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We report on the first three-dimensional numerical simulations of first-order phase transitions in the early
Universe to include the cosmic fluid as well as the scalar field order parameter. We calculate the
gravitational wave (GW) spectrum resulting from the nucleation, expansion, and collision of bubbles of the
low-temperature phase, for phase transition strengths and bubble wall velocities covering many cases of
interest. We find that the compression waves in the fluid continue to be a source of GWs long after the
bubbles have merged, a new effect not taken properly into account in previous modeling of the GW source.
For a wide range of models, the main source of the GWs produced by a phase transition is, therefore, the
sound the bubbles make.

DOI: 10.1103/PhysRevLett.112.041301 PACS numbers: 98.80.Cq, 04.30.Db, 47.75.+f, 95.30.Lz

In a hot big bang, there were phase transitions in the
early Universe [1,2], which may well have been of first
order; one major consequence of such a transition would be
the generation of gravitational waves [3–8]. The electro-
weak transition in the standard model is known to be a
crossover [9–11], but it may be first order in minimal
extensions of the standard model [12–17]. It is therefore
essential to properly characterize the expected power
spectrum from first-order phase transitions.
First-order phase transitions proceed by the nucleation,

growth, and merger of bubbles of the low-temperature
phase [3,18–25]. The collision of the bubbles is a violent
process, and both the scalar order parameter and the fluid of
light particles generate gravitational waves.
Numerical studies have been carried out on the behavior

of bubbles in such a phase transition using spherically
symmetric (1þ 1)-dimensional simulations [23,24]. The
calculation of the gravitational wave spectrum has been
refined in the intervening years, notably using the semi-
analytic envelope approximation [5,7,8,26,27] (but see
Ref. [28] for an alternative approach). Fully three-dimen-
sional simulations of the scalar field only have been carried
out [29], qualitatively supporting the envelope approxima-
tion and pointing out important gravitational wave produc-
tion from the scalar field after the bubble merger.
In a hot phase transition, the fluid plays an important

role, first as a brake on the scalar field and second as a
source of gravitational waves itself. The fluid has generally
been assumed to be incompressible and turbulent [30–33].
An important question for the gravitational wave power
spectrum is the validity of this modeling, which generally
borrows from the Kolmogorov theory of nonrelativistic
driven incompressible turbulence.
In thisLetter,we report on the first fully three-dimensional

simulation of bubble nucleation involving a coupled
field-fluid system. We make use of these simulations to

calculate the power spectrum of gravitational radiation from
a first-order phase transition, for a range of transition
strengths and bubble wall velocities relevant for an electro-
weak transition in extensions of the standardmodel.We find
that the compression waves in the fluid—sound waves—
continue to be an important source of gravitational waves for
up to a Hubble time after the bubble merger has completed.
This boosts the signal by the ratio of the Hubble time to the
transition time, which can be orders of magnitude.
The system describing the matter in the early Universe

consists of a relativistic fluid coupled to a scalar field,
which acquires an effective potential

Vðϕ; TÞ ¼ 1

2
γðT2 − T2

0Þϕ2 − 1

3
αTϕ3 þ 1

4
λϕ4: (1)

The rest-frame pressure p and energy density ϵ are

ϵ¼3aT4þVðϕ;TÞ−T
∂V
∂T ; p¼aT4−Vðϕ;TÞ (2)

with a ¼ ðπ2=90Þg, and g the effective number of relativ-
istic degrees of freedom contributing to the pressure at
temperature T. The stress-energy tensor for a scalar field φ
and an ideal relativistic fluid Uμ is

Tμν ¼ ∂μϕ∂νϕ − 1
2
gμνð∂ϕÞ2 þ ½ϵþ p�UμUν þ gμνp (3)

where the metric convention is (−þþþ). The scalar field
potential is included in the definition of p. We split
∂μTμν ¼ 0 (nonuniquely) into field and fluid parts with a
dissipative term permitting transfer of energy between the
scalar field and the fluid δν ¼ ηUμ∂μϕ∂νϕ [22,23]. This
simplified model can be improved but is adequate for
parametrizing the entropy production [24].
Given these expressions, the equations of motion can be

derived. For the field, we have
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−ϕ̈þ∇2ϕ − ∂V
∂ϕ ¼ ηWð _ϕþ Vi∂iϕÞ (4)

where W is the relativistic γ factor and Vi is the fluid
3-velocityUi ¼ WVi. For the fluid energy density E ¼ Wϵ,
contracting ½∂μTμν�fluid with Uν yields

_Eþ∂iðEViÞþp½W: þ∂iðWViÞ�−∂V
∂ϕWð _ϕþVi∂iϕÞ

¼ηW2ð _ϕþVi∂iϕÞ2: (5)

The equations of motion for the fluid momentum density
Zi ¼ Wðϵþ pÞUi read

_Zi þ ∂jðZiVjÞ þ ∂ipþ ∂V
∂ϕ ∂iϕ

¼ −ηWð _ϕþ Vj∂jϕÞ∂iϕ: (6)

The principal observable of interest to us is the power
spectrum of gravitational radiation resulting from bubble
collisions. One approach is to project Tij at every time step
and then make use of the Green’s function to compute the
final power spectrum [34,35]; this is quite costly in
computer time. Instead, we use the procedure detailed in
Ref. [36]. We evolve the equation of motion for an auxiliary
tensor uij,

üij − ∇2uij ¼ 16πGðτϕij þ τfijÞ; (7)

where τϕij ¼ ∂iϕ∂jϕ and τfij ¼ W2ðϵþ pÞViVj. The physi-
cal metric perturbations are recovered in momentum space
by hijðkÞ ¼ λij;lmðk̂Þulmðt;kÞ, where λij;lmðk̂Þ is the pro-
jector onto transverse, traceless symmetric rank 2 tensors.
We are most interested in the metric perturbations sourced
by the fluid, as the fluid shear stresses generally dominate
over those of the scalar field, although it will be instructive
to also consider both sources together.
Having obtained the metric perturbations, we find that

the power spectrum per logarithmic frequency interval is

dρGWðkÞ
d ln k

¼ 1

32πGL3

k3

ð2πÞ3
Z

dΩj _hlmðt;kÞj2: (8)

We simulate the system on a cubic lattice of N3 ¼ 10243

points, neglecting cosmic expansion which is slow com-
pared with the transition rate. The fluid is implemented as a
three-dimensional relativistic fluid [37], with donor cell
advection. The scalar and tensor fields are evolved using a
leapfrog algorithm with a minimal stencil for the spatial
Laplacian. Principally, we used lattice spacing δx ¼ 1T−1

c
and time step δt ¼ 0.1T−1

c , where Tc is the critical temper-
ature for the phase transition. We have checked the
lattice spacing dependence by carrying out single bubble

self-collision simulations for L3¼2563T−3
c at δx¼0.5T−1

c ,
for which the value of ρGW at t ¼ 2000T−1

c increased by
10%, while the final total fluid kinetic energy increased by
7%. Simulating with δt ¼ 0.2T−1

c resulted in changes of
0.3% and 0.2% to ρGW and the kinetic energy, respectively.
Starting from a system completely in the symmetric

phase, we model the phase transition by nucleating new
bubbles according to the rate per unit volume P ¼
P0 exp ðβðt − t0ÞÞ. From this distribution we generate a
set of nucleation times and locations (in a suitable
untouched region of the box) at each of which we insert
a static bubble with a Gaussian profile for the scalar field.
The bubble expands and quickly approaches an invariant
scaling profile [23].
We first studied a system with g ¼ 34.25, γ ¼ 1=18,

α ¼ ffiffiffiffiffi
10

p
=72, T0 ¼ Tc=

ffiffiffi
2

p
, and λ ¼ 10=648; this allows

comparison with previous 1þ 1 and spherical studies of a
coupled field-fluid system where the same parameter
choices were used [23]. The transition in this case is
relatively weak: in terms of αT , the ratio between the latent
heat and the total thermal energy, we have αTN

¼ 0.012 at
the nucleation temperature TN ¼ 0.86Tc. We also per-
formed simulations with γ ¼ 2=18 and λ ¼ 5=648, for
which αTN

¼ 0.10 at the nucleation temperature
TN ¼ 0.8Tc, which we refer to as an intermediate strength
transition. We note that αTN

∼ 10−2 is generic for a first-
order electroweak transition, whereas αTN

∼ 10−1 would
imply some tuning [38].
For the nucleation process, we took β ¼ 0.0125Tc,

P0 ¼ 0.01, and t0 ¼ tend ¼ 2000T−1
c . The simulation vol-

ume allowed the nucleation of 100–300 bubbles so that the
mean spacing between bubbles was of order 100T−1

c . The
wall velocity is captured correctly, but the fluid velocity
did not quite reach the scaling profile before colliding.
Typically, the peak velocity prior to collision is 20%–30%
below the scaling value for the deflagrations.
For the weak transition, we chose η ¼ 0.1, 0.2, 0.4,

and 0.6. The first gives a detonation with wall speed
vw ≃ 0.71, and the others weak deflagrations with
vw ≃ 0.44, 0.24, and 0.15, respectively. The shock profiles
are found in Figs. 2 and 3 of Ref. [23]; slices of the total
energy density for one of our simulations are shown in
Fig. 1. The intermediate transition was simulated at

FIG. 1 (color online). Slices of fluid energy density E=T4
c at

t ¼ 400T−1
c , 800T−1

c , and 1200T−1
c , respectively, for the η ¼ 0.2

simulation. The slices correspond roughly to the end of the
nucleation phase, the end of the initial coalescence phase, and the
end of the simulation.
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η ¼ 0.4, for which the wall speed is vw ≃ 0.44, very close
to the weak transition with η ¼ 0.2.
Figure 2 (top) shows the time evolution of two quantities

Ūϕ and Ūf, defined so that

ðϵ̄þ p̄ÞŪ2
ϕ ¼ 1

V

Z
d3xτϕii and

ðϵ̄þ p̄ÞŪ2
f ¼

1

V

Z
d3xτfii (9)

where ϵ̄ and p̄ are the time-dependent, volume-averaged
rest-frame energy density and pressure, respectively.
The squares of these quantities give an estimate of the

size of the shear stresses of the field and the fluid relative to
the background fluid enthalpy density, whereas Ūf tends
to the rms fluid velocity for Ūf ≪ 1. We see that Ūφ grows
and decays with the total surface area of the bubbles of
the new phase, while the mean fluid velocity grows with the
volume of the bubbles and then stays constant once the
bubbles have merged. We have no explicit viscosity, and
the slight decreasing trend in Ūf, visible for the

intermediate transition, arises from the well-known numeri-
cal viscosity of donor-cell advection, νnum ≃ Ūfδx.
Figure 2 (bottom) shows the GW energy density scaled

by the final value of ðϵ̄þ p̄Þ2Ū4
f and the average bubble

size at collision R� ¼ L=N1=3
b , where Nb is the number of

bubbles in the simulation volume. The scaling enables
comparison to a model discussed around Eq. (12), which
predicts a linear growth in ρGW at late times, sourced by
persistent perturbations in the fluid. The GWenergy density
rises linearly after the bubbles have fullymergedwith similar
slopes, which supports the model. Note that the GWs from
detonations (η ¼ 0.1) behave similarly to those from
deflagrations.
In Fig. 3 we show the time development of the GW

power spectrum as the intermediate strength phase tran-
sition proceeds. We see that strong growth happens
between t ¼ 600T−1

c and 1000T−1
c as the bubbles merge

(see Fig. 2). For t≲ 1000T−1
c , there is evidence of the

expected k−1 power spectrum, but it becomes less clear as
the GW power continues to grow, sourced by the persistent
fluid perturbations. At the shortest length scales, we see a
vw-dependent exponential falloff.
To establish the nature of these fluid perturbations, we

show in Fig. 4 the time development of the longitudinal
(compressional) and transverse (rotational) components of
the fluid velocity power spectrum. At all times, it is clear
that most of the fluid velocity is longitudinal, indicating
that the perturbations are mostly compression waves.
Turbulence generally develops at high Reynolds number
Re in the transverse components, characterized by a power-
law behavior of the power spectrum. Given the bubble
separation scale R�, we can estimate the value of Re, due
entirely to the numerical viscosity, as Renum ¼ ŪfR�=
νnum ∼ 102. There is no firm evidence of a power law at0 500 1000 1500 2000
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FIG. 2 (color online). Top: time series of Ūϕ and Ūf (9),
showing the progress of the phase transition; the curves for Ūϕ

and Ūf are individually identified for the “intermediate” case.
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f �tend , showing the
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FIG. 3 (color online). Gravitational wave power spectra during
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1400T−1

c . The red dashed line indicates the expected k−1
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high k, but it is unclear whether Re is large enough for
turbulence to develop here.
We can now form a clearer picture of the fluid pertur-

bations and how the GWs are generated. First, we note that
the fluid perturbations are initially in the form of a
compression wave surrounding the growing bubble. The
energy in this wave is proportional to the volume of the
bubble R3 and quickly outstrips the energy in the scalar
field, which grows only as R2. The energy in the com-
pression waves remains constant after the bubbles have
merged. This is due to linearity and conservation of energy:
as the fluid velocities are generally small, there is little
transfer to the transverse components.
The bubble collision generates gravitational waves, as

predicted by the envelope approximation, and there is some
evidence for the characteristic k−1 spectrum between R�
and the high-frequency cutoff. The generation of GWs
continues long after the merger is completed and the scalar
field has relaxed to its new equilibrium value. The GWs are
sourced by the compression waves in the fluid. This source
of gravitational radiation from a phase transition—sound—
has not been appreciated before (except in Ref. [4]).
The resulting density of the gravitational waves is given

from the unequal time correlator of the shear stress tensor
Π2ðk; t1; t2Þ by [27,39]

dρGWðkÞ
d ln k

¼ 2Gk3

π

Z
t
dt1dt2 cos½kðt1 − t2Þ�Π2ðk; t1; t2Þ:

(10)

We model the source as turning on at the nucleation time tN
with a lifetime Ts (discussed below) and being a function of
t1 − t2 between those times, as is reasonable for stochastic
sound waves. We suppose the correlator is peaked at t1 −
t2 ¼ 0 with width xc=k, where xc is a dimensionless
parameter. This resembles the “top-hat” correlator model

of Ref. [27], except that the source acts for much longer
than the duration of the transition β−1. We estimate the
amplitude of the source as ½ðϵ̄þ p̄ÞŪ2

f�2 and its length scale
as R�. Hence, for tN < ðt1; t2Þ < Ts,

Π2ðk; t1; t2Þ≃ ½ðϵ̄þ p̄ÞŪ2
f�2R3� ~Π2ðkR�; z=xcÞ; (11)

where z ¼ kðt1 − t2Þ and ~Π2 is dimensionless. The density
parameter ΩGW ¼ ρGW=ϵ̄ is then

ΩGW ≃ 3Π̄2

4π2
ðH�τsÞðH�R�Þð1þ wÞ2Ū4

f; (12)

where H� is the Hubble parameter at the transition,
w ¼ p̄=ϵ̄≃ 1=3, and

Π̄2 ¼
Z

d ln kðkR�Þ2
Z

dz cosðzÞ ~Π2ðkR�; z=xcÞ: (13)

In Eq. (12) we see the origin of the R� factor in the GW
density, which must be present for dimensional reasons.
The slope of the curves in Fig. 2, bottom, is 2Π̄2=π, which
we see takes the natural value O(1), and is weakly
dependent on the transition parameters.
The envelope approximation gives [26]

ΩGW ≃ 0.11v3w
0.42þ v2w

�
H�
β

�
2 κ2α2T
ðαT þ 1Þ2 (14)

where κ is the efficiency with which latent heat is converted
to kinetic energy. Comparing to Eq. (12) and noting that
Ū4

f ∼ κ2α2T , R� ∼ vw=β, we see that sound waves are
parametrically larger by the factor τs=R�vw.
An upper bound on τs is the Hubble time, as the shear

stresses decay faster than the background energy density.
The shear stresses also decay due to the viscosity ηs, which
can be estimated as ηs ∼ T3=e4 lnð1=eÞ, where e is the
electromagnetic gauge coupling [40]. The viscous damping
time of sound waves with characteristic wavelength R� is,
therefore, τη ≃ R2�ϵ̄=ηs ∼ e4 lnð1=eÞR2�Tc. Hence, sound
waves from smaller bubbles are damped by viscosity but
live long enough to be the most important source of
gravitational waves for bubbles provided

R�H� ≫ vwð
ffiffiffi
a

p
Tc=mPe4Þ ∼ 10−11vwðTc=100 GeVÞ:

(15)

This is generally satisfied except for weak transitions at
very high temperatures, and we conclude that for most
transitions the fluid damping time is the Hubble time.
We point out that we have studied systems with non-

relativistic and linear fluid velocities, without explicit
viscosity. These choices are representative of a typical
first-order electroweak phase transition, but it would also
be interesting to study strong transitions with relativistic
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FIG. 4. Fluid velocity power spectra for the intermediate
strength transition, separated into longitudinal (compressional)
and transverse (rotational) components; shown in gray and black
lines, respectively. Times shown are the same as in Fig. 3.
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fluid velocities, explore the effect of dissipation, and look
for turbulent regimes. Parameter choices recently identified
as having unstable bubble walls [41] also merit investiga-
tion. We have not studied the case where the walls run
away, although here we expect that the fluid is unimportant
and the envelope approximation applies.
In the cases that we do study, we find the velocity

perturbations are principally acoustic waves and that the
resulting gravitational radiation density is parametrically
larger than given in the envelope approximation by the ratio
of the fluid damping time τs to the duration of the phase
transition β−1. We conclude that, for a wide range of first-
order phase transitions of interest, the main source of the
gravitational wave background is the sound they make.

Our simulations made use of facilities at the Finnish
Centre for Scientific Computing CSC and the COSMOS
Consortium supercomputer (within the DiRAC Facility
jointly funded by STFC and the Large Facilities Capital
Fund of BIS). K. R. acknowledges support from the
Academy of Finland project 1134018; M. H. and S. H.
from the Science and Technology Facilities Council (Grant
No. ST/J000477/1).
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