper we model the gravitational wave emission of a freely precessing neutron star.

The aim is to estimate likely source strengths, as a guide for gravitational wave astronomers

searching for such signals. We model the star as a partly elastic, partly fluid body with

quadrupolar deformations of its moment of inertia tensor. The angular amplitude of the free

precession is limited by the finite breaking strain of the star’s crust. The effect of internal

dissipation on the star is important, with the precession angle being rapidly damped in the

case of a star with an oblate deformation. We then go on to study detailed scenarios where free

precession is created and/or maintained by some astrophysical mechanism. We consider the

effects of accretion torques, electromagnetic torques, glitches and stellar encounters. We find

that the mechanisms considered are either too weak to lead to a signal detectable by an

Advanced LIGO interferometer, or occur too infrequently to give a reasonable event rate. We

therefore conclude that, using our stellar model at least, free precession is not a good

candidate for detection by the forthcoming laser interferometers.

Key words: accretion, accretion discs – radiation mechanisms: non-thermal – relativity –

stars: magnetic fields – stars: neutron – stars: rotation.

1 I N T R O D U C T I O N

Freely precessing neutron stars have long been recognized as a

potential source of detectable gravitational waves (Zimmermann

1978; Alpar & Pines 1985). Despite their regular inclusion in

review articles (Thorne 1987; Flanagan 1998) they have received

little in the way of detailed modelling. In this paper we will

combine many of the physical processes relevant to the problem of

free precession, and assess their relative importance. The motiva-

tion behind this work is to aid gravitational wave data analysis

(Schutz 1991). Given the huge computational requirements of this

analysis, any additional information supplied by theoretical

modelling of a source greatly increases the chances of detection.

With the TAMA detector already operational, the GEO600 and

LIGO detectors due to go on-line within a year, and the VIRGO

detector following soon after, this issue is particularly pressing.

The study of gravitational wave generation from freely

precessing neutron stars can be divided into two parts. The first

problem is the formulation of a free precession model consistent

with our current understanding of neutron star structure. Neutron

stars are not rigid bodies – they consist of a thin elastic shell

containing a superfluid core. A model taking these features into

account was described in detail by Jones & Andersson (2001),

where the effect of free precession on electromagnetic pulsar

signals was described and compared with pulsar observations.

(Several potential free precession candidates were identified, but,

as we will see, they all rotate too slowly to be of gravitational wave

interest.) A brief summary of this model is set out in this paper. A

key feature is the decay of free precession due to dissipative

processes internal to the star.

The second part of the problem is to look at particular scenarios

in which free precession is created and/or maintained by an

astrophysical mechanism. The torques due to accretion discs,

neutron star magnetic dipole moments, and other gravitating

bodies will be considered, as well as perturbations associated with

glitches. We wish to investigate whether these mechanisms are

capable of balancing the internal dissipation to give steady long-

lived precessional motions. Having done so, we will then be in a

position to estimate possible gravitational wave amplitudes in these

various scenarios.

The structure of this paper is as follows. In Section 2 we briefly

describe our free precession model, and parametrize the time-scale

in which internal dissipation damps the wobble motion. In Section 3

we show how the finite breaking strain of the crust can be used to

place an upper bound on the gravitational wave field of a

precessing star, regardless of its environment. We also suggest a

detection strategy for gravitational wave data analysts. General

formulae relating the gravitational wave amplitude to the strength

and nature of a pumping torque are given in Section 4. The possible

gravitational wave field strengths in various scenarios are then

estimated in Sections 5–8. Our conclusions are given in Section 9,

together with some suggestions for further work.PE-mail: dij@maths.soton.ac.uk
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2 A M O D E L O F N E U T R O N S TA R F R E E

P R E C E S S I O N

2.1 Dynamics of free precession

In this section we will briefly summarize our model of neutron star

free precession. For more detail see Jones & Andersson (2001). We

will begin by describing the free precession of a rigid body, as the

motion in the more realistic elastic shell/fluid core case can be

thought of as a modification of this.

The moment of inertia tensor of any axisymmetric rigid body

can be written as

I ¼ I0dþ DIdðndnd 2 d/3Þ; ð1Þ

where d is the Kronecker delta, and the unit vector nd points along

the symmetry axis of the body. Then the principal moments are

I1 ¼ I2 ¼ I0 2 DId/3 and I3 ¼ I0 þ 2DId/3, so that I3 2 I1 ¼ DId.

When DId . 0 the body is said to be oblate, and when negative the

body is prolate. As we will describe below, the oblate case is the

more physically plausible.

The angular momentum is related to the angular velocity

according to

J ¼ ðI0 2 DId/3ÞV 2 DIdV3nd; ð2Þ

where the 3-axis lies along nd. This shows that the three vectors

J, V and nd are always coplanar. Following Pines & Shaham

(1972a,b), we will call the plane so defined the reference plane (see

Fig. 1). Given that the angular momentum is fixed, this plane must

revolve around J. The free precession is conveniently parameter-

ized by the angle u between nd and J. We will refer to this as the

wobble angle. For a nearly spherical body the angle û between V
and J is much smaller than the angle between J and nd, according

to

û <
DId

I1

sin u cos u: ð3Þ

We will denote by nJ the unit vector along J. Decomposing the

angular velocity according to

V ¼ _fnJ þ _cnd ð4Þ

then gives

J ¼ I1
_f; ð5Þ

_c ¼ 2
DId

I3

_f: ð6Þ

The symmetry axis nd performs a rotation about J in a cone of half-

angle u at the angular frequency ḟ. We will refer to this as the

inertial precession frequency. There is a superimposed rotation

about the symmetry axis nd at the angular velocity ċ . This is

usually referred to as the body frame precessional frequency, with

the corresponding periodicity known as the free precession period:

Pfp ¼
2p

_c
: ð7Þ

For a nearly spherical body, equation (6) shows that _c ! _f. Note

that the angles ðu;f;cÞ are simply the usual Euler angles which

describe the orientation of the rigid body (see, e.g., Landau &

Lifshitz 1976, fig. 47).

Turning now to the more realistic case of an elastic crust with a

liquid core, the moment of inertia of the crustal shell can be written

as (Alpar & Pines 1985):

I ¼ I0dþ DIVðnVnV 2 d/3Þ þ DIdðndnd 2 d/3Þ: ð8Þ

The first term on the right-hand side is the moment of inertia of the

non-rotating undeformed spherical shell. The second term is the

change due to centrifugal forces, and has nV, the unit vector along

V, as its symmetry axis. The third term is the change due to some

other source of deformation (such as strains in the crustal lattice),

and has the unit vector nd, fixed in the crust, as its symmetry axis.

Without this third part the above equation would simply represent a

fluid ball, and free precession would not be possible.

The free precession of such an elastic shell containing a liquid

core is then very similar to the rigid result, with the geometry

described in Fig. 1 still applying, provided that the DId in equations

(3) and (6) is now set equal to the deformation in the inertia of the

whole star, i.e., crust and core, while I0 is still equal to the crustal

moment of inertia only. Explicitly,

û ¼
DId

Icrust

u; ð9Þ

_c ¼ 2
DId

Icrust

_f: ð10Þ

Note that centrifugal deformation DIV is not of importance when

considering the free precession geometry.

One further component can be added to our model: a pinned

superfluid coexisting with the inner crust. As was first described by

Shaham (1977), the effect of such a component is to increase the

body-frame free precession frequency ċ. In the case where the

rotation rates of the superfluid and crust are the same, equations (9)

and (10) still apply, with DId now containing a part equal to the

moment of inertia of the pinned superfluid. However, as described

in Jones & Andersson (2001), the handful of free precession

candidates identified in the pulsar population do not seem to have

such a component. Therefore, on those few occasions in this paper

where we assume a particular source of deformation, we will

assume that DId is caused entirely by Coulomb forces in the crustal

lattice. (If real stars do have a significant pinned superfluid

Figure 1. This figure shows the reference plane for a freely precessing

body, which contains the deformation axis nd, the angular velocity vector V
and the fixed angular momentum J. The vectors nd and V rotate around J at

the inertial precession frequency ḟ. We refer to u as the wobble angle. The

vector T’J is the part of an applied torque that causes a secular evolution in

the wobble angle.
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component, then the increased body-frame precession frequency

will lead to an even faster dissipation of the free precession energy,

and tend to reinforce our final conclusion.)

The effect of a torque on the free precession can be easily

summarized. Given that the torque-free motion is determined

completely by the two numbers (ḟ,u), we need only describe the

effect of the torque on these. If the torque causes the magnitude of

the angular momentum to change at a rate J̇, then

€f ¼
_J

I1

: ð11Þ

The evolution in the wobble angle is determined by the component

of the torque projected into the reference plane which lies

perpendicular to J:

_u ¼ 2
T’J

Icrust
_f
; ð12Þ

as illustrated in Fig. 1.

2.2 Sources of deformation

The centrifugal deformation described above can be conveniently

parameterized by the dimensionless quantity eV, which we will

define by 3eV/2 ¼ DIV/Istar (this follows the notation of Alpar &

Pines 1985). This will be of the order of the rotational kinetic

energy of the star divided by its gravitational binding energy:

eV <
V2R 3

GM
< 2:1 £ 1023 f

100 Hz

� �2

R3
6/M1:4; ð13Þ

where V ¼ 2pf is the angular frequency, R6 the neutron star radius

in units of 106 cm, and M1.4 the mass in units of 1.4 M(.

The deformation DId we can similarly parametrize in

dimensionless form using the relation 3ed/2 ¼ DId/Istar. This

deformation is due to some physical process other than rotation,

which need not be specified in many of our gravitational wave

estimates. However, in practice the most significant source of

deformation in a neutron star is likely to be strains in its solid crust.

As described in Baym & Pines (1971) and Pines & Shaham

(1972a,b), if the crust has a zero strain oblateness e0, the actual

deformation produced is of order

ed ¼
B

Aþ B
e0; ð14Þ

where the constant A depends on the stellar equation of state, and

will be of the order of the gravitational binding energy of the star.

The constant B also depends on the equation of state, and will be of

order of the total electrostatic binding energy of the ionic crustal

lattice. We will define b ¼ B/ðAþ BÞ as the rigidity parameter. It is

equal to zero for a fluid star ðB ¼ 0Þ, and unity for a perfectly rigid

one ðB/A ! 1Þ. Realistic neutron star equations of state imply that

b takes a value

b < 1:6 £ 1025R5
6/M3

1:4: ð15Þ

(See Jones 2000 for a simple derivation, and Ushomirsky, Cutler &

Bildsten 2000 for a detailed numerical treatment.) The smallness of

this number reflects the fact that gravitational forces dominate

crustal Coulomb forces in determining the equilibrium shape of the

star. In this sense, neutron star crusts are very far from perfectly

rigid. Note that b , 1025 for a canonical 1.4-M(, 10-km neutron

star. More rigid stars can exist only if less massive (and therefore

larger radii) neutron stars occur in nature, or if current equations of

state seriously underestimate the crust thickness. We will therefore

present results for rigidity parameters over the interval 1023 to

1025, but will bear in mind that values at the smaller end of the

interval are more plausible.

For a very young star the zero-strain oblateness e0 will be

determined simply by the shape of the star at the moment when its

crust first solidified, i.e., e0 ¼ eVðf ¼ f solidÞ, where fsolid is the spin

frequency at the moment of solidification. For older stars, e0 will

have changed due to plastic deformation in the crust, either because

of a gradual creep, or because of a more violent shape change,

possibly connected with a glitch. Certainly, it seems likely that real

stars will be oblate ðe0 . 0) DId . 0Þ rather than prolate

ðe0 , 0) DId , 0Þ.

2.3 Wobble damping

A real neutron star, once set into free precession, will not precess

forever – energy will be dissipated within the star, converting the

kinetic energy of the wobble into thermal energy. Also, gravi-

tational wave energy and angular momentum will be radiated to

infinity, which must be subtracted off the star’s motion.

The problem of gravitational radiation reaction was examined in

detail by Cutler & Jones (2000), who showed that the main result

was to cause the wobble angle to decay exponentially on a time-

scale:

tu ¼ 1:8 £ 109 yr
Icrust

1044 g cm2

� �
1038 g cm2

DId

� �2
100 Hz

f

� �4

; ð16Þ

regardless of whether the deformation is oblate or prolate.

This is almost certainly much longer than the time-scales

connected with internal dissipation. In particular, models of

neutron star interiors, motivated in part by the need to model

glitches, predict a frictional type coupling between the crust and

core. The result of this coupling is a torque T exerted on the crust:

T ¼ KðVfluid 2 VsolidÞ; ð17Þ

where K is a positive constant. Such a torque would tend to restore

corotation between crust and core in a glitching neutron star.

However, as modelled by Bondi & Gold (1955), the torque would

also tend to damp the wobble angle of a precessing body. The time-

scale for this damping can be parameterized by n, the number of

free precession periods Pfp in which one e-fold occurs:

td ¼
I0

DId

nP; ð18Þ

where P is the spin frequency (approximately 2p/ _cÞ of the body.

The parameter n has been estimated by Alpar & Sauls (1988), who

examined the scattering of electrons off the superfluid vortices.

This interaction is sometimes referred to as ‘mutual friction’. Alpar

& Sauls estimated n to lie in the interval 400 to 104, giving a

wobble damping time-scale of

td ¼ 3:2 yr
n

104

� � 100 Hz

f

� �
I0

1044 g cm2

� �
1038 g cm2

Id

� �
: ð19Þ

Comparing equations (16) and (19), it is clear that internal

dissipation is likely to damp the free precession much more rapidly

that gravitational radiation reaction.

Interestingly, in the case of prolate deformations, the internal

dissipation acts so as to increase the wobble angle. However, as

described in Section 2.2, prolate deformations are not likely to be

found in real stars, and so for the remainder of this paper we will
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assume that deformations are oblate, corresponding to a damping

of the wobble motion.

3 T H E G R AV I TAT I O N A L WAV E F I E L D

3.1 General form of the field

The gravitational wave field for a rigid precessing body was first

calculated by Zimmerman & Szedenits (1979), using the mass

quadrupole formalism (see, e.g., Misner, Thorne & Wheeler 1973).

As described in the previous section, even though the elasticity and

fluid core are important in determining the free precession period,

the geometry of free precession in the realistic case is very similar

to that in the rigid case – the deformation bulge moves in a cone of

half-angle u at a rate ḟ. (The superimposed rotation at ċ about the

axis nd does not change the mass quadrupole of the body, and so

does not appear in the gravitational wave physics.) It follows that,

to the accuracy of our model at least, the wave field calculated by

Zimmerman & Szedenits (1979) applies in the realistic case.

Explicitly, the gravitational waves are emitted at frequencies ḟ and

2ḟ, and with the two polarizations (denoted by þ and £):

hþð _fÞ ¼
2 _f 2

r
sin i cos iDId sin u cos u cosð _ftÞ; ð20Þ

h£ð _fÞ ¼
2 _f 2

r
sin iDId sin u cos u sinð _ftÞ; ð21Þ

hþð2 _fÞ ¼
2 _f 2

r
ð1þ cos2iÞDId sin2u cosð2 _ftÞ; ð22Þ

h£ð2 _fÞ ¼
2 _f 2

r
2 cos iDId sin2u sinð2 _ftÞ; ð23Þ

for a source at distance r and angular momentum at inclination

angle i to the line of sight. Note that the DId factor is the part of the

quadrupole moment tensor due to the deformation process, not the

centrifugal piece. The modifications to this result due to the non-

rigidity are small, and lie beyond the accuracy of our free

precession model.

3.2 Limit on gravitational wave amplitudes due to finite crust

strength

As described in Jones & Andersson (2001), a real neutron star crust

will have a finite breaking strain ubreak. This can be used to place an

upper bound on the wobble angle of a precessing star. We know

that (for small wobble angles at least) when an initially axially

symmetric body is set into free precession, a deformation DId

remains along the axis nd fixed in the star, while a deformation DIV
points along the angular velocity vector. From the point of view of

an observer attached to the crust, a deformation of size DIV
describes a cone of half-angle uþ û < u about nd. This change in

shape is all we need to know to estimate the strain: the change in

position of any given particle is of order ReVu, while the

corresponding strain is of order eVu. This precession-induced

strain is not constant, but varies with magnitude eVu over one

(body frame) free precession period. As there exists a maximum

strain ubreak that the solid can withstand prior to fracture, the

wobble angle will be limited to a value of ubreak/eV, so that

umax < 0:45
100 Hz

f

� �2
ubreak

1023

� �
rad: ð24Þ

Qualitatively, we can say that more rapidly spinning neutron stars

have larger bulges to re-orientate, and therefore can sustain smaller

wobble angles prior to fracture. For sufficiently slowly spinning

stars the above equation breaks down, yielding angles in excess of

p=2. The wobble angles of such slowly spinning stars are not

limited by crustal strain.

The value of ubreak is highly uncertain. By extrapolating the

breaking strains of terrestrial materials, Ruderman (1992) suggests

that the value relevant for neutron star crusts may lie in the range

1022 to 1024.

This limit on the wobble angle u can be used to place an upper

bound on the gravitational wave amplitude of a freely precessing

star with a given deformation DId. To do so, we will characterize

the field strength by

h ¼
G

c 4

_f 2

r
DIdu: ð25Þ

This is an order-of-magnitude approximation to the set of

equations (20)–(23). The trigonometric factor describing the

variation of wave amplitude with inclination angle i has been

neglected entirely, while the trigonometric factor in the precession

angle u has been replaced by its small angle limit. Note that in this

small-angle limit the radiation is emitted mainly at the frequency ḟ

– the radiation at frequency 2ḟ is a factor u smaller.

The purpose of this approximation is to enable us to gain a

insight as to how gravitational wave amplitudes depend upon

source parameters such as the breaking strain, frequency and

deformation size. This analysis is a useful preparation for Sections

5–8, where detailed astrophysical situations are considered.

We will specialize to the case where the deformation DId is due

to Coulomb forces in the crustal lattice. We set DId ¼ 3Istared/2,

with ed given by equation (14). For definiteness, we will assume

that the crust is ‘relaxed’, i.e., that the zero-strain oblateness e0 is

equal to the centrifugal oblateness eV. (These two quantities can

differ by the small crustal breaking strain anyway – see Jones &

Andersson 2001.) We then find

h ¼ 3:7 £ 10228 f

100 Hz

� �4
b

1025

� �
kpc

r

� �
u ð26Þ

for a spin frequency f. In (26) u has been left a free parameter.

However, to obtain an upper bound on h, we can set u to its

maximum value as obtained from crust cracking considerations,

i.e., we put u ¼ umax. We then obtain

hðu ¼ umaxÞ ¼ 3:7 £ 10228 f

100 Hz

� �4
b

1025

� �
ð27Þ

for f , f u, and

hðu ¼ umaxÞ ¼ 1:8 £ 10228 f

100 Hz

� �2
b

1025

� �
ubreak

1023

� �
ð28Þ

for f . f u, where fu is the frequency at which umax ¼ 1:

f u ¼ 69 Hz
ubreak

1023

� �1=2

: ð29Þ

For spin frequencies close to and below this, our small-angle

approximation breaks down, so we have put u ¼ 1 for f , f u so as

to still obtain results correct to within an order of magnitude.

In Figs 2 and 3 we have plotted the maximum amplitude h for a

variety of neutron star parameters. The noise curves have been

taken from Owen & Sathyaprakash (1999). Note that a knee

appears in many of the signal curves. This knee corresponds to

f ¼ f u. Above this frequency the wobble angle is limited according
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to (24). We have assumed that the matched filtering can accumulate

signal only for a time of one year. The amplitudes are shown only

for frequencies less than a kilohertz, as stars rotating more rapidly

than this have not yet been observed. Fig. 2 plots h for the

parameters ubreak ¼ 1023, r ¼ 1 kpc and for three different values

of b: b ¼ 1025, b ¼ 1024 and b ¼ 1023. Recall that b ¼ 1025 is

the value expected for a canonical 1.4-M(, R ¼ 10 km neutron star,

while b ¼ 1023 would correspond to a lighter, larger star with a

thicker crust. In Fig. 3 plots h for b ¼ 1025 and breaking strains of

ubreak ¼ 1022; 1023 and 1024.

In making the above assumptions regarding matched filtering,

we have assumed that the wobble angle and spin frequency of the

star remain constant for the observation period of one year. In

practice, the wobble angle will decay significantly over this

interval (see Section 2.3) unless a sufficiently strong pumping

mechanism is active. However, the purpose of these figures is not to

model in detail any particular scenario – they are included simply

so that we might gain insight into how wave amplitudes depend

upon the rigidity and breaking strain parameters, and identify

parameters values capable of leading to detectable signals. These

figures say nothing about the distance to the nearest source, or, in

the case of burst-like sources, the event rate. Issues such as these

can be addressed only in the case of particular pumping

mechanisms. This will be carried out in Sections 5–8, where the

complicating effect of internal dissipation will also be included. In

short, Figs 2 and 3 represent absolute upper bounds on the wave

amplitude for a given spin frequency, crustal breaking strain and

deformation, but give no information about likely wave amplitudes

in nature.

With these qualifications in mind, we will note that these figures

show that for neutron stars with b * 1023, the u ¼ umax

gravitational wave signal is detectable by first-generation

interferometers for frequencies in excess of 100 Hz. More slowly

spinning sources produce steady gravitational wave signals which

are intrinsically too weak to be detected. Stars with b < 1024 are

potentially detectable by first-generation interferometers only for

frequencies close a 1 kHz. More realistically, stars with b < 1025

are potentially detectable by an Advanced LIGO interferometer at

frequencies over 100 Hz.

3.3 Detection strategy

The problem of determining source parameters from electromag-

netic observations of a freely precessing neutron star was examined

by Jones & Andersson (2001). The extraction of these parameters

in the case of a gravitational wave detection was examined by

Zimmermann & Szedenits (1979), who showed that measurement

of all four components of h given in equations (20)–(23) allows

extraction of the inclination angle i, the wobble angle u and the

quantity DId/r.

As was also noted by Zimmermann & Szedenits (1979), if this is

combined with an estimate of r a value for DId is obtained. This is

of considerable use: if the deformation is of Coulomb origin, the

equation DId ¼ 3Istarbe0/2 can be combined with equation-of-state

calculations of the rigidity parameter b to give the reference

oblateness e0. A value of e0 very different from the fluid oblateness

might then be a sign that the deformation DId is not due to crustal

strains.

Note, however, that if the wobble angle is very small, the above

two equations can be solved only for i and the product DIdu/r. This

is likely to be the case for the most rapidly spinning stars, whose

wobble angles are limited by fracture according to equation (24).

If the source is observed as a pulsar, it may be possible to obtain

additional information. Suppose that the electromagnetic pulse

originates from a dipole m inclined at an angle x to the deformation

axis. Then the motion of m is due to the combined rotation of nd

about J at ḟ and the motion of m about nd at ċ. As noted by

Zimmermann & Szedenits (1979), the electromagnetic pulse

frequency is then given by f em ¼ _fþ _c for u , x, while for u . x

we have f em ¼ _f.

In the case of Coulomb deformations of rapidly spinning stars

we would expect the u , x regime to apply. Then the difference

between electromagnetic and gravitational wave frequencies

would give ċ and, to leading order, equation (10) gives

DId ¼ Icrust
_c/f em: ð30Þ

If, in addition, an estimate of the distance of the pulsar were

available, the product ðDId/IcrustÞu/r could be decomposed into its

component parts.

The above remarks concerning frequency splitting suggest the

following strategy for gravitational wave observers. Suppose we

are searching for a precessional gravitational wave signal from a

star of known (average) electromagnetic pulse frequency f. Then

Figure 2. The maximum gravitational wave amplitude for Coulomb

deformations. The star is at a distance of 1 kpc, with ubreak ¼ 1023 and

b ¼ 1023, 1024, 1025. The matched filter has been assumed to accumulate

signal for an interval of one year. The noise curves have been taken from

Owen & Sathyaprakash (1999).

Figure 3. The maximum gravitational wave amplitude for Coulomb

deformations. The star is at a distance of 1 kpc, with b ¼ 1025 and

ubreak ¼ 1022, 1023, 1024. The noise curves are as indicated in Fig. 2.
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one matched filter should be used at that frequency to cover the

u . x case where there is no splitting between the gravitational and

electromagnetic signals. However, if splitting does occur, it will be

necessary to search at a rotational frequency Df ¼ fDId/Icrust above

this. For definiteness we will assume a Coulomb deformation to

give

Df ¼ 3 £ 1025 f

100 Hz

� �3
b

1025

� �
I/Icrust

10

� �
; ð31Þ

where equation (13) has been used.

We now wish to identify a frequency band in which to search for

the gravitational signal. This is easily done. Consider some

particular frequency, say 100 Hz. Then from Fig. 2 we see that even

for an Advanced LIGO, b values less than 1025 give signals too

weak to be detected. From the above formula this value of b

corresponds to Df ¼ 3 £ 1025 Hz. Therefore there is no point in

searching for signals at frequencies less than ð100þ 3 £ 1025ÞHz

(apart from the signal at f mentioned above). On the other hand, on

physical grounds the value b ¼ 1023 is surely an upper bound on

the rigidity parameter. This corresponds to Df ¼ 3 £ 1023 Hz.

Therefore there is no point in searching for signals at frequencies

greater than ð100þ 3 £ 1023ÞHz. In this way we identify a

frequency band in which to fruitfully search for the gravitational

signal. A year-long integration would require matched filters with a

3 £ 1028 Hz spacing. In this example this would require

approximately 105 templates.

The above argument attempts to identify the gravitational waves

at the inertial precession frequency ḟ. There will be radiation at 2ḟ

also. This can be searched for using templates at twice the

frequencies described above.

4 C L A S S I F I C AT I O N O F P U M P I N G

M E C H A N I S M S

It is useful to categorize pumping mechanisms according to the sort

of evolution they produce in the wobble angle. As discussed above,

the effect of a torque depends upon its projection into the reference

plane, which rotates around the star’s angular momentum vector at

a rate ḟ. This projection will depend upon the details of the

mechanism producing the torque, possibly leading to a compli-

cated evolution in the wobble angle. Nevertheless, we will find it

useful to define the four categories described below. We will define

tpump as a time-scale characterizing the strength of the pumping

torque. Its exact meaning will depend upon the nature of the

mechanism.

It is also useful to derive the following expressions for the wave

amplitude, written in terms of a time-scale rather than a frequency.

Equation (25) can be combined with equation (16) to give the wave

amplitude in terms of the gravitational alignment time-scale:

h ¼
5G

2c 3

Icrust

tg;u

� �1=2
u

r
: ð32Þ

This will be extremely useful when estimating wave amplitudes for

particular pumping mechanisms. Combining equation (32) with

equation (24) then gives an estimate of the maximum possible

wave amplitude at a given frequency and gravitational alignment

time-scale tg,u:

hmax ¼ 1:4 £ 10224 Icrust

1044 g cm2

� �1=2
103 yr

tg;u

� �1=2
1 kpc

r

� �
ð33Þ

for f , f u, and

hmax ¼ 6:7 £ 10225 Icrust

1044 g cm2

� �1=2
ubreak

1023

� �

�
100 Hz

f

� �2
103 yr

tg;u

� �1=2
1 kpc

r

� �
ð34Þ

for f . f u.

In a similar way, equations (25) and (19) can be combined to

give the wave amplitude in terms of the internal dissipation time-

scale td:

h ¼
2pG

c 4
Icrust

n _f

td

u

r
: ð35Þ

Setting u equal to its maximum value then gives

hmax ¼ 3:3 £ 10230 n

104

� � f

100 Hz

� �
Icrust

1044 g cm2

� �

�
103 yr

td

� �
1 kpc

r

� �
ð36Þ

for f , f u, and

hmax ¼ 1:6 £ 10230 n

104

� � ubreak

1023

� � 100 Hz

f

� �
Icrust

1044 g cm2

� �

�
103 yr

td

� �
1 kpc

r

� �
ð37Þ

for f . f u. Again, these formulae will be of use in estimating wave

amplitudes in later sections.

4.1 Oscillatory pumping

We will first consider the case where the torque does not remain fixed

relative to the reference plane, but instead rotates around it at some

frequency. In Sections 5 and 6 we will identify such torques that

rotate at the body-frame precessional frequency with respect to the

reference plane, i.e., with a frequency ċ. Specializing to this case, we

see that for half a precession period the wobble angle will increase,

but for the next half-cycle it will decrease. We will refer to this as

oscillatory pumping. It will produce a wobble angle that varies as

u ¼ uoscð1þ cos _ctÞ; ð38Þ

where uosc denotes the average value of u attained. To order-of-

magnitude accuracy, this will be given by

uosc ,
Pfp

tpump

,
Icrust

DId

1

_ftpump

; ð39Þ

where equation (10) has been used. The wave field is then

estimated by substituting (39) into (25) to give

h ,
2pG

c 4

Icrust

r
_f

1

tpump

: ð40Þ

Note that this is independent of the size of the deformation DId.

However, in the case of sufficiently small DId, the precession angle

as given by (39) will exceed umax. In such a case, equation (40)

represents an upper bound.

4.2 Exponential pumping

In subsequent sections we will find examples of torques which tend
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to increase the wobble angle at a rate proportional to the angle

itself, i.e., produce exponential pumping. Then

_u ¼ u
1

tpump

2
1

tg;u

2
1

td

� �
: ð41Þ

In general, these time-scales are all functions of frequency. In the

case where the frequency and therefore the time-scales are not

constant, the solution will be complex. However, in a constant

frequency system such as an accreting star at spin equilibrium, the

above equation leads to exponential solutions. We will consider

such a system.

Clearly, in order to calculate the wave amplitude due to such a

mechanism, we need to compare the three time-scales that appear

in (41). In order to simplify this problem, we will divide it into two

smaller ones. First, we will include only the pumping and

gravitational radiation reaction. This will lead to an upper bound on

h for stars free of internal dissipation. Then, we will include the

pumping and internal dissipation only. This will lead to an upper

bound on h for gravitational radiation reaction-free stars. Real stars

will be acted upon by both gravitational radiation reaction and

internal dissipation. Therefore, at a given frequency, the upper

bound on h for real stars will be less than the minimum of the two

separate bounds. In fact, we have already seen that in practice

internal dissipation is more effective than gravitational radiation

reaction in damping the wobble (Section 2.3). We will nevertheless

include gravitational radiation reaction in this section, partly to

quantify just how much weaker it is than internal damping, and

partly to be able to give an upper bound on the gravitational wave

amplitude that would apply even if the estimates of internal damping

strength in Section 2.3 are too large by many orders of magnitude.

We begin by neglecting the internal dissipation. From equation

(41) we see that u evolves exponentially, increasing when tg;u .

tpump and decreasing when the inequality is reversed. The wobble

angle will then either increase to its maximum value or decrease to

zero:

u ¼ umax for tg;u . tpump; and ð42Þ

u ¼ 0 for tg;u , tpump: ð43Þ

Substitution of (42) into (32) then gives an estimate of the wave

amplitude:

h ¼
5G

2c 3

Icrust

tg;u

� �1=2
umax

r
: ð44Þ

This is valid for tpump , tg;u, and so we obtain an upper bound on h

if we set these two time-scales equal:

hðtpump ¼ tg;uÞ ¼
5G

2c 3

Icrust

tpump

� �1=2
umax

r
: ð45Þ

Now consider the case where the gravitational radiation is

neglected. Then equations of the form of (42) and (43) apply again,

but with tg,u replaced by td. Substitution into (35) then gives the

estimate

h ¼
2pG

c 4

Icrust

r
_fn

umax

td

: ð46Þ

This is valid when tpump , td, and so an upper bound is obtained

when the time-scales are set equal:

hðtpump ¼ tdÞ ¼
2pG

c 4

Icrust

r
_fn

umax

tpump

: ð47Þ

4.3 Linear pumping

Now consider the case of a torque that is fixed with respect to the

reference plane. Such a torque would lead to a linear variation in

the wobble angle, i.e., linear pumping. In this case,

_u ¼
1

tpump

2 u
1

tg;u

2
1

td

� �
: ð48Þ

We will break this up into two separate problems as above.

When the internal dissipation is neglected, we see that there is an

equilibrium precession angle at which the effects of the two torques

balance:

u ¼
tg;u

tpump

: ð49Þ

Substitution into equation (32) then gives the following estimate

for the wave field:

h ¼
5G

2c 3
Icrust

� �1=2
1

r

t1=2
g;u

tpump

: ð50Þ

Strictly, this is an upper bound, as when tpump is decreased below

tg,u the precession angle as given in (49) becomes unphysically

large. More precisely, the above equation represents an estimate of

h for systems with tg;u/tpump , umax, but an upper bound for

systems where the inequality is reversed.

The analogous calculation for radiation reaction free systems

gives

u ¼
td

tpump

; ð51Þ

leading to the upper bound

hðtpump ¼ tdÞ ¼
2pG

c 4

Icrust

r
_f

n

tpump

: ð52Þ

Clearly, the exponential and linear pumping mechanisms are

very different. The exponential mechanism leads to precession

only when the pumping torques overcome the radiation reaction

and internal dissipation effects, i.e., either it gives wobble angles

limited by umax, or it gives no precession at all. On the other hand,

the linear pumping mechanism will always give a finite precession

angle, as indicated in equations (49) and (51). Also, exponential

pumping mechanisms cannot lead to precession in systems which

are originally not precessing, whereas linear pumping mechanisms

can. However, the upper bounds on h obtained via the two types of

pumping are similar. Comparing (45) with (50) and (47) with (52),

we see that the upper bounds differ only by a factor umax, which is

of order to unity for low frequencies.

4.4 Impulsive pumping

We will describe any process that acts to increase u on time-scales

much less than a precession period as an impulsive pumping

mechanism. For an isolated star the angular momentum during this

interval will be constant (apart from any negligible amount carried

away by a radiation field, unless the star ejects part of its mass!). It

therefore follows that the kinetic energy of the star must change.

On the other hand, if the impulse is brought about via an interaction

with another body, it is possible for only the kinetic energy to

change, or only the angular momentum, or both. Glitches in young

pulsars are of interest as candidates for isolated impulsive pumping

(Section 7), while near-body encounters in dense environments are
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of interest as candidates for non-isolated impulsive pumping

(Section 8).

5 AC C R E T I O N T O R Q U E S

Accretion torques are an obvious place to start when looking for

mechanisms to pump precession. Not only are they capable of

exciting wobble, but they can also maintain the spin frequency of

the system, leading to the possibility of long-lived, constant wave

amplitude sources. Indeed, accretion has already been investigated

as a means of powering gravitational wave emission via CFS-type

instabilities (Papaloizou & Pringle 1978; Wagoner 1984) and via

quadrupole moment asymmetries connected with crustal compo-

sition variations (Bildsten 1998).

The torque on the central star is the sum of two parts. The first is

simply the material torque, i.e., that due to the accretion of angular

momentum from matter detaching from the disc and falling on to

the star. The second torque is due to the coupling of the star’s

magnetic field with the disc. The net effect of these torques is to

spin-up slowly rotating stars, but to impose a maximum spin

frequency for fast stars where the accretion torque vanishes. It is

useful to construct an order-of-magnitude accretion spin-up time-

scale by considering the material torque at the magnetosphere

radius:

ta; _f < 1:34 £ 104 yr
f

1 Hz

� �
B

109 G

� �
_M

_ME

� �3
" #22=7

ð53Þ

where Ṁ and ME denote the actual and Eddington accretion rates

(Shapiro & Teukolsky 1983). Note, however, that this will be equal

to the spin-up time-scale only for slowly rotating stars. The

accretion torque will vanish when the corotation radius lies just

outside the inner disc edge. This limits the spin frequency of fast

stars:

f max < 526 Hz
B

109 G

� �26=7 _M

_ME

� �3=7

: ð54Þ

This can be combined with equation (53) to give a lower bound on

ta,ḟ for a given frequency and accretion rate:

ta; _f $ 1:7 £ 103 yr
f

1 Hz

� �4=3 _M

_ME

� �
: ð55Þ

If we assume that this torque has a significant component

perpendicular to the star’s angular momentum vector, then the

corresponding wobble pumping time-scale must be Icrust/I times

this (see equation 12):

ta;u $ 1:7 £ 103 yr
f

1 Hz

� �4=3 _M

_ME

� �
Icrust

I
: ð56Þ

We will make use of this when estimating maximum wave

amplitudes below.

Almost all analyses of accretion torques have assumed

axisymmetry, giving rise to either purely spin-up or spin-down

torques. However, precession pumping requires a torque with a

component orthogonal to the spin axis. It follows that if we wish to

find accretion torques capable of pumping precession, we need to

identify situations in which the torque itself would be non-

constant. Fortunately, we would expect this to be the case when

magnetospheric effects are taken into account. As pointed out by

Lamb et al. (1975), the accretion rate and therefore also the torque

depend upon the balance of gravitational, centrifugal and magnetic

forces. The torque is therefore a function of the plasma angular

velocity, stellar angular velocity and stellar magnetic moment

vectors. However, if the star is itself precessing, the relative

orientation of these vectors will be modulated. This in turn must

lead to a modulation of the accretion torque locked in phase with

the precession. It is precisely this sort of modulation that we would

expect to lead to a secular evolution in the wobble angle.

Lamb et al. (1975) demonstrated that such a modulation can be

effective in exciting large-amplitude precession of a rigid body,

with an excitation time-scale of the order of the spin-up time-scale,

i.e., of the order of ta,ḟ in equation (53). For our more realistic

stellar model this would correspond to an excitation on a time-scale

Icrust/I times shorter. A full description of the conditions under

which such pumping can occur would require a detailed

understanding of the accretion process. Such a description is still

not available.

To reinforce the potential complexity of this problem, the time

variation of each vector involved in this problem is summarized in

Table 1. Note that the vector ndisc describing the plane of the disc is

not well defined. Far from the central star, the disc is likely to be

planar. However, Vietri & Stella (1998) have argued that a non-

aligned dipole will tend to lift plasma out of the disc plane. In the

inner disc, viscosity will not be effective in preventing this out-of-

plane motion. The inner disc will then undergo a forced precession,

with its normal moving in a cone about the star’s angular

momentum.

A complete description of how this modulates the torque on the

star has not been attempted previously, and lies beyond the scope of

this paper. Nevertheless, it seems likely that at least part of the

Table 1. This table summarizes the temporal behaviour of the vectors of importance in the accretion
problem. The final column gives their rotation rate as viewed from the inertial frame. As discussed in the
text, the disc, particularly in its inner regions, may not be planar and stationary, so that ndisc below should
be regarded as an average disc orientation. Also note that the motion of m is rather complicated – it
moves on a cone of half-angle x about nd, while nd itself moves on a cone of half-angle u about J. These
two rotations combine to give the motion of m indicated. In this case the angular velocities are average
values.

Vector Description Motion Frequency

ndisc Normal to disc None 0
J Angular momentum of star None 0
V Angular velocity of star Cone of half-angle 3edu/2 about J ḟ
nd Axis of star’s deformation Cone of half-angle u about J ḟ
m Dipole axis Cone, jx 2 uj , half 2 angle , jxþ uj, _fþ _c for u , x,

about J ḟ for u . x
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torque will be locked in phase with the disc precession. This

torque would be most effective in exciting stellar free precession

if the inner disc rotated at a rate close to the stellar spin

frequency, or – more accurately – at the frequency ḟ. However,

for all sensible parameters the Lense–Thirring precession

frequency of the inner disc is much less than the star’s spin

frequency. This will lead to a rapid averaging of the effects of

the torque on the wobble angle. It therefore seems unlikely that

the forced precession of the inner disc plays a crucial role in

wobble pumping. We will simply note that the notion of a single

fixed disc orientation is flawed. The vector ndisc in Table 1

should be regarded as an average orientation, which will describe

well the outer part of the disc, but not necessarily the inner part.

Given that the accretion torque may be sensitive to the relative

orientation of each possible pair of vectors in Table 1, the full

behaviour is complex, with the torque being modulated on a

number of time-scales.

To gain a little more insight, consider the toy model where the

torque on the star always points along ndisc, but has a magnitude

that monotonically increases with the angle between ndisc and m.

Then, by considering the relative orientation of the vectors in

Table 1, it is straightforward to find a precessional phase at which

the torque, when averaged over several spin periods, pumps the

precession. This occurs even when the wobble angle is initially

zero. However, half a precession period (i.e., p/ _cÞ later the relative

positions of m, nd and J have changed. Then, again when averaged

over several spin periods, it is found that the wobble is either

damped (if u , xÞ or pumped (when u . xÞ, but this pumping is

not as strong as before. This is an example of an oscillatory torque.

However, the monotonicity guarantees that the pumping over one

half of a precessional phase exceeds the damping over the next,

giving rise to a secular increase in u which depends on the values of

u and x. In the limit of small wobble angles, this increase is

proportional to u, giving exponential pumping. Thus, even this

simple model reproduces a number of the features identified in the

general arguments above.

A more sophisticated model is provided by Wang & Robnik

(1982). Here, the torque on the star is modelled using a

magnetospheric interaction. The field outside of the star is the

sum of the usual dipole field plus an additional field due to

currents induced in the disc. This additional field is supposed to

be toroidal with respect to the symmetry axis of the disc, and

to be significant only near the magnetic poles of the star. Wang

& Robnik then calculated the torque due to the interaction

between this toroidal field and the currents internal to the star.

They found that the torque on the star was qualitatively of the

same form as the torque that will be considered in Section 6

when we look at electromagnetic torques on isolated pulsars.

As will be shown in detail, such a torque leads to oscillatory

pumping, and also to a secular evolution in u, which for small

wobble angles is exponential in nature. Again, a simple model

has reproduced a number of the features identified in the

general arguments.

Of course, the rather general frequency counting arguments

above tell us little about the magnitude of the modulation. Neither

do they say whether the precession is pumped or damped.

Resolution of such issues requires a detailed model of how the

torque depends on the angles involved. Nevertheless, they show

that the pumping mechanism could apply in accreting systems. We

will now consider the particular cases of exponential, linear and

impulsive pumping, and investigate the gravitational wave fields

they would produce.

5.1 Exponential accretion torques

In this case, equation (41) applies, with tpump ¼ ta;u. As described

in Section 4.2, we will divide our analysis into two parts – one

where internal dissipation is ignored, and the other where

gravitational radiation reaction is ignored.

Begin by neglecting internal dissipation. Then arguments

identical to those of Section 4.2, save for the replacement of

tpump with ta,u, lead to the upper bounds

hðta ¼ tg;uÞ ¼ 1:6 £ 10225 1 kpc

r

� �
100 Hz

f

� �2=3 _M

_ME

� �1=2

ð57Þ

for f , f u, and

hðta ¼ tg;uÞ ¼ 7:4 £ 10226 ubreak

1023

� � 1 kpc

r

� �
100 Hz

f

� �8=3

£
_M

_ME

� �1=2

ð58Þ

for f . f u.

Now neglect gravitational radiation reaction. This leads to the

upper bounds

hðta ¼ tdÞ ¼ 4:3 £ 10229 1 kpc

r

� �
100 Hz

f

� �1=3
n

107

� � _M

_ME

� �
ð59Þ

for f , f u, and

hðta ¼ tdÞ ¼ 2:0 £ 10229 ubreak

1023

� � 1 kpc

r

� �
100 Hz

f

� �7=3

£
n

107

� � _M

_ME

� �
ð60Þ

for f . f u.

These curves are plotted in Fig. 4, with the values of ubreak, r, Ṁ

and n indicated by the above parameterizations. As can be seen, at

all frequencies the signal is limited by the internal dissipation,

despite the high value of n assumed (three orders of magnitude

larger than the largest value estimated by Alpar & Sauls 1988). We

therefore see that the wave amplitude due to exponential pumping

Figure 4. The maximum wave amplitude for an accreting star when secular

accretion torques act. We have assumed ubreak ¼ 1023, r ¼ 1 kpc, and

accretion at the Eddington rate. The curve hðta ¼ tg;uÞ is the bound from

balancing gravitational and accretion torques. The curve hðta ¼ tdÞ is the

bound from balancing internal dissipation and accretion torques, with

n ¼ 107.
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by accretion torques is almost certainly limited to undetectable

values by internal dissipation. We will not consider this mechanism

any further.

5.2 Linear accretion torques

In this case, equation (48) applies, with tpump ¼ ta;u. This will lead

to upper bounds on h that coincide with the low-frequency portions

of the curves in Fig. 4. Therefore internal dissipation still limits the

amplitude to undetectable values.

5.3 Impulsive accretion torques

We will now discuss a pumping mechanism that will apply even in

the absence of the gating described previously. Suppose that the

accreting plasma is clumped, and is not entirely confined to the

plane perpendicular to the star’s rotation axis. Various instabilities

are likely to lead to such a situation, as discussed in Lamb et al.

(1985). Indeed, the clumping of accreting plasma is a key

ingredient of the ‘beat-frequency’ models. These ascribe the quasi-

periodic oscillations observed in many X-ray systems to a

variability in the accretion rate. This variability is due to a beating

between the frequency of the innermost stable orbit and the star’s

spin frequency. It therefore seems likely that the phenomenon of

clumping in accreting systems is generic.

Denote by Dt1 the (average) time-scale in which a clump

transfers its angular momentum to the star. The wobble angle will

change impulsively due to the accretion of such clumps, provided

that the transfer of angular momentum takes place over a narrow

range of rotational phase, i.e., provided that Dt1 ! P, where P

denotes the star’s spin period. If, in addition, the clumps arrive at

random time intervals of average Dt2, then, provided that

Pfp ! Dt2, a random walk in u will occur, even though no gating

occurs. In the absence of gravitational radiation reaction and

internal damping the wobble angle will then grow as t 1/2. This is

clearly a less effective pumping mechanism than the linear one

considered previously, and so it will not lead to an interesting

gravitational wave amplitude.

6 E L E C T R O M AG N E T I C T O R Q U E S

Models of the electromagnetic torque on a spinning neutron star

have split into two classes. The first is the Goldreich & Julian

(1969) model where a dipolar magnetic field embedded in the star

generates a strong electric field at the stellar surface which rips out

charged particles. These then propagate along the magnetic field

lines, forming a magnetosphere. This applies even when the dipole

and rotation axes coincide. The radiation the charged particles emit

then carries energy away from the star, implying the existence of a

braking torque.

The second class does not have a magnetosphere, and instead

models the star as a perfect conductor with a magnetic dipole

embedded, surrounded by vacuum (Ostriker & Gunn 1969). If the

dipole is inclined to the rotation axis, electromagnetic radiation at

the spin frequency is emitted. This provides the braking torque.

Such models are clearly oversimplified. However, the magneto-

sphere models are so complicated that very little progress has been

made in understanding their details (Michel 1991); questions such

as how the electromagnetic torque depends upon the angle between

the spin axis and dipole axis remain unanswered. Therefore, in this

section we will look at a magnetosphere-free model in which the

torque has been calculated as a function of the spin and dipole

moment vectors. Even though the details of such a model may

prove to be incorrect, it is likely that it will reproduce qualitatively

many features of real stars, and in particular identify the important

time-scales involved.

Most discussions of magnetosphere-free torques are based on

the model of Deutsch (1955), who considered a perfectly

conducting sharply bounded sphere, rigidly rotating in a vacuum.

The internal magnetic field was assumed to be symmetric about

some axis inclined to the axis of rotation. The external magnetic

and electric fields were then calculated. These fields were then used

by Davis & Goldstein (1970) and Michel & Goldwire (1970) to

calculate the torque on the star. These authors investigated the

effect of this torque on spherical stars. They were able to show that

the torque caused the magnetic dipole to align with the rotation

axis on the electromagnetic spin-down time-scale.

Goldreich (1970) extended the analysis to examine the effect of

torques on precessing bodies. He showed that when the free

precession period was less than the electromagnetic spin-down

time-scale, the non-sphericity completely altered the body’s

evolution – the magnetic moment no longer aligns with the spin

axis. Instead, the torque serves to either pump or damp any free

precession the body may be undergoing, depending upon whether

the angle x between the dipole moment and the body’s deformation

axis is greater or smaller than sin21ð2=3Þ1=2 < 558, respectively. We

will refer to this process as the Goldreich mechanism. This is very

different from the gravitational radiation reaction case, in which

the wobble motion is always damped (Cutler & Jones 2000).

The issue of calculating the electromagnetic torque was taken up

again by Good & Ng (1985). Much of their analysis was concerned

with Goldreich–Julian type magnetosphere torques. However, in

the course of their calculation they found an error in the Deutsch

fields. When this is taken into account, the Deutsch vacuum torque

T is given by:

T ; T1 þ T2 ¼
2V2

3c 3
ðV £ mÞ £ m 2

1

5Rc 2
ðV·mÞðV £ mÞ; ð61Þ

where V denotes the angular velocity, R the stellar radius, and m

the dipole moment. (The only difference between this and the

torque as calculated from the original Deutsch paper is a factor of

21=5 in T2.)

The first term, T1, has components both parallel and

perpendicular to the spin axis, and scales as V3. It is known as a

non-anomalous torque. It causes the energy and angular

momentum of the star to decrease. Its component parallel to J is

responsible for spin-down, while its component perpendicular to J

will bring about a secular change in the wobble angle.

The second term, T2, is exactly perpendicular to the angular

velocity, and scales as V2. It is known as an anomalous torque, and

is caused by the near-zone fields. It does not lead to a loss in energy

or angular momentum. This torque does affect the wobble angle

and spin rate of a freely precessing star, but its effects average to

zero over one free precession period.

Following equation (61), we will define two time-scales to

characterize the torque. The first corresponds to T1 and is simply

the spin-down time-scale f /_f ¼ 3Ic 3/2R 6 _f 2B 2:

te ¼ 3:64 £ 103 yr
1012 G

B

� �2
100 Hz

f

� �2
1

sin2x

� �
: ð62Þ

The corresponding time-scale on which this torque would evolve

the wobble angle is Icrust/I shorter than this. In the above formula,

and those that follow, we will place the geometric factors that
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follow from the particular form of vector and scalar products of

equation (61) in square brackets. In this way it will be clear what

conclusions can be drawn if only the approximate time-scales of

the model hold, i.e., if in more realistic magnetosphere models the

above geometric factors were found to be incorrect. Such a

situation would correspond to replacing the term in square brackets

with some other geometric factor.

The second time-scale corresponds to T2 and we define as

t̂e ¼ 76:2 yr
1012 G

B

� �2
100 Hz

f

� �
1

sin2x

� �
: ð63Þ

It is a factor VR/c shorter than te. Again, the corresponding time-

scale on which this torque would evolve the wobble angle is Icrust/I

shorter than this.

Thus the effects of the two torque terms are qualitatively

different. The term T1 results in a secular variation in the free

precession angle and spin rate on the electromagnetic spin-down

time-scale. The term T2 produces no such secular variation.

Instead, it causes oscillations in the spin frequency and wobble

angle on the (much shorter) free precession time-scale. We will

refer to this as a non-secular mechanism. We will examine both

torques in terms of their effect on gravitational wave generation

below.

6.1 Non-secular electromagnetic torques

The torque T2 has received very little attention previously,

undoubtedly because it does not cause any secular variation in the

star’s motion. However, as can be deduced from equation (61), its

magnitude and orientation with respect to the reference plane vary

over one precession period, as m rotates with respect to this plane.

Recently, Melatos (1999) made use of this torque to model spin-

down irregularities in magnetars, modelled as rigid bodies. He

considered the case where the time-scale t̂e was of similar duration

to the free precession period: t̂e , Pfp. This similarity of time-

scales gives a rather irregular or ‘bumpy’ spin-down rate, which

Melatos calculated numerically. We will take a somewhat simpler

view – when t̂e is longer than Pfp, the effect of the torque will be

simply to cause a smooth variation of free precession parameters

(e.g., u and ḟ), calculable using perturbation theory. Even when the

two time-scales become comparable we would expect our results to

apply to order-of-magnitude accuracy.

Substitution of T2 into (12) shows that for small wobble angles,

u varies sinusoidally, giving oscillatory pumping of the form

discussed previously. An estimate of the magnitude of this angle

follows from the time-scale t̂e described above:

uns ,
Pfp

t̂eIcrust/I
: ð64Þ

From equation (40) this leads to a wave field

h ,
Gp

2c 4

I0

r
_f 2 1

t̂e

: ð65Þ

This gives

h ¼ 1:8 £ 10228 1 kpc

r

� �
1 yr

te

� �
3

5p

1

tan2x

� �
; ð66Þ

where we have parameterized in terms of te rather than t̂e. As

above, the geometric factor deduced from the full perturbative

calculation has been separated from the rest of the formula.

Clearly, this is extremely weak. The amplitude increases as the

electromagnetic spin-down time-scale decreases, so we should

focus attention on fast spinning strongly magnetized stars, i.e.,

stars very soon after birth in supernovae. Such stars will be hot,

with temperatures of order 1011 K immediately after birth.

However, this mechanism can become active only when the

outer phase has solidified to form a crust, and so we can apply

equation (66) only to stars which cool to the melting temperature in

a time less than te.

As described in Haensel (1997), the crust will not have a single

well-defined melting temperature, as the deeper parts (with density

,1013 g cm2) will melt at temperatures just under 1010 K, while the

outer crust (with density ,1011 g cm2) will melt at temperatures

just above 109 K. There is therefore some ambiguity in what to take

as an average melting temperature, with a corresponding ambiguity

in the time-scale for crust formation. For the range of temperature

identified, an upper bound would be one year, with a lower bound

much shorter than this (Haensel 1997; Shapiro & Teukolsky 1983).

If the solidification time-scale is indeed of order one year,

equation (66) then leads to the tiny signal of order 10229 for a star

born at the Galactic Centre. To be detectable over a one-year

integration, the geometric factor would have to exceed 102,

corresponding to very small dipole inclination angles, x , 28.

If the star’s outer layers were to cool more rapidly than this, we

can consider the effective amplitude found by multiplying the wave

amplitude by the square root of the number of revolutions

performed in one electromagnetic braking time-scale:

heff ¼ 2:5 £ 10226 1 kpc

r

� �

�
1 yr

te

� �1=2
f

100 Hz

� �1=2
3

5p

1

tan2x

� �
: ð67Þ

Even with fast (less than one-year) cooling, a star born at the

Galactic centre remains undetectable unless the geometric factor

amplifies the signal. A dipole inclination of 58 gives an amplifi-

cation of 25. At 100 Hz the signal is detectable for te ¼ 1 month,

and a polar magnetic field of 2 £ 1015 G. Such an event could

correspond to the birth of a magnetar. However, the event rate for

such an occurrence is very low – surely less than one a century, so

that the probability of such a source being born during the

operational lifetime of Advanced LIGO is small.

The torque T2 is due to the near-zone fields and does not lead to

energy being radiated to infinity. Therefore it is conceivable that it

may continue to act in an accreting system. In this case the spin

frequency would be maintained by the accretion torque. To obtain

an upper bound on the wave field at a given frequency, set te equal

to its minimum value as given by combining (54) and (62):

te ¼ 3:4 £ 107 yr
f

100 Hz

� �1=3 _M

_ME

� �21

: ð68Þ

Substituting this into equation (66) gives a maximum wave

amplitude of

hmaxð f Þ ¼ 2:4 £ 10236 1 kpc

r

� �
100 Hz

f

� �1=3 _M

_ME

� �
: ð69Þ

This is tiny even in comparison to the wave amplitudes from

isolated stars. This is because in accreting systems the two factors

which give large wave amplitudes – high spin frequency and high

polar magnetic field strength – compete. Highly magnetized stars

have large Alfvén radii and therefore low equilibrium spin rates.

To sum up, the non-secular electromagnetic torque does not
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seem to be a good pumping mechanism for gravitational wave

generation. Isolated stars at the Galactic centre with high spin

frequencies and large magnetic field strengths can produce

detectable signals if the geometric factors which enter the

calculation are favourable. However, if born in supernovae, their

rapid spin-down rates would require extremely fast (less than one-

year) cooling of the outer phases of the star. Accreting stars where

this near-zone torque continues to act produce even smaller

gravitational wave signals, as the requirements of high spin

frequency and high magnetic field strength oppose.

6.2 Secular electromagnetic torques

Having investigated the non-secular effect of electromagnetic

torques on gravitational wave generation, we will now consider the

possibility that such torques may pump precession in a secular way.

Goldreich (1970) demonstrated that the torque T1 of equation (61)

does indeed lead to such evolution for a rigid body. This

generalizes at once to our elastic shell/fluid core model. Substi-

tution of T1 into equations (11) and (12) leads to a set of two

coupled differential equations connecting ḟ and u. Provided that

the free precession period is less than the spin-down time-scale, we

can average over a free precession period to give:

€f ¼ 2a _f 3 sin2x; ð70Þ

_u ¼
I

Icrust

a _f 2u
3

2
sin2x 2 1

� �
; ð71Þ

where

a ¼
2m 2

3Ic 3
: ð72Þ

(Small terms proportional to DId/Icrust and u 2 have been

neglected.) Then the spin-down follows the usual power law:

_f ¼ _f0 1þ
2 sin2xt

te

� �21=2

; ð73Þ

where te is defined in equation (62). The wobble angle evolves

according to

u ¼ u0 1þ
2 sin2xt

te

� �l

; ð74Þ

where

l ¼
I

Icrust

3
2

sin2x 2 1

2 sin2x
: ð75Þ

As can be seen, u increases or decreases depending upon the sign of
3
2

sin2x 2 1, and increases most rapidly for x ¼ 908, in which case

uðx ¼ 908Þ ¼ u0 1þ
2t

te

� �I/4Icrust

: ð76Þ

In reality, gravitational radiation reaction and internal dissipa-

tion will act on the spinning down star also, and so we should

include their effects. Then equations (70) and (71) acquire extra

terms. The gravitational spin-down of equation is added to (70),

while the gravitational alignment of equation (16) is added to (71).

The internal dissipation alignment rate corresponding to equation

(19) is added to (71).

We will present the x ¼ 908 results where the electromagnetic

pumping is greatest:

€f ¼ 2a _f 3 2 b _f 5u 2; ð77Þ

_u ¼
1

2

I

Icrust

a _f 2u 2 b
I

Icrust

_f 4u 2
DId

Icrust

_f

2pn
u; ð78Þ

where

b ¼
2G

5c 5I
DI2

d: ð79Þ

The terms proportional to a are due to electromagnetic torques,

those proportional to b to gravitational torques, and the term

proportional to n 21 describes internal damping. In terms of time-

scales, equation (78) would be written

_u ¼ u
1

te;u

2
1

tg;u

2
1

td

� �
; ð80Þ

where for convenience we have introduced the electromagnetic

wobble pumping time-scale

te;u ¼ 2te

Icrust

I
: ð81Þ

Note that the time-scales in this problem are functions of the

decreasing frequency, so this equation will generally not have

simple exponential solutions.

We will apply this formalism to a young rapidly spinning-down

neutron star. Its initial wobble may be due to glitches arising from

the rapid spin-down (Section 7), or due to some other process. We

will not concern ourselves with this issue here. We will simply

examine the evolution of the precession angle, assuming that the

Goldreich mechanism acts.

Fortunately, it is possible to simplify the above equations

somewhat. First, the gravitational radiation reaction time-scale for

spin-down is much longer than for gravitational alignment, so in

any situation where the time-scales in (80) are similar the

gravitational spin-down term is negligible, i.e., the last term of (77)

may be neglected. Also, the damping due to gravitational radiation

reaction will be much weaker than the damping due to internal

dissipation. Then the second term of (78) may be neglected.

For such a star the evolution in ḟ is driven only by the

electromagnetic torque and equation (73) applies. The evolution in

u is more complex. Integration of (78) depends on the variation of

DId with the frequency. We will consider the case of Coulomb

deformations, and assume DId / _f 2 (i.e., that the crust is relaxed).

We then find

u ¼ u0 1þ
2t

te

� �I/4Icrust

exp
te

6td

1þ
2t

te

� �21=2

21

" #( )
: ð82Þ

We can now build up a picture of the evolution of a star which is

acted upon by a secular electromagnetic torque of this form. The

scaling of the time-scales with frequency are crucial: td /

1=DId
_f/ 1/ _f 3; while te / 1/ _f 2. If the star is born spinning

sufficiently fast, the steeper dependence of td on frequency will

give td ! te, and the above equation reduces to

u < u0 exp 2
t

td

� �
: ð83Þ

As the star continues to spin down, the two time-scales become

comparable, and eventually u will begin to increase. At late times

equation (6.2) reduces to

u < u0 exp 2
te

td

� �� �
1þ

2t

te

� �I/4Icrust

: ð84Þ

This is of the same form as (76), save for the extra exponential

factor. This factor can be interpreted as the extent to which the

wobble was damped early in the life of the star. An example of this
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behaviour is shown in Fig. 5. Time is measured in units of te, and

we have chosen td ¼ 0:13te. An example of such a star where

Coulomb forces provide the distortion could have b ¼ 1025,

Icrust/I ¼ 0:1, B ¼ 1013 G and an initial spin frequency of 200 Hz.

Then te ¼ 9 yr. The initial exponential decrease in u, on a time-

scale of approximately one year, is clearly seen. Of course, this

neglects the possibility that a CFS-type instability (such as an

r-mode) might rapidly brake the star’s rotation (Andersson &

Kokkotas 2001).

In this way, electromagnetic radiation reaction could provide a

way of setting young neutron stars into free precession. Given

some initial non-zero wobble angle and the condition te;u , td, the

wobble angle increases. Of course, this increase will end when u

reaches the maximum value as set by the crustal breaking stress.

From that point on, the wobble angle will remain fixed at its

maximum value, while the spin frequency continues to decrease

according to equation (73). The gravitational wave amplitude is

proportional to DIdḟ
2. Given our assumption DId / _f 2, this leads

to a wave amplitude proportional to ḟ 4, which in turn evolves as

ð1þ 2t/teÞ
22. In other words, for all but the earliest stages of

evolution the gravitational wave amplitude decreases steadily with

time – we have been able to maintain a non-zero wobble angle

only at the expense of introducing a powerful spin-down torque.

The gravitational wave amplitude decreases on a time-scale of

order te. In Section 7 we will look at the wave field due to a

population of young unmagnetized isolated stars, set into free

precession at (or very soon after) birth, whose precession angles

then decay on the internal damping time-scale td. Given that the

wave field of the magnetized stars considered in this section decays

on the time-scale te;u , td, the magnetized stars are not as easily

detectable, and so we will not pursue them further. Rather, in

Section 7 we will consider in detail the signal strength and

population statistics of young unmagnetized stars, and find that for

realistic values of the damping parameter n, detection of such a

population is not likely.

To summarize, this non-secular electromagnetic pumping can

increase the wobble angle of an isolated star. However, once the

wobble angle has increased to its maximum value, the associated

spin-down torques dominate the evolution in the wave signal, with

the result that the amplitude decreases on the electromagnetic spin-

down time-scale.

This motivates us to consider the possibility that secular

electromagnetic pumping remains active even in an accreting

system: the accretion torque could then maintain the star’s spin

frequency, while the electromagnetic torque maintains the free

precession. It is more difficult to justify this combining of accretion

and electromagnetic torques than in the case of the non-secular

electromagnetic torque, as a secular variation in u changes the

energy and angular momentum of the star, and so must correspond

to fluxes of energy and angular momentum to infinity. Certainly it

is clear that the exact form of the torque T1 will no longer apply, as

its spin-down part at least will be suppressed by the accretion

environment. We will therefore dispense with the details of the

above, i.e., the x and numerical factors, and will assume that the

star is in spin equilibrium, as described by standard accretion

theory. Then the star is modelled by

_u ¼ u
1

te

2
1

tg;u

2
1

td

� �
; ð85Þ

€f ¼ 0: ð86Þ

The time-scales in (85) are constant by virtue of (86), and so the

solution will be exponential in form. However, we now have to

include the details of the accretion spin-up torque, the electro-

magnetic pumping torque, and internal dissipation. In fact, it is

possible to combine formulae describing these three phenomena to

obtain an upper bound on the gravitational wave signal,

independent of the mechanism producing the deformation. First,

we can combine equation (62) for the electromagnetic spin-down

time with equation (54), which gives the maximum spin frequency

of a star with a given magnetic fields strength and a given accretion

rate. This provides the lower bound on te given by equation (68).

However, for the Goldreich mechanism to be operative, we must

have te;u ¼ 2teIcrust/I , td. The above equation can then be used

to give a lower bound on td, at a given spin frequency, accretion

rate and value of Icrust/I. However, td / Icrust/DId, and so we obtain

an upper bound on DId. This immediately become an upper bound

on the gravitational wave amplitude. Carrying out the arithmetic,

we find:

hðte ¼ tdÞ ¼ 5:0 £ 10231
_M

_ME

� �
f

100 Hz

� �2=3
n

107

� � 1 kpc

r

� �
ð87Þ

for f , f u, and

hðte ¼ tdÞ ¼ 2:4 £ 10231 ubreak

1023

� � _M

_ME

� �
100 Hz

f

� �4=3

£
n

107

� � 1 kpc

r

� �
ð88Þ

for f . f u. This is a tiny amplitude. Even for n ¼ 107, it reaches

a maximum of only 10230, at a frequency of 69 Hz for the values

of ubreak chosen. Therefore the gravitational wave amplitude of

accreting stars acted upon by electromagnetic torques of this form

is limited to uninteresting values by internal dissipation.

To conclude, secular electromagnetic torques are not likely to

lead to detectable levels of gravitational radiation. In the case of

isolated stars the torque may be able to increase an initially small

wobble angle to its maximum value, but only at the expense of

introducing a strong spin-down torque. Even if this part of the

torque were to remain active in accreting stars, the wave

amplitudes are uninteresting. The bound on h obtained by

considering the competition between the electromagnetic torque

Figure 5. The evolution in the wobble angle u under the action of combined

internal dissipation and electromagnetic torques. We have put

te ¼ 0:13 £ tg;u. At early times the internal dissipation dominates and u

decreases exponentially. At later times the electromagnetic torque

dominates and u increases as ð1þ 2t/teÞ
I/4Icrust .
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and the internal dissipation time-scale leads to a bound on h

much lower than even the Advanced LIGO sensitivity. We will

therefore not consider the effects of electromagnetic torques any

further.

7 N ATA L P R E C E S S I O N A N D G L I T C H E S

Given their violent birth in supernovae, it is tempting to examine

the possibility that neutron stars are set into precession when born.

As discussed in Section 6.1, the high temperatures generated by the

implosion will lead to entirely fluid stars. Only when the outer

layers have cooled will a solid crust form. It is possible that when

the crust is in the process of solidifying a substantial excitation of a

mode of oscillation of the fluid exists. This excitation could simply

be due to the supernova explosion itself, or could be due to a CFS-

type instability. Such a scenario has already been investigated in

the context of r-modes, where the crust formation was a hindrance

to gravitational wave emission (Andersson et al. 2000; Lindblom,

Owen & Ushomirsky 2000). The exact outcome is not clear,

particularly as the crust will not solidify at all points simul-

taneously, but will form first where the fluid velocity is smallest.

Given the complexity of the process, the possibility of the crust/

fluid core system being created in a precessional state cannot be

ruled out.

Even if the star has settled down into an axisymmetric

configuration at the time of crust solidification, it is possible that it

might be set into free precession soon after. As noted by Lyne

(1996), the phenomenon of glitching – the sudden increase in spin

frequency of a pulsar – is most common in young pulsars. This

phenomenon certainly requires a solid crust. Therefore a young

neutron star that has cooled sufficiently will begin to glitch. Also,

some theories of glitching associate the sudden change in spin

frequency with a fracture in the crustal structure (see Ruderman

1976, 1991a,b and Link, Franco & Epstein 1998 for details). If this

change results in a shift in the principal axis of the moment of

inertia tensor, the star will precess (Pines & Shaham 1973a,b; Link

et al. 1998). In this way it is possible that stars may acquire a

precessional motion very soon after birth.

We therefore wish to investigate the gravitational wave

background due to a population of young spinning-down neutron

stars that were set into precession at, or soon after, birth. We will

describe this as natal precession. Although we have identified fluid

modes and glitches as possible ways of producing this natal

precession, the following analysis would apply regardless of the

source of the wobble.

7.1 Gravitational wave amplitudes

We will not include any pumping mechanisms in our analysis, so

that the wobble angle simply decays under the combined influence

of internal dissipation and gravitational radiation reaction. Also,

we will begin by considering stars for which electromagnetic spin-

down torques are negligible. We would then have

_u ¼ 2u
1

tg;u

2
1

td

� �
; 2

u

t
: ð89Þ

If we set the initial wobble angle equal to its maximum value, we

have

uðtÞ ¼ umax exp 2
t

t

� �
ð90Þ

for t . 0, and zero for t , 0.

In order to gain insight into the detectability of the gravitational

wave field due to such a source, we shall assume that a matched

filter can accumulate signal only for an interval t or for an interval

of one year, whichever is shorter. Figs 6 and 7 show the effective

amplitude for a star deformed by crustal Coulomb forces, with a

strain angle ubreak ¼ 1023, at a distance of 1 kpc. Each figure plots

h for three different values of the rigidity parameter: b ¼ 1023,

1024 and 1025. We have assumed a reference oblateness equal to

that of a rotating fluid, i.e., e0 ¼ eV, so that DId ¼ 3IstarbeV/2. In

Fig. 6, only the gravitational radiation reaction term of equation

(89) is included, i.e., this is the n ! 1 limit. Fig. 7 has n ¼ 104,

which is the upper bound on n based on the arguments of Alpar &

Sauls (1988). This level of damping reduces the signal significantly

as compared to Fig. 6 for frequencies in excess of 100 Hz. For

example, a b ¼ 1023 star is now barely detectably by a first-

generation interferometer, while the more plausible b ¼ 1025 star

is now barely detectable by an Advanced LIGO.

Figure 6. The effective amplitude from an isolated star which initially

precesses at its maximum wobble angle with damping due to gravitational

radiation reaction only. We have put ubreak ¼ 1023 and r ¼ 1 kpc, and have

assumed that the matched filter accumulates signal for an interval t defined

in equation (89) or for an interval of one year, whichever is shorter. The

deformation is due to Coulomb forces, with rigidity parameters b ¼ 1023,

1024 and 1025 as indicated. The knee that appears on the b ¼ 1023 curve is

due to the gravitational radiation reaction time-scale falling to below one

year at high rotation rate, limiting the signal accumulated by a matched

filter.

Figure 7. The effective amplitude from an isolated star with the same

parameters and assumptions as in Fig. 6, except that now n ¼ 104. This

corresponds to the upper limit on n as estimated by Alpar & Sauls (1988).
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7.2 Statistical arguments

Such plots as these are useful, as they show how the strength of the

internal damping affects the strength of the gravitational wave

signal from an isolated star. However, in order to decide whether

such sources are of interest, it is necessary to consider the related

issues of their event rate and distance from the Earth. To do this, we

need to consider the statistics of neutron star births.

The analogous problem of the gravitational signals due to a

population of young non-precessing triaxial neutron stars spinning

down due to gravitational wave emission has been considered by

Blandford, as reported in Thorne (1987). Blandford made use of

the following argument. Consider a source born in a supernova

explosion that is spinning down on a time-scale t. Then there will

be t/DtSN such sources with age t or younger in the Galaxy, where

DtSN is the interval between Galactic supernovae. Blandford then

modelled the Galaxy as a flat disc of radius R, which allowed him

to estimate the distance to the nearest such source. He then

combined this result with gravitational spin-down and wave

amplitude formulae from the quadrupole formalism to show that

the gravitational signal arriving at Earth from the nearest such

source is proportional to
ffiffiffiffiffiffiffiffiffiffi
DtSN

p
and is independent of the source’s

frequency or triaxial ellipticity.

We wish to make the analogous argument for a population of

young isolated precessing neutron stars. We will follow Blandford

and consider stars where electromagnetic torques are not important.

We have already shown in Section 6.2 that electromagnetic torques

can, if the Goldreich pumping mechanism is active, cause young

neutron stars to be set into free precession, but only at the cost of

introducing a powerful spin-down torque, and so a population

of unmagnetized stars is probably more easily detectable than a

population of magnetized ones.

The relevant time-scale t on which the gravitational wave signal

decreases is no longer the gravitational spin-down time-scale, but is

instead the free precession alignment time-scale, dominated in

almost all physically plausible scenarios by internal dissipation.

This means that Blandford’s triaxial result where h is a function of

DtSN only no longer holds.

We will model the Galaxy as having a radius R and thickness D,

giving a volume of order R 2D. This contains t/DtSN stars of age t

or younger. The average separation of this population of young

stars is then ðDtSNR 2D/tÞ1=3. Explicitly,

Dr ¼ 1:4 kpc
DtSN

30 yr

� �1=3
103 yr

t

� �1=3

; ð91Þ

where we have put R ¼ 10 kpc and D ¼ 1 kpc. Of course, a more

accurate model would take into account the rate of star formation

as a function of Galactic position, with different rates applying in

the central bulge and spiral arms, for instance. Nevertheless,

equation (91) represents a useful first approximation.

Equations (36) and (37) give the wave amplitude of a precessing

star in terms of r,f and td. We can then set r equal to Dr as given in

equation (91). The wave amplitude thus obtained will, subject to

statistical variation, be the field at Earth due to the closest source of

age td or less. In full:

h ¼ 2:4 £ 10230 n

104

f

100 Hz

� �4
30 yr

DtSN

� �1=3
103 yr

t

� �2=3

ð92Þ

for f , f u, and

h ¼ 1:1 £ 10230 ubreak

1023

� � 100 Hz

f

� �
30 yr

DtSN

� �1=3
103 yr

t

� �2=3

ð93Þ

for f . f u. We are considering stars with t in excess of 30 yr, so

these wave amplitudes can be compared against the noise curves

for 1-yr matched filter integrations, e.g., the noise curves of Fig. 4.

As can be seen, signals of h ¼ 10227 lie above the Advanced LIGO

noise curve for a wide range of frequencies (25 to 400 Hz), which

may well include the initial spin frequencies of neutron stars.

However, we are considering a ‘blind search’, i.e., an all-sky search

without any prior knowledge of the source’s position and little idea

of its spin frequency. In order to minimize numerically generated

false alarms, we will therefore take our detection criterion to be

h . 10226. Also, we will set ubreak ¼ 1023. For definiteness,

consider the case where all stars are born with a spin frequency

f ¼ 100 Hz. If we consider the optimistic case where internal

dissipation is neglected ðn ! 1Þ, then the above equations show

that the nearest such star is detectable for t , 30 yr. This is on the

edge of the applicability of our simple statistical model – there

would only be one such star in the Galaxy! The probability of

detecting such an object during the lifetime of an Advanced LIGO

detector would be borderline. It follows at once that damping

parameters of less than n ¼ 107 would be unlikely to lead to a

detectable population of isolated stars.

If, when the advanced detectors go on line, advances in

computer power, detector noise curves or search algorithm design

permit a more sensitive search down to h ¼ 10227, then we obtain

td ¼ 103 yr for detection. There would be a population of around

30 stars of this age or less in the Galaxy. Equation (91) shows that

the closest would be about 1 kpc from the Earth. Fig. 6 shows that

in the case of Coulomb deformations such a star would have to

have a rigidity parameter of 1024, an order of magnitude larger

than the canonical value.

We are now in a position to summarize our results. We have

considered the wave field due to a population of isolated stars set

into precession with u ¼ umax soon after birth. The signal

following matched filtering is shown in Figs 6 and 7 for the case

of Coulomb deformations with ubreak ¼ 1023 and r ¼ 1 kpc. They

suggest that even for damping as strong as n ¼ 104, a star with

rigidity parameter b ¼ 1024 is detectable out to about 1 kpc by an

Advanced LIGO. However, when the statistics of neutron star

births are included, it is found that with this level of internal

damping it is unlikely that, at a given time, there exists such a

precessing star in the Galaxy. However, the situation is very

different if the internal damping is much weaker. In the limit where

it negligible, with a detection threshold of 10226 it is borderline as

to whether or not there will exist a detectable star in the Galaxy. If

this threshold can be decreased to 10227, then there could exist a

detectable star as close at 1 kpc to the Earth. If deformed by

Coulomb forces, such a star would require a rigidity parameter of

1024 at least.

8 C O L L I S I O N S I N D E N S E E N V I R O N M E N T S

The possibility of detecting gravitational waves from neutron stars

set into free precession following collisions with other stars has

recently been discussed in the literature. De Araujo et al. (1994)

first pointed out that the high stellar densities of globular clusters

could lead to a high rate of collision between neutron stars and

other stars. Given that globular clusters contain an excess of

millisecond pulsars, the latter authors argued that if such collisions

were effective in exciting precession, interesting levels of

gravitational wave emission would occur.

This idea was taken up by Velloso et al. (1997), who estimated

possible gravitational wave amplitudes at Earth based on the
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millisecond pulsar data for the globular clusters. However, the

formulae employed were taken from de Araujo et al. (1994), who

effectively assumed that the stars were rigid, with an oblateness eV.

This gave h/ _f 2eVu and tg;u / 1/e2
V. At a given wobble angle

and spin frequency this led to a wave amplitude too large by a

factor of eV/ed < 1/b, and an alignment time-scale too fast by the

factor ðeV/edÞ
2 < 1/b 2.

In this section we will reconsider the issue of collision-induced

precession. In the terminology of Section 4 this is an example of an

impulsive pumping mechanism. This problem is very similar to

that considered in the last section, natal precession, as we are again

considering the wave field due to stars set into precession at

positions and times which can only be described in a statistical

way, and then spin-down and align. Indeed, the problem again

breaks down neatly into two parts. The first concerns identifying

particular mechanisms, i.e., types of collision, that lead to an

interesting level of free precession. The second concerns finding an

event rate for such an occurrence, so that a statistical statement can

be made regarding the likely detectability. Note that as the nearest

cluster is of order 1 kpc from the Earth, equations (36) and (37)

show that a safe condition for detectability is tg;u & 103 years, with

the very optimistic assumptions n ¼ 107 and a detection threshold

of h ¼ 10227. Additionally, we see from Fig. 6 and equation (24)

that for a star with b ¼ 1023 and ubreak ¼ 1023 spinning at several

100 Hz, a wobble angle of order 1023 is required for a signal-to-

noise ratio of 10. We therefore need to identify types of collision

involving at least one recycled neutron star which produce

precession angles of order 1023 and have an event rate of order

1=1000 yr21. These arguments are somewhat simpler than those

used in the last section, but will suffice for this section, as we will

find very small event rates for collision, so that it will be clear that

we can rule out collisions as a mechanism for generating detectable

gravitational waves.

8.1 Collisions of neutron stars with non-compact stars

We begin by considering the collision of a neutron star with a non-

compact star. Such collisions have been modelled extensively, e.g.

by Davies, Benz & Hills (1992), who model neutron star-main-

sequence star collisions, and also neutron star–red giant collisions.

In the main-sequence star case they find that a system consisting of

a neutron star surrounded by a thick accretion disc is formed when

the separation at periastron is &1.75 times the main-sequence

star’s radius. In the red giant case they find that a common-

envelope system is formed when the separation at periastron is

&2.5 times the red giant radius. For periastron separations

significantly greater than these values they find that the

perturbation of the non-compact star is minimal.

Despite the violent effect such near-body encounters have on the

non-compact star, it is difficult to see how the neutron star would be

set into free precession by such a collision. As will be shown in

Section 8.2, the gravitational tidal torque on the neutron star due to

the non-compact star is negligible. This leaves only the material

torque on the neutron star, which will be determined by accretion

flow on to its surface. This will be described by the standard theory,

regardless of the unusual source of the accreting material. The

accretion rate will be limited to the Eddington value in the usual

manner, so the torque will not be impulsive.

It follows that although collisions between neutron stars and

non-compact stars are important in terms of the population

evolution of globular clusters, they are not of use as a mechanism

for free precession gravitational wave production, as it is

impossible to identify a way in which the collision would set the

star into free precession.

8.2 Neutron star–neutron star encounters

We will now consider encounters between two neutron stars.

Clearly, if a direct collision were to occur, free precession would be

the last gravitational wave mechanism that we would wish to

consider. We will therefore model a near collision, where both

gravitational and magnetic effects will come into play, but there is

no direct mechanical contact between the stars. We will begin by

considering the gravitational interaction in a simple Newtonian

way. Suppose that one star has a spin-angular momentum J and

centrifugal deformation DIV. Then the other star will exert a torque

on this bulge, causing a forced precession. [It is this process that is

responsible for the Earth’s (forced) ‘precession of the equinoxes’

on a 26 000-yr time-scale, as the Sun and Moon exert a torque on

the Earth’s centrifugal deformation.] The magnitude of the torque

acting on the star is given by (Goldstein 1980):

T ¼
3GM

2r 3
DIV sin 2b; ð94Þ

where b is the angle that the angular momentum of this star makes

with the normal to the plane in which the stars move, M is the mass

of the other star, and r denotes the separation of the stars. This

torque acts perpendicular to the plane containing the stars and J.

We can write the quantity DIV in terms of the rotation frequency V

using equation (13):

DIV ¼ I
3

2

V2R 3

GM
: ð95Þ

This gives

T ¼
9

4r 3
IV2R 3 sin 2b: ð96Þ

As the two stars approach one another, this torque will grow and

change in orientation. If the stars pass very close to one another, the

steep r 23 factor will give rise to an almost impulsive torque, acting

when the stars are at and close to periastron, where the r 23 factor is

at a maximum. If the interval in which the bulk of the angular

momentum transfer takes place is much less than the spin period of

the star, the transfer will take place at nearly constant rotational

phase, i.e., nearly constant reference plane orientation. It follows

that the star would then be set into free precession with a wobble

angle of order

du <
dJ

J

I

Icrust

<
T

IcrustV
2
: ð97Þ

Inserting T as given by equation (96) then gives

du <
9

4

R

d

� �3

sin 2b
I

Icrust

; ð98Þ

where d denotes the separation at periastron.

We therefore see that collisions capable of producing significant

wobble angles ðu , 1023Þ could conceivably occur, but would

require very close encounters, with a periastron passage of no more

than 10 neutron star radii: d , 10R. Of course, during such close

passages relativistic effects will be important, e.g., Lense–Thirring

precession. We need not pursue these here. All that we require is an

order-of-magnitude estimate of the collision cross-section for a

significant interaction to occur. Note that equation (98)
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immediately rules out tidal torques during near collisions between

neutron stars and main-sequence stars as a pumping mechanism,

due to the large ðd * 106 kmÞ periastron separation.

There will be an interaction between the magnetic moments of

the neutron stars also, as each dipole will tend to align with the field

of the other. The torque on a dipole of moment m in a field B due to

the other star is of order mB. The field B scales as r 23. An

argument analogous to the above gravitational one then leads to a

wobble angle

du < 10222 B1

109 G

� �
B2

1012 G

� �
100 Hz

f

� �2
10 km

d

� �3

; ð99Þ

where B1 and B2 denote the polar field strengths of the two stars.

We have parameterized in terms of field strengths appropriate for a

collision between a recycled and non-recycled neutron star. This is

much smaller than the gravitationally induced wobble angle, and

need not be considered further.

Having established that near collisions could excite free

precession, we must now consider an event rate for such close

passages. Of course, given that the event rate for encounters

between a neutron star and a non-compact star was low, it is clear

that the event rate for such close neutron star–neutron star

encounters will be extremely low. In fact, it is straightforward to

show that no such near-collisions will occur over a Hubble time,

using a simple model. Suppose that there are N neutron stars in a

globular cluster of size Rgc. Let v1 denote their average velocity

when far apart. Then in a unit time this population sweeps out an

effective volume of order NAv1, where A is a collision cross-

section. Then the probability of a given neutron star colliding with

another in this interval is of the order of this volume divided by the

globular cluster volume, i.e., of order NAv1/R3
gc. As there are N

such stars, the probability of any one of them colliding with any

other is then N times this, giving a collision rate N 2Av1/R3
gc. As

there are approximately 200 globular clusters in the Galaxy, we

obtain a Galactic collision rate ncollision:

ncollision < 200
N 2Av1

R3
gc

: ð100Þ

If gravitational attractions were neglected, the collision cross-

section would be of order d 2 , ð100 kmÞ2. However, gravitational

focusing will increase the effective cross-section, as described in

Verbunt & Hut (1987):

A < d 2 1þ
2GMtotal

v2
1d

� �
; ð101Þ

where Mtotal denotes the sum of the masses of the two stars. The

second term on the right-hand side describes the effects of

gravitational focusing. For the case of interest it is the dominant

factor. Parametrizing, we find an event rate

ncollision , 10211 yr21 N

103

� �2
Mtotal

2:8 M(

� �
d

100 km

� �

�
10 km

v1

� �
1 pc

Rgc

� �3

: ð102Þ

Such an event rate as this makes further comment unnecessary,

save to say that we will not consider stellar collisions any further.

9 C O N C L U S I O N S

This paper represents a systematic analysis of the detectability of

gravitational waves from freely precessing neutron stars. It is based

upon a model commonly employed to describe the Earth’s own

motion. Explicitly, the neutron star has been modelled as an elastic

shell with a fluid core, whose angular amplitude of free precession

(the wobble angle) is limited by its finite crustal lattice strength. It

has been known for some time that neutron star structure may well

allow detectable gravitational wave signals at Earth, but this is the

first study to attempt to identify particular astrophysical scenarios

in which such precessional motion might be brought about and/or

maintained.

Broadly speaking, our findings were pessimistic. It proved

impossible to find astrophysical pumping mechanisms capable of

giving steady gravitational wave amplitudes detectable by an

Advanced LIGO. This was because of the limiting effect of

dissipation mechanisms internal to the star, even when dissipation

strengths several orders of magnitude smaller than theoretically

estimated values were assumed.

Two qualifications are in order. First, the above conclusions were

reached for stars with oblate deformations. In the physically less

likely case of a star with a prolate deformation, the effect of

internal dissipation would be to increase the wobble angle. Such a

situation is certainly interesting from the gravitational wave point

of view, although the dynamics of such a star, possibly involving

crust cracking when the wobble angle exceeds a critical value, are

far from clear. Secondly, most of the pumping mechanisms

considered in this paper involved an externally generated torque

being exerted on the star. There exists another possibility, where

the symmetry axis of the deformation shifts due to a smooth plastic

deformation of the crust. For instance, this deformation might be

caused by accretion-induced temperature or composition asym-

metries, in the manner described by Bildsten (1998) for non-

precessing triaxial stars. These two possible modifications to our

model are currently under investigation, to see if there may yet

prove to be a way of powering a long-lived, freely precessing

gravitational wave source.
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