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A generally covariant formulation is made for the previously proposed unified model of
the Nambu-Jona-Lasinio type for gravity and electromagnetism. The gravitational and electro-
magnetic fields are generated as collective excitations of fermion-antifermion pairs. The model
is shown to be effectively equivalent to the Einstein-Weyl theory of general relativity.
The G-« relation, the relation between the fine structure constant and the Newtonian gravi-
tational constant is re-derived.

§ 1. Imntroduction

In 1963, Bjorken proposed a model of Nambu-Jona-Lasinio” type for electro-
magnetism, in which photons are collective excitations of fermion-antifermion pairs
generated via four Fermi interactions.” Phillips attempted to extend this idea to
gravity.? Recently we proposed a unified model of this type for all elementary

29 In the model, leptons and quarks are the only

particle forces including gravity.
fundamental particles, while the intermediate bosons such as photons, weak vector
bosons, Higgs scalars and gravitons are generated as collective excitation modes of
the fundamental-fermion-antifermion pairs. The compositeness conditions lead to
many interesting relations between various coupling constants and among various
masses. Especially in unifying gravity and electromagnetism in this picture, we
obtained a simple relation between the fine structure and gravitational constants
which was first conjectured by Landau in 1955, historically.?

There are two important questions left unanswered in the gravitational sector
of our model.? The first one is whether our model is equivalent to Einstein’s
gravity and the other is whether our model is consistent with the presently existing
data on gravity. In this paper, we shall answer these questions both affirmatively.
To this end, we recall Sakharov’s idea” that the action of Einstein’s gravitation
is identified with that of quantum fluctuations of the vacuum. Adopting his general
idea, we shall reformulate the gravitational and electromagnetic sectors of our
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previous unified model. In § 2, we shall first rewrite the model in a generally
covariant way, and then analyze it by adopting the Pauli-Villars regulator method
which is invariant under the general coordinate transformation as well as the
local Lorentz and gauge transformations.® It will be shown that the reformulated
model is effectively equivalent to Einstein’s theory of gravity. In § 3, we shall
include electromagnetism and show that the interaction between photons and gravi-
tons is also governed by the general relativity. Thus, combining the results of §§ 2
and 3, we shall be able to answer the above-mentioned two questions affirmatively.
Finally, § 4 is devoted to conclusion and discussions.

§ 2. Model of gravity

We start with the Lagrangian for a fundamental fermion field ¢ with the mass
m moving on a curved space,®

L= —2— (reD,— D) p—mFp+C, @2-1)

where €** is the vierbein and D, is the covariant differentiation defined by

Dﬂ:a#—érm"ﬂsmn ’ <2'2>
1
rnmp:?(("mn,&’—cnm/‘—c,&mn>, (23)
Cm;ua:a,u,emu—avemp (2.4)
and
s =l 1. -5

The constant C is a counter term which will later partially cancel the quartically
divergent cosmological term. The Lagrangian L is not only invariant under the
general coordinate transformation (GCT),

0x*=§&" and 0" =¢"0,6", (2-6)

but under the local Lorentz transformation (LLT),
0= —éwmsmw and  0e** =kl 2-7)

with
Wmp = — Wpm -

Apparently, L has no kinetic term for the vierbein field €. As will be seen
immediately, the divergent parts of the fermion loop integrals for quantum cor-
rections play a role of the kinetic term, so that the field " becomes the “genuine”
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gravitational field as a collective excitation of fermion-antifermion pairs.
The invariant action on the curved space is given by

fd“x\/?gL , (2.8)

where g=det¢,, and ¢, =¢",e,,. We now define the effective Lagrangian L. for
the field ¢ by the path integral over the fermion field:

exp <z jd‘*x V=g Leﬁ> - j(dgb) (dF) exp <z jd‘x J-T;L) . (2.9)
Let us write 4/ —gL in the form
«/—_gL=</7<é§—m+F>¢)+C\/——g, (2-10)
where #=7"7,, with 7 =diag(l, —1, —1, —1) and
r=v=ge* L B,~Dyry~ L~ (V=g-Dm. 21D

Performing the path integration formally, we then obtain

jd‘x«/?gLeH: jdu CvV—g—iTr ln<1+ ,..L-r>, (2.12)
i9—m »

where Tr denotes the trace operation with respect to the space-time points and the
7 matrices. The second term in (2-12) corresponds to a series of one-fermion-loop
diagrams if it is expanded into a Taylor series in I'. Since /" contains one differ-
entiation, all the loop integrals are quartically divergent. We believe, however,
that there exists a realistic momentum cutoff at around the Planck mass (G '*~10"
GeV where G is the Newtonian gravitational constant). Cutoff around the Planck
mass was introduced by Landau, based on the idea that the effects of gravitational
interaction may exceed the electromagnetic effects at such high energy.” Later,
Isham, Salam and Strathdee demonstrated in a model that gravity realistically

regularizes all infinities including its own.'”

Our assumption is, however, different
from theirs at the point that, in our picture, all the basic nonlinear fermion inter-
actions are cutoff universally at a certain short length, not due to gravitation. We
further assume in this paper that this cutoff is invariant under GCT and LLT.
For this reason, we adopt the cutoff by Pauli-Villars regulators, which is invariant
under GCT and LLT and which may offer a good approximation to the real cutoff
as far as the external momentum is much smaller than the cutoff momentum.
We introduce three regulators with the masses M, (i=1,2,3) and the weight
coefficient ¢; which must satisfy
3

S e ME+mF =0 for k=0, 2, 4. (2-13)

i=1

Let us first proceed in the weak field approximation, writing the vierbein as
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et =t H . (2-14)
-_O —_Q—" For the purpose of this section, /{** can be as-
sumed to be symmetric. Then, /" in Eq. (2-11)
is given by

—— —_— r:Hk”[%Tkaﬂ_Wkp<”;‘5—7n>]
( ) : o

) . . -!-HWH“[—"/“— 7.0,
Fig. 1. The diagrams which contribute 2

to Laiv up to second order H*™.

The solid and dashed lines denote 1 ( 3 “ >:l
+ = ; B —m
¢ and H™, respectively. 2 (Dewles + D)

+ %emmnﬂH’”"O’“‘I—I"“ﬁ”,

LO(H?), (2-15)

where the differentiation 0, in the first two terms does not operate on H* but on
the fermions outside. Up to second order in H**, only the three diagrams shown in
Fig. 1 contribute to L.s. Notice that the spinor-connection term [the third term in
(2-15) ] does not contribute to L.s to this order. After somewhat lengthy cal-
culations, we find the following expression for the divergent part of L., which we

call Ldiv:
\/Lngiv:Jni\:'—H)-l (H”")Z—l— (Hz )2]

+ %Jg [0, H™)*—20,H")*+20,H"0,H", — (0,H" )]

+ %Jo[ (CIH? ) — 200 H 0,0, H™ — 2.(0,0,H™)®
—3(OH")*+6(0,0,H'")*] +0(H?, (2-16)

where [1=7%"0,0, and the suffices of H** are raised or lowered by multiplying
7. The J.s are divergent factors defined by

(4 )220Mi In(M}?/m*) for k=0, 2, 4. (2-17)
-

The form in the square bracket of the first term in (2-16) coincides with
W/ —¢g—1) up to second order in H*. Also, the form in the square bracket of
the second term in (2-16) is nothing but the weak field approximation of v/ —¢R,
where R is the scalar curvature defined by

R=g"R,,, (2-18)
R,=0,I%—0 0%+ %5, —T'%.T%, (2-19)
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and

rz»:%g“ﬁ (000 + 0,0 50— 0,59,). (2-20)

Furthermore, the form in the square bracket of the third term in (2-16) can be
identified with R*—3R,,R” in the weak field approximation. Disregarding the
trivial constant term, we, therefore, obtain up to second order in LI

V= gLy = J—‘g[m%}-szgoJo (R=3R,.R") . 2-21)

The third term in the square bracket in (2-21) is not only practically negligible
(smaller by the order of G than the second term) but taken as the divergent part
of radiative corrections in the usual quantum gravity." We, therefore, ignore it
hereafter (, which means that we do not take it as a large amplitude).

Let us now consider what L. looks like to all orders in F*“. Since the
original Lagrangian L and the method of momentum cutoff are both invariant
under GCT and LLT, L. is also invariant. Furthermore, since the cutoff momenta
M, are arbitrary, L. should be invariant separately in each order of divergence.
From dimensional analysis, the quartically (quadratically) divergent terms in Ly,
involve no (two) differentiations. It is known that the only GCT and LLT invari-
ant scalar made of the vierbeins with no (two) differentiations for each term is a
constant (the scalar curvature R). Therefore, Eq. (2-21) is proved to all orders
in H* without any approximation.

We construct the new Lagrangian

L”=L+ Ly, (2-22)

where the vierbein ¢*“ aquires the kinetic term. The original Lagrangian is then
written as

L=L"— Ly, (2-23)

where Lg, becomes the counter term which subtracts divergent parts arising from
the fermion loop integration due to L”. Of course, perturbation theory of L”
involves infinite series of divergent loops with internal graviton propagators. This
difficulty is not proper to our model but to any theory of quantum gravity.'”?
How to avoid these divergences by renormalization is beyond the scope of this
paper. Introducing G and 2 by

1 1
2 J,= 2.24
6" 167G 2-24)
and
C+J,=1. (2-25)

we finally obtain
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L =e*§ 2 (7.D,— D1 p—mPd+ ——R+1. (2-26)
2 167G
This is precisely the Lagrangian for the theory of general relativity for a fermion
field, with the Newtonian gravitational constant G and the cosmological constant
A. In the Lagrangian L”, the vierbein has become the genuine gravitational field.
Eq. (2-24) shows that the cutoff momentum is indeed determined to be around the
Planck mass.

§ 3. Photon-graviton interactions

Bjorken showed that the photon can be considered as a collective excitation of
fermion-antifermion pairs.” In the last section, we have shown that the graviton in
Einstein’s general relativity can also be such a collective mode. In this section,
we investigate how such photons and gravitons interact with each other and show
that the Lagrangian describing them is again that of general relativity.

Let us start again with the nonlinear Lagrangian L for a fermion ¢ with the
mass 7 on a curved space,

L=L+/n" @) @) (3-1)

where f; is a coupling constant. This L is equivalent to the following Lagrangian
including the auxiliary field V,

L' =L+e™V,Jru+Cy”V,V, with C,= "Zl? (3-2)

1

if the “equation of motion” for V, is taken into account. These Lagrangians
L and L’ are invariant under GCT and LLT. Furthermore, the sum of the
first two terms in L’ is invariant under the local gauge transformation (GT):

0V,=0,4 and 0p=:iA. (3:3)
Define the effective Lagrangian L. by

exp <i j d‘x\/idfeff> - j(dgb) (dP) exp <z Jd“x«/——gﬂ’> (3-4)
and write v —¢gL’ in the form

J=gL’ =$<§5 ot f>¢+ J=g(C+CmV, V), (3.5)
where

I'=T+v=ge"1.V,. (3-6)
Performing the path integration, we obtain

jd4xJ_:dfeg= jvd“x\/—_g(C—i-Clg"”V,,Vp)—iTr(l-}-,—l—r f). (3.7

i3 —m
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The last term corresponds to a series of \
one-fermion-loop diagrams. Among them,
loop diagrams to which an arbitrary num- MOW
ber of external e*s and no or two ex-
ternal V,’s are attached involve divergent

integrals.- We adopt the same cutoff pro-
]

cedure as in §2, which is also invariant "
under GT. We call the divergent part WQW
of Lt as Lgw. Obviously, the loops with-

out any external V, give the same result Fig. 2. The diagrams which contribute to the

o zdiv as that to Lgy, in §2. The ad- terms with two V.’s in Loy up to first
order in H*, The solid, wavy and dashed

ditional contributions come out of the loop lines denote ¢, V, and H™ respectively.

with two external V,.

In the weak field approximation, I" becomes
f:ﬁkﬂv,ﬁ'k + Hkﬂ['%rk‘aﬁp'_‘nk,u<_;‘5_ m>il

+HV, [0,/ 7 — Mt 12] +0 (FD). (3-8)
Up to first order in H**, the three diagrams shown in Fig. 2 contribute to the

terms with two Vs in Lg,. Some lengthy calculation leads to the result

\/:T]Ediv = ‘/Tngiv + _;_Jo.ﬂpp.’?vﬂ V/wVPU

+%JOH“[W”VWVW—i—mmwwvwvﬂ] +0(H?), (3-9)

where
Vy=0,V,—0,V,.

Again up to first order in H"# this can be written as
\/Tgidiv: V—yg <Z:div+ _;_Jog/‘”gP‘TVMVM> . (3-10)

The second term in the bracket in (3-10) is the only possible form that is made
of two Vs and an arbitrary number of ¢*#’s and that is invariant under GCT, LLT
and GT. Therefore, the expression in (3-10) is correct to all orders in H**
without any approximation.

Let us construct the Lagrangian

L”=IL"+Lg,, (3-11)

where the auxiliary field V, aquires the kinetic term on the curved space, which
contains interactions between V, and ¢*.." If one writes

z/:_i”“zdiv 5 (3’12)
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one then finds that the idiv becomes the counter term for the divergent fermion
loops coming from L”. L” is invariant under GT if we require the massless
condition C; =0, which implies f;=oc0. Therefore, GT-invariance of L” holds only
in the strong coupling limit in the original nonlinear Lagrangian L. This situation
is somewhat different from that in our previous paper,” where the coupling constant
f, is rather small as 1/J,. This is because in the present paper we have adopted
the gauge invariant cutoff so that the loop diagrams give no term to cancel the
g”V,V, term in L’. One can, however, show by modifying the Pauli-Villars
regulators that this strong coupling limit can be taken smoothly with the conven-
tional massless condition kept tight.
Rescaling the field by

V,=eA, (3-13)
with
3
=" 3.14
vy (3-14)
we finally obtain
L= L7+ ef e 1A= 100" F o Fov (3-15)

where
F,=0,A,—0,A,.

This is precisely the Lagrangian for the general relativity of a photon A, and a
fermion ¢ with the electric charge e.

§ 4. Conclusion and discussion

Starting with the Lagrangian for a fundamental fermion field moving on a
curved space, we have shown that it implies, as vacuum fluctuation, the Lagrangian
for the general relativistic theory of photon and fermion. The gravitational and
electromagnetic fields are generated as collective excitation modes of fermion-anti-
fermion pairs. We have assumed a realistic and GCT, LLT and GT-invariant
momentum cutoff at around the Planck mass, adopting the Pauli-Villars regulators.

The compositeness of the photon and graviton implies interesting relations
between the coupling constants and the momentum cutoff. If we take the limit
of the equal regulator masses (M;—D) for simplicity, we obtain from (2-24)
and (3-14)

G=24" and aEe_zz___. ST 4-1)
M? dr  In(M?*/m*)

In the more realistic case where there exist a number (the total number N;) of
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fundamental fermions (the charge Q; and the mass m; (Z=1,:-,Ny)) as in our
previous unified model,” these equations should be replaced by

127 3
= and «a= .
N, M? ZiQi2 In (Mz/mi2>

Eliminating M* from these relations, we again obtain the G-c¢ relation between the
fine structure and Newtonian gravitational constants:®

= i X (4-3)
208 In (127/N,Gm )

Comparing this with the previous result®

37
o= ,
208 In(4n /KN Gm?)

where £,=5/9 and 2/3 depending on the invariant cutoffs with and without intro-
ducing the Feynman integration, respectively, we find that the G-cv relation is
rather insensitive to cutoff procedures. Different cutoffs may only change the ar-
gument of logarithm in the relation.

In conclusion, since our model is effectively equivalent to the Einstein-Weyl
theory of general relativity, it is consistent with the presently existing data on
gravity.

(4-2)

(4-4)
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