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We study the flow of a thin liquid film along a flexible substrate. The flow is modelled
using lubrication theory, assuming that gravity is the dominant driving force. The sub-
strate is modelled as an elastic beam that deforms in two dimensions. Steady solutions
are found using numerical and perturbation methods, and several different asymptotic
regimes are identified. We obtain a complete characterisation of how the length and stiff-
ness of the beam and the imposed liquid flux determine the profile of the liquid film and
the resulting beam deformation.

1. Introduction

Thin film flows are commonly studied in the earth, engineering and materials sci-
ences. The driving forces for flow can include buoyancy, surface tension and interfacial
Marangoni stresses (Oron et al. 1997; Craster & Matar 2009). Theoretical studies of thin
liquid films often focus on flow over planar substrates. In the case of gravitational, or
buoyant, driving of a flow over a horizontal base, the motion is driven by the slope of the
free surface (Huppert 1982b), whereas for an inclined planar substrate the flow is prin-
cipally driven by the component of gravity parallel to the substrate (Huppert 1982a).
There have also been several investigations of flow of viscous thin films along rigid curved
substrates, focusing on the influence of a given substrate curvature on capillary-driven
flow (Jensen 1997; Roy et al. 2002; Myers et al. 2002; Howell 2003). In addition, there are
studies of gravity-driven flows over specific fixed shapes (Duffy & Wilson 1999; Takagi
& Huppert 2010).

However, there are physical situations where a liquid film flows over a compliant sub-
strate, such that the substrate deformation and film flow are closely coupled. For example,
surface-tension driven flow of the liquid lining of the lungs has been considered by authors
including Halpern & Grotberg (1992); Heil & White (2002), while stability of thin-film
flow over a compliant substrate has been studied by Matar et al. (2007); Matar & Kumar
(2007). In this paper we analyse a model two-dimensional problem in which a thin liquid
film causes large substrate deformations which in turn provide the principal driving force
for the flow.

Our model setup, illustrated in Figure 1, is inspired by the example of rain water
flowing over a leaf. We use the familiar lubrication approach for gravity-driven flow of a
thin liquid film, where the hydrostatic pressure gradient depends both on the gradient
of the film depth and on the local slope of the substrate. We assume the substrate is a
thin elastic beam whose shape is described by the Euler–Bernoulli model that couples
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Figure 1. Schematic of a thin liquid film flowing along a flexible substrate.

the beam curvature to the tension and shear (transverse) forces imposed by the liquid
film. We focus on steady flow due to a constant source at one end of the beam, which
is clamped horizontally. The net result is a fifth-order system of ordinary differential
equations, which we solve numerically and by asymptotic methods.

The problem description involves two dimensionless parameters: one (ε) measures the
film thickness and the other (`) represents the length of the substrate, both relative to
a natural length scale that balances elastic and gravitational effects. The result of the
asymptotic analysis is a complete characterisation of the membrane shape and thin film
profile for ε� 1 for all possible values of `.

In §2 we state and normalise the governing equations and boundary conditions. Then,
in §3 we analyse the first of three distinguished limits identified, namely the “small-
deflection” regime, where the substrate deflection is comparable to the film height. In
§4 we turn to the “large-deflection” regime, where the substrate deflects by a distance
comparable to its length and much greater than the film thickness. In this regime, the
flow is driven principally by the tangential component of the gravitational body force.
The various asymptotic approximations identified are summarised and combined in §5,
and we draw our conclusions in §6.

2. Mathematical model

2.1. Governing equations and boundary conditions

The basic setup is illustrated schematically in Figure 1. We consider two-dimensional
flow along a flexible substrate, parametrized by x∗ = x∗(s∗, t∗), y∗ = y∗(s∗, t∗), where s∗

is arc-length and t∗ is time. We denote the downwards angle made by the substrate with
the horizontal by φ(s∗, t∗), so that

∂x∗

∂s∗
= cosφ,

∂y∗

∂s∗
= − sinφ. (2.1)

For a thin film with negligible inertia, the film thickness h∗(s∗, t∗) satisfies Reynolds’
equation, namely

∂h∗

∂t∗
=

g

3ν

∂

∂s∗

[
h∗3

(
cosφ

∂h∗

∂s∗
− sinφ

)]
, (2.2)
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where ν is the kinematic viscosity and g is the gravitational acceleration. The two brack-
eted terms on the right-hand side of (2.2) represent the transverse and tangential com-
ponents of gravity, and we have assumed that surface tension is negligible.

The substrate is treated as an inextensible elastic beam bending under the normal and
shear stresses exerted by the fluid, while the weight of the substrate itself is neglected by
comparison. The tension T ∗ and shear force N∗ thus satisfy the equations

∂T ∗

∂s∗
+N∗

∂φ

∂s∗
= ρgh∗

(
cosφ

∂h∗

∂s∗
− sinφ

)
, (2.3a)

∂N∗

∂s∗
− T ∗ ∂φ

∂s∗
= ρgh∗ cosφ, (2.3b)

B
∂2φ

∂s∗2
= N∗, (2.3c)

representing, respectively, tangential and transverse force balances and a balance of mo-
ments, where ρ is the density of the fluid and B is the bending stiffness of the beam.

We assume that the substrate is clamped horizontally at the origin, where a flux q of
fluid is injected. Hence we impose the boundary conditions

φ = 0,
gh∗3

3ν

∂h∗

∂s∗
= −q at s∗ = 0. (2.4)

We denote the length of the substrate by L. The end s∗ = L is assumed to be free,
with no applied forces or moments, so that

T ∗ = N∗ =
∂φ

∂s∗
= 0 at s∗ = L. (2.5)

If the substrate is initially dry, then a thin film will spread from the source at s∗ = 0,
eventually covering the entire substrate. Thereafter, we assume that the film falls directly
from the end of the beam, i.e. that h∗ (L, t∗) = 0. Although the film thickness is assumed
to be zero, there will still be a nonzero flux of liquid flowing over the end of the beam.
When the film has reached a steady state, this flux from the end must exactly balance
the flux q injected at s∗ = 0, so that

h∗ = 0,
gh∗3

3ν

∂h∗

∂s∗
= −q at s∗ = L. (2.6)

These conditions imply weakly singular local behaviour with h∗ ∼ (12νq(L− s∗)/g)
1/4

as s∗ → L. Presumably there is an inner problem near s∗ = L where other physical ef-
fects become important, for example surface tension and two-dimensionality, and we are
effectively assuming that (2.6) are the effective boundary conditions that would result
from matching with such a region. An analogous boundary condition of zero film height
has been employed in previous studies of gravity currents on horizontal substrates, for
example Boussinesq (1904); Rupp & Selker (2005); Zheng et al. (2013). The applica-
bility of this boundary condition when the substrate is significantly deflected from the
horizontal will be discussed below.

2.2. Nondimensionalisation

It is useful to nondimensionalise the steady-state equations using the intrinsic length-scale

a =

(
B

ρg

)1/4

, (2.7)
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rather than the plate length L. The variables are then scaled as follows:

s∗ = as, h∗ = εah, φ = εψ, (2.8a)

T ∗ = ε2ρga2T, N∗ = ερga2N, (2.8b)

where

ε =

(
3νq

ga3

)1/4

. (2.9)

The dimensionless steady governing equations are

h3

(
cos(εψ)

dh

ds
− sin(εψ)

ε

)
= −1, (2.10a)

dT

ds
+N

dψ

ds
= h

(
cos(εψ)

dh

ds
− sin(εψ)

ε

)
, (2.10b)

dN

ds
− ε2T

dψ

ds
= h cos(εψ), (2.10c)

d2ψ

ds2
= N, (2.10d)

while the boundary conditions are

ψ = 0 at s = 0, (2.10e)

h = T = N =
dψ

ds
= 0 at s = `, (2.10f )

where

` =
L

a
(2.11)

is the dimensionless beam length.

3. Small-deflection regime

3.1. Leading-order equations

The problem involves two dimensionless parameters: ε and `. We assume that ε � 1,
implying that the film is thin compared with the characteristic length-scale a for beam
deformation. In scaling φ with ε in (2.8a), we are considering a distinguished limit where
the lateral deflection of the beam is comparable to the film thickness. This limit will occur
if the beam is relatively short, specifically if ` = O(1). In this regime, the tangential and
transverse components of gravity in (2.2) and (2.3a) balance. In §4, we will consider an
alternative distinguished limit that applies for longer beams where φ = O(1) and large
beam deflections are possible.

To facilitate numerical solution, it is helpful to define

z = `− s. (3.1)

Then taking ε→ 0 in (2.10), we obtain the leading-order equations

dh

dz
=

1

h3
− ψ, d3ψ

dz3
= −h, (3.2)

with errors of O
(
ε2
)
. In this reduced model, the beam undergoes purely transverse

bending under the weight of the liquid film, while the flow is driven by both tangential
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Figure 2. The scaled rotation Ψ of the free end of the beam plotted versus dimensionless beam
length ` using logarithmic axes. The dashed curves show the asymptotic limits (3.9) as ` → 0
and (3.15) as `→∞.

and transverse components of gravity. The corresponding boundary conditions are

h =
dψ

dz
=

d2ψ

dz2
= 0, ψ = Ψ at z = 0, (3.3a)

ψ = 0 at z = `, (3.3b)

where we have introduced Ψ = ψ|s=` = ε−1φ|s=`. This variable represents the (unknown)
scaled rotation of the free end of the beam, which will be used as a net measure of the
deflection.

For each value of Ψ, equation (3.2) has a unique solution satisfying the initial conditions
(3.3a), with asymptotic behaviour

h ∼
√

2 z1/4 − 4Ψ

7
z +

24
√

2Ψ2

245
z7/4 +

64Ψ3

3185
z5/2 + · · · , ψ ∼ Ψ− 64

√
2

585
z13/4 + · · ·

(3.4)

as z → 0 (or s → `). We solve this initial-value problem numerically for each value of
Ψ and read off the corresponding value of ` from the condition (3.3b). The result of
this procedure is plotted in Figure 2, which shows that there is a monotonic one-to-one
relationship between the end deflection Ψ and the dimensionless beam length `.

An additional characteristic of the flow is provided in Figure 3, where we plot the
dimensionless film thickness at the origin, h0 = h|s=0, versus the dimensionless beam
length `. Not surprisingly, the film height tends to zero as the beam length tends to zero.
However, h0 takes a maximum value ≈ 1.3718 when ` ≈ 1.1643, before then decreasing
again as ` tends to infinity. As the length of the beam increases, its downwards deflection
increases and the component of gravitational acceleration along the beam therefore also
increases. Hence fluid is transported away from the origin at an enhanced rate and thus
the film height eventually starts to decrease.

In Figure 4 we plot the beam deflection and the film height obtained by solving (3.2)–
(3.3) numerically, for different values of ` = 0.5, 1, 2, 4. In the small-deflection regime,
the leading-order beam and film profiles are given by

y(x) = ε

∫ x

0

ψ(s) ds and y(x) = ε

∫ x

0

ψ(s) ds+ εh(x), (3.5)
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Figure 3. The dimensionless film height h0 at the origin plotted versus dimensionless beam
length ` using logarithmic axes. The dashed curves show the asymptotic limits (3.10) as `→ 0
and (3.28) as `→∞.
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Figure 4. The beam deflection and film profile given by the problem (3.2)–(3.3) plotted in the
(x, y/ε)-plane for ` = 0.5, 1, 2, 4. The inset focuses on the cases where ` = 0.5, 1, 2.

respectively. As ` increases from 0.5 to 1, the film thickness increases while also exhibiting
the expected 1/4-root singularity at the edge of the substrate x = `. However, further
increase in ` gives rise to significantly larger beam deflections, which in turn lead to a
decrease in the film thickness. As ` becomes larger still, a boundary layer at the free edge
x = ` becomes evident, and a boundary layer at the origin also starts to form, with the
film thickening noticeably close to x = 0.

To understand the behaviours observed in Figures 2–4, we will next explore the asymp-
totic behaviour of the system (3.2)–(3.3b) as Ψ → 0 (small deflections) and as Ψ → ∞
(large deflections).

3.2. Small-Ψ limit

For small Ψ, we perform the rescaling

ψ = Ψψ′, h = Ψ1/13h′, z = Ψ4/13z′, (3.6)
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before letting Ψ→ 0 to obtain the leading-order equations

dh′

dz′
=

1

h′3
,

d3ψ′

dz′3
= −h′. (3.7)

Here the film profile h′(z′) behaves as if the beam were completely flat, and the small
transverse displacement is determined a posteriori. After applying the initial conditions
(3.3a), we find the leading-order solutions

h′ =
√

2 z′
1/4
, ψ′ = 1− 64

√
2

585
z′

13/4
. (3.8)

Hence ψ′ = 0 at z′ =
(
585/64

√
2
)4/13

, and we infer that the free-end rotation is given by

Ψ ∼ 64
√

2

585
`13/4 as `→ 0. (3.9)

This result is plotted as a dashed curve in Figure 2.
We also obtain the film height at the origin by evaluating h′ when ψ′ = 0, which leads

to the result

h0 ∼
√

2 `1/4 as `→ 0. (3.10)

This is the film height expected for a fixed horizontal substrate of length `, since the
beam becomes effectively rigid as its length tends to zero. As shown by a dashed curve
in Figure 3, the numerical results agree well with (3.10) for ` . 0.5.

3.3. Large-Ψ limit

At the other limit where Ψ→∞, we return to the problem (3.2), (3.3) and perform the
rescaling

ψ = Ψψ̃, z = Ψ4/9z̃, h = Ψ−1/3h̃, (3.11)

to obtain the system

Ψ−16/9 dh̃

dz̃
=

1

h̃3
− ψ̃, d3ψ̃

dz̃3
= −h̃. (3.12)

For large beam deflection, the tangential component of gravity becomes dominant, and
the film thickness depends only on the slope of the substrate: h̃ = ψ̃−1/3 to leading order
as Ψ→∞. Hence ψ̃ satisfies the nonlinear third-order differential equation

ψ̃1/3 d3ψ̃

dz̃3
= −1, (3.13a)

and the initial conditions

ψ̃ = 1,
dψ̃

dz̃
=

d2ψ̃

dz̃2
= 0 at z̃ = 0. (3.13b)

A numerical solution of the problem (3.13) is plotted in Figure 5. We find numerically
that ψ̃ → 0 at a finite value of z̃, namely

z̃ = ˜̀≈ 1.804915. (3.14)

By reversing the scaling (3.11), we infer that Ψ ∼
(
`/˜̀
)9/4

, that is,

Ψ ∼ 0.2648 `9/4 as `→∞. (3.15)
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Figure 5. The function ψ̃ (z̃) satisfying the problem (3.13). The asymptotic behaviour (3.20)
is shown as a dashed curve.

As indicated by a dashed curve in Figure 2, this result agrees well with our numerical
solution.

However, this leading-order solution solution fails to satisfy the boundary condition
h̃ = 0 at z̃ = 0 (i.e. at the free end of the beam). This observation is explained by
the existence of a boundary layer, where h̃ adjusts to the imposed value of 0 over an
increasingly narrow region as Ψ increases. The film thickness h̃ = ψ̃−1/3 also appears to
tend to infinity as ψ̃ → 0 (i.e. at the clamped end). This occurs because the assumption
that the tangential component of gravity is dominant ceases to apply when ψ̃ is sufficiently
small, and is resolved by examining a boundary layer at z̃ = ` where the transverse
component of gravity regains its importance.

First considering the boundary layer at the free end z̃ = 0, we let

z̃ = Ψ−16/9z̄, (3.16)

which results in the leading-order inner equations

dh̃

dz̄
=

1

h̃3
− ψ̃, d3ψ̃

dz̄3
= 0, (3.17)

and the matching conditions h̃→ 1, ψ̃ → 1 as z̄ →∞. We therefore have ψ̃ ≡ 1 to leading
order, and the film height in this boundary layer satisfies the differential equation

dh̃

dz̄
=

1

h̃3
− 1. (3.18)

The solution satisfying the boundary condition h̃ = 0 at z̄ = 0 is given by the implicit
equation

z̄ =
1

6
log

1 + h̃+ h̃2(
1− h̃

)2

− h̃+
1√
3

tan−1

(√
3 h̃

2 + h̃

)
. (3.19)

As pointed out above, the outer solution plotted in Figure 5 also appears to imply
that h̃ → ∞ as z̃ → ˜̀, and there is yet another boundary layer in which this growth is
cut off. To assist with matching, which will establish the film height h0 at the origin, we
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Figure 6. The solution ĥ (ẑ) to the differential equation (3.25) and the matching condition
(3.24), plotted using logarithmic axes. The limiting behaviours (3.26) as ẑ → 0 and (3.24) as
ẑ →∞ are plotted as dashed curves.

note that

ψ̃ ∼ A0

(
˜̀− z̃

)
as z̃ → ˜̀, (3.20)

as illustrated in Figure 5, where

A0 ≈ 1.70799 (3.21)

is determined numerically. Thus, following the further rescaling

z̃ = ˜̀−A−4/7
0 Ψ−16/21ẑ, ψ̃ = A

3/7
0 Ψ−16/21ψ̂, h̃ = A

−1/7
0 Ψ16/63ĥ, (3.22)

we obtain the leading-order equations

dĥ

dẑ
= ψ̂ − 1

ĥ3
,

d3ψ̂

dẑ3
= 0, (3.23)

as Ψ→∞, subject to the matching conditions

ĥ ∼ ẑ−1/3, ψ̂ ∼ ẑ as ẑ →∞. (3.24)

Hence ψ̂ ≡ ẑ and ĥ satisfies the equation

dĥ

dẑ
= ẑ − 1

ĥ3
, (3.25)

and the matching condition (3.24). A numerical solution of this problem is plotted in
Figure 6. We discover numerically that the solution satisfies

ĥ→ B0 ≈ 1.26772 as ẑ → 0, (3.26)

and we deduce that the film thickness at the origin is given asymptotically by

h0 ∼ B0A
−1/7
0 Ψ−5/63 as Ψ→∞. (3.27)

Using the relation (3.15), we therefore obtain

h0 ∼ 1.30499 `−5/28 as `→∞. (3.28)

This result is plotted as a dashed curve in Figure 3, which confirms that (3.28) agrees
with our numerical solution.
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4. Large-deflection regime

4.1. Distinguished limit

The above analysis of small deflections suggests that the plate may undergo an unbounded
deflection as `→∞. However, if ` is sufficiently large, a new distinguished limit emerges
in which the plate suffers an O(1) deflection. To examine this regime, we return to (2.10)
and rescale the variables as follows:

s = ε−4/9S, h = ε1/3H, T = ε−10/9T , N = ε−1/9N , (4.1)

where ε is again defined by equation (2.9). The problem is thus transformed to

H3

(
δ cosφ

dH

dS
− sinφ

)
= −1, (4.2a)

dT
dS

+N dφ

dS
= H

(
δ cosφ

dH

dS
− sinφ

)
, (4.2b)

dN
dS
− T dφ

dS
= H cosφ, (4.2c)

d2φ

dS2
= N , (4.2d)

with boundary conditions

φ = 0 at S = 0, (4.2e)

H = T = N =
dφ

dS
= 0 at S = λ, (4.2f )

where we introduce the shorthand

δ = ε16/9 =

(
3νq

ga3

)4/9

, and λ = ε4/9` =
ε4/9L

a
. (4.3)

4.2. Leading-order equations

As δ → 0, equation (4.2a) implies that

H =
1

sin1/3 φ
. (4.4)

As is standard for gravity-driven thin-film flow on a curved surface, the transverse compo-
nent of gravity is subdominant and the leading-order film thickness is determined purely
in terms of the local substrate inclination (as in, for example, Duffy & Wilson 1999). We
anticipate that there will be a boundary layer at S = 0 to prevent H from tending to
infinity and a second boundary layer at the free end S = λ, so that the imposed boundary
condition H(λ) = 0 may be satisfied.

Equations (4.2b) and (4.2c) thus reduce to

dT
dS

+N dφ

dS
= − sin2/3 φ, (4.5a)

dN
dS
− T dφ

dS
=

cosφ

sin1/3 φ
, (4.5b)

which may be combined to give

d

dS
(T cosφ+N sinφ) = 0, (4.6)
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λ

Figure 7. Deflection angle Φ plotted versus dimensionless beam length λ using logarithmic axes.
The dashed curves show the asymptotic limits (4.23a) as λ→ 0 and (4.31) as λ→∞. (The tick
marks on the vertical axis are at Φ = nπ/4m, where n ∈ {3, 4, 5, 6, 7, 8} and m ∈ {2, 3, 4}.)

which represents a horizontal force balance. From the boundary conditions (4.2f) we
deduce that the bracketed term in (4.6) is identically zero and hence that

T = F sinφ, N = −F cosφ, (4.7)

for some function F (S), representing the vertical stress component in the beam. Equa-
tions (4.2b)–(4.2d) thus reduce to the system

dF

dS
= − sin−1/3 φ,

d2φ

dS2
= −F cosφ, (4.8)

subject to the boundary conditions

φ(0) = 0,
dφ

dS
(λ) = 0, F (λ) = 0. (4.9)

To facilitate numerical solution, we introduce the beam curvature

κ =
dφ

dS
(4.10)

and rewrite the system (4.8) in the form

dF

dφ
= − 1

κ sin1/3 φ
,

dκ

dφ
= −F cosφ

κ
. (4.11)

We shoot from φ = Φ, using the local behaviour

F ∼ 61/3(Φ− φ)1/3

cos1/3 Φ sin2/9 Φ

{
1 +

7 cot Φ− 6 tan Φ

90
(Φ− φ)

+
54 sec2 Φ + 97 cosec2 Φ− 79

3240
(Φ− φ)2 + · · ·

}
, (4.12a)

κ ∼ 32/3 cos1/3 Φ(Φ− φ)2/3

21/3 sin1/9 Φ

{
1 +

cot Φ + 12 tan Φ

45
(Φ− φ)

+
31 cosec2 Φ− 246 sec2 Φ− 246

5400
(Φ− φ)2 + · · ·

}
(4.12b)
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4

5

1
2

A

λ

Figure 8. Beam curvature at the origin A = κ(0) plotted versus dimensionless beam length
λ using logarithmic axes. The dashed curves show the asymptotic limits (4.23b) as λ → 0 and
(4.32) as λ→∞.

as φ → Φ, integrate to φ = 0, then read off the corresponding values of κ(0) = A, say,
and

λ =

∫ Φ

0

dφ

κ(φ)
. (4.13)

By following this procedure, we can back out the dependence of Φ and A on the
dimensionless beam length λ, and the resulting functions are plotted in Figures 7 and 8
respectively. The dashed curves show the small- and large-λ asymptotic limits, which will
be derived below. We note that the local expansions (4.12) are evidently nonuniform if
Φ is very close to π/2, and we return to this limit in §4.6.

In Figure 9, we show typical profiles of the beam and the film obtained by solving
(4.11) and (4.12) numerically with dimensionless beam length λ = 1, 2, 3. In plotting
the film thickness, given by (4.4), we use a value ε = 0.05 for the aspect ratio. We see
that, as expected, a longer beam suffers a greater deflection and carries a thinner film.
It is evident that this outer solution predicts an unbounded film thickness at the origin,
and this is resolved below by analysing a boundary layer at S = 0. It is also clear that
the assumed condition of zero film thickness at the free end S = λ is not satisfied. This
boundary condition is not strictly appropriate when the beam is no longer approximately
horizontal, and anyway the leading-order outer solution is independent of the boundary
condition applied for H. Nevertheless, for completeness we will also demonstrate that it
is possible to specify H(λ) = 0 by considering a boundary layer at S = λ.

4.3. Boundary layers

As in §3.3, the tangential component of gravity dominates the flow in the body of the film
where the beam deflection is large. However, at the clamped end S = 0 where φ = 0, this
is no longer the case, and a balance between the tangential and transverse components
of gravity is obtained through the rescalings

S = A−1(δA)3/7ẑ, H = (δA)−1/7ĥ, φ = (δA)3/7ψ̂, T = (δA)3/7T̂ , N = N̂ (4.14)
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Figure 9. The beam deflection and film profile obtained by numerical solution of (4.11)–(4.12)
plotted in the (x, y)-plane with ε = 0.05 and λ = 1, 2, 3.

which results in the leading-order equations

dĥ

dẑ
= ψ̂ − 1

ĥ3
,

dT̂
dẑ

+ N̂ dψ̂

dẑ
= 0,

dN̂
dẑ

= 0,
d2ψ̂

dẑ2
= 0, (4.15)

with corrections of order δ2/7. These equations are to be solved subject to the boundary
condition ψ̂(0) = 0 and the matching conditions

ĥ ∼ ẑ−1/3, ψ̂ ∼ ẑ, T̂ ∼ F0ẑ, N̂ ∼ −F0 as ẑ →∞, (4.16)

where F0 = F (0). Hence to leading order we have

ψ̂ = ẑ, T̂ = F0ẑ, N̂ = −F0, (4.17)

and the film thickness in the boundary layer satisfies the problem

dĥ

dẑ
= ẑ − 1

ĥ3
, ĥ ∼ ẑ−1/3 as ẑ →∞. (4.18)
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This is identical to the problem (3.24), (3.25) solved above, and we can read off the value

ĥ(0) = B0 ≈ 1.26772. Hence the scaled film thickness at the origin is given by

H(0) ∼ B0(δA)−1/7, (4.19)

where A is given in terms of the dimensionless beam length λ by the function plotted in
Figure 8.

The boundary layer at the free end S = λ and φ = Φ is analysed by performing the
rescalings:

S = λ− δ cos Φ

sin4/3 Φ
z̄, H =

ĥ

sin1/3 Φ
, φ = Φ +

δ3 cos3 Φ

sin11/3 Φ
φ̂,

T =
δ cos Φ

sin2/3 Φ
T̂ , N =

δ cos Φ

sin5/3 Φ
N̂ . (4.20)

At leading order, we then find that ĥ (z̄) satisfies the initial-value problem

dĥ

dz̄
=

1

ĥ3
− 1, ĥ(0) = 0. (4.21)

Again, we have encountered this problem before, and the solution is given by the im-
plicit equation (3.19); then φ̂, T̂ and N̂ may be determined a posteriori from decoupled
differential equations.

4.4. Small-λ limit

When the scaled beam length λ is small, the deflection angle Φ is also small, and the
scalings

S = λ− Φ4/9z̃, φ = Φψ̃ (4.22)

transform the outer problem (4.8) into the problem (3.13) found previously for ψ̃ (z̃).
This confirms that the small-and large-deflection solutions match for intermediate values
of Φ and λ. We can thus infer the small-λ asymptotic limits of the present large-deflection
solutions, namely

Φ ∼
(
λ
˜̀

)9/4

≈ 0.264833λ9/4, (4.23a)

A ∼ A0

(
λ
˜̀

)5/4

≈ 0.816422λ5/4 (4.23b)

as λ → 0. The dashed curves in Figures 7 and 8 demonstrate the accuracy of these
estimates.

4.5. Large-λ limit

Next we consider the opposite extreme where the scaled beam length λ → ∞. In this
limit, the beam sags until it is almost vertical, so that Φ→ π/2, and gravity causes the
vertical stress F to scale with the beam length λ. We therefore perform the scalings

S = λζ, φ =
π

2
− χ, F = λf, (4.24)

and it transpires that χ is exponentially small, so that the film thickness H is approxi-
mately uniform (and equal to 1), as would be expected for flow down a vertical substrate.
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The model (4.8) is therefore transformed into

df

dζ
= −1

1

λ3

d2χ

dζ2
= fχ, (4.25)

to lowest order, with boundary conditions

f =
dχ

dζ
= 0 at ζ = 1. (4.26)

The leading-order solutions are therefore

f(ζ) = 1− ζ, χ(ζ) =
31/6Γ(2/3)C

2

{√
3 Ai

(
λ(1− ζ)

)
+ Bi

(
λ(1− ζ)

)}
, (4.27)

where C = χ(1) is an integration constant and Ai, Bi denote Airy functions.
This solution must match with an inner region near ζ = 0 where φ adjusts from π/2

to 0. To analyse this region, we return to the system (4.8) and perform the rescaling

ζ = λ−3/2ξ, that is, S = λ−1/2ξ, (4.28)

to get the leading-order inner equations

df

dξ
= 0,

d2φ

dξ2
= −f cosφ. (4.29)

By applying the boundary condition φ(0) = 0 and matching with (4.27), we deduce that
f = 1 and

φ =
π

2
− 4 tan−1

((√
2− 1

)
e−ξ
)

(4.30)

in the inner region. Finally, by matching the inner and outer solutions for φ, we evaluate
the integration constant C and hence deduce the asymptotic behaviour

Φ ∼ π

2
−

8
(√

2− 1
)√

π

31/6Γ(2/3)
λ1/4e−2λ3/2/3 as λ→∞. (4.31)

We also find from (4.30) that dφ/dξ =
√

2 at ξ = 0 and deduce that

A ∼
√

2λ as λ→∞. (4.32)

The approximations (4.31) and (4.32) are shown as dashed curves in Figures 7 and 8.

When we substitute (4.32) into (4.19) we find that H(0) ∼ B0

(
δ
√

2λ
)−1/7

as λ→∞.

This implies that the film thickness at the origin decreases towards zero as the length
of the beam increases, which seems physically implausible. This result is explained in
the following section by a more careful examination of the combined asymptotic limits
λ→∞ and δ → 0.

4.6. New distinguished limit

The analysis above demonstrates that, as the beam becomes longer, an increasing pro-
portion of it is approximately vertical. Equation (4.28) shows how the region over which
the deflection adjusts from φ = 0 to φ ≈ π/2 becomes smaller as λ increases, with
S ∼ λ−1/2. On the other hand, the width of the boundary layer over which the film
thickness h adjusts is given by (4.14) as S ∼ δ3/7A−4/7 ∼ δ3/7λ−2/7 as λ → ∞. A new
distinguished limit emerges in which these inner regions overlap when

∆ = δ
√
λ =

3ρνqL

B
= O(1). (4.33)
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Figure 10. The film thickness Y (ξ) satisfying the inner equation (4.34) and Y → 1 as ξ →∞,
with ∆ ∈ {0.01, 0.1, 1, 10}.

In this limit, the scaled film thickness Y (ξ) = H(S) in the inner region satisfies

Y 3

(
∆ cosφ

dY

dξ
− sinφ

)
= −1, (4.34)

subject to the matching condition Y → 1 as ξ →∞, while the deflection angle φ is still
given by (4.30).

This problem may be helpfully reformulated as

∆
dY

dw
= secw + cosecw cosec(2w)

1− Y 3

Y 3
, (4.35)

where w = π/4 − φ/2. For each value of ∆, this is easily solved numerically subject to
the initial condition

Y ∼ 1 +
2w2

3
− 8∆w3

9
+

2
(
3 + 8∆2

)
w4

9
+ · · · as w → 0. (4.36)

Some numerical results for the film height Y (ξ) = H(S) obtained by following this
procedure are plotted in Figure 10. For each value of ∆, we see that Y is a monotonically
decreasing function of distance ξ from the origin, tending to 1 as ξ → ∞. The film
thickness at the origin Y0 = Y |w=π/4 is a decreasing function of ∆, as shown in Figure 11.
Here we plot the difference between the film thickness Y0 at the origin and the thickness
H = 1 in the outer region. This difference tends to zero as ∆ → ∞ and the boundary
layer at the origin shrinks to zero.

If we perform the scalings

ξ = 2−2/7∆3/7ẑ, Y = 2−1/14∆−1/7ĥ, (4.37)

before taking the limit ∆ → 0, then (4.34) reduces to the previously solved problem
(4.18). It is readily verified that (4.37) is consistent with the rescaling (4.14) when
A ∼ (2λ)1/2. This allows us to read off the asymptotic behaviour

Y0 ∼
B0

21/14∆1/7
as ∆→ 0, (4.38)

as indicated by a dashed curve in Figure 11.



Thin-film flow on a flexible substrate 17

1

1

1

7

Y0 − 1

∆

Figure 11. The excess film thickness at the origin, Y0 − 1, plotted versus ∆ = δ
√
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logarithmic axes. The dashed curves show the asymptotic limits (4.38) as ∆→ 0 and (4.40) as
∆→∞.

On the other hand, we observe that Y ∼ 1 when ∆� 1, and we find that

Y ∼ 1 +
1

∆
log

(
1 + tan(w/2)

1− tan(w/2)

)
= 1 +

1

∆
log

(
1 +

(√
2− 1

)
e−ξ

1−
(√

2− 1
)

e−ξ

)
(4.39)

as ∆→∞. Hence we obtain the asymptotic behaviour

Y0 ∼ 1 +
log
(
1 +
√

2
)

∆
as ∆→∞, (4.40)

which is also plotted in Figure 11 using a dashed curve. Hence, when the beam becomes
extremely long and flexible, the film thickness ultimately becomes completely uniform
and H(0)→ 1.

5. Summary

Now we collect all the asymptotic predictions obtained above and compare them with
numerical solutions of the complete model with small but finite values of ε. It is helpful
to pose the steady governing equations (4.2) as the first-order system

dH

dφ
=

H3 sinφ− 1

ε16/9H3κ cosφ
, (5.1a)

dT
dφ

= −N − 1

H2κ
, (5.1b)

dN
dφ

= T +
H cosφ

κ
, (5.1c)

dκ

dφ
=
N
κ
, (5.1d)

dS̃

dφ
= − 1

κ
, (5.1e)

where S̃ = λ − S and again κ = dφ/dS is the curvature. We shoot from φ = Φ, where
H = T = N = κ = S̃ = 0. The singularity is handled by using local expansions for the



18 P. D. Howell, J. Robinson and H. A. Stone

4
1

28
5

14
1

0.1 100 105 108 1011

1.00

0.50

0.20

0.30

0.70

h0

`
ε = 0.01

ε = 0.1

Figure 12. Dimensionless film thickness h0 at the origin plotted versus dimensionless beam
length ` using logarithmic axes, with ε = 0.01 and ε = 0.1. The dashed curves show the
asymptotic approximations (5.4).

dependent variables, given in Appendix A. We can then read off the values of λ = S̃(0)
and H0 = H(0) corresponding to each choice of ε and Φ.

In plotting our numerical results, we characterise the beam deflection by the angle Φ
and the film thickness by the dimensionless variable

h0 = ε1/3H0 =
h∗0
εa

=

(
ρg5

81Bν4q4

)1/16

h∗0, (5.2)

where we recall the notation h∗ for the dimensional film thickness. The problem statement
(5.1) makes it clear that h0 and Φ depend on two independent dimensionless parameters,
which we choose to be

` =
L

a
=
(ρg
B

)1/4

L, (5.3a)

ε =

(
3νq

ga3

)1/4

=

(
81ν4q4ρ3

gB3

)1/16

, (5.3b)

characterising the normalised beam length and the aspect ratio of the liquid film respec-
tively. In Figures 12 and 13, we plot numerical results for the dimensionless film thickness
h0 at the origin and the beam deflection angle Φ respectively, versus the dimensionless
beam length `, for two fixed values of ε = 0.1 and ε = 0.01.

The small-deflection model analysed in §3 gives leading-order approximations of the
form h0 = h0(`) and Φ = εΨ(`) when ` = O(1). The large-deflection model from §4
is valid when ` = O

(
ε−4/9

)
and gives us the solution in the form h0 = ε1/3H0

(
ε4/9`

)
and Φ = Φ

(
ε4/9`

)
. This approximation for Φ persists for arbitrarily large values of

`, but a different approximation for h0 is found in §4.6 when ` = O
(
ε−4
)
, namely

h0 = ε1/3Y0

(
ε2`1/2

)
.

In §3–4 we have verified that the solutions match in intermediate asymptotic regimes,
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and, for ε� 1, we can infer the following simplified approximations:

h0 ∼



√
2 `1/4, `� 1,

1.30499 `−5/28, 1� `� ε−4/9,

1.20648 ε1/21 `−1/14, ε−4/9 � `� ε−4,

ε1/3 + log
(

1 +
√

2
)
ε−5/3`−1/2, `� ε−4,

(5.4)

and

Φ ∼



64
√

2

585
ε `13/4, `� 1,

0.26483 ε `9/4, 1� `� ε−4/9,

π

2
−

8
(√

2− 1
)√

π

31/6Γ(2/3)
ε1/9 `1/4 exp

(
−2

3
ε2/3`3/2

)
, `� ε−4/9.

(5.5)

The dashed curves in Figures 12 and 13 show how these estimates are manifested as
` varies. As expected, the different intermediate asymptotic regimes are more clearly
distinguished when ε is decreased.

6. Conclusions

In this paper, we have studied a model problem in which the flow of a thin liquid film
and the deformation of an elastic substrate are intrinsically coupled. The substrate is a
flexible beam whose weight is assumed to be negligible, so that its deflection is solely
due to the liquid film on its upper surface. On the other hand, the principal driving force
for the liquid film is the tangential component of gravity created by the deflection of
the substrate. This strong mutual coupling gives rise to a fascinating range of possible
behaviours as the dimensionless liquid flux and beam length are varied. For example, for
a fixed liquid flux, we find that the thickness of the resulting film first increases and then
decreases as the length of the beam increases. With the benefit of hindsight, this is a
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clear consequence of the fluid-elastic coupling: a longer beam suffers a greater deflection
which enhances the gravitational forcing experienced by the fluid and therefore promotes
flow away from the applied source. Thus the deflection of a leaf in the rain facilitates the
removal of water from its surface.

Our mathematical model is based on several simplifications whose validity is open to
question. For example, we have assumed that lubrication theory is valid and that the
effect of the surface tension γ is negligible throughout. On the face of it, these assump-
tions are valid provided the slenderness parameter ε and the reduced Reynolds number
Re = εq/3ν are sufficiently small, and the Bond number Bo = ρga2/γ is sufficiently large.
For example, the data given by Gibson et al. (1988) imply that the bending stiffness of
a leaf is in the range 0.1–1 N m and hence that the characteristic bending length-scale a
is around 6–10 cm (interestingly, this is also a reasonable length-scale for a typical leaf).
For a substrate with similar elastic properties, ε and Re are small for all values of the
flux such that q � 1 cm2 s−1, and the Bond number is at least 500.

However, the potential effects of both two-dimensionality and capillarity may be am-
plified when there are boundary layers in the solution. In particular, there will certainly
be a neighbourhood of the free end where the approximations made in this paper fail.
Our simplified boundary condition of vanishing film thickness as the liquid falls from
the end of the beam appears to be a reasonable matching condition at least while the
deflection angle remains small. For larger deflections, although this condition is no longer
physically realistic, it has negligible influence on the outer solution.

In practice, rather than immediately detaching from the free end of the beam, the
liquid film would form a viscous jet that accelerates away from the beam under gravity.
By dimensional analysis, one may estimate that this jet exerts a tension on the end of
the beam of order ρq(νg)1/3. Our zero-stress boundary conditions applied at the free
end of the beam are valid provided this tension is much smaller than the scaling (2.8b)
used for the tension in the beam. The relevant dimensional parameter is found to be
qν1/3/ε2a2g2/3 = (εRe/3)1/3 � 1, so the influence of the falling jet is indeed negligible
at leading order whenever lubrication theory is valid for the film on the beam.†

The time-dependent version of this problem promises intriguing dynamics, with the
various asymptotic regimes discovered in this paper being encountered in turn as the film
spreads along the substrate, and we intend to explore this in future work. We note also
that the simple physical situation considered in this paper appears relatively straightfor-
ward to study experimentally; indeed we are currently pursuing experimental validation
of our results. It would also be interesting to generalise the geometrical setup, for example
by considering a naturally curved substrate or by varying the angle at which it is clamped.

We thank both Oxford and Princeton Universities for support of a workshop that
triggered this collaboration. HAS thanks the NSF for support via grant CBET-1132835.

† We are grateful to an anonymous referee for suggesting this analysis.
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Appendix A. Local expansions near the end of the beam

To solve the system (5.1) numerically, we use the following local expansions:

H ∼ 8

sin1/3 Φ
µ

{
1− 71µ3 +

2699058

1045
µ6 + · · ·

}
, (A 1a)

T ∼ 32ε16/9

sin2/3 Φ
µ2

{
1 +

314

5
µ3 +

3175401

1045
µ6 + · · ·

}
, (A 1b)

N ∼ −32768ε16/9 cos2 Φ

5 sin5/3 Φ
µ5

{
1− 35µ3 +

150588

209
µ6 + · · ·

}
, (A 1c)

κ ∼ 134217728ε32/9

45 tan3 Φ
µ9

{
1− 15µ3 +

32958

209
µ6 + · · ·

}
, (A 1d)

S̃ ∼ 1024ε16/9 cos Φ

sin4/3 Φ
µ4

{
1 +

60

7
µ3 +

28134

1045
µ6 + · · ·

}
(A 1e)

where

φ = Φ− 549755813888ε16/3 cos4 Φ

585 sin13/3 Φ
µ13 (A 1f )

and 0 < µ� 1. As Φ→ 0, we require µ� (Φ/ε)16/39.
As Φ→ π/2, the boundary layer in H at φ = Φ makes the problem very stiff numeri-

cally, and we instead apply the matching condition H = cosec1/3 Φ when φ = Φ. In this
case the appropriate local expansions are

H ∼ cosec1/3 Φ +
31/3 sin1/9 Φ

25/3ε16/9 cos1/3 Φ
(Φ− φ)4/3 + · · · , (A 2a)

T ∼ 61/3 sin7/9 Φ

cos1/3 Φ
(Φ− φ)1/3 − 49 + 41 cos(2Φ)

20 · 62/3 cos4/3 Φ sin2/9 Φ
(Φ− φ)4/3 + · · · , (A 2b)

N ∼ −61/3 cos2/3 Φ

sin2/9 Φ
(Φ− φ)1/3 − 14 · 21/3 sin7/9 Φ

5 · 32/3 cos1/3 Φ
(Φ− φ)4/3 + · · · , (A 2c)

κ ∼ 32/3 cos1/3 Φ

21/3 sin1/9 Φ
(Φ− φ)2/3 +

25/3 sin8/9 Φ

5 · 31/3 cos2/3 Φ
(Φ− φ)5/3 + · · · , (A 2d)

S̃ ∼ 61/3 sin1/9 Φ

cos1/3 Φ
(Φ− φ)1/3 − 21/3 sin16/9 Φ

5 · 32/3 cos4/3 Φ
(Φ− φ)4/3 + · · · (A 2e)

as φ→ Φ.
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