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Abstract

An analytical and experimental study of boundary gravity currents propagat-

ing through a two-layer stratified ambient of finite vertical extent is presented.

The theoretical discussion considers slumping, supercritical gravity currents,

i.e. those that generate an interfacial disturbance whose speed of propagation

matches the front speed, U and follows from the classical analysis of Benjamin

[J. Fluid Mech. 31, pp. 209–248, 1968]. In contrast to previous investigations,

the amplitude of the interfacial disturbance is parameterized so that it can

be determined straightforwardly from ambient layer depths. The theoretical

model, which is applicable to the special case where the depth, D, of the grav-

ity current fluid at the initial instant spans the channel depth, H, shows good

agreement with experimental measurements and also analogue numerical simu-

lations performed in conjunction with the present investigation. Unfortunately,

it is difficult to extend our theoretical results to the more general case where

D < H. Reasons for this difficulty will be discussed.

From experimental and numerical observations, the interface thickness, δ is

observed to negligibly affect U of supercritical gravity currents even in the limit

where δ = H so that the ambient fluid is linearly stratified over the whole of

its depth. Conversely, subcritical gravity currents show a mild upward trend

of U on δ/H. Finally, the effects of densities, ambient depths, δ and D on the

horizontal position, X where deceleration first begins are considered. In contrast

to the uniform ambient configuration, the gravity current can propagate without

decelerating beyond 12 lock lengths and decelerate as early as 1 lock length.
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Chapter 1

Introduction

Gravity currents are primarily horizontal flows driven by differences in density

that occur frequently in natural and man-made situations. As discussed in the

extensive monologue by Simpson (1997), avalanches which have an increased

density due to suspended particulate and sea breeze fronts that arise in coastal

regions due to differential heating between land and sea are familiar examples

of this phenomena. In our everyday lives, gravity currents manifest themselves

as the cool draft that is felt as one opens the door after a hot shower. Includ-

ing surface tension, an oil spill which propagates radially away from a source

along the surface of sea water is also an example of this phenomena. For many

decades, researchers and engineers have been studying gravity currents, not only

to understand the dynamics of the above mentioned phenomena but also to be

used in numerical weather prediction models, the design of low energy build-

ing ventilation systems, understanding the impacts on aircraft safety, etc. The

remainder of the introduction will be organized as follows: § 1.1 will cover the

background of gravity currents propagating into uniform ambients and § 1.2

will cover gravity currents in stratified ambients; specifically linearly stratified

and two layer ambients. In all cases, discussion will be restricted to rectilinear

geometry. Examples of axisymmetric gravity currents are given by Ungarish

(2009).
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1.1 Gravity currents in uniform ambients

The rectilinear gravity current propagating into a uniform ambient is the sim-

plest and most studied class of the phenomena. Early research by Keulegan

(1957) and Hoult (1972), have found that these types of gravity currents evolve

through three distinct phases: (1) a slumping phase where the gravity current

propagates at a constant speed, (2) an inertial-buoyancy phase and finally, (3) a

viscosity-buoyancy phase where viscous forces become important. As discussed

by Rottman and Simpson (1983), the front speed decreases as t−1/3 and t−4/5

in the 2nd and 3rd phases, respectively. As the slumping phase typically ends

after 6-10 lock lengths (Huppert & Simpson 1980), replicating the 2nd and 3rd

phases in the laboratory requires a long tank which poses difficulties in terms

of cost and setup time. Due to these experimental challenges (and related dif-

ficulties associated with running complementary numerical simulations), most

studies focus on the constant speed slumping phase.

Simpson & Britter (1979) performed an experimental study on the dynam-

ics of the head of a gravity current advancing over a horizontal surface. The

experimental apparatus utilized in the experiments was designed such that the

front was held stationary by an opposing recirculating flow. In their study, they

discovered that the foremost point of the head is slightly elevated which results

in ambient fluid being over-run by the gravity current. Due, however, to the

associated density differences, the entrained ambient fluid then rises to the top

of the gravity current head. This, along with shear instabilities between the

two fluids, forms a secondary mixing layer which sits above the denser layer.

As an additional consequence of less dense fluid being over-run by the gravity

current head, complicated three-dimensional lobes and clefts form (see Fig. 1.3

and Fig. 11.3 of Simpson 1997). Moreover, over an extended range, they mea-

sured the speed of the gravity current, rate of mixing between the ambient and

2
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Figure 1.1: Definition sketch of a dense gravity current (fluid of density ρ0) and
the control volume ABCD.

gravity current fluids, and the relative depths of the mixed layer.

A theoretical description of the speed of a gravity current during the slump-

ing phase was first derived by Benjamin (1968) based on observations of an air

cavity propagating into a channel of water. In Benjamin’s analysis, as illustrated

schematically in Fig. 1.1, he considered a gravity current of density ρ0 propagat-

ing, at a speed of U , into a uniform ambient of density ρ1 < ρ0 and depth, H.

A reference frame that is moving with the gravity current front was utilized so

the steady state assumption can be applied. Additionally, it was assumed that

(1) the flow is hydrostatic far up- and downstream, (2) fluid exchange between

the layers is negligible, (3) the top and bottom boundaries of the control volume

are rigid surfaces and (4) Re ≡ UH/(2ν) is sufficiently high such that viscosity

effects are negligible. By employing mass and momentum conservation far up-

and downstream of the front, an expression relating U and h0. By requiring

that energy be conserved within the ambient layer, two unique solutions were

obtained: (1) h0/H = 1
2
with Fr= U/

√

g′02h0 = 1√
2
and (2) h0/H → 0 with

Fr →
√
2, where g′02 = g(ρ0 − ρ1)/ρ1. The former solution is most often seen

in laboratory lock release experiments that have initial conditions as illustrated

in Fig. 1.2 a where the initial height of the gravity current fluid, D, matches

the channel height, H. These experiments have been described by Huppert &

3
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Figure 1.2: a Initial conditions for a dense gravity current of density ρ0 in an
ambient of density ρ1 < ρ0 where the initial height of the gravity current fluid,
D equals the channel depth, H. b As with panel a but with D < H.

Simpson (1980), Shin et al. (2004) and Tan et al. (2010 a). The derivation of

the model by Benjamin is outlined in Appendix A.

Huppert & Simpson (1980) proposed a simple alternate model that utilized

a relation between Fr and h0 developed using a curve-fit of experimental data.

To close the problem, they assumed that the gravity current slumps through a

series of equal area rectangles. With this model, they were able to satisfacto-

rily predict the speed of propagation, duration and length of the constant speed

slumping phase. Hoult (1972) developed spreading laws for the inertia-buoyancy

and viscosity-buoyancy phases through analysis of depth averaged shallow wa-

ter equations and omitting the viscosity terms and inertia terms, respectively.

Through comparisons with these spreading laws, Huppert & Simpson were able

to extend their model to predict the length and duration of the 2nd and 3rd

phases.

By solving the shallow water equations (Baines 1995) for two layer fluids,

Rottman and Simpson (1983) were able to model gravity currents in uniform

ambients for the more general partial depth case, as illustrated in Fig. 1.2 b,

4



where D < H. These equations were derived by assuming that vertical acceler-

ations are negligible and are therefore inapplicable at the gravity current front.

In order to compensate for this, they imposed a front condition which was the

relation between U and h0 developed by Benjamin (1968) multiplied by a di-

mensionless fitting factor, β2/2. By setting β2 = 1 and solving the shallow water

equations, they were able to calculate the speed of the gravity current during

the slumping phase. However, their results were quantitatively accurate only

when D/H < 0.5 but provided a qualitative understanding of the phenomena

for the the entire range (i.e. 0 < D/H ≤ 1).

Taking a different approach, Shin et al. (2004) derived an alternate the-

ory to predict the speed of propagation for a partial depth gravity current. In

contrast to Benjamin’s approach, which considers only the front in a reference

frame that is moving at the same speed, Shin et al. (2004) considered the entire

system which allowed for the dynamics of the upstream propagating distur-

bance1 and the details of the initial conditions to be accounted for. However,

in their analysis, a simplifying assumption was made; i.e. the gravity current

takes the shape of an box with a upstream propagating bore2. In general, ex-

periments have observed that the disturbance is typically a rarefraction wave

rather than a constant shape bore when D/H . 0.8 (Rottman & Simpson

1983). This assumption resulted in significant simplifications of the analysis,

the most important of which are: (i) ambient velocity can be represented by

a variable that is independent of the horizontal position, and (ii) work terms

associated with the front and the upstream propagating disturbance cancel out.

While model predictions show good agreement with measured results, some re-

1A disturbance that propagates back into the lock once the vertical barrier is removed (see
Fig. 4 of Shin et al. 2004).

2According to Baines (1995), a bore (also known as a hydraulic jump) is a locally steady
phenomena located in a compact region that can be modeled as discontinuity between two
streams of fluid propagating uniformly. This phenomena is caused by the steepening of a
wave.

5



searchers (e.g. Ungarish 2009) are of the opinion that the theoretical model is

fundamentally flawed due to the restrictive nature of the assumptions.

1.2 Gravity currents in stratified ambients

Stratification in the environment occurs frequently due to variations in humid-

ity, density, temperature, suspended particulate, etc. and can be caused by both

natural and man-made influences. Examples of natural occurrences of stratifica-

tion are (1) temperature inversions which most significantly affect cities which

are located in valleys or surrounded by mountainous terrain as described by

Fernando et al. (2001) and (2) stratified lakes and other large bodies of water

due to surface heating from the sun. Stable stratification is a hallmark of a well

designed, naturally-ventilating building; displacement ventilation, as identified

by Linden et al. (1990), where inflow and outflow occurs at low and high lev-

els respectively, provides an especially familiar example. This stably stratified

configuration can also occur if there are internal sources of buoyancy within the

building (e.g. heaters, cooking devices and people) and openings for exchange

of air with the exterior.

In the context of gravity currents, these types of fluid configurations can

play an important role in the dynamics of pollutant and nutrient transport

particularly in the speed and distance of travel. Indeed, as will be outline more

carefully below, a major objective of this thesis is to identify the effects of the

relative depths and densities of a two-layer ambient system on the front speed.

1.2.1 Linear stratification

Maxworthy et al. (2002) performed a series of experiments and numerical sim-

ulations to study the constant front speed during the initial slumping phase of

a rectilinear gravity current propagating along the bottom boundary of a lin-

early stratified ambient in a tank with a free upper surface. The results from

6



their high-resolution two-dimensional numerical simulations agreed well with

laboratory measurements. Additionally, they provided a set of curve-fit equa-

tions derived from experimental data which were utilized by subsequent studies

(e.g. Ungarish & Huppert 2002) for model verification.

Ungarish and Huppert (2002) developed a model using the one-layer shallow

water equations and the Huppert and Simpson (1980) front condition which

allowed for the prediction of the front speed during the initial slumping phase.

The principal assumptions of the model were that the fluid in the ambient layer

is infinitely deep and thus effectively stationary, the pressure is hydrostatic

and internal wave effects are negligible. The analysis satisfactorily captured

the effects of stratification on the speed of propagation for the constant speed

slumping phase. Additionally, simplified analytical solutions for the special

cases where g′12/g
′
02 ≡ (ρ1 − ρ2)/(ρ0 − ρ2) = 0 and 1 were provided, where ρ0,

ρ1 and ρ2 are the densities for the gravity current fluid, ambient fluid at z = 0

and z = H, respectively. By defining an effective Fre = U/
√

g′eD where g′e =

g[ρ0 − ρ(z = 1
4
D)]/ρ2, they were able to scale U such that it is approximately

independent of g′12/g
′
02.

Ungarish (2006) took a different approach and derived a generalization of

the Benjamin (1968) solution for a gravity current propagating into a linearly

stratified ambient. By utilizing Long’s flow field solution as described in Baines

(1995) with Benjamin’s flow force balance, a solution was obtained that allowed

for the prediction of Fr as a function of the height of the gravity current, h0

and the stratification of the ambient fluid without having to solve the partial

differential equations inherent to shallow water models. At the limiting case

where g′12/g
′
02 = 0, the results derived by Benjamin (1968) were recovered. The

theoretical solutions agreed satisfactorily with measured results by Maxworthy

et al. (2002).
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1.2.2 Intrusive gravity currents in two-layer stratified
ambient

As described below, an intrusion or an intrusive gravity current is one that

propagates along a sharp interface and has been extensively studied over the

past several decades. An equilibrium intrusion, where the density of the gravity

current is equivalent to the depth-weighted mean density of the ambient fluid,

can be modeled as a boundary gravity current propagating along a free-slip sur-

face into a uniform ambient. Using the energy conserving solution of Benjamin

(1968), a prediction of the constant speed of propagation during the initial phase

can be obtained. However, for the non-equilibrium case, the problem is more

complex and a more involved approach is required.

U

U

ρ
1

ρ
2

ρ
0

A B C

DEF

η

Figure 1.3: Illustrative sketch of a non-equilibrium intrusive gravity current
(fluid of density ρ0) in a two-layer ambient and the control volume ABCDEF .

The problem was first approached by Holyer & Huppert (1980) where they

utilized Benjamin’s approach to derive a predictive model. Using mass and

momentum conservation in the Boussinesq limit (i.e. small density differences)

in conjunction with Bernoulli’s equation applied along the upstream interface,

they were able to obtain an expression for the speed of propagation. The results

obtained agreed well for the equilibrium case but significantly under-predicted

gravity current speeds in the non-equilibrium case. Guided by detailed ex-
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perimental images and insights on dynamics of intrusions by Sutherland et

al. (2004), Flynn & Linden (2006) were able to develop a successful model that

is a modification of Holyer & Huppert’s. The control volume, as illustrated

schematically in Fig. 1.3, remains attached to the front as it propagates along

and is partitioned into two sections. Subsequently, utilizing mass and momen-

tum conservation with Bernoulli’s equation applied along the upper and lower

layer of the stationary intrusion section as well as along the interface upstream,

they were able to arrive at three equations and five unknowns. Finally, to close

the system, they coupled the aforementioned equations with the exact solution

of the two-layer shallow water equations as described in Baines (1995), and a

parameterization for the wave amplitude, η based on initial conditions which

accounted for the evolution of the non-linear wave. The results of the model

were in very good agreement with the numerical simulations and experimental

results, through comparisons between measured and predicted front speeds.

Sutherland and Nault (2007) performed a study of the effects of the interface

thickness on the dynamics of the intrusive gravity current. In the doubly sym-

metric case, the speed of propagation decreases from the two-layer prediction

derived by Benjamin (1968) to approximately half of that value when the ambi-

ent is linearly stratified (Faust & Plate 1984). Additionally, when the interface

is thin but non-zero, a “leaky” closed core solitary wave is excited that carries

the intrusion for large distances (>22 lock lengths) without decelerating. This

is in stark contrast to boundary gravity currents propagating into a uniform

ambient where deceleration begins at approximately 6-10 lock lengths (Huppert

& Simpson 1980, Rottman and Simpson 1983).
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1.2.3 Boundary gravity currents in two-layer stratified
ambient

The boundary gravity current propagating into a two-layer stratified ambient

has recently been studied by several groups over the past. Rottman and Simpson

(1989) investigated the formation of “Morning Glory” phenomena by gravity

currents. Specifically, they focused their attention on the special case where

the lower ambient layer, h′
1 is small relative to the channel height, H. By

utilizing the hydraulic theory of Holyer & Huppert (1980), they were able to

predict many of the qualitative features of a bore excited by a gravity current.

However, those models proved quantitatively inaccurate.

The first model for the configuration where both ambient layers are of finite

height was by Hoyler & Huppert (1980) which utilized an extension of the

theory by Benjamin (1968) to predict the speed of propagation during the initial

slumping phase. Applying the typical convention of a reference frame that

is moving with the front, the gravity current appears stationary and can be

treated as a steady state problem. Mass and momentum conservation (flow

force balance) is then applied to arrive at one equation and three unknowns.

To close the system, they assumed that energy is conserved within the control

volume by applying Bernoulli’s equation along the upper and lower ambient

layer. However, as with the case of the intrusive gravity current discussed earlier,

the solutions to the model equations yielded multiple solutions. To reconcile

this, they proposed an additional constraint that for a fixed volume inflow rate,

the realizable physical solution is obtained by maximizing dissipation and hence

the mass flux associated with the gravity current.
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1.3 Thesis outline

In this thesis, an alternate theory is presented which utilizes an explicit relation,

derived through heuristic reasoning, of the amplitude of an interfacial distur-

bance that appears along the ambient interface. By coupling this with mass

and momentum conservation and Bernoulli’s equation applied along either, but

not both, the upper or lower ambient layer, analytical predictions are obtained

that are devoid of multiple solutions. A discussion of the challenges associated

with extending this model to the more general case where D < H will also be

reviewed.

The rest of thesis is organized as follows: in §2.1.1 Benjamin’s discussion is

adapted so as to predict the initial front speed of a full depth boundary gravity

current propagating through a two-layer medium. In §2.1.2, attempts to extend

this theory to the more general partial depth case where D < H is discussed.

Model fidelity is tested by contrasting theoretical solutions against the output

of analogue experiments, which are described in §3, and numerical simulations,

which are described in Tan et al. (2010a). A comparison between numerical

simulations and analogue experiments are presented in §4.1. Results of the

comparison between the model and measured results are presented in §4.2 and

§4.3. In §4.4, the impact of the interface thickness is considered and in §4.5

the point at which the gravity current front begins to decelerate is examined.

Finally, conclusions and applications of this work are discussed in §5.

Portions of the thesis have appeared in Tan et al. (2010a). The present

research was also discussed at a pair of conferences: Wave Phenomena IV held

in June 2010 at the University of Alberta and the International Conference of

Environmental Science and Engineering held in Aug. 2010 in Singapore. As

part of the latter, a conference proceeding (Tan et al. 2010b) was prepared

which outlines the sensitive dependence of the interfacial disturbance on the
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initial conditions. Writing responsibilities for journal manuscript were shared

between the author of this thesis and Dr. Morris R. Flynn, who also edited my

contribution with additional editorial input from Drs. Brian A. Fleck and David

S. Nobes. The conference proceeding was primarily written by the author of

this thesis; minor revisions were suggested by Dr. Flynn.

Throughout the thesis, numerical and experimental results are presented.

The author only contributed the latter data but numerical simulation results

are herein included with the purpose of validating the experimental results.

Details on the numerical simulations can be found in Tan et al. (2010a).
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Chapter 2

Theory

2.1 Model development

2.1.1 Full-depth lock release gravity currents

The primarily horizontal flow of a gravity current, illustrated schematically in

Fig. 2.1, is considered. The dense current of density ρ0 propagates into a two-

layer ambient where the lower and upper layers have densities ρ1 < ρ0 and

ρ2 < ρ1 and undisturbed depths h′
1 and h′

2, respectively. Due to the forcing

imparted by the gravity current, the ambient layers are assumed to contract

so that far downstream in a translating reference frame (i.e. far to the left

in Fig. 2.1), the lower and upper layer depths are, respectively, h1 and h2.

Correspondingly, the interfacial disturbance is assumed to vary monotonically

with amplitude η. Conditions under which the above assumptions cannot be

justified are identified in §2.2. Far upstream of the forward stagnation point,

O, the fluid velocity, U , in the ambient layers is equal whereas far downstream

of O, the contracted lower and upper layers have associated depth-independent

velocities u1 and u2, respectively. The parameters U , u1 and u2 may be related

by applying mass conservation, i.e.

u1h1 = Uh′
1 and u2h2 = Uh′

2. (2.1)
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Figure 2.1: Definition sketch of a dense gravity current (fluid of density ρ0) and
the control volume ABCD. The frame of reference is chosen so that the gravity
current is at rest relative to a moving two-layer ambient, which flows, without
mixing, from right to left.

Note that U is the speed of propagation of the gravity current in the laboratory

reference frame. Consideration is herein restricted to the incipient slumping

phase of motion for which U , or its non-dimensional analogue

Froude number, Fr ≡ U
√

g′02H
(2.2)

is time independent so that the flows exhibited schematically in Fig. 2.1 can be

considered steady. This definition of Fr differs from the one shown previously

and is applicable for configuration depicted in Fig. 2.1. An alternative definition

for Fr, which is more representative of the ambient configuration as Benjamin’s

energy conserving solution of Fr = 1
2
is recovered when h′

1/H is either 0 or 1, is

also possible and is discussed briefly in Appendix B. From Fig. 2.1, H = h′
1+h′

2

is the total channel depth and the reduced gravity g′02 is defined as g(ρ0 −

ρ2)/ρ00 in which ρ00 is a reference density and g is gravitational acceleration. By

assumption, the Boussinesq approximation applies so that g′02 ≪ g. Consistent

with Benjamin (1968) and numerous follow-up studies, it is assumed that, away

from the gravity current front, vertical accelerations are negligible so that the

pressure field is hydrostatic. Accordingly, along the vertical segment AD,

p =

{

−1
2
ρ1U

2 − ρ1gz 0 ≤ z ≤ h′
1

−1
2
ρ1U

2 − ρ1gh
′
1 − ρ2g(z − h′

1) h′
1 < z ≤ H

(2.3)
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Here Bernoulli’s equation has been applied in writing the pressure at point A,

pA = −1
2
ρ1U

2; without loss of generality the pressure at the stagnation point,

pO, is taken to be zero. Similarly, along the vertical segment BC,

p =







−ρ0gz 0 ≤ z ≤ h0

−ρ0gh0 − ρ1g(z − h0) h0 < z ≤ h0 + h1

−ρ0gh0 − ρ1gh1 − ρ2g(z − h0 − h1) h0 + h1 < z ≤ H
(2.4)

where h0 is the gravity current height as defined in Fig. 2.1. These results

are independent of shear. Bernoulli’s equation with associated loss terms will

separately be applied so that pressure remains continuous across the interfaces.

Equations 2.3 and 2.4 may be applied in writing the following expression for

horizontal momentum (or “flow force”) conservation:

∫ D

A

p+ ρu2 dz =

∫ C

B

p+ ρu2 dz ⇔

1

2
U2H +

1

2
g′02H

2 = g′12

[

h′
1

(

H − 1

2
h′
1

)

+
1

2
h2
2

]

+
1

2
g′01(h1 + h2)

2

+U2

(

h′2
1

h1

+
h′2
2

h2

)

(2.5)

Here g′01 is defined similarly to g′02 and (2.1) has been applied in writing, for

example, u1 in terms of U , h1 and h′
1. This equation shows the appropriate

limiting behaviour when compared against Benjamin’s solution with h2, h
′
2 → 0

and ρ2 → ρ1. Equation (2.5) represents a general equation with three unknowns

(U , h1, h2) and consequently two further relations are needed for model closure.

In the dissipation-free analysis of Holyer and Huppert (1980), as discussed in

§1.2.3, Bernoulli’s equation is applied immediately above the streamlines OB′

and A′C ′ requiring energy to be conserved in the two ambient layers. Hence

1

2
U2 = g′01

h2
1

h′2
1

(H − h1 − h2) (2.6)

and

1

2
U2 =

h2
2

h′2
2

[g′02(H − h1 − h2)− g′12(h
′
1 − h1)] (2.7)
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respectively. Application of both equation (2.6) and (2.7) is potentially problem-

atic, however, particularly when the interfacial disturbance takes the form of a

bore: from the discussion of Baines (1995, §3.5), two-layer bores do not conserve

energy in both the expanding and contracting layers. Although this difficulty

can, in principle, be resolved by defining layer-specific dissipation functions (see

e.g. equations 4.3 and 4.4 of Holyer and Huppert 1980), the introduction of these

two additional parameters requires that further assumptions be made and/or

that further quantities such as the volume inflow of fluid of density ρ0 be speci-

fied. Opportunities for model validation by comparison with experimental data

are correspondingly restricted, particularly when one considers the finite-volume

or lock release, long the staple experimental configuration for gravity current

flows (Simpson 1997).

Here, the aim is to develop a model whose output is (i) devoid of the mul-

tiplicities that characterize Holyer and Huppert’s energy-conserving solutions,

and, (ii) easily comparable against the data from full-depth lock release exper-

iments, illustrated schematically in Fig. 2.2 a, where D = H. In this vein, the

equation (2.5) is retained along with one, but not both, of equation (2.6) or (2.7).

For model closure, the amplitude of the interfacial disturbance is parameterized

as follows:

η =
1

2
H − 1

2
h′
1 (2.8)

so that the deflection to the ambient interface is governed by the vertical scale

of the gravity current. Note from Fig. 2.1, however, that η = h′
2 − h2. Thus

equation (2.8) yields

h2 =
1

2
h′
2 (2.9)

showing that the upper ambient layer contracts to one-half its original depth,

i.e. u2 = 2U . In a similar spirit to the analysis of Cheong et al. (2006),

(2.8) is motivated by judicious examination of relevant limiting cases. When
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Figure 2.2: a Initial conditions for a dense gravity current of density ρ0 in a
two layer ambient where the upper and lower layers span a depth of h′

2 and h′
1,

respectively, and where the initial height of the gravity current fluid, D equals
the channel depth, H. b As with panel a but with h′

1 < D < H. c As with
panel a but with D < h′

1 < H

h′
1 → 0, Benjamin’s energy-conserving solution predicts h0/H → 1/2 and thus

η/H → 1/2. Conversely, when h′
1 → H the upper ambient layer is vanish-

ingly thin so that η → 0. Equation (2.8) is constructed by connecting these

limiting cases with a straight line. Although this is the simplest possible func-

tional dependence, the agreement with experimental and numerical data, to

be considered in §4.1, will be shown to be satisfactory, suggesting that a more

complicated relation, in particular one incorporating layer density information,

is not required.

To flesh out the appropriate analytical details, observations from preliminary

experiments showed that the interfacial disturbance takes the form of a long

wave and a bore, respectively, as h′
1/H → 1 and h′

1/H → 0. From Baines
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Figure 2.3: a Surface plot of cLW/
√

g′02H vs. g′12/g
′
02 and h′

1/H where cLW is

as defined in (2.11). b Surface plot of cB/
√

g′02H vs. g′12/g
′
02 and h′

1/H where
cLW is as defined in (2.10).

(1995), the long wave speed can be written as:

cLW =

√

g′12
h′
1h

′
2

H
(2.10)

Meanwhile Klemp, Rotunno & Skamarock (1997) argue that the bore speed is

given by

cB =

√

g′12(h
′
1 + η)2(H − h′

1 − η)(2H − 2h′
1 − η)

H2(2h′
1 + η)−H(h′

1 + η)(2h′
1 − η)

. (2.11)

For comparison, Fig. 2.3 shows cLW/
√

g′02H (panel a) and cB/
√

g′02H (panel b)

plotted against g′12/g
′
02 and h′

1/H. From the experimental images, it is difficult

to ascertain the exact point at which the interfacial disturbance changes from

long wave-like to bore-like. Indeed, in the latter case, and consistent with

experimental images presented by Rottman & Simpson (1989), Lim, Ivey &

Nokes (2008) and others, moderate interfacial slopes are observed as compared

to the idealized discontinuity of layer depths shown, for example, in Fig. 3.6 of

Baines (1995). Nonetheless, it is reasonable to expect transition near h′
1 = 0.299

where cLW = cB (c.f. equation 6.5 of Shin, Dalziel & Linden 2004). When U >
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max(cLW , cB), the interfacial disturbance of Fig. 2.1 is expected to remain fixed

to the gravity current front. However, when U < max(cLW , cB), this interfacial

disturbance is expected to propagate ahead of the front. In this latter case, the

assumption of a steady flow is invalid. As will be demonstrated in the following

section, the point of model breakdown is in general close to the point at which

the gravity current transitions from supercritical to subcritical.

Equations (2.5), (2.8) and (2.6) or (2.7) represent a closed system of algebraic

equations from which follow predictions for h1, h2, η and U . It should be

emphasized, however, that there is no material difference between applying

Bernoulli’s equation along the upper surface of OB′ or the lower surface of

A′C ′; in either case, energy must be conserved in layer 1 so that (2.6) applies.

Thus the distinction between (2.6) and (2.7) is one of rather limited degree: is

energy conserved above the ambient interface (i.e. in the upper ambient layer)

or below the ambient interface (i.e. in the lower ambient layer)?

Energy dissipation may be estimated by evaluating the change of the Bernoulli

function, R = 1
2
u2 + gz + p/ρ, between A′ and C ′ in whichever layer is not as-

sumed to conserve energy so that Bernoull’s equation may be applied. For

example, if energy is conserved in the lower and upper ambient layer, it can be

shown that

∆RA′C′ = 2

(

h2

h′
2

)2

[g′12(h1 − h′
1) + g′02(H − h1 − h2)]− U2 (2.12)

and

∆ROB′ = 2g′01

(

h1

h′
1

)2

(H − h1 − h2)− U2 (2.13)

respectively. In distinguishing between physical and unphysical solutions, ∆R

is expected to be positive signifying that energy is dissipated in moving from

right to left in Fig. 2.1. Solutions with ∆R < 0 require an unphysical addition

of mechanical energy and are therefore ignored.
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2.1.2 Partial-depth gravity currents

Equation (2.8) is implicitly limited to a special class of gravity currents, namely

those that, in the context of the canonical lock-exchange experiment, occupy

the entire channel depth, H, at t = 0. From previous studies with a uniform

ambient where the gravity current fluid initially occupies a depth D < H, it is

well known that the half-depth solution is not recovered (see e.g. Fig. 13 of Shin

et al. 2004). Thus equations (2.5), (2.8) and (2.6) or (2.7) cannot be expected

to be accurate for this more general category of “partial depth” lock releases,

illustrated schematically in Fig. 2.2 b and c, which are truer analogues of nu-

merous environmental flows as compared to the special, though experimentally

convenient, case D = H. Rather, the following new parameterization of η is

proposed, which yields η → 0 as h′
1 → H, recovers (2.8) when D = H and

specifically incorporates the geometric variable D:

η =
D

H

[

α− (α− 1

2
)
D

H

]

(H − h′
1). (2.14)

In equation (2.14), the numerical value of α is obtained from the measurements

of Rottman & Simpson (1983), who performed a series of partial-depth lock

release experiments in ambient fluid of uniform density. From Fig. 10 of their

paper, α = 0.867 ± 0.017. Deriving an estimate of α from first principles is

a complicated problem that is beyond the scope of the present inquiry. The

uncertainty associated with α was obtained by calculating the standard error

for the estimated slope of a linear regression line as described in Chapter 9.1 of

Moore and McCabe (1993).

The combination of equations (2.14) and (2.5) yields an incomplete system

of algebraic equations (i.e. two equations, three unknowns). In order to close

the system, several methods have been explored. Utilizing (2.6) as the third

equation results in non-physical behaviour in the limiting case, h′
1/H → 1.

Observations of experiments and numerical simulations suggests that upon re-
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lease, the gravity current fluid collapses to some fraction of the initial height

i.e. h0 . 1
2
D. However, using the above mentioned system of equations, as

h′
1/H → 1, h0/H → 1

2
independent of the initial height of the gravity current

fluid, D. Correspondingly, the predictions for the speeds u1 and u2 are similarly

independent of D in this limit. This erroneous prediction occurs because in the

limit h′
1/H → 1, η/H → 0 and the system of equations reduces to the uniform

ambient energy-conserving solution derived by Benjamin (1968) which predicts

that h0/H = 1
2
.

Utilizing equation (2.7), instead, to close the system of equations results in

non-physical behaviour when h′
1/H → 0. It is expected that when h′

1 = 0,

h1 = 0. However, the model predicts a non-zero value of h1 when h′
1 = 0 and so

the mass balance equation, u1h1 = Uh′
1, can only be satisfied by setting u1 = 0,

a physically dubious result. This change in behaviour from the special case of

D = H to the more general D < H occurs abruptly as D becomes less than H.

While the predictions for u1, h0 and h1 may be unreliable for both models,

the predictions for Fr are surprisingly reasonable for a wide range of parame-

ter space. In the hopes that future researchers deriving a more robust model

might benefit from these admittedly imperfect equations, further details of the

solutions described above is included in Appendix D.

2.2 Model predictions for full-depth gravity cur-

rents

Fig. 2.4 presents examples of model output as determined from the solution

of equations (2.5), (2.8) and (2.6). Panels a, c, e indicate, respectively, the

variation of h1, h2 and h0 with h′
1 for 0 ≤ g′12/g

′
02 ≤ 1. Notice, in particular,

the following three features: (i) consistent with (2.9), h2 is a linearly decreasing

function whose slope and intercept are independent of the density ratio; (ii)

h1 has as strict upper and lower bounds h′
1 and h′

1/2 respectively; and (iii)
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reminiscent of Benjamin (1968), h0 has a maximum value of 1
2
, which is obtained

when h′
1 = 0 or h′

1 = 1. Corresponding velocity profiles are exhibited in Fig. 2.4,

panels b, d, f from which two further inferences may be drawn. Firstly,

Fr ≡ U
√

g′02H
≤ u1

√

g′02H
≤ u2

√

g′02H
. (2.15)

Secondly, Fr is a decreasing function of both h′
1 and ρ1: as the volume or

density of intermediate density fluid within the channel increases, the driving

force for motion, given by the difference of density between the gravity current

and some suitably weighted average ambient density, diminishes. This latter

trend is also evident from the upper coloured surface of Fig. 2.5 a, which shows

Fr as a function of h′
1 and g′12/g

′
02. From this figure, Fr is observed to show the

appropriate limiting behaviour, i.e. Fr → 1
2
when h′

1 → 0 or ρ1 → ρ2.

Comparable results starting from (2.5), (2.8) with (2.7) rather than (2.6) are

exhibited in Fig. 2.6 and Fig. 2.7 a. As suggested by the discussion of §2.1.1,

differences between the respective panels of Fig. 2.4 and Fig. 2.6 are relatively

small.

An interesting feature of solutions from equations (2.5), (2.8) and (2.6) or

(2.7) is that they become degenerate for sufficiently large g′12/g
′
02, a boundary

demarcated in Fig. 2.5 a and Fig. 2.7 a by the dotted lines in the h′
1–g

′
12/g

′
02

planes. Examples of model breakdown in Benjamin-type descriptions of grav-

ity current or intrusion flow are well-documented (see, most recently, Flynn &

Linden 2006 and also the discussion of the Holyer & Huppert 1980 solution in

§1.2.2), so the appearance of degeneracy here comes as no particular surprise.

Insights into this breakdown come from contrasting the gravity current speed

with the speed of the interfacial disturbance displayed schematically in Fig. 2.1.

Loosely speaking, model breakdown is found to approximately coincide with

the transition from a super- to a subcritical gravity current. In the latter case,

the interfacial disturbance is able to “outrun” the gravity current and hence the
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Figure 2.4: Model output based on the solution of (2.5), (2.8) and (2.6). Panels
a, c, e show, respectively, h1/H, h2/H and h0/H vs. h′

1/H where the associated
dimensional lengths are defined in Fig. 2.1. Solutions are drawn for g′12/g

′
02 =

0.15, 0.30, 0.45, 0.60, 0.75 and 0.90; arrows indicate the direction of increasing
g′12/g

′
02. Panels b, d, f show, respectively, u1/

√

g′02H, u2/
√

g′02H and Fr ≡
U/

√

g′02H vs h′
1. Broken lines for large h′

1/H and g′12/g
′
02 are indicative of

model breakdown.
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Figure 2.5: a Upper surface: non-dimensional gravity current speed, Fr, as
defined by (2.2), vs. g′12/g

′
02 and h′

1/H. Results are based upon the solution of
equations (2.5), (2.8) and (2.6). Lower surface: composite showing the larger
of the long wave speed, given in dimensional form by (2.10), and the Klemp
et al. (1997) bore speed, given in dimensional form by (2.11). The dotted and
dashed lines are described in text as is the locus of circles. b The dissipation
function defined by (2.12).

assumption of a steady state flow becomes invalid. Thereafter the interfacial

wave evolves into an undular train, strongly reminiscent of the interfacial waves

considered by Rottman & Simpson (1989) for the special case where h′
1 ≪ h′

2.

The lower coloured surfaces of Fig. 2.5 a and Fig. 2.7 a are composite sur-

faces showing cLW for h′
1 > 0.299 and cB for h′

1 < 0.299. To both sides of this
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Figure 2.6: As in Fig. 2.4 but showing model results based upon the solution
to equations (2.5), (2.8) and (2.7).

divide, denoted in Figs. 2.5 a and Fig. 2.7 a by the dashed lines, the speed of

the interfacial disturbance is vanishingly small when ρ1 → ρ2 but grows with

increasing interfacial density contrast. By the point at which model breakdown

occurs, cLW/
√

g′02H or cB/
√

g′02H is typically close in magnitude to Fr. Plot-
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Figure 2.7: As in Fig. 2.5 but showing model results based upon the solutions
of equations (2.5), (2.8) and (2.7). The lower panel is based on the solutions to
equation (2.13). Note that the lower surface of the upper panel is identical to
that of Fig. 2.5.

ted along the g′12/g
′
02–h

′
1 plane of Fig. 2.5 a and 2.7 a are a loci of circles that

are points where the gravity current is predicted to be critical with respect to

an interfacial long wave or bore. The fact that the loci and dotted lines do

not exactly coincide is to be expected: in studying similar flows, Rottman &

Simpson (1989) found the existence of a bistable scenario whereby either super-

or subcritical (therein termed “partially blocked”) regimes may arise depending
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on the means of flow initiation.

One may derive an alternative rationale for model breakdown based solely on

energetic arguments; such is the purpose of Figs. 2.5 b and 2.7 b which show the

predicted non-dimensional dissipation corresponding, respectively, to equations

(2.12) and (2.13). Comparison of the two figures reveals a number of interesting

disparities, most especially in that the surface of Fig. 2.7 b attains its maximum

value when h′
1/H = 0 and g′12/g

′
02 = 0.5 whereas that of Fig. 2.5 b attains

its maximum value when h′
1/H ≃ 0.95 and g′12/g

′
02 ≃ 0.96. More important

than the differences, however, are the similarities in particular that ∆RA′C′ ,

∆ROB′ → 0 when g′12/g
′
02 = 3/4 with h′

1/H . 0.5. Therefore, in order to realize

a steady flow with g′12/g
′
02 > 3/4 when h′

1/H . 0.5, energy must, in general, be

added. In the present configuration, however, there is no such source of energy

that would allow such a flow to arise.

Along the boundary of model breakdown, Figs. 2.4 a and 2.6 a show that

h1 = h′
1 over non-trivial intervals. For g′12/g

′
02 > 3/4, h1 is predicted to exceed

h′
1, a circumstance that contradicts our previously stated assumption that the

ambient layers of Fig. 2.1 cannot expand in moving from right to left. Thus,

consistent with (4.9) of Holyer and Huppert (1980), 1
2
≤ h1/h

′
1 ≤ 1.

Due to the similarities in the solution when Bernoulli’s equation is applied

in either the lower or upper ambient layer for the special case where D = H,

the remainder of the discussion will be focused on results stemming from the

former which offers marginally better agreement with our measured results.
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Chapter 3

Experiments

To verify the analytical results presented above, in particular the estimate of

the front speed made by the model described in §2.1.1, a series of laboratory

experiments was performed. Experimental modeling was subsequently extended

to two scenarios not easily describable by theory: gravity currents that (i) are

subcritical, and, (ii) flow through an ambient with a thick interface.

Experiments were performed in a tempered glass tank measuring 227.5 cm

long, 25.0 cm wide and 30.0 cm tall with a watertight acrylic lock gate guided

by a pair of sliders mounted at a distance ℓ from the left end wall. Uniform

illumination was provided by an Electric Vinyl lightsheet placed behind the

tank. Images were recorded at 4 or 8 fps using a pair of 1280 x 1064, 12 bit

cameras (LaVision GmbH Imager 3) mounted with 35mm Nikon (AF Nikkor)

lenses placed 4.25m from the front of the tank and 80 cm apart. The calibration

factor, required to convert from pixels to cm, was obtained by taking a picture

of a 60cm ruler with each camera. As θ, illustrated in Fig. 3.1, was small (6.7◦),

parallax error was negligible. Therefore, a more complex calibration method

was unnecessary.

Fluid densities were measured using an Anton Paar DMA 38 densitometer

and are considered accurate to within 0.0005 g/cm3. For reference, data from

experiments described here as well as numerical simulations described in Tan
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Field of view
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Figure 3.1: Top down schematic diagram of the orientation of the camera with
respect to the tank. Lines extending from the camera represent the field of view
and θ is as shown in the diagram.

et al. (2010a) can be found in Appendix F.

3.1 Thin interface experiments

When D = H, the ambient layers were established by first filling the tank with

dyed tap water of density ρ2 ≃ 0.9982 g/cm3 to a height of h′
2. Next, salt water

of density ρ1 was gently added through a foam covered nozzle placed ∼ 4mm

from the bottom of the tank. When the combined height of both layers reached

a depth of H, the flow of salt water was terminated and the lock gate was

lowered into the tank. Food colouring and salt water were then mixed into the

lock fluid until the density was ρ0.

When D < h′
1, the ambient layers were established as described above. Af-

ter lowering the lock gate, fluid from the lower layer of the lock region with

a density of ρ1 was drained through a pipe placed at the bottom of the tank.

Simultaneously, fluid of density ρ2 was allowed to flow into the lock without

mixing through a pair of small holes in the gate located at heights of approxi-

mately 17.5 cm and 20.0 cm1. This eliminated a significant difference between

the hydrostatic pressures of the lock and ambient regions which might have oth-

erwise caused leakage across the imperfect seals of the lock gate. Siphoning was

1The precise locations of the holes are not critical to the process described here.
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terminated once the desired volume of fluid had been removed. Salt water of

density ρ0 premixed with dye was then slowly added to the lock region through

the foam covered nozzle until the combined height, H, of the fluids on both

sides of the lock gate reached the desired value.

When h′
1 ≤ D < H, the ambient layers were established as described above

except that the lighter ambient layer of density ρ2 was filled to a height of

h′
2 +∆H. The lock gate was then lowered. Food colouring and salt were then

mixed into the lock fluid until the lock fluid density was ρ0. Fluid was siphoned

from the bottom of the lock whilst fluid of density ρ2 again simultaneously

flowed into the lock, this time through the upper small hole only. Siphoning

continued until fluid of density ρ0 spanned a height of D inside the lock.

A small number of experiments where the gravity current propagated along

the free surface (i.e. ρ0 < ρ2 < ρ1) were also performed in order to investigate

the retarding effects of bottom friction on U and the validity of the Boussinesq

approximation employed in the derivation of the model. The ambient layers

were established as described for the bottom propagating case where D ≥ h′
1.

The lock gate was then lowered and the confined fluid was gradually replaced

with fresh water until the lock fluid density reached the desired value.

The experiments began by initiating the image recording and smoothly re-

moving the lock gate once residual motion from mixing the lock fluid had sub-

sided. Representative experimental snapshots are provided in Fig. 3.2, which

shows time series images of a super- (lhs) and subcritical (rhs) gravity current

and a detailed discussion is presented in §4. The speed of the gravity current,

U was measured by evaluating the position of the leading edge of the gravity

current through a sequence of images. Two methods were utilized to track the

position of the front: (i) manual selection of the leading edge for each image and,

(ii) utilizing the built-in Matlab normalized two-dimensional cross-correlation

algorithm (normxcorr2) which reduced the amount of time, through automa-
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tion, required to process the images of an experiment. The horizontal position

of which deceleration first begins, X, discussed in §4.5, was obtained by first

curve-fitting the linear portion of the front position vs. time plot. The ap-

proximate location where the fitted line first deviates from the measured front

position is taken to be X.

The amplitude of the interfacial disturbance, η was measured by evaluating

the difference in interface heights far downstream and just above the crest of the

gravity current head. Image thresholding was applied to minimize subjective

biasing errors. Whereas in a select and relatively small subsample of experi-

ments it is observed that η increased slightly as the flow evolved, the increase

is modest, i.e. . 5% over a window of interrogation that spans approximately

1m. Given that this behaviour is sporadic rather than systematic, it is assumed

to be related to the finite extent of the tank rather than a volume-independent

physical effect. The height of the gravity current, h0 was obtained by measuring

the vertical position of the gravity current crest relative to the bottom surface

and is averaged through the entire constant speed phase. However, due to the

turbulent structures behind the front, this parameter is difficult to measure and

thus has a large uncertainty range. Once h0 and η are known, h1 and h2 can

be straightforwardly calculated. The initial height of the gravity current fluid,

D, was measured prior to the initiation of the experiment using a conductivity

probe (Precision and Measurement Engineering, MSCTI) which was mounted

to a computer controlled traverse (Velmex, X-Slide). The relationship between

voltage and density is linear and was verified using stock solutions of known

density.

In these experiments, ρ1 ranged from 0.9987 g/cm3 to 1.0446 g/cm3, ρ0 ranged

from 1.0200 g/cm3 to 1.0962 g/cm3. The following combinations of channel

depth and lock length were employed: H = 20± 0.1 cm when ℓ = 32.4± 0.1 cm

and H = 15 ± 0.1 cm when ℓ = 16.5 ± 0.1 cm. The latter combination proved
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especially valuable in visualizing instances where the gravity current head was

overtaken by the interfacial disturbance.

Three separate experiments were conducted at lower Reynolds number (i.e Re ≡

UH/(2ν) ≃ 5− 6× 103 vs. Re ≃ 7− 8× 103), mimicking more closely the nu-

merical simulations described in Tan et al. (2010a). For these experiments,

ρ1 ≃ 1.0150 g/cm3, ρ0 ≃ 1.0205 g/cm3, H = 20 cm and ℓ = 34.0 cm.

Fig. 3.3 shows timeseries images of a surface propagating supercritical grav-

ity current with D/H = 1, h′
1 = 0.75±0.01 and g′12/g

′
02 = 0.755±0.069. Notice

that the subcritical gravity current shown in this figure is essentially a mirror

image of the bottom-propagating “heavy” gravity currents shown in Fig. 3.2.

This similarity attests to the validity of the Boussinesq approximation applied

in §2.1.1.

3.2 Thick interface experiments

In a second laboratory investigation, the interface position was fixed at H/2

and D/H = 1 but the interface thickness, δ, was systematically varied. Several

methods were employed in obtaining a diffuse interface. Firstly, the tank was

filled to a depth of h′
2 with fresh water of density ρ2. Salt water of density ρ1

was then carefully added to the tank, which was subsequently left undisturbed

for up to ∼12 h over which time the interface broadened by molecular diffusion.

In a second method, the tank was filled to a depth of h2 − δ/2 with water

of density ρ2 after which salt water of gradually increasing density was added

up to a depth of h′
2 + δ/2. Thereafter, salt water of density ρ1 was added

until the desired total channel depth of H was obtained. Thirdly, a standard

lock-exchange experiment of the type shown in Fig. 2 a of Shin et al. (2004)

was conducted with the lock gate placed at the approximate midpoint of the

tank. As a result of the mixing associated with the counter-flowing upper and

lower gravity currents, the quiescent steady state consisted of upper and lower
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Figure 3.3: Time evolution of a surface-propagating supercritical gravity cur-
rent with D/H = 1, h′

1 = 0.75 ± 0.01, g′12/g
′
02 = 0.755 ± 0.069, and t⋆ =

5.4, 8.0, 10.7, 13.4 and 16.1. The field of view is 101 cm across by 20 cm tall.

layers of densities ρ2 and ρ1, respectively, with an intervening thick interface

that was approximately 4cm thick. Finally, the tank was filled from top to

bottom with uniformly stratified salt water using a variation of the Oster (1965)

double bucket technique. In all cases, density profiles were measured using the

conductivity probe. A sample density profile can be found in Appendix C. For
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non-zero values of δ, measurements of η are based on the average elevation of

the (thick) interface.

3.3 Error Analysis

3.3.1 Discussion on experimental error

Errors in the experimental results arose from several sources. The first major

source of error were those that were caused by the experimental setup. For

example, (1) non-uniformity of the saline solutions due to incomplete mixing

that could lead to incorrect density readings, (2) inadequate seals of the lock gate

that resulted in fluid leakage which would alter the density and initial height of

the fluids, and (3) imperfections in the ambient stratification (e.g. non-linearities

in the interface region for thick interface experiments) which could affect the

dynamics of the flow.

Errors also originated from the measuring equipment (e.g. densitometer,

conductivity probe, ruler) which each have their associated uncertainties. Ad-

ditionally, the measurement of the calibration factor was performed with that

assumption that parallax errors are small. However, these errors were still

present and had a minor affect on accuracy of the measurements. Finally, the

most significant sources of error are those that occur during the measurement

of parameters (e.g. U , η, X) in matlab. For example, to measure the inter-

facial amplitude, η, the position of the interface far upstream and just above

the crest of the gravity current head was selected. This procedure was further

complicated by the fact that the interface was relatively thick, resulting in a

subjective measurement that could vary from person to person. As a further

example, measurements of U requires a selection of an interval within the lin-

ear portion of the front position vs. time plot in order to perform a curve fit.

Depending on the size of this interval, U would vary slightly.
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3.3.2 Sample error calculation

Representative error bars are shown in each figure presenting experimental re-

sults. A sample calculating of the error, taking h′
1/H as an example, is as

follows:

d

(

h′
1

H

)

=
dh′

1H + (−dH)h′
1

H2

=
dh′

1

H
+

(−dH)h′
1

H2
(3.1)

where dh′
1 and dH are errors associated with h′

1 and H, respectively. Taking

the worst case scenario, i.e. both errors do not cancel out, (3.1) can be written

as:

d

(

h′
1

H

)

=
dh′

1

H
+

(dH)h′
1

H2
(3.2)

The representative error bars are calculated by averaging the error associated

with each experimental data point shown in the figure.
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Chapter 4

Results and discussion

4.1 Comparison between numerical and exper-

imental results

Fig. 4.1 contrasts snapshot images of experimental (panels a & c) and numerical

(panels b & d) data. In panels a and b, h′
1/H = 0.38±0.01, D/H = 0.45±0.02,

g′12/g
′
02 = 0.746 ± 0.047. Images are shown at t⋆ = 3.37; 6.73 and 10.10 where

the non-dimensional time is defined by

t⋆ =
t

H

√

g′02H. (4.1)

Conversely in panels c and d, h′
1/H = 0.25 ± 0.01, D/H = 0.72 ± 0.02,

g′12/g
′
02 = 0.511 ± 0.045; images are shown at t⋆ = 4.83; 11.28 and 17.72. In

both cases, fluid densities in the numerical simulations are chosen to match those

from the analogue experimental runs. The correlation between image pairs is

satisfactory: in each case, generally strong agreement is noted when compar-

ing the front position and interfacial wave structure. As the Direct Numerical

Simulation (DNS) algorithm used to generate the numerical simulations is two-

dimensional, one observes in the numerical images more pronounced vortices in

the lee of the gravity current front. By comparison, these vortices are rapidly

broken down by spanwise instabilities in the real three-dimensional flow. Cor-

respondingly, a series of abrupt deflections to the ambient interface well behind

the gravity current head is observed, particularly in Fig. 4.1 d, which are not
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evident in the experimental images of Fig. 4.1 c. Fortunately, given the aims

of the present investigation, such observations are unimportant since the front

speed, U , is unaffected by the coherence of the trailing vortices (Cantero et

al. 2007) and their associated deflections to the ambient interface.

4.2 Comparison of theoretical predictions and

measured results for full depth gravity cur-

rents

One of the principal assumptions applied in the development of the analytical

model of §2.1.1 is quantified by the dimensional equation (2.8), which antic-

ipates a linear variation of η upon h′
1. A test of this assumption employing

both experimental and numerical data is given in Fig. 4.2. Generally, the fit

between measurement and theory is found to be satisfactory. In particular,

and consistent with (2.8), observations of Fig. 4.2 show relatively little varia-

tion of the amplitude of the interfacial disturbance with the density ratio for

0.125 ≤ g′12/g
′
02 ≤ 0.762. The largest deviations are noted when h′

1 and g′12/g
′
02

are both small. This is to be expected because (i) the interfacial density jump

is, in this case, relatively small so that large amplitude, transient distortions

may be easily generated and (ii) with a thin lower layer, it is often difficult to

distinguish between ambient and gravity current fluid. The positive agreement

observed in Fig. 4.2 a is further reinforced by the favorable comparison between

theory and experiment exhibited in Fig. 4.3. It shows h1, h2 and h0 as a func-

tion of h′
1 for a particular density ratio. Numerical results are omitted from

Fig. 4.3 because the algorithm of §4 in Tan et al. (2010a) is two-dimensional:

spanwise instabilities cannot develop so that whatever billows develop along in-

terface OB′ from Fig. 2.1 remain coherent and large in scale (Härtel et al. 1999

and Fig. 4.1). This in turn complicates the measurement of h0 and h1.

Fig. 4.4 a-c show the variation of Fr with g′12/g
′
02 for h

′
1 = 0.25, 0.50 and 0.75,
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Figure 4.2: (a) Non-dimensional amplitude, η/H, of the interfacial disturbance
versus the non-dimensional ambient lower layer depth, h′

1/H. Open and solid
triangles show, respectively, numerical and experimental results whereas the
solid line shows the hypothesized correlation of (2.8). (b) η/H versus the density
ratio g′12/g

′
02 for h′

1/H = 0.25 (upper row of data points), h′
1/H = 0.50 (middle

row) and h′
1/H = 0.75 (lower row). Representative error bars are located on

the bottom left (panel a) and bottom right (panel b).
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Figure 4.3: Non-dimensional layer depths as a function of h′
1/H for g′12/g

′
02 ≃

0.45. Theoretical curves are based upon the solution of equations (2.5), (2.8) and
(2.6); experimental data points are shown by the solid triangles. Representative
error bars are as indicated.

respectively. Theoretical results are indicated by the solid curves. Consistent

with Fig. 4.3, these are extracted from the upper surface of Fig. 2.5 a and extend

up until g′12/g
′
02 ≃ 0.75. Experimental and numerical results are indicated,

respectively, by the solid triangles/stars and the open triangles. Although the
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latter under-predict the former, the deviation is small, i.e. within experimental

error. There is a more notable discrepancy between theory and measurements,

which reflects the influence of drag forces, chief among them bottom friction

(Härtel et al. 1999), that are not accounted for in the model of §2.1.1.

The open circles in Fig. 4.4 c show experimental data from gravity currents

propagating along the free surface. The measured speeds of the data points at

g′12/g
′
02 ≃ 0.25 are observed to be greater than the bottom-propagating exper-

iments which attests to the effects of bottom friction. Additionally, repeated

experiments show greater amount of variability. This behaviour is postulated to

be caused by the bottom-up removal of the lock gate which interacted with the

lighter gravity current fluid as it rose, perturbing the initial conditions. When

g′12/g
′
02 ≃ 0.25, the model under-predicts the measured results which is unusual

but not necessarily unphysical. Unlike the energy-conserving Benjamin solu-

tion for gravity currents in a uniform ambient, dissipation is allowed to occur

by requiring that energy be conserved in only one of the ambient layers.

Our results are consistent with those from several earlier investigations as

indicated by Fig. 4.4 d, which shows measured values of Fr versus the Reynolds

number, Re = UH/(2ν), in the limit g′12/g
′
02 → 0. Included therein is data from

the present analysis (triangles) and also the studies of Lowe et al. (2004)–solid

circles; Härtel et al. (1999)–stars; and Keulegan (1957)–open squares. In all

cases measured values are within 16% of Benjamin’s energy-conserving predic-

tion of 1
2
.

Notwithstanding the aforementioned offset between theory and measure-

ment, strong qualitative agreement is observed between the solid curves and

the data points of Fig. 4.4. In particular whereas Fr is predicted to decrease

with g′12/g
′
02 in all three panels, the model of §2.1.1 accurately captures the

higher sensitivity of Fr to g′12/g
′
02 as h′

1 is increased.

An additional intriguing feature of the analytical model is its breakdown at
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Figure 4.4: Fr, as defined by (2.2), vs. g′12/g
′
02 for a h′

1/H = 0.25, (b)
h′
1/H = 0.50 and (c) h′

1/H = 0.75. Data points are as follows: open triangles–
numerical results; solid triangles–high-Re experimental results; stars–low-Re
experimental results. The solid curve gives the corresponding theoretical result.
Representative error bars for the experimental data are as indicated. Open cir-
cles in panel (c) show experimental data of a gravity current propagating along
the free surface. Panel (d) shows the variation of Fr with Re for the limiting
case where g′12/g

′
02 = 0; data points are defined in the text.
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large values of g′12/g
′
02. Reasons for model breakdown are discussed in §2.2

where it is suggested that the boundary located at sufficiently large values

of g′12/g
′
02 approximately delineates between the supercritical and subcritical

regimes. Whereas flow behaviour in the immediate parametric neighborhood of

the boundary is difficult to classify, laboratory evidence that supports the inter-

pretation discussed above is presented in Fig. 3.2. The LHS panels of Fig. 3.2

show a supercritical gravity current with D = H, h′
1/H = 0.50 ± 0.01 and

g′12/g
′
02 = 0.620 ± 0.045. Over the indicated time interval, the gravity current

front and interfacial disturbance are observed to propagate at the same speed.

It is not until the gravity current begins to decelerate that the interfacial distur-

bance is able to overtake the front. A qualitatively different picture is painted

by the RHS panels of Fig. 3.2, which consider a gravity current with D = H,

h′
1/H = 0.25± 0.01 and g′12/g

′
02 = 0.878± 0.064. Here, the front speed is again

constant over the indicated time interval, but the interfacial disturbance prop-

agates ahead of the gravity current with a speed that is approximately 20%

larger than U .

4.3 Partial depth gravity currents

An important component in the attempt to extend the model of §2.1.1 to the

more general case where D < H is (2.14) which generalizes the parameteri-

zation for the interfacial disturbance to account for the geometric variable D.

A careful comparison with experiments was performed in order to ensure the

validity of this equation. Fig. 4.5 a, b are surface plots of η/H vs. D/H and

h′
1/H. A qualitative comparison of the two surface plots, where the upper panel

is the solution to (2.14) and the lower panel was generated using interpolated

experimental results, show promising agreement. On the η/H–h′
1/H plane of

the lower panel, the circles, right facing triangles and diamonds represent ex-

perimental data points and solid lines are solutions to (2.14) for various D/H.
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Figure 4.5: Surface plots of the non-dimensional wave amplitude, η/H versus
the non-dimensional lower ambient layer height, h′

1/H, and the non-dimensional
height of the lock fluid, D/H. Upper Panel: Solution to (2.14). Lower
Panel: Surface plot generated from interpolated experimental data. On the
η/H−h′

1/H plane, circles, right facing triangles and diamonds are experimental
data points for D/H =0.25, 0.50 and 0.75, respectively. The solid lines are the
solutions to (2.14) for various D/H. On the η/H − D/H plane, downward
facing triangles, left facing triangles, squares and upward facing triangles are
experimental data for h′

1/H = 0.75, 0.50, 0.25 and 0 respectively. The solid lines
are the solutions to (2.14) for various h′

1/H. In both of the above mentioned
planes, solid markers represent data taken from Rottman and Simpson (1983).
Representative error bars are as indicated.
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Figure 4.6: Non-dimensional wave amplitude, η/H versus density ratio, g′12/g
′
02.

LHS Experimental results with h′
1/H = 0.25 ± 0.01, D/H = 0.239 ± 0.017

(rightward facing triangles), D/H = 0.519±0.019 (circles) and D/H = 0.749±
0.021 (squares). RHS: Experimental results with h′

1/H = 0.50± 0.01, D/H =
0.230 ± 0.017 (rightward facing triangles), D/H = 0.491 ± 0.019 (circles) and
D/H = 0.743± 0.021 (squares). Representative error bars are as indicated. A
timeseries snapshot of the data point demarkated by “1” is given in Fig. 4.7.

The agreement between prediction and measurement is generally within exper-

imental error. On the η/H–D/H plane, the downward facing triangles, left

facing triangles, squares and upward facing triangles are experimental data and

the solid lines are solutions to (2.14) for various h′
1/H. In this comparison, the

level of agreement is satisfactory except for low values of D/H where the theory

tends to over-predict the experimental results. In general, as will be shown in

Fig. 4.12 d, deceleration of the gravity current is observed to occur sooner as

D/H becomes smaller. The lower values of η/H may reflect the fact that the

gravity current begins to decelerate before the interfacial disturbance has the

chance to develop fully.

An additional component of equation (2.14) is the prediction that η/H is

independent of the density ratio, g′12/g
′
02. Fig. 4.6 depicts the variation of η/H

with g′12/g
′
02. The LHS panel shows experimental results with h′

1/H = 0.25 ±

0.01, D/H = 0.239 ± 0.017 (rightward facing triangles), D/H = 0.519 ± 0.019
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(circles) and D/H = 0.749±0.021 (squares). The RHS panel shows experimen-

tal results with h′
1/H = 0.50 ± 0.01, D/H = 0.230 ± 0.017 (rightward facing

triangles), D/H = 0.0.491±0.019 (circles) and D/H = 0.743±0.021 (squares).

The results show that the approximation is satisfactory except at high g′12/g
′
02

with low D/H. As discussed by Tan et al. (2010a, b), deceleration of the gravity

current front occurs sooner as g′12/g
′
02 increases. This, coupled with the effects

of low D/H on deceleration, results in the observed decreasing trend. Fig. 4.7

shows timeseries images of the experiment defined in Fig. 4.6 by the number

“1” where deceleration occurs at < 1 lock length, in contrast to the 3-10 lock

lengths previously observed for partial depth gravity currents in a uniform am-

bient (Fig. 11 of Rottman & Simpson 1983). Correspondingly, the amplitude

of the interfacial disturbance remains underdeveloped. A different result will

not be obtained when using a longer lock length as the front will still be very

quickly overtaken by the interfacial wave.

Fig. 4.8 shows the variation of Fr due to h′
1/H with the top, middle and bot-

tom rows corresponding to g′12/g
′
02 = 0.25, 0.50 and 0.75, respectively. Columns

(i), (ii), (iii) and (iv) correspond to D/H = 0.25, 0.50, 0.75 and 1.00, respec-

tively. The solid curves of column (iv) represent the solution to (2.5), (2.6) and

(2.8). The dashed curves represent a composite curve of the larger of the long

wave and internal bore speeds quantified by equations (2.10) and (2.11), respec-

tively, with η defined as (2.14). Experimental and numerical data are depicted

by circles and triangles, respectively. The measured results in column (iv) are

identical to the ones in Fig. 4.4 and thus show similarly good agreement with

the exception of an offset caused primarily by bottom friction. A monotonic and

nonlinear decrease of Fr with decreasing D/H is observed. This is consistent

with previous studies (Huppert & Simpson 1980, Rottman & Simpson 1983)

where measurements of the speed of a full depth lock release gravity current in

a uniform ambient are closest to Benjamin’s energy conserving solution of Fr
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Figure 4.7: Time evolution of a subcritical gravity current with D/H = 0.470±
0.019, h′

1 = 0.50 ± 0.01, g′12/g
′
02 = 0.752 ± 0.064, and t⋆ ≡ (t/H)/

√

g′02H =
0.0, 3.5, 7.1, 10.6 and 14.1. The field of view is 101 cm across by 20 cm tall.

= 1
2
when D/H = 1. This is to be expected because the amount of initially

available potential energy, which is then converted to kinetic energy once the

flow is initiated, is at a maximum when D/H = 1. Smaller values of D have

less initial potential energy and are consequently slower. While our theory only

applies for the special case where D/H = 1, the agreement is observed to be

surprisingly satisfactory for D/H as low as approximately 0.5.

A higher Reynolds number experiment was performed in order to investigate
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the possibility that the lower values of Fr was caused by viscous effects. This

experiment, represented by the large circle in the Top Row–(i) panel of Fig. 4.8,

was performed at a higher Reynolds number of Re≡ UD/ν = 6085 compared

to the Re ≃ 3680 of other experiments with similar D/H and g′12/g
′
02. The

difference of Fr was found to be negligible within experimental error. Another

observation that discouraged this line of reasoning is that numerical runs were

performed at lower Reynolds number (e.g. average Re=2686 for simulations

with D/H = 0.25 and g′12/g02 = 0.250) but show negligible difference, within

experimental error, when compared with analogue laboratory results.

In Fig. 4.8, subcritical gravity currents, where the interfacial disturbance

was seen to propagate ahead of the front, are represented by solid markers.

Supercritical gravity currents, where the interfacial disturbance was seen to

remain attached to the front, are represented by open markers. In between

cases are represented by open markers with a star. As discussed in §2.2, when

Fr>max(cLW , cB) the interfacial disturbance is expected to remain attached to

the gravity current front and is therefore supercritical. In the converse scenario,

when Fr<max(cLW , cB), the interfacial disturbance propagates away from the

front and the flow is therefore subcritical. As shown in Fig. 4.8, markers that

fall below the dashed curves, which represent max(cLW , cB), are typically solid

while those that lie above the curves are typically open.

4.4 Thick interface results

One of the defining characteristics of an intrusive gravity current propagating

in a two-layer stratified medium is that the initial front speed decreases as the

thickness, δ, of the ambient interface increases (Faust & Plate 1984, Sutherland

& Nault 2007). To assess the impact of the interfacial thickness for the flow

depicted schematically in Fig. 2.1, a series of laboratory experiments were per-

formed as outlined above. Results from this analysis are depicted in Fig. 4.9 a
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and b. They show, as a function of δ/H the normalized front speed, expressed

as

Fr

A
=

Fr
√

1− (3/4)× (g′12/g
′
02)

. (4.2)

The normalization factor A is motivated by equation (14.24) of Ungarish (2009)

and serves to substantially reduce the variation between experiments run at

different density ratios. Fig. 4.9 a and b consider, respectively, super- and sub-

critical gravity currents.

In sharp contrast to the experimental observations of Faust and Plate (1984),

it is seen from Fig. 4.9 a that the speed of a supercritical gravity current is

essentially independent of the interface thickness, at least within experimental

error. This result is to be expected when δ/H ≪ 1: the theory of §2.1.1 predicts

U to be a function of the depth-integrated pressure,
∫

p dz, whose magnitude is

unaltered by interfacial diffusion in the ambient. The fact that the front speed

remains constant even as δ/H → 1 is surprising, however. In these cases, the

smearing of density is not confined solely to the neighborhood of the interface.

Rather there is a pronounced vertical variation in the density of the ambient

fluid immediately adjacent to the (advancing) gravity current.

Also included in Fig. 4.9 a are three theoretical solutions. These apply in

the limiting case of a uniformly stratified ambient (i.e. δ/H → 1) and are based

on the analysis summarized in Chap. 14 of Ungarish (2009). In ascending or-

der and consistent with the experimental data, the theoretical solutions, given

in Fig. 4.9 a by the horizontal lines, correspond to g′12/g
′
02 = 0.230, 0.499 and

0.672. Consistent with Fig. 4.4, theory moderately over-predicts measured re-

sults; bottom friction is again believed to be responsible for the discrepancy.

As a further check on the consistency of our measured data, results from the

study of Maxworthy et al. (2002) who similarly considered gravity currents in

a uniformly stratified ambient (see §1.2.1) are included along the RHS axis of

Fig. 4.9 a. The solid data points of Fig. 4.9 a correspond to the solution of their
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Figure 4.9: Normalized front speed versus the normalized interface thickness.
(a) Supercritical flows, (b) subcritical flows. The non-dimensional front speed
is given by (4.2). In the legends E and N refer, respectively, to experimental
and numerical results; the latter of which are taken from Tan et al. (2010a).
Lines correspond to the theoretical solution of Ungarish (2009) and are further
described in the text. Results derived from the empirical correlations of Max-
worthy et al. (2002) are given by the solid data points on the RHS axis. For
this data, density ratios are chosen to match those of the experimental data
points so that, for example, the solid left-facing triangle in (a) corresponds to
g′12/g

′
02 = 0.499. Representative error bars are as indicated.
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equation (6), an empirical result based on curve fitting experimental and numer-

ical data. Within experimental error, these results of Maxworthy et al. (2002)

are indistinguishable from the present large δ/H measurements.

Analogous results for subcritical gravity currents are shown in Fig. 4.9 b. In

contrast to the supercritical data, the normalized front speed of a subcritical

gravity current increases, albeit rather modestly, with δ/H. The trend of the

data is therefore opposite to that documented by Faust and Plate (1984). Al-

though a satisfactory physical explanation for this trend is unknown, it seems

unrelated to the magnitude of η: Appendix E shows experimental data indi-

cating that η is independent of δ whether g′12/g
′
02 > 3/4 or g′12/g

′
02 < 3/4, at

least when h′
1 = h′

2. As with the data of Fig. 4.9 a, the agreement, in the limit

as δ/H → 1, with the experimental results of Maxworthy et al. (2002) and

the theoretical solutions of Ungarish (2009), here exhibited for g′12/g
′
02 = 0.783,

0.850 and 0.907, appears robust.

4.5 Deceleration

A limitation of the theoretical analysis of §2.1.1 is that, in contrast to shallow

water models, it is unable to predict the horizontal location, X, where the

gravity current front begins to decelerate. This analytical deficiency is addressed

by presenting below experimental data that show the variation of X/ℓ with h′
1,

δ/H, etc. where ℓ is the lock length. Measured results focus disproportionately

on subcritical experimental data for the following reasons: (i) subcritical gravity

currents typically begin to decelerate before their supercritical counterparts,

and, (ii) Cantero et al. (2007) argue that two-dimensional numerical simulations

of the type described in Tan et al. (2010) can, in some cases, yield erroneous

predictions for X.

Fig. 4.10 shows time series of the front position for g′12/g
′
02 ≃ 0.911± 0.090

and h′
1/H = 0.25, 0.38, 0.5 and 0.75 ±0.01. When the lower ambient layer
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is relatively thin, the front is observed in physical (and analogue numerical)

experiments to propagate without deceleration over relatively large horizontal

distances. In this region of parameter space, it is postulated by Sutherland and

Nault (2007) that a leaky closed-core solitary wave can be readily excited.
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Figure 4.10: Front position versus time for four subcritical gravity currents with
g′12/g

′
02 ≃ 0.911. Numerical data points are as follows: right-facing triangles,

h′
1/H = 0.25; left-facing triangles, h′

1/H = 0.38; diamonds, h′
1/H = 0.50;

squares, h′
1/H = 0.75. Corresponding experimental data are given by the thin

solid lines. The experimental and numerical experiments were conducted in
domains of length 227.5 and 400.0 cm, respectively. Snapshots of the flow field
at points 1-6 are provided below.

The wave envelops the gravity current head and transports gravity current fluid

long distances at a constant speed equal to the original front speed. By contrast

when h′
1/H ≥ 0.25, the gravity current head is overtaken relatively quickly
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(a)

(b)

Figure 4.11: Flow snapshots corresponding to points 1, 2 and 3 (panels a) and
4, 5 and 6 (panels b) from Fig. 4.10. In all cases, the field of view is 101 cm
across by 15 cm tall.
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by an interfacial disturbance. In Fig. 4.10, this is exhibited most clearly by

the time series associated with h′
1/H = 0.38 and h′

1/H = 0.50, which exhibit

well-defined kinks at the horizontal locations where overtaking occurs. While

a satisfactory theoretical estimate for the front speed of a subcritical gravity

current prior to overtaking has not been successfully derived, Fig. 4.10 makes

clear the restrictions of such a predictive tool: in general, it would apply over

a limited spatiotemporal window. For example, when h′
1/H = 0.50, the front

speed is constant only up until X/ℓ ≃ 3. This is noticeably less than the

corresponding transition distance for supercritical gravity currents and is also

less than the non-dimensional distance at which a full-depth lock release gravity

current propagating through a uniform ambient begins to decelerate (Rottman

& Simpson 1983).

Experimental snapshots of the flow field at the six points defined in Fig. 4.10

are shown in Fig. 4.11. The upper and lower images consider, respectively,

h′
1 = 0.50 and 0.75. In the former case, it is observed from Fig. 4.10 a that a

pronounced deceleration of the front occurs when t⋆ ≡ (t/H)
√

g′02H ≃ 37. As

the wave overtakes the front, the shape of the gravity current head is demon-

strably altered. A much less dramatic change of shape is noted in the lower

images of Fig. 4.11 where (i) the ambient interface is further from the gravity

current, and, (ii) the interfacial wave amplitude is smaller (Fig. 4.2 a). In both

cases and consistent with Figs. 1, 7 and 8 of Rottman and Simpson (1989), a

train of waves ultimately appears upstream of the (decelerating) gravity current

front.

The variation of X/ℓ with h′
1 for different g′12/g

′
02 is depicted in Fig. 4.12 a.

Although there is some scatter in the data reflecting the possible influence of end

wall effects, it seems clear that X/ℓ increases with decreasing h′
1/H and g′12/g

′
02.

In particular and consistent with the above remarks and also the investigation

of Sutherland and Nault (2007), the gravity current is observed to propagate
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for long distances at constant speed when g′12/g
′
02 ≤ 0.25.

The dependence of X/ℓ on g′12/g
′
02 for various ambient interface heights is

further elucidated by Fig. 4.12 b. Subcritical gravity currents begin to decelerate

after traveling as little as 3 lock lengths (see also Fig. 4.10); their supercriti-

cal counterparts travel without change of speed over much longer horizontal

distances, particularly as g′12/g
′
02 → 0.

In Fig. 4.12 c, X/ℓ is observed to be an increasing function of the inter-

face thickness for the special case where h′
1 = h′

2. This observation can be

understood in connection with the data of Fig. 4.12 a: as δ/H increases, the

effective depth of the lower ambient layer decreases so that the gravity current

is again able to travel long distances without deceleration. Also, from the dis-

cussion of Fig. 4.9 b, recall that the front speed of a subcritical gravity current

increases with δ whereas η, and presumably the wave speed, c, shows no sys-

tematic variation (see Appendix E). Because X and c−U are inversely related

i.e. X ∝ c/(c− U), X is therefore expected to increase with δ.

Finally, in Fig 4.12 d, X/ℓ is shown to be an increasing function of D/H.

While the experimental data considered in the panel are for h′
1/H = 0.50,

the trend is expected to be similar for other values of h′
1/H. As D decreases,

the volume of the gravity current fluid decreases, resulting in a more rapid

deceleration of the gravity current front. This observation further reinforces the

explanation for the decreasing trend found in Fig. 4.6.

4.6 Dimensionless numbers

In this study, two dimensionless numbers were discussed in some detail: Reynolds

number and Froude number. For completeness, other dimensionless numbers are

considered here. The Rossby number, Ro ≡ U/(Lf), where f ∼ 10−4 s−1 and L

is the characteristic length, describes the ratio of inertial to Coriolis forces. For

the experimental setup described here, Ro ≃ 434 which is sufficiently large such
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Figure 4.12: Normalized point of first deceleration, X/ℓ, vs. (a) h′
1/H for

g′12/g
′
02 = 0.900 (circles), g′12/g

′
02 = 0.785 (triangles), and, g′12/g

′
02 = 0.694

(squares) with δ/H ≃ 0.123; (b) g′12/g
′
02 for various h′

1/H with δ/H ≃ 0.123;
(c) δ/H for various g′12/g

′
02 with h′

1 = h′
2; and, (d) D/H for various g′12/g

′
02 with

h′
1/H = 0.50. In each case, only experimental data is considered. For panels (a),

(b), (c) solid markers denote runs for which X/ℓ > 12. Solid markers in panel
(d) denote runs where X/ℓ > 5.5. Representative error bars are as indicated.
In panel (b), the horizontal error bar is longer than those of Fig. 4.4 because of
the larger values for g′12/g

′
02 considered here.
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that Coriolis effects are small. For environmental flows, taking U = 10m/s, L

is approximately 100 km when Ro ≃ 1, indicating that the gravity current must

travel a long distance before Coriolis effects become important.

The Rayleigh number can be expressed as Ra = Re×Pe where Pe ≡ HU/α

is the Péclet number and α is the thermal diffusivity. The Reynolds number for

the experiments and environmental flows are ∼ 104 and ∼ 108, respectively. The

Péclet number, which describes the ratio of the rate of advection to diffusion, is

approximately ∼ 105 and ∼ 109 for laboratory experiments and environmental

flows (i.e. due to temperature variations in water), respectively. In either case,

both parameters are sufficiently large such that the dynamics of larger scale

gravity currents can be captured in smaller laboratory setups.

The Richardson number, Ri ≡ N2/(du/dz)2, where N is the buoyancy fre-

quency. The dimensionless number measures the ratio of suppression of turbu-

lence due to buoyancy and the shear generation of turbulence. As is evident

from experimental images of the phenomena (see Fig. 3.3), the turbulent struc-

tures are very prominent behind the gravity current head. However, at the

front, the interface between the gravity current and the ambient fluid is sharp

and devoid of the aforementioned structures. Furthermore, the speed of the

front, U , is observed to be relatively insensitive to the turbulent structures as

is evident by the strong agreement between the measured results and the theo-

retical model, which does not consider these effects. Additionally, the fluids in

this study are miscible so that dimensionless numbers that consider the effects

of surface tension (e.g. Bond number, Weber number) are trivial.
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Chapter 5

Conclusions

5.1 Summary of present contribution

The behaviour of a gravity current in uniform surroundings has been debated, if

not resolvedly understood, for 40 years, however, less attention has been devoted

to the scenario of a stratified ambient, in particular a two-layer stratified ambient

where the layer densities are either both smaller than or larger than that of the

intruding horizontal flow. For the case of a dense Boussinesq gravity current

with an upper layer of infinite depth, Rottman & Simpson (1989) argued that

subcritical conditions are likely to be observed whereby the gravity current front

speed, U , is less than that of the interfacial disturbance (see e.g. Figs. 2 and 7

of their paper). In contrast, the present work considers ambient layers of finite

vertical extent. From the theoretical model of §2.1.1, itself an extension of

the classical theory of Benjamin (1968), it is shown that a supercritical gravity

current is assumed whenever g′12/g
′
02 ≤ 3/4 and D = H, where D is the initial

depth of the gravity current fluid and H is the channel height.

A further and more tangible objective of the analysis is to estimate the front

speed of a supercritical gravity current during the slumping phase of motion.

Fig. 4.4 shows a comparison between measured and predicted non-dimensional

front speeds for various combinations of layer depths and densities corresponding

to full depth lock release experiments. The former data set is comprised of both
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experimental (§3) and independent numerical measurements. Notwithstand-

ing a constant offset between theory and observation, which is also observed

in related studies and is due, most likely, to surface drag effects, the level of

agreement is encouraging. Over the broad range of parameter space considered

in Fig. 4.4, model output does not display the discontinuities or multiplicities

that characterize other theoretical solutions (i.e. Holyer & Huppert 1980). Note

as well that an a-priori estimate of the volumetric flow rate is not required in

order to make the comparison. Rather, model closure is obtained via (2.8),

which proposes, from heuristic reasoning, an equation for the amplitude of the

interfacial disturbance in terms of the depths of the upper and lower ambient

layers. The order-one validity of (2.8) is established by a favorable comparison

against measured data (Fig. 4.2 and Fig. 4.3).

In order to extend the theoretical model to the more general case where

D < H, a new parameterization of the amplitude of the interfacial disturbance

is required. This parameterization, (2.14), is presented in §2.1.2. Despite the

favorable comparison between the proposed parameterization and measured re-

sults, as shown in Fig. 4.5, combining the new parameterization with mass and

momentum conservation (2.5) along with energy conservation along either the

upper (2.7) or lower ambient layer (2.6), yielded unphysical results. However,

as shown in Fig. 4.8, the model derived for the special case where D = H ad-

equately predicts the speed of propagation in the range 0.5 . D/H ≤ 1. In

Fig. 4.8, it is observed that supercritical gravity currents are typically faster

than the larger of the long wave speed (2.10) and the internal bore speed (2.11)

while subcritical gravity currents are typically slower.

Recognizing that interfaces in the environment are often diffuse rather than

sharp, the impact of the interfacial thickness, δ is considered in §4.4. Surpris-

ingly, it is observed that the variation of U with δ is either modest (subcritical

gravity currents) or practically nonexistent (supercritical gravity currents) even
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as the interface comes to span the entire channel depth (Fig. 4.9). In the limit-

ing case δ/H → 1, one can draw comparisons against analogue analytical results

(Ungarish 2009). As in the two-layer case, theory moderately over-predicts the

measured results, which in turn agree with the empirical results of Maxworthy

et al. (2002).

The investigation is concluded with an experimental examination of the

horizontal distance, X, at which the gravity current front begins to decelerate.

Results are presented in Fig. 4.12, which shows the variation of X with the

ambient interface height, g′12/g
′
02, δ/H and D/H. Conversely in Fig. 4.11, two

instances in which the gravity current head is overtaken by the interfacial dis-

turbance are compared. The severity of the ensuing deceleration is observed to

depend most especially on the ambient interface height.

5.2 Outlook and future work

The investigation described here is but a first step in describing flows in the

environment as they are typically characterized by many factors not considered

here. While a flat bottom boundary is assumed in this study, naturally occurring

gravity currents typically propagate across nonuniform bottom boundaries such

as mountainous terrain and buildings. The assumption of a rectilinear geometry

also limits the applicability of the model. Previous observations (e.g. Simpson

1997) have shown that axisymmetric dispersion where the gravity current fluid

originates from a single point source are more common. Examples of this are

thunderstorm outflows, or an oil spill originating from a single tanker. Moreover,

smaller scale gravity currents that occur in buildings, for example, are typically

affected by obstacles such as doorways, complex building designs, tables and

other common objects, etc. Further complications may arise if the effects of

factors such as diurnal variations and anthropogenic sources (e.g. heat from

vehicles, buildings etc.) on ambient stratification are considered.
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Future works could extend the model to the more general case whereD < H.

Additionally, the subcritical regime, where a physical solution utilizing a steady

state model was not obtained, could be studied in further detail. Investigating

the dynamics of the gravity current when complicating factors, such as obsta-

cles and complex topography, are included is also a possibility. It would be

worthwhile to develop a model that provides a solution for a variable number

of layers, bridging the gap between the limit where the ambient is uniform to

where it is linearly stratified. We hope that the analysis described here provides

an adequate base of which future projects may be built from.
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Appendix A

Derivation of the Benjamin
(1968) Solution

U
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Figure A.1: Definition sketch of a dense gravity current (fluid of density ρ0) and
the control volume ABCD.

In this section, we briefly discuss the derivation of the model developed by

Benjamin (1968) for a gravity current propagating into a uniform ambient. In

Fig. A.1, a primarily horizontal flow of a dense gravity current propagating along

a horizontal boundary through a uniform ambient of depth H is considered. In

the analysis, the control volume ABCD is chosen such that gravity current

is stationary and ambient fluid flows, without mixing from right to left. The

gravity current, considered to be horizontal away from the front, has a depth

of h0 and a density of ρ0 > ρ1. Far upstream from O, we may relate the

fluid velocity U , which is the gravity current front speed in the laboratory

reference frame, with the depth-independent ambient velocity u by applying
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mass conservation:

uh1 = UH. (A.1)

Taking the pressure at the stagnation point, pO to be zero, the pressure at point

A maybe be found by applying Bernoulli’s equation along OA such that

pA = −1

2
ρ1U

2. (A.2)

Far up- and downstream, vertical accelerations are assumed to be negligible

such that the pressure field is hydrostatic. Along the vertical segment AD the

pressure field can be written as:

p = −1

2
ρ1U

2 − ρ1gH. (A.3)

Similarly, the pressure field along the vertical segment BC:

p =

{

−ρ0gz 0 ≤ z ≤ h0

−ρ0gh0 − ρ1g(z − h0) h0 ≤ z ≤ H
(A.4)

Conservation of horizontal momentum flux within the constant volume ABCD

yields

∫ D

A

p+ ρu2 dz =

∫ C

B

p+ ρu2 dz (A.5)

which can then be combined with equations (A.3), (A.4) and (A.1) to arrive

at the final expression relating the front speed, U to the height of the gravity

current, h0 and the channel depth, H:

Fr ≡ U√
g′H

=

√

(H − h0)(2H − h0)

(H + h0)

h0

H2
(A.6)

where g′ = g(ρ0− ρ1)/ρ1 and g is the acceleration due to gravity. As mentioned

briefly above, (A.6) represents one equation and two unknowns and thus an

additional equation is required to close the system. If the system is assumed

68



to be free of dissipation, one can apply Bernoulli’s equation along the interface

OQ to arrive at the additional equation:

u =
√

2g′h0. (A.7)

Combining equation A.7 and A.1 with equation A.6 results in two solutions for

depth of the gravity current:

h0

H
=

1

2
or

h0

H
= 0. (A.8)

The former solution shows that the gravity current must span half the channel

depth and is realized to a very good approximation in full depth lock release

experiments (Shin et al. 2004). Applying this result in equation (A.6), we arrive

at the Benjamin’s energy conserving solution: Fr= 1
2
.
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Appendix B

Alternate Fr definition

An alternate definition for Fr is:

Fre =
U

√

g′eH
(B.1)

where

g′e =
g

ρ00

(

ρ0 −
ρ1h

′
1 + ρ2h

′
2

H

)

. (B.2)

The two methods described in this thesis for non-dimensionalizing U have their

respective merits and demerits. Equation (B.1) allows for Benjamin’s energy

conserving solution of Fr=1
2
to be recovered as h′

1/H → 0, 1 in contrast to (2.2)

which results in a different value for Fr when h′
1/H → 1 (see Fig. 4.4). More-

over, the deviation between the predicted Fr and Benjamin’s energy conserving

solution of Fr = 1
2
for a uniform ambient quantifies the dynamical impact of the

interfacial disturbance shown schematically in Fig. 2.1. However, defining Fr as

in (2.2) allows for a more intuitive understanding of the impact on the speed

of a gravity current when a fluid of intermediate density (e.g. ρ1) is added to

the bottom of the ambient; that is, as more of the intermediate density fluid is

added, the gravity current propagates slower.

Fig. B.1 a–c shows the variation of Fre with h′
1/H for g′12/g

′
02 = 0.25, 0.50

and 0.75, respectively. As before, analytical solutions are obtained by solving
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Figure B.1: (a) Fre, as defined by (2.2), vs. h′
1/H for g′12/g

′
02 = 0.250, (b)

g′12/g
′
02 = 0.500 and (c) g′12/g

′
02 = 0.750. Data points are as follows: open

triangles–numerical results; open circles–experimental results. The solid curve
gives the corresponding theoretical result. Representative error bars for the
experimental data are as indicated. Panel (d) show the variation of Fre with
h′
1/H and g′12/g

′
02.

(2.5), (2.6) and (2.8). Here, as with Fig. 4.4, the agreement between theoretical

and measured results is satisfactory: though theory again over predicts the

measured data, this feature is likely due to bottom friction. Consistent with the

above remarks, the energy conserving solution of Benjamin (1968) is recovered

in the limiting cases h′
1/H = 0, 1. Fig. B.1 d is analogous to the upper surface

in Fig. 2.5 a except that U is now non-dimensionalized using (B.1). Here, we

observe generally modest variations of Fre with h′
1/H and g′12/g

′
02. (Note the

difference of vertical scales between Figs. B.1 and 2.5 a).
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Appendix C

Sample density profile for thick
interface experiments

Figs. C.1, C.2, and C.3 show sample density profiles for the ambient interface

of laboratory experiments. The solid line is constructed from measurements of

aconductivity probe (Precision and Measurement Engineering, MSCTI), which

was mounted to a computer controlled traverse (Velmex, X-Slide). Calibration

was performed against stock solutions of known density to ensure that conduc-

tivity is directly proportional to density. The dotted lines are curve-fits of the

three sections of the ambient i.e. lower ambient layer, interface and upper am-

bient layer. The thickness of the interface is measured from the intersections of

the dotted lines.
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Figure C.1: Sample density profile for the ambient of a “thin” interface experi-
ment.
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Figure C.2: Sample density profile for the ambient of a thick interface experi-
ment.
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Figure C.3: Sample density profile for the ambient of a intermediate thickness
interface experiment.
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Appendix D

Conserving energy in lower or
upper ambient layers for partial
depth gravity currents

Fig. D.1 shows solutions generated from equations (2.5), (2.6) and (2.14). Panels

a–d and e–h show variations of the non-dimensional layer depths h1/H and

h0/H, respectively, with the lower ambient layer depth, h′
1/H, for 0 ≤ g′12/g

′
02 ≤

0.95. The arrows indicate the direction of increasing g′12/g
′
02. Columns a, b, c,

d represent D/H = 1
4
, 1

2
, 3

4
and 1, respectively, so that panels d and h are

identical to panels a and e in Fig. 2.4. A critical analysis of the panels shows

that as h′
1/H → 1, h0/H → 1

2
regardless of the value of D/H. This indicates

that even at low values of D/H, the gravity current will nonetheless span half

the channel height, a prediction that is unphysical. This behaviour is observed

because as h′
1/H → 1, η → 0 and the solution to the system of equations reduces

to Benjamin (1968)’s energy conserving solution.

Fig. D.2 describes the variations of the non-dimensional speeds u1/
√

g′02H

(panels a, b, c, d), u2/
√

g′02H (panels e, f, g, h) with h′
1/H for 0 ≤ g′12/g

′
02 ≤ 0.95

utilizing equation (2.6). The arrows indicate the direction of increasing g′12/g
′
02.

Columns a, b, c, d represent D/H = 1
4
, 1

2
, 3

4
and 1, respectively. Here, as

with Fig. D.1, the variations due to D disappear as h′
1/H → 1. In this limit,

solutions are identical irrespective of D.
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Fig. D.3 describes the variations of Fr (upper panel) and dissipation (lower

panel) with g′12/g
′
02 and h′

1/H for D/H = 1
4
(panel a), 1

2
(panel b), 3

4
(panel

c) and 1 (panel d) when equation (2.6) is utilized. Here, as with Fig. 2.5, the

lower surface in the upper panels denote the composite long wave - bore surface.

From the figure, we observe model breakdown at smaller values of g′12/g
′
02 as

D/H → 0. Additionally, while a monotonic decrease of Fr as g′12/g
′
02 and

h′
1/H increases is observed for D/H & 0.5, a non-monotonic trend is observed

for D/H . 0.5; a prediction that cannot be recovered strictly from energy

arguments of the type summarized by Cheong et al. (2006). However, this

behaviour is observed as h′
1/H → 1 and it is unclear whether the prediction

is physical or merely an artifact of the model. The exponentially increasing

dissipation at h′
1/H → 0 and g′12/g

′
02 → 0 for D/H . 0.5 observed in the lower

panel suggests that it is likely the latter.

Building on the solutions shown in Fig. D.3, Fig. D.4 show the variations of

Fr with h′
1/H for various D/H and g′12/g

′
02. The solid lines show the solution

to (2.5), (2.14), and (2.6). The composite long wave - internal bore speeds de-

noted by the dashed lines and measured results are indicated by the triangles

and circles. Thus the latter data is identical to that shown in Fig. 4.8. While

the predictions of layer heights and speeds in the limiting case of h′
1/H → 0

are unphysical (Figs. D.1 and D.2), surprisingly, the prediction of Fr shows rea-

sonable agreement with measurements, particularly for D/H not too close to 0:

although the offset between theoretical and measured results observed in Fig. 4.4

is observed to increase steadily as D/H < 1, the qualitative agreement remains

satisfactory. The broken solid curves at intermediate values of h′
1/H are caused

by model breakdown and are observed to coincide with Fr ≃ max(cLW , cB).

Fig. D.5 describes the variations of h0/H and h1/H due to h′
1/H as in

Fig. D.1 but showing model results utilizing equation (2.7) in place of (2.6).

By conserving energy in the upper layer instead of the lower layer, Benjamin
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(1968)’s solution is not recovered when h′
1/H → 1 and D < H, therefore the

expected behaviour (i.e. h0 < D) is predicted by the model. However, when

h′
1/H → 0, the model predicts a non-zero value for h1/H which is clearly

unphysical. Correspondingly, h0/H decreases rapidly in this limit. Fig. D.6,

which is analogous to Fig. D.2 with the exception that equation (2.7) is utilized,

shows similar behaviour. Moreover, since values of h1 and U are non-zero, u1

must then equal zero due to mass conservation (i.e. u1h1 = Uh′
1). This unusual

behaviour is not present when D = H and the change is observed to occur

abruptly.

Fig. D.7 depicts the variation of Fr with g′12/g
′
02 and h′

1/H as with Fig. D.3

but showing model results utilizing equation 2.7. The unusual prediction at

h′
1/H → 0 manifests here as well: in this limit, Fr drops rapidly when D < H.

Moreover, dissipation increases to a large value indicating that the predictions in

this limit are unphysical. As with Fig. D.4, Fig. D.8 shows variations of Fr due

to h′
1/H for various values of D/H and g′12/g

′
02. Here also we observe that the

theoretical predictions agree qualitatively with measured results with a steadily

increasing offset between theory and measurements as D/H < 1. In contrast

to Fig. D.4, however, the rapid drop of Fr as h′
1/H → 0 is inconsistent with

measured data and thus seems to be a spurious artifact of the model equations.
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Figure D.3: (Upper panels): Non-dimensional gravity current speed, Fr, vs.
g′12/g

′
02 and h′

1/H (upper surface). The lower surface shows the larger of the
long wave speed as predicted by (2.10) and the bore speed as predicted by
(2.11) which was used with (2.14). (Lower panels): Non-dimensional dissipation
function, ∆R/(g′02H), as defined by (2.12). D/H = 1

4
, 1

2
, 3

4
and 1 in panels a,

b, c, d, respectively. Note that: (i) the orientation of the surfaces is different
in the upper and lower images of each panel, (ii) axis scales of the lower image
vary between each panel.
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Figure D.7: As in Fig. D.3 but showing model results based upon the solution
to equations (2.5), (2.7) and (2.14). The non-dimensional dissipation function
is calculated using (2.13).
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Appendix E

Interface thickness and
deflection

The variation of η with δ is exhibited in Fig. E.1; both supercritical and subcrit-

ical experimental data are considered. In all cases, we find that the interfacial

thickness has an insignificant impact on the deflection of the interface, at least

within experimental error. For non-zero values of δ, measurements of η are

based on the average elevation of the (thick) interface far downstream and just

above the crest of the gravity current head.
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Figure E.1: The correlation of interface thickness and deflection for a range of
values of g′12/g

′
02. For the experiments considered here, h′

1= h′
2. Representative

error bars are as indicated.
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Appendix F

Measured data

Tables F.1 and F.2 show thin interface experimental data as described in §3.

Variables H (cm), h′
1 (cm), η (cm), U ± 0.12 (cm/s), ρ0 (g/cm3), ρ1 (g/cm3)

and ρ2 (g/cm3) are described schematically in Fig. 2.1. Ambient and lock fluid

interface thickness are denoted by δamb (cm) and δℓ (cm) respectively. Numbers

in the “Config” column represent subcritical (0), supercritical (1), in-between

(2) and uniform ambient (3) gravity current cases. Table F.3 shows data from

thick interface experiments, as described in §3.2 where h′
1 = h′

2 and H = 20 cm.

Column labels are as in Tables F.1 and F.2. Non-dimensional lower ambient

depth and interface thickness are denoted by h′
1/H and δ/H respectively. Ta-

ble F.4 shows measured data for experiments investigating the deceleration of

gravity currents after the slumping phase. The interface thickness is denoted by

δ (cm) and the non-dimensional point of front deceleration is denoted by X/ℓ

where ℓ is the lock length. The remaining column variables are as defined in

Tables F.1 and F.2. In all experimental cases, we employ the following combi-

nation of channel height, H and lock length, ℓ: H = 20 cm with ℓ = 32.4 cm

and H = 15 cm with ℓ = 16.5 cm. The measurement error for experimental data

are: H, h′
1, h

′
2, ℓ ± 0.15, η ± 0.30, δ ± 0.20, ρ ± 0.0005 and U ± 0.12. Finally,

Table F.5 and F.6 show data from numerical simulations described in Tan et

al. (2010a). Column labels are as in Tables F.1 and F.2.
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Run ρ0 ρ1 ρ2 h′
1/H δ/H U

1 1.0316 1.0151 0.9989 0.500 0.0250 9.4693
2 1.0303 1.0150 0.9995 0.500 0.2400 9.1005
3 1.0311 1.0151 0.9988 0.500 0.3775 9.2358
4 1.0321 1.0153 0.9987 0.500 0.4800 9.5352
5 1.0308 1.0153 0.9986 0.500 0.1580 9.0296
6 1.0313 1.0151 0.9986 0.500 0.5814 9.3765
19 1.0313 1.0149 0.9993 0.500 0.8231 9.4488
23 1.0314 1.0148 0.9989 0.500 0.6899 9.4612
28 1.0328 1.0153 0.9992 0.500 0.8776 10.2314
34 1.0303 1.0155 1.0014 0.500 0.9739 9.2784
39 1.0315 1.0151 0.9989 0.500 0.0952 9.3524
7 1.0315 1.0225 1.0027 0.500 0.1542 7.6146
8 1.0334 1.0223 1.0006 0.500 0.2315 8.2186
9 1.0319 1.0223 1.0011 0.500 0.3541 7.9374
10 1.0334 1.0228 1.0008 0.500 0.4319 8.1877
11 1.0339 1.0228 1.0006 0.500 0.5043 8.3993
18 1.0335 1.0220 0.9993 0.500 0.8199 8.8185
22 1.0326 1.0217 0.9995 0.500 0.7452 8.7481
25 1.0348 1.0230 0.9989 0.500 0.5959 8.4457
27 1.0423 1.0285 1.0000 0.500 0.8807 9.7391
37 1.0290 1.0201 1.0026 0.500 0.9151 7.9994
38 1.0331 1.0222 0.9994 0.500 0.1075 8.0183
12 1.0459 1.0121 1.0007 0.500 0.2928 12.3344
13 1.0443 1.0100 1.0007 0.500 0.1685 12.0022
14 1.0383 1.0100 1.0007 0.500 0.2241 11.4602
15 1.0459 1.0106 1.0005 0.500 0.4006 12.3815
16 1.0465 1.0104 1.0005 0.500 0.5123 12.7764
17 1.0464 1.0101 0.9999 0.500 0.8384 12.7291
24 1.0448 1.0100 0.9995 0.500 0.6691 12.6283
26 1.0443 1.0095 0.9993 0.500 0.5476 12.4466
30 1.0511 1.0120 1.0001 0.500 0.8838 12.9840
35 1.0502 1.0129 1.0016 0.500 0.9536 13.1312
40 1.0413 1.0092 0.9995 0.500 0.1086 11.8545

Table F.3: Thick interface experimental data. Here h′
1 = h′

2 and H = 20 cm.
Column labels and units are as described in text.
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Run ρ0 ρ1 ρ2 h′
1 δ X/ℓ U η/H

SGC 2 1.0206 1.0184 0.9997 11.2500 2.0000 2.7856 2.9655 -
6 1.0302 1.0239 1.0002 11.2500 1.8769 6.1712 4.6336 -
3 1.0361 1.0245 0.9991 11.2500 2.0033 9.2245 5.8545 -
12 1.0265 1.0242 0.9987 7.5000 4.6276 4.2848 4.6752 -
15 1.0163 1.0148 0.9983 7.5000 8.7960 6.0651 4.1864 0.2144

SGC 5 1.0208 1.0186 0.9988 7.5000 2.0000 3.0206 4.3707 0.2637
5 1.0299 1.0236 1.0004 7.5000 1.7556 7.0522 5.7355 0.2547
17 1.0187 1.0145 0.9997 7.5000 8.7670 10.0317 5.0683 0.2405
7 1.0303 1.0211 0.9995 7.5000 1.9150 8.6665 6.1686 -
10 1.0345 1.0269 0.9991 5.6250 1.5019 8.8648 7.0596 -

SGC 4 1.0211 1.0194 0.9990 5.6500 2.0000 3.8410 5.1613 -
9 1.0283 1.0247 0.9988 3.7500 1.3599 12.0000 7.6368 -
4 1.0300 1.0236 1.0011 3.7500 1.7649 12.0000 7.9796 -
18 1.0269 1.0244 0.9986 7.5000 10.6210 12.0000 6.1313 0.2373
19 1.0250 1.0197 0.9999 7.5000 3.8084 6.9184 5.2281 -
20 1.0237 1.0184 0.9982 7.5000 4.1860 7.2320 5.4889 -
21 1.0202 1.0139 0.9982 7.5000 4.0462 9.5658 5.5056 -
22 1.0185 1.0163 0.9984 7.5000 9.2774 6.7293 4.6981 0.2180
23 1.0130 1.0116 0.9989 7.5000 6.2919 5.2672 3.7316 0.2347
24 1.0142 1.0107 0.9984 7.5000 6.5814 8.6665 4.3229 0.2240
25 1.0168 1.0127 0.9984 7.5000 7.1498 9.0631 4.7613 0.2394
26 1.0198 1.0134 0.9989 7.5000 7.0250 12.0000 5.4695 -
27 1.0262 1.0235 0.9986 4.7000 1.6969 7.6425 6.5204 -
11 1.0314 1.0216 0.9992 5.6250 2.0136 12.0000 7.2727 -
29 1.0380 1.0257 0.9982 7.5000 1.5830 10.1009 7.5351 -
31 1.0292 1.0194 0.9986 7.5000 1.8296 10.1239 6.5254 -
32 1.0252 1.0194 0.9994 7.5000 10.9744 12.0000 6.0119 0.2280
34 1.0208 1.0188 0.9992 7.5000 11.5013 7.3473 4.6978 0.2294
35 1.0225 1.02025 0.9989 7.5000 12.2600 9.3398 4.8839 0.2215
36 1.0283 1.0195 0.9986 7.5000 2.0190 10.4745 6.4030 -
37 1.02705 1.0184 0.9986 7.5000 4.0650 10.2992 6.3970 -
38 1.02985 1.021 1.0001 7.5000 3.9227 9.7826 6.3174 -

Table F.4: Experimental data for experiments considering the point of front
deceleration. Here H = 15 cm. Column labels and units are as described in
text.
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Case h′
1 D H ρ2 ρ1 ρ0 U η Config

384 12.0 5 20 1 1.015 1.02 2.81 - 0
385 16.0 5 20 1 1.015 1.02 2.93 - 0
386 8.0 5 20 1 1.015 1.02 3.63 - -
207 10.0 20 20 1 1.01 1.02 6.77 5.00 2
208 5.0 20 20 1 1.01 1.02 7.91 7.43 1
209 15.0 20 20 1 1.01 1.02 6.23 2.40 1
210 20.0 20 20 1 1.01 1.02 6.08 - 3
226 0.0 20 20 1 1.01 1.02 8.73 - 3
227 12.5 20 20 1 1.01 1.02 6.44 3.63 2
228 17.5 20 20 1 1.01 1.02 6.08 1.14 2
229 7.5 20 20 1 1.01 1.02 7.23 6.21 2
230 2.5 20 20 1 1.01 1.02 8.55 8.33 1
215 10.0 20 20 1 1.015 1.02 5.48 5.07 0
216 5.0 20 20 1 1.015 1.02 7.57 7.43 0
217 15.0 20 20 1 1.015 1.02 4.58 2.57 0
220 20.0 20 20 1 1.015 1.02 4.25 - 3
226 0.0 20 20 1 1.015 1.02 8.73 - 3
236 12.5 20 20 1 1.015 1.02 4.94 3.78 0
237 17.5 20 20 1 1.015 1.02 4.34 1.19 2
238 7.5 20 20 1 1.015 1.02 6.41 6.29 0
239 2.5 20 20 1 1.015 1.02 8.75 8.50 1
222 10.0 20 20 1 1.005 1.02 7.78 4.49 1
223 5.0 20 20 1 1.005 1.02 8.24 6.99 1
224 15.0 20 20 1 1.005 1.02 7.52 2.27 1
225 20.0 20 20 1 1.005 1.02 7.44 - 3
226 0.0 20 20 1 1.005 1.02 8.73 - 3
232 12.5 20 20 1 1.005 1.02 7.64 3.24 1
233 17.5 20 20 1 1.005 1.02 7.49 1.05 1
234 7.5 20 20 1 1.005 1.02 7.95 5.86 1
235 2.5 20 20 1 1.005 1.02 8.52 7.68 1
397 2.5 15 20 1 1.01 1.02 8.46 - 1
398 17.5 15 20 1 1.01 1.02 5.99 - 1
391 18.0 15 20 1 1.015 1.02 4.20 - 2
392 2.0 10 20 1 1.015 1.02 8.13 - 1
393 2.0 5 20 1 1.015 1.02 5.74 - 0
394 17.5 10 20 1 1.01 1.02 5.64 - 2
395 17.5 10 20 1 1.005 1.02 6.81 - 1
396 17.5 5 20 1 1.005 1.02 5.04 - 1
999 2.0 15 20 1 1.015 1.02 8.78 - 1

Table F.5: Measured data from numerical simulations as described in Tan et
al. (2010a). Column labels and units are described in text.
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Case h′
1 D H ρ2 ρ1 ρ0 U η Config

347 10.0 5 20 1 1.01 1.02 4.30 - 0
350 5.0 5 20 1 1.01 1.02 4.11 1.84 0
353 15.0 5 20 1 1.01 1.02 4.06 - 0
372 2.0 5 20 1 1.01 1.02 5.72 - 1
373 18.0 5 20 1 1.01 1.02 4.24 - 2
348 10.0 10 20 1 1.01 1.02 5.84 3.50 0
351 5.0 10 20 1 1.01 1.02 6.92 6.11 2
354 15.0 10 20 1 1.01 1.02 5.68 2.10 0
241 2.5 10 20 1 1.01 1.02 7.73 6.98 1
242 7.5 10 20 1 1.01 1.02 6.35 5.05 0
349 10.0 15 20 1 1.01 1.02 6.60 4.65 2
352 5.0 15 20 1 1.01 1.02 7.58 6.81 1
355 15.0 15 20 1 1.01 1.02 6.21 2.31 1
356 10.0 10 20 1 1.005 1.02 7.14 3.96 1
357 5.0 10 20 1 1.005 1.02 7.54 5.71 1
358 15.0 10 20 1 1.005 1.02 6.53 1.93 1
359 2.5 10 20 1 1.005 1.02 7.66 5.91 1
360 7.5 10 20 1 1.005 1.02 7.16 5.16 1
362 10.0 15 20 1 1.005 1.02 7.74 4.47 1
363 5.0 15 20 1 1.005 1.02 8.26 6.68 1
364 15.0 15 20 1 1.005 1.02 7.53 1.91 1
365 2.5 15 20 1 1.005 1.02 8.55 - 1
366 17.5 15 20 1 1.005 1.02 7.49 - 1
367 2.5 5 20 1 1.005 1.02 5.70 5.04 1
368 5.0 5 20 1 1.005 1.02 5.52 - 1
369 7.5 5 20 1 1.005 1.02 5.40 - 2
370 10.0 5 20 1 1.005 1.02 5.39 - 2
371 15.0 5 20 1 1.005 1.02 5.18 - 2
361 10.0 10 20 1 1.015 1.02 3.61 1.37 0
374 4.0 10 20 1 1.015 1.02 7.07 - 0
375 8.0 10 20 1 1.015 1.02 4.68 - 0
376 12.0 10 20 1 1.015 1.02 3.79 - 0
377 16.0 10 20 1 1.015 1.02 3.93 - 0
378 4.0 15 20 1 1.015 1.02 7.93 - 2
379 8.0 15 20 1 1.015 1.02 6.11 - 0
380 12.0 15 20 1 1.015 1.02 5.00 - 0
381 16.0 15 20 1 1.015 1.02 4.32 - 0
382 4.0 5 20 1 1.015 1.02 3.25 - 0
383 8.0 5 20 1 1.015 1.02 2.56 - 0

Table F.6: Measured data from numerical simulations as described in Tan et
al. (2010a). Column labels and units are described in text.
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