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ABSTRACT

We calculate the two-point correlation function of metric
fluctuations in de Sitter space. The results are expressed
in a gauge-invariant and 0(4,1)-invariant form in terms of
elementary functions of z(x,x') (a biscalar variable simply
related to the invariant distance between X and x'). The
Feynman functions for the transverse, trace-free and scalar
metric fluctuations grow without bounds, 1like 1ln z and
z 1n z respectively, for large z. We interpret these results
as an evidence for the quantum instability of de Sitter
space,
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1. INTRODUCTION

de Sitter space-time is the maximally symmetric solution of Einstein's
equations with a positive cosmological constant. It is simply characterized
geometrically as the four-dimensional manifold with constant

2 2 3
- (X"\i-»r (x‘]& L () (7)) (X)) = _l-F

embedded in five-dimensional Minkowski space-time with metric, diag (-++++). 1In
the last few years there has been considerable interest in understanding quantum
field theory in this background space for two principal reasons:
i) The problem of vacuum energy has emerged as a fundamental issue in attempts to
unify realistic quantum field theories of elementary particles with gravitation.
ii) Inflationary models of the very early Universe suggest that the Universe
actually passed through a de Gitter-like phase in its early evolution 1.

In this context an instability of de Sitter space is directly relevant to the
early history of the Universe and has consequences for present-day observations, as
well as possibly pointing a way out of the vacuum-energy ('cosmological constant')
problem. This line of thought has been pursued in a series of recent papers [2-5].

In this paper we present the strongest evidence to date that de Sitter space is
indeed unstable, by considering the gravitational two-point functions in this
background.

Because of the maximal 0(4,1) symmetry of de Sitter space we are able to obtain
exact results for the two-point functions. The essential technical tool is the de-
composition of the graviton propagator for the metric fluctuations into maximally
symmetric bitensors multiplied by scalar functions of the invariant distance between
x and x'. We present the necessary preliminaries to this tensor decomposition in
Section 2. Possessed with this information, the problem of determining all the gravi-
ton two-point functions is reduced to a (nearly) straightforward problem of solving
linear differential equations for the various scalar amplitudes. These equations

have solutions in terms of elementary functions of z(x,x') -- a quantity whose



precise definition is given by Eq. {19) of the next section. The full solution for
the graviton propagator which emerges is presented then in Sections 3 and 4.

In Section 5 we discuss the divergent behaviour of this quantity as x and x'
are separated by a large time-like (or space-like) interval. The growth of the
propagator for large separation depends critically on the Feynman boundary condi-
tions (ie prescription) imposed. If instead, we take the retarded {or advanced)
propagator corresponding to classical time evolution forward (or backward) in time
we find no unbounded growth in physical gauge-invariant quantities. Thus, our
results are fully consistent with previous work on the classical stability of de
Sitter space {at the linearized level) [51].

Since the Feynman propagator does grow without bounds, certain gauge-invariant
guantities can be constructed from the metric fluctuations which diverge. This can
be understocd as the instability of the de Sitter invariant Bunch-Davies state to
small external perturbations of energy-momentum. Since metric fluctuations them-
selves can be the source of perturbations in the full non-linear theory we conclude
that de Sitter space-time is unstable at the quantum level, and that the maximal
0(4,1) symmetry must be broken. This conclusion and the direction of further
progress on the important problem of vacuum energy are discussed in the final

section as well.

2. COMPOSITIO N LLY SYMMETRI 5
We regard the full metric tensor 9an to be the sum of Iap! the metric of
de Sitter space in some coordinates (xa) and hab' a small perturbation from the

de Sitter background:
A
= (%)
go&;ﬂ Su(:] + kmb (1)

The general linear fluctuation hab can be decomposed in the following way:



L L
h = h o« DA, + D A oy { (2)
TR LR
Here Da is the covariant derivative with respect to the classical background
1
de Sitter metric Yap and O = gabDan. The vector field Aa is transverse in the
sense that
a 4
D A_=0 (3)
L
and the tensor field hab is both transverse and traceless,
o,
D hoy =0 (4a)
ob L1 i a
= h =0
h, = Po (4b)
Thus
h=h & (5)

is the trace of the metric perturbation hab'
A coordinate transformation of the full metric %b is indistinguishable (to

linear order) from a gauge transformation on hah:

h

- R

+ D% +Db 5 (6)

b )

where Ea{x) is an arbitrary vector function of the coordinates. If we also de-

cCompose Ea into transverse and longitudinal parts,

{7)

Then, expressions {(2) and (6) imply the linearized transformation properties of the

various tensors:

1 N
h . — K | (8a)

ab b



AL — AL+ &)

(8b)
B — B+ 2§

(8c)
h-——b h+9.n'§

(84)

and

h-oB — h-oB | (8e)

It is obvious that h:h and h - OB are independent of the gauge function Ea.*) They
contain the full coordinate invariant information about the linearized perturb-
ations. On the other hand, A: and any other linear combination of h and B are
gauge dependent and must drop out of all physical quantities. Therefore, it is
natural to consider the graviton propagator only over the transverse, traceless
subspace spanned by hzs, obeying eqs. (4), and the scalar subspace spanned by
h - DB,

The variation of any coordinate invariant action such as the Einstein-Bilbert
action (1/16wG)} | a*x /=3 (R-2A) gives, to linear order in hab' differential oper-

i
ators which depend only on hab and h - OB:

Sgg_ no# R
—iénG[ by 1 d'x =9 Re=-33,.%A
%%u(x’}%% (x) ( 52 % SQB)
},-L < 4 l-\L i K_ 0-D D &+ A‘l(h-n'&)
= ~Oh  +2 R o d V7 ‘amb AU XY

(9)

In deriving Eq. (%) one has only to assume that the background metric 91 is a sol-

ution of the vacuum Einstein equations with cosmological constant:

*}) Equations (8) are valid provided the identification of the various components in
Eq. {2) is unique. If this is not the case special care is required (cf.

Section 4).
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No assumption of de Sitter {(or any other) symmetry of the background has been made,
as yet. However, when the background is maximally symmetric the general decom-
position (2) becomes most useful. In that case the quadratic part of the Einstein

action corresponding to Eq. (%) is simply
abl 4 r
(0 (R Card) Wy 3 OoB) o ) 6s9)

Define the spin-2 part of the metric two-point function (graviton propagator)

to be the inverse of (- OO + R/6) over transverse, trace-free tensors;

(-n+ %—- ) GE:&A’ (x,¥) = P(::T:Cfcl, (x, ¥ 12)
D G:rc'd’ = DCIGT:;L;A/ =0 (13)
“:iﬁz = G(::l"c_, = 0 (14)

Wwith Péii‘d' being the projector onto such tensors:
h:, () = SJ"x’Fs‘" P(:ba’ (x,x) b . (15)

In a similar manner we would like to define the spin-0 part of the metric two-point
function to be the inverse of ([ + R/3) over the scalar functions, h - [OB.
However, in Section 4 we shall see that this operator is singular, i.e. it has
scalar zero modes in de Sitter space. 50 the inverse can be defined only in the
subspace of scalar functions with the zero modes excluded. This is discussed in

full in Appendix A.

(2)
abc'd’

properties of the maximally symmetric de Sitter space in an explicit way, by fol-

To continue with the tensor decomposition of G we now make use of the

lowing the formalism of Allen and Jacobson [6]. They observe that in the maximally

symmetric case all tensor functions of two arguments x and x' can be expressed in



terms of a few basic bitensors whose properties can be catalogued conce and for all.
Let p(x,x') denote the geodesic distance between x and x'. Then these basic ten-

sors are the unit tangents na(x,x') and na,{x,x‘) to the geodesic at x and x':

hq(x,n’) - DQP(M*’) ) r\q,(!,x’) = 'Du, p{x,x) (16)

*)

together with g;.(x,x') the parallel propagator between x and x' and the metric

tensor itself at x and at x'.
‘We follow the usual convention of indicating tensor indices at x by unprimed
sub(super)scripts and tensor indices at x' by primed sub(super)scripts. Indices at

x are raised (lowered) by gab(gab}, while those at x' are raised (lowered} by

albl v e , bl - . _ cl
g (ga,b,]. The definitions (16) imply that 9 My = "Dus T T 9, Ty and
9yipr = gg,gcb. (arguments understood). Allen and Jacobson also show that
b0, = A (3@5- n Ny (17a)
D Ny = C (3¢.,g +ngny ) (17b)
- - n
D&%bd (A*C) (3m5n8-¥3ac' b)_ (17¢)
with
A= H cot (\-\l-*) (18a)
C = -¥ csc (t—\p\ (18b)

in de Sitter space. Other useful formulae for our subsequent work can be found in
their Appendix € or derived directly from Eqs. (17) and (18).

Once it is recognized that the propagator G(z]abc'd' in a de Sitter invariant
state is itself a maximally symmetric bitensor, it follows that it can be decomposed

into combinations of the basic tensors I g;., Ioipt Pys and n, . the conditions

bl bl

*) vd = gz,v is the vector v= at x', parallely transported to x.



- {12) to (14) being imposed, and the problem of determining the spin-2 propagator
_being reduced to solving a set of purely scalar differential equations in the single
variable y. For our subsequent work it will prove useful to introduce the change

of variable

L+ cos(pH)

Z(x,X) = ¢ (}:;-\: 2 (19)

in place of the invariant distance p(x,x'). Notice that the light cone of x(p = Q)
is at z = 1. Euclidean space-like X and x' are described by real p or 0 < z < 1,
while time-like x and x' are characterized by continuation to imaginary p or z > 1.

Non-Euclidean space-like x and x' are described by complex ¢ such that z < O.

3. THE SPIN-2 PROPAGATOR FUNCTION

Cataloguing all of the possible bitensors with two indices a, b at x and ¢', @'
at x', which are symmetric under a p b, c' d' and (a,b) $ {c',d'), shows that there

are exactly five such quantities which can be constructed from the basic tensors n

al’
nalf g(a:.l gab; g{:ldln They are:
T(ﬂ c’cl! _ 3 %c,dr
ab ab (20a)
q ! ! 1/
T®) <d = 9.0 " o+ onn q d
b * > (20b)
T@ﬂ C.ld, _ 3 J Jf N d} C,I
}
Wy 4 4 ' J ! ! r ’ /)
T = nh-l- nn+‘3 “hpd 4q €= ugle, 3
nn = 4
/
'C(‘s) 4 - P n “r.' nd
ab Tooeh (20€)

Since it is a maximally symmetric bitensor with the same structure, the graviton

propagator must be of the form:



5 .
2y v,/ . [
4 ' (Y od
G = Y G T 2
. s
iz d

where the Gi are scalar functions of the invariant distance u{x,x'), or z(x,x').

The transversality conditions (13) are now easily implemented by computing, for

example,
5
@ ¢ cn dd/ (ﬂcd \
0=
e b Z i dp T  F C’f.b ab (22)
with
!
(1 _ cd
ob = M9 j (23a)
i !
nﬂ. (.1) Catl n N né L% “L%CA
ob b . {23b)
a @ Jd ( &)
ob - 3, 0 (23c)
@ ‘-‘1 - n <8 & 19 C(m‘” (234)
T b b“ 0 b
™ .r(-s) o - n‘fn‘;l (23e)
ab b
and
o da’ A
ab - , (24a)
@ 1y dd « ‘L) d &
T cd :._3Anbf3 +1Cﬂb + 9 C NN
ab (24b)
' t 7 '3
a ) Ja [3 (¢ &) 9 n c ‘\
b = - (Axe) Jp 0 FEMY (24c)
/ /
@ 8 ) C &N
Dt N —alAral)n o’ g “b"—l\ 8A 9,7 N (24d)
[ ? )
P ,t(_'sl cd _ 3 A nbn" né (24e)
Ch



Thus there are three distinct tensors appearing on the right-hand side of Eq. (22),

bgc d ' gb(C nd ), and nbnc nd . Equating the coefficients of each of these

tensors to zero gives three conditions on the five Gi:

namely n

S‘% (G£+Gi\ + 3AG, ~2 (A+Q) Gy s 2C G, =0 (252)
f‘: (6-26,+6,) +2C6, -4 (Avac) G +3AG =0 (250)
%‘ (-6,+6 )+ CG —4(A+c\@5-4(,4 =0 (25¢)
On the other hand, the trace conditions {14) imply the two relations:
4@,_+c,14 2G, = O 2601
46, =46, v Gg=0 (26b)

Actually, these five conditions on the Gi are not all linearly independent. If

we define the linear combinations,
£=6,-64 (27)
3 = 3G2-9.63 {28)

Then, Egqs. (25) and (26) yield

%_3__+AAC5+8C(’=0 (29)
}A
3 L 4np v2cg =506 . wor
IF

We need one more equation for g. Then, Eq. (2%) will determine f, Eq. (30)
fixes Gz' expressions (28) and (27) determine 63 and G‘, and G1 and G% can he
obtained from relations (26).

The last differential equation comes from the equation of motion (12), which in
{z)cldl
ab )
lation of this tensor and the associated scalar functions An and A1 are given in the

turn requires knowledge of the transverse traceless projector P The calcu-

appendices. One also needs to compute



10

Gw Ay z i(a G, +3A4 \T(f-)éa’* G ot® c'a’\) (31)
‘- ab L ab
which is a straightforward though tedious application of the methods of Ref. [6]. We
pass over these details and merely point ouf that the algebra simplifies enormously
if one concentrates only on the scalar product of Egq. (12) with nanbn o Pgre which
turns out to contain the only new piece of information about the function g(y). The
main steps of the computation are outlined in Appendix B. The resulting differ-

ential equation for g turns out to be

v 1
—i - - PR - —
\—\"'S JP « 1A i oR 13 S?({ ) Aq."'* 4 (1-23) = 1913

2
B W A
— T Ta ; 2l
24 wh (-2

i

(32)

which is just a hypergeometric equation with a particular form for the inhomogeneous
texm.
Let us introduce F(a,b;c;z), the standard notation for the hypergeometric func-

tion obeying

Dle,b;¢) Flab;c;r) =

v
Ay 3 5 4 _ 51 5
g%({ 1) o + [c (cu-ba-t\}-l n° F =0 (33)

Then the homogeneous solutions to Eq. (32) are F{2,5;4;z) and F(2,5;4;1-2). But

{ 1 {
—_— ok e {34)
3 9

Fle,5;4:2Y =L
oy -2\

is too singular at z 1 to give the correct flat space limit to the graviton

propagator. Similarly, F(2,5;4;1-z) has the wrong singularity structure as z » 1
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_(namely, no singularity at all), as well as an unwanted singular behaviour as z -+ 0.
Thus both homogeneous solutions to Eq. (32) must be rejected for the boundary
conditions corresponding to the Bunch-Davies de Sitter invariant state*}.

To find a particular solution to the inhomogeneous equation (32) we follow the
nethods of Ref. [6] and write (1-z)7% = 2F(2,5;4:2) - F(3,4;4;2z). The first term

has the same values of a, b, and c as the hypergeometric differential operator on

the left-hand side of Eg. (32). Thus, the relation

@[(?-“l F]:(b—o.\f—: (35)

No. Db
allows us to find a solution for this first inhomogeneous term. The second term

F(3,4;4:;z) fits the formula

b(m'b;c.) F(w\-i)b—.{jc;}):iF(Qa-l,b-ijc;}\ (36)

and s0 an inhomogeneous solution can also be found. Working out [(3/3a) - (3/3M]F
for a = 2, b =5 from the Taylor expansion of F(a,b;c;z) and taking into account the

normalization factors gives finally

50 { 9
=-27 0 2 2 (Y (s 2o 0 L
9 e i = 323( (+-3) S5, (37)

which has the appropriate [1—z)'1 behaviour at z = 1 to give the correct H2 + 0
limit and no singularity at z = O. Now, using expressions (26) to (30) we obtain

the full {spin-2 part of the) graviton propagator to be Eq. (21) with all the Gi of

the form
HQ‘ ] 2
G = i L T L 3 -
' iETl‘z NI. -2 ‘333( Pl. C?LE } \“ ({ }'\
(38)
s 24 4L ¢
3 ¢+ 2 ‘

*) An admixture of F(2,5;4;1-2) in the solution gives the Green functions for a
member of the one-parameter family of de Sitter invariant states discussed in
Refs. [2] and [7].
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The normalization constants Ni and the additional constants {p,q,r} are cata-

logued in Table 1 for each i.

{2)c'd’

ab is strictly valid for 0 < z ¢ 1, i.e. x and x'

This evaluation of G
Euclidean space-like.

The Feynman propagator function for time-like x and x' is determined from Eg.
(38) by interpreting z as a complex variable and taking the boundary values of the
complex functions Gi as z approaches the real axis from above, the cut running from
z=1toz =« For non-Euclidean space-like x and x', the propagator is just the
continuation of Eg. (38) for z ¢ 0 which is obtained trivially since there is no
singularity at z = 0.

The discontinuity across the cut G(z+i0) - G(z-10) is the commutator function

{which vanishes for space-like separations z ¢ 1) and the retarded Green functions

are

vet

G (3) =-{p(t-t [G(uio\-@:(%'i")] ) (39)

where the index i has been omitted for clarity. Since

A =t iS22+ P A
(-(2%i0) ) ( i-%\ (40a)
angd
Wli-aoa] = 7im e W (-8 2>t (40b)
fe‘ Hi ! 2 3 3
G, = g({-t)gs(l-i\_-—g(uukz +q_1)9(%-01
gn N, 32 ‘ ¢ (41)

It is obvious from Eqs. (38) to (41} that although the real parts of the

Feynman functions diverge like log z for z >> 1 the imaginary part which contributes



_ to the classical retarded {or advanced) Green functions does not diverge at all.

Instead, as z >> 1,

fe¥ \.\,‘ ?; *
G, —, — = Consh. (42)
oot 1w N

Thus, the transverse trace-free perturbations of the de Sitter background do
not go unstable -- classically. If we had included an arbitrary amount of the
homogeneous solution to Eq. (32) in the propagator function, then the commutator

and classical Green functions would have been non-zero on and within the light

13

cone of the antipodal point to x (z ¢ 0). However, within the light cone of x, i.e.

for z > 1, expressions (41) and (42) remain unchanged and our conclusions are not
altered by the addition of such a term.

The logarithmic divergence of the spin-2 Feynmwan propagator at large distances
agrees qualitatively with the results of Refs. {31 and [8], although more precise

comparison is difficult because they use a non-covariant gauge.

4. N~ AGATO
In order to assemble the full metric two-point function we need also to

consider the spin-0 gauge-invariant piece of the metric fluctuations:

b -4 o
h"uB:['ﬁu _%_(n_*%\ (qub_ %‘3 Lﬂ)lhub , (43)

where -(0 + R/3)'1 denotes the inverse of - O - R/3 over the non-zero mode subspace

of the differential operator, i.e. it is just A1{x,x') defined in Appendix A.

Equation (43) defines a projection of symmetric tensor functions onte scalar

b

functions, which we shall denote by h - OB = g hab' Since only the combination

h -OB is gauge invariant there is no unique spin-0 projection operator analagous to

Eq. (15) for spin-2. If we choose the simplest such projector (operating to the

left)
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=) |
abddl T 4 Snb Jea p (44)

then the spin-0 part of the metric two-point function obeys:

L R eucu

2 [ﬁmbu—bab“ Z‘%.A S Ge., "oy
3 eﬁ (=) _p® (45)
2 [Sn.l;(n S -kG e“@“ ! - Pa.LCjcl/ ’

which is the analogue of Eg. (12). A solution of the form

) (o)
= G
abdd Jab dea’ (46)

satisfies Eg. {(45) provided

@) ' 1 R -4 A !
G e 7 (84 3 = -7 8, (xx) (47)

The function A‘ which appears in the spin-0 two-point function (47) is given by

Eg. (A.15) of Appendix A. 1Its corresponding retarded function is

et 1
A, = o (e-t) s $(-2) + 6 (22-4) e(z-ﬂg \ (48)
en

which behaves like » z for large time-like (x,x'). This is just a reflection of the
fact that the operator -(O + R/3) is that of a scalar field with negative mass
squared, -Rf3 = ~an? . We will now argue that this divergence in the classical

retarded spin-0 function must be a gauge artifact.
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The subtlety arises because the decomposition (2) and transformation rules (8)
are unigque only when DanE is linearly independent (as a tensor) from gabE. However

when the gauge function is longitudinal, Ea = DaE and ¥ obeys
|
DD, % =49, 0%, (49)

then h still transforms as expression (8d) but the transformation rule for B becomes
111 defined: it is possible to add an arbitrary amount of E to B without affecting
the metric perturbation, when E satisfies Eg. (49). Thus h - OB is not gauge
invariant under such gauge transformations and there remains a residual gauge free-
dom in our spin-0 two-point functions under transformations obeying Eq. (49).
To gain a geometric understanding of these transformations, operate on Eq. (4%)
C

with Db and use the commutator rule for covariant derivatives [Db,Da]DbE = RacD E =
% RDaE in de Sitter space to find that Eq. (49) implies Da[( O + R/3IE] = 0. This

equation has solutions for £ = const. and

(o« %—\S =0 . (50)

The constant solutions result in no change whatever in hab and may be disregarded.
The solutions of Eq. (50) are most clearly visualized on the Euclidean four sphere.
There, the D'Alembert operator has eigenfunctions which are the spherical harmonics
on S‘. The eigenvalues of O are -n(n + 3}H2 with degeneracy 2n + 3. Thus, Eq. (50)
is exactly the condition for the n = 1 harmonics, of which there are five. These
five conformal Killing fields Ei, i=1, ...; 5 of S‘ correspond to the five trans-
lations of the four sphere in the imbedding five-dimensional flat space. The
changes of the metric under such transformations are clearly without geometric

significance for the four sphere. The (normalized) sum

gn’

15 B

> . .
Z o0 EL(;J) = cos(H}*(x,x’)) =22-4 (51)

=i

-

is exactly the quantity appeaxring in ﬁfet for z > 1.
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Since everything which has just been said applies equally well to the
Lorentzian signature de Sitter space-time, the divergence of Afet for large time-~
like {(x,x'} should not give rise to any physical instability of de Sitter space. To
check this directly we must consider gauge-invariant quantities constructed from the
metric perturbation that arises from a physical source (see also Ref. [8]). This we

do in the next section.

5. Y OF DE TTER SPACE
The most direct application of our calculation of the metric two-point function

in de Sitter space is to the evaluation of quantities of the form

A Jd’
= b0 = [ VT (XY T8 (w0
%(3%(;)‘} O = J A% Vg G&b oyt ) (52)
that is, G (x,x') gives the response of the metric expectation value in the

abc'd’
de Sitter invariant Bunch-Davies state to small (external) perturbations in the

energy-momentum tensor of matter. Here

(2) (o)
G ., =G +
obcd obcdd’ G oabc’d’ (53)

contains the contributions from both the spin-2 and spin-0 parts of the metric two-
point function calculated in Sections 3 and 4, respectively. The information about
the gquantum state of the gravitational field is contained in the Feynman boundary
conditions (ies prescription) used in the evaluation of the various scalar functions
Gi and G(G).

If instead we are interested in the classical response of the metric to stress-
energy sources then the retarded (or advanced) Green functions must be used. The
fact that the Feynman functions contain a log (1-z) term, whereas the retarded

functions do not, leads to very different results for the two, when inserted into

Eq. (52). We have shown already in expression {42} that the spin-2 parts of the
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_two-point function do not lead to any divergences in the classical perturbations
away from de Sitter space (although the perturbations do not diminish as t »+ =
either)}. This is consistent with the work of previous &gthors [5]1. What about the
spin-0 part?

The considerations of the last section led us to believe that the divergence in

the classical spin-0 retarded Green function must be a gauge artifact. If Géiif&? =
-(1/6)gabﬁfetgc.d. is substituted into Eq. (52) the apparently growing piece is just
proportional to
5 . H '
4 = gt <
T T [E Vg s T
iz4i
However, using Eqs. (49) and (50) one has
Ly i ' C’.d} A 4, C'af ;- '
d'x Voo E(x\a'd’-‘- C:J):--‘Iigc\x@ T (‘K')DC,D&,E(X) {54)
[

which vanishes after a by part integration, since the energy-momentum tensor is
covariantly conserved, Dc.Tcldl(x') = 0. No physical quantity can be constructed
which diverges, classically.

The situation changes dramatically when the Feynman propagator functions are

inserted into Eg. (52). These contain log (1-z) pieces in the spin-2 part, and

(2z-1) 1n {(1-2) pieces in the spin-O part. Explicitly, the divergent piece in

h_, (x) is:
5 2 ' ,
y oA 9 Jcl"x" V-9’ lagi-2) T4, ,(x)x’\Tdd(X‘)
=1 5’4TF"N;' abcd
W /
o VAW VT @)l () Ty (55)
{c‘ﬂ" 3 [ 4

It is straightforward to show that the spin-2 part leads to a log z divergence,

while the scalar part leads to a linear-z growth in the metric perturbation. Indeed,
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using the property (22~1)gab = -{1/H2}Dan(2z—1) and doing integrations by part, the.

second term of Eq. (55) takes the form
{ Jd!
S LN 2 any T7 & less singuler terms (56)
eTr ¢ d g

which indicates that the dominant divergence comes from the spin-0 part. Thus the
de Sitter invariant gquantum state usuwally discussed in the literature is unstable
to arbitrarily small perturbations and the de Sitter symmetry is broken.

The response of the metric to the external perturbation in Eq. (52) is only one
use to which the graviton two-point function can be put. Any quantum amplitude
invelving gravitons in internal lines {off-mass shell) will feature the same
divergent behaviour evidenced by expressions (55) and {56)}. A simple example is the

one-graviton exchange graph of Fig. 1 with an expression of the form
(e [de g T80 GGy 74
x V=g | d% Vg bl g YT

In addition we can use metric fluctuations as a self-generated guantum source,
in the full non-linear theory, which will play the same role as the external
perturbing source Tab introduced in Eq. (52). Thus, fluctuations in the gravita-
tional field itself will destabilize de Sitter space, and the spectrum of these
fluctuations can be used to understand the direction in which the full quantum
dynamics will cause the system to evolve. These considerations will be taken up in

a future publication.
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Table 1

Numerical values of the constants Ni' Piv 950 Ty (i =1, ..., 5)
appearing in the scalar coefficients Gi which determine the spin-2 part

of the graviton propagator [see Egs (21) and (38)].

1 Ni Py 9 o
1 12 0 -12 -8/3
2 -2 0 -2 ~-4/9
3 12 0 18 4
4 -3 5/2 -9/2 -1
5 3/2 -5 3 2/3

Fig. 1: One-graviton exchange graph.



21

Appendix A

THE FUNCTIONS Ao AND &1

The differential operator ~p] + M has a unique inverse &(x,x';Mﬁ) in de Sitter
space provided:
i} A is a function only of z(x,x'), i.e. it is maximally symmetric;
ii) its only singularity is (‘I—z)'1 as z » 1 with a possible branch cut extending
to z = w;
iii) W > (9/)E.

Condition (i) fixes A(z;HF) to be a solution of the ordinary differential

equation:
Dlo,b:c) Ala;m) =0 3.1)
for
o= 24 LM _ 2
2 H"- 4
be 2 oW 1 E#d
= 3 e iy (A.2)
C =

The two such solutions are F{a,b:c;z) and F(a,b;c;1-z). Condition (ii)

eliminates the latter and fixes the normalization to be

INCS A &Y
(D (b N Flo,b ¢ z) , (A.3)
1€ N

3
A(E;H\- 2
If condition (iii) is not satisfied the analyticity requirements on A imposed
in (ii) may not be satisfied. In particular, if W o= —n(n+3)H2 forn =0, 1, ...,
then Eq. (A.3} diverges for all z because of the I functions in the normalization.
This can be understood most directly by recognizing that (ii) is the same condition

imposed on A by the demand that it should be the boundary value of a function
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defined on the Fuclidean section (S‘). There 0 is an elliptic differential operator -

with eigenfunctions
\1"t N Yl vz 0,4 2ntd
ju} n = - alnsy3a) 4 n ¢ LT 04, .., (A.4)

that are just the spherical harmonics on S‘. Then,

. . X
AGryw)= ‘i iiB IQRNSS (3.5)
nzo izo n(n+3) Wy M

satisfies (i) and (ii) and is equal to Eg. (A.3) for Hz > 974 Hz.

For the exceptional values Hz = —n(n+3}H2, the unique inverse obeying (i} and
(ii)} does not exist and we must either abandon the maximal symmetry implied by (i)
or the normal causal behaviour implied by (ii), or define the inverse of - O + M
over the orthogonal complement to its zero mode subspace, i.e. we simply omit the
divergent n in the sum of Eq. (A.5).

when M = O the resulting An(z) then satisfies
@) X
—aA, =% (x¥) - YN . (A.6)

Since

H VO* o/
5 d'x Y DY Y = L $ (A.7)
S
%

and Yu is a constant, we have

4
DAO(%\f&\-\li}(q b'c\A“:-{————* = 328 24 (2.8)

0y o VQQ(SQ - 81\'1 }
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The homogeneous solutions do not obey (ii) but a particular inhomogeneous
solution can easily be found by taking the limit of Eq. (A.3} with the n = 0 term of

Eg. (A.5%) subtracted, or by direct integration of Eq. (A.8). The result is

Hz i
A°(1)= _— i w——-—itn(i—l) g * ko . (2.9)
S
In the same way, when Nﬁ = -4H2 = -R/3, as in Section 4, we define A1{z) to obey
5 ; R
0y L Lo,
_(;;H.%)&s—_-‘o («,¥> - Y \fi(‘*BYi(%\ i (A.10)
(X}

The sum on the right-hand side is a function only of z since it is the character of

the n = 1 representation of 0(5) and must be an invariant. Since

5 . y *
‘ji_(’-'\ = Z. Y;(\O \fi G4

=4
cbeys
(u+4f\%i=° (A.11)
and
[0 10en)] = wtis) g - s
S‘ X=X i
we have
4 4
{5 H 5 H
ﬂJ}\-: - cps(Hp) =4 = (22-1\'. (A.13)
g 231
Then,
15w’
Da,-1:2) d,(3) = == (22-4) a4t (A.14)

gn
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determines

2

AGY= L Q -{}_—} v 6(1-22) ln (1-2) -(,R v ki‘ji

wn (A.15)
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Appendix B

THE SPIN-2 PROJECTOR

AL L WL LA R A s

The tensor decomposition of Section 2 may be inverted for the various fields by

operating on Eq. {2) with Db and ¥ successively. We find

-4 ob
(aa+ 33_\ at (D“b&'- 5;‘3 B)hqb (B.1)
1 Y
A = - QQ‘ D "‘éa’ (B.2)

/

»\ = \\ D Q ? L\ - é:‘i‘Lh.L\ -

“%(Dabb";‘."‘ﬂm\,“) (ar X ) t:;"iL (DD-”*S a'\héd; ' )
where le(x,x') is the transverse vector or spin-1 projector which is the inverse
of ~( O + R/4) on transverse vectors [given explicitly by Eq. (B.12) below]. The
integral operators ' and (O + R/3)"' denote the functions -4, and -A  found in
Appendix A.

Actually, O + R/4 has zero modes when operating on transverse vectors so the
inverse QEI must again be defined over the complement to the zero-mode subspace.
The zero modes are the ten Killing fields of de Sitter space E; satisfying Killing's

equation

. . _
Da";"b + bb‘gm = O ; v=4,...,10 (B.4)

The trace of this egquation tells us that the E; are transverse and Db on it tells us

that
o3 + [0 05 =(@«B)E =0

b = , (B.5}

so they are indeed zero modes of O+ R/4. Let

Lo : £
PEBNCORINECS (B-62)
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~ ! ~ r_/
= () 3;' +pQYIBLN .,

(B.

6b)

where the last relation follows because K is an invariant tensor. o abd ﬁ are reg-

ular at z = 0, 1 and can he determined from

R Vg ¢ b
0+ = < - =

(%), =0 =Dk
These conditions imply that § = - E is a constant and

r:( = (9.%-—1.\ ':6’

E = &(i—i\r‘f

The constant ; is determined by the normalization condition on the E;:

I

gé‘x\l:?a K\,C 3bcf , = 18 =(4§+$)) VDQ(S")'
2=4

=

Thus
15 B
16 e

f\/
X =

(B.

(B.

(B.

(B.

(B.

If there were no zero modes the inverse of -([3 + R/4) would be proportional

simply to the transverse projector

/ ' -4 C,,
c - e _ n
Pb =9, D b .
As it is, we define Qg by the equation

’ /

- (u+ %‘_) ch - Pbc-—Ki:

with the zero modes (B.&) subtracted. Let

] | rd

c c [
R, = X9 4 Py

be decomposed in terms of its invariant tensors and define

(B.

(B.

{B.

8a)

8b}

10)

11)

12)

13)
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f ¥= %= p . (B.14)

»

This leads to the equation for «,

i 4
J _4_) S
| (Z;;Léf SAJP X W 1 (B.15)

. Since (dzfduz)aB = (3!{"/32112)(11)‘2 in terms of z, Eq. (B.15) becomes

2
43(5,0;3)\5:-3“1[ 4 -10] | (B.16)

3wt L (Y

The unique solution obeying conditions (i) and {(ii) of Appendix A is

6 .
Gy = 2 "‘z -Z‘-_—{ -2l (wa\’i % Const. (B.17)
39

Having constructed QE explicitly we can return to Eq. (B.3) for the spin-2

projector. P;;é'd' as determined by Eq. (B.3) is a complicated term:

I
) ) CC’J) ' { (’TA, '
Pa\n.‘d' (x,X) = Qo(“h) (x,x) - 7 b 8 (x,x) -
" 4 ! At A (e Lald ’)
'ibmb Qpy - %(qub'z‘ﬂab“)(“*'s o (57 - 397 £ (B.18)

However, its contraction with nanbnc nd is much simpler and is all we actually

require. Using the identities
7 7

wOn = ab o= D 9, =0 (B.19)

and

(W y A
D - 8
MR A T 5201

for any function of u, we have
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Tt
RS R L £ ¢ & ;
ot P obdd T3 “.,_Y T Qi dp (8-0,) +
T
L d _ L 2 ’
+2 -—;\‘nbl lgu ﬁi 5 (X#—)‘-) ] (B.21)

Then the equations of motion for Ah and A1 and the explicit form for v in Eq. {B.17)

finally gives
L
' A’ ) s W i

Lwa'nd P = =

(B.22)

upon converting to the variable z. This is exactly the right-hand side of Eg. {32)

of Section 3 of the text.
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