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We apply the weak field approximation to the most general gravitational field equations 

in Poincare gauge theory. The weak gravitational field h., is a multimass field obeying a 

fourth-order field equation. In the Newtonian approximation we show that there are two 
routes to arrive at the Newtonian potential. The torsion field is decomposed into six irre­
ducibe building blocks with spinparlty, 2+, z-, 1+, 1-, o+ and o-, each of which obeys the 

Klein-Gordon equation. Finally, we construct a possible candidate for the massless graviton 

field which obeys the linearized Einstein equation. 

§ 1. Introduction 

In previous papers called I and II, respectively,!) we studied Poincare gauge 

theory with linear and quadratic Lagrangian densities in the translation and Lo­

rentz gauge field strengths with ten free parameters included in the gravity action. 

The most general gravitational field equations were derived by means of the action 

principle with independent variations of the translation and Lorentz gauge fields. 

Here in this paper we shall choose the conventional method that the Lo­

rentz gauge field A can be decomposed into the Ricci rotation coefficient J (which 

is given by first derivatives of the tetrad field) and the contorsion field K, 

(1·1) 

and then apply the weak field approximation to the most general gravitational 

field equations. (In the Riemann-Cartan space-time the geometrical method also 

gives rise to the conventional method.) So independent variables are the line­

arized gravitational field hP, and the contorsion field K,P, the former of which 

satisfies a fourth-order differential field equation just because of the conven­

tional method formulated by (1·1). Therefore, hP, describes a multimass field 

which splits into a graviton field with vanishing mass, a particle with mass m 2 

and spin 2 and a particle with mass m 0 and spin 0. However, the redefinition of 

a multimass field, which incorporates second derivative terms, will give us a fairly 

good candidate for a massless graviton field with spin 2. This redefined field ¢P, 
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1436 K. Hayashi and T. Shirafuji 

obeys the usual wave equation of second order, whose sour~e term 1s exactly the 
symmetrized energy-momentum tensor appearing in the linearized Einstein equation. 

The arrangement of the present paper is as follows. In the next section we 
shall apply the weak field approximation method to the mo~t general gravita­
tional field equations derived in a previous paper I. In § 3 the Newtonian ap­
proximation will be carried on, showing that there are two different routes in 
arriving at the Newtonian potential: Denoting a; ( i = 1, 2, · · ·, 6) as coefficients 
multiplied by Lagrangian densities quadratic in the Lorentz gauge field strength, 
one is to take all ai as finite, and the other is to take all a; as infinite, the 
latter of which is just the result of New General Relativity." In § 4 the 
torsion field is decomposed into its irreducible building blocks, which have spinvarity 
as 2 1

·, 2-, 1 +, 1-, o+ and o· and propagate in vacuum. In § 5 the massless 

graviton field ¢~, is redefined and satisfies the usual wave equation whose source 
term is given by the symmetrized energy-momentum tensor occuring in the line­
arized Einstein equation. The final section will be devoted to cone! usion. 

§ 2. The linearized gravitational field equations 

We shall apply the most general gravitational field equations to weak field 
situations, where the translation gauge field ak1, and the Lorentz gauge field Aii" 
are both so weak that it is sufficient to keep only those terms which are linear 
in a\ and .. 4i1;,. In this approximation we need not distinguish Latin indices from 
Greek ones; so we shall use Greek indices throughout this paper with the un­
derstanding that they are raised and lowered with the Minkowski metric ·r;~,. 

The metric tensor g1, is written as 

(2 ·1) 

with 

(2. 2) 

Following the conventional method mentioned m the Introduction, we shall 
express the linearized gravitational field equations in terms of a,, and the con­
torsion field K 1,,. The torsion field is given in the weak field approximation by 

(2. 3) 

The contorsion field is related to the three irreducible parts of the torsion field, 

f 11m V~ and aP by*' 

K ""' = _!_ (T '"'- T";., -- T, 21') 
2 

*' \Ve denote symmetrization and antisymmetrization of tensor indices by round brackets ( ) 
and square brackets [ ], respectively: For example, 

V[M···6•J=i(Vpp ... 6,- V,P···6p). 
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Gravity from Poincare Gauge Theory of the Fundamental Particles 1437 

(2·4) 

or conversely 

(2 · 5a) 

(2·5b) 

(2·5c) 

Applying the weak field approximation to the alternative form of the gravi­

tational field equation (I. 5·12), we have 

(2·6) 

where FL~u is the linearized expression for F;,,v of (T. 5·15), 

1 (' , 3a ') P ··-·3 r-r 2. slpvpa ' 
(2· 7) 

and Gi}J IS the linearized Einstein tensor, 

(2·8) 

with 

(2 ·9) 

Here the d' Alembertian [j is defined by [J = (F'o,,. 

Equation (I. 5 · 18) takes the following form in the weak field approximation: 

with 

JJ -... 1 s-· 
A.p.v-=-: --~ Ap.v 

2 

P '''" ~- (3a2 + 2a5) apG;lj, + (a2 +a,+ 4aG) IJ,c,D"'JGm 

~2aPJm,hJ(K) -Hi~,, 

(2 ·10) 

(2 ·11) 

where .J}},;P (K) and I I,S~; are the linearized expressiOns for J,ft'P (K) of (I. 5 · 6) 

and II;"' of (I. 3 · 32), respectively. Here G"1 = 7J'"G)}J. By a straightforward 

calculation we get 
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1438 K. Hayashi and T. Shirafuji 

p 1."" = (3a2 + 2as) OclG~ 1 j, + (a2 +as+ 4ae) 7J,cl8 "JG(J) 

- ~ (3a2 + 4as) {ot,u"J-8PtPU"J', 

+ ~ (8Ptp(h), I'- (J.."~/1)) + ~'lJ,[l0p0a tpaJ']} 
2 4 

+ (3a2 + 2as) { ~ (8Ptp[lv], "- (J..~/1)) + (8Ptp(lv), "- (J..~/1))} 

(2 ·12) 

The last three terms come from H"~; and stand for the mass terms of the torsion 

field. 

The energy-momentum tensor Tfi, and the spin tensor S"fi' are taken to lowest 

order in a,, and K,fi,; so· they are independent of afi, and K"fi"' and satisfy the 

ordinary conservation law, 

(2' 13) 

and the Tetrode formula m special relativity, 

(2 ·14) 

Since the translation gauge field a 11, appears m (2 · 6) and (2 ·10) only through 

G~ 1 J, the linearized gravitational field equations are invariant under the follow­

ing gauge transformations : 

(2 ·15a) 

(2·15b) 

where Afi and wfi, are small but otherwise arbitrary four and s1x functions, re­

spectively: These are the linearized version of general coordinate and local 

Lorentz transformations, respectively. The transformation (2 ·15b) means that the 

antisymmetric part ac 11 ,J is devoid of physical singnificance. Also, (2 ·15a) allows 

us to put the harmonic condition, 
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Gravity from Poincare Gauge Theory of the Fundamental Particles 1439 

(2·16) 

which we assume henceforth. The linearized Einstein tensor 1s then given by 

It 1s convenient to decompose (2 · 6) into the symmetric and antisymmetric 

parts; 

(2·18) 

Taking trace of (2 ·18), we have 

2aG(l) + 6(/3- 2t) aPv P = T (2 ° 20) 

with T = r;"'T",. Both sides of (2 · 6) are divergenceless with respect to v owing 
to (2 ·13), while the divergence of (2 ·10) with respect to v yields (2 ·19) by 
virtue of (2 ·14). Therefore, Eqs. (2 · 6) and (2 ·10) give (16 + 24) - ( 4 + 6) = 30 
independent equations for 6 + 24 = 30 independent field variables, i.e., for h "' satisfy­
ing (2 · 16) and K,",. 

As is seen from (2 · 6) and (2 ·10) , six parameters ai (i = 1, 2, · · ·, 6) enter 
the linearized gravitational field equations through the six combinations, 3a2 + 4a3, 

3a2 + 2a5, a 4 + a5• 2a3 + a 4 , a5 + 12a6 and a 1 + a 3 : These combinations are not inde­
pendent, however, and the condition, 

3a2 + 4as = 3a. + 2a 5 = a 4 +a,= 2a3 +a4 = a 5 + 12a6 = a 1 + a 3 = 0, (2 ° 21) 

1s satisfied when the parameters a; are given by 

(2 ° 22) 

with a 1 arbitrary. For this choice the quadratic Lagrangian density LF of 
(I. 3 · 23) becomes 

L _ f(A AiJmn) + 4 (B BiJmn) (C CiJmn) F- al L ijmn 3 ijmn - ijmn 

=a, (FiJmnFmnij- 4Fi 1F 1 i + F 2). (2 ° 23) 

Thus, the variation of the action .tip, 
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1440 K. Hayashi and T. Shirafuji 

identically vanishes in the uxak field approximation: Namely, we have 

m the weak field approximation. This property of the Lorentz gauge field strength 
Fijmn is to be compared to the Bach-Lanczos identiti1 in the Riemann space-time, 

(} sd4xe[R""P"({ })R""P"({ }) -4R",({ })R""({ }) +R({ }) 2]=0. 

(2. 26) 

[Note added in proof: It can be shown that the identity (2·25) does hold exactly. 
See V of this series. J 

§ 3. The Newtonian approximation 

Using (2 ·18) and (2 · 20) 111 the divergence of (2 ·10), 

we obtain the fourth -order field equation for h1", 

2aG<ll - 2cz_ {occu _ _l ('Y) 0- fJ a) em} ttv ( mz) 2 1111 3 ., P"' P v 

where m 2 and m 0 are given by 

and Tj,~ffJ is defined by 

_i 2a(a+2a/3)) 112 

m 2 
- l- ct(3~~---~~ 2as)-f ' 

mo= { 2Ba(~~~~~:;} 1;2, 

y<cff) = ycsymJ _ -~:; + 12q_s_ ('Y) 0-a a) T 
pv ''" 9(i9-2a/3) ''"" " " 

__ 3a2+2as Jor --~( O-·"' "')T-'-"'P"'""' s } 3 -(Ct~f-2~/3) l (!'vl 3 /jl', UI'U' • U U Ucl' v)pff 

(3 ·1) 

(3·2) 

(3 • 3a) 

(3. 3b) 

(3·4) 

with r~:yrn) the symmetrized energy-momentum tensor in special relativity, 

T csymJ_T - 1 "'P(S -t-S _, S ) pv - pJJ -U pvp pp11 I pvp. • 
2 

(3· 5) 
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Gra·uity from Poincare Gauge Theory of the Fundanzental Particles 1441 

In the harmonic gauge of (2 -16), the field equation for h_,, given by (3 · 2) be-

comes 

(3. 6) 

which contains the fourth-order differential operators like and C:il,,a, operated 

on h 1,. Here h = r;'"h,,. 
Let us consider the gravitational field around a static, spinless source located 

at the origin, for which T .. , is given by 

_ {l'vfi:? (x), 
T,""-

0 , 

/!=V=O, 

otherwise 
(3. 7) 

with x = (:x: 1 , .x:', .x:3) and S,,, is vanishing. It then follows from (3 · 4) that 

y<eff) = lvfos(x) _{-a' -c-_11as + 2(3a2+ 2~z_5)} M iJOs(x) 
00 9(11-2a/3) 9(a-+-2a/3) ' l 

j 
where ct and 11 run over 1, 2 and 3. Using (:3 · 8) in (3 · 6), we get 

. 1 1 M) 4R ( ).1 1 ¢-----Ioo=- -- tl-+- ,exp --m,r -t-~R 0 exp(---m 0 r)f 
2 16rrar 3 b 

with r= !xl, where R, and R 0 are given by 

R, c.= (3a, + 2a,) (m,)' 
- 2a 

(l:'+2a/3 
(( 

Ro= (q,+1?ao) (m. 0)
2 = 2(j:l'-?~/3) 

a 11 

c:·H\) 

(3· 9) 

(:3·10a) 

(3·10b) 

Since the world line of test partic.les 1s the geodesics of the metric g,, as has 

been shown in II, the r;) of (3 · 9) is the gravitational potential in Poincare gauge 

theory. 

The second and third terms of rp are the Y uka wa potentials with the range 

1/ m, and 1/ m 0 , respectively-*' 'vV e must choose the parameters in sue h a way that 

*' As will be shown in §5, the weak gravitational field h", is represented as a linear combination 
of three classes of fields; the massless graviton field of spin 2, a field with mass l/lz and spin 2 

and a field with mass rno and spin 0. (See Eq. (5·11).) The (1/r)-term of¢ comes from the 
massless graviton exchange, whereas the two Yukawa terms are due to exchange of massive 

particles of spin 2 and spin 0, respectively. 
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1442 K. Hayashi and T. Shirafuji 

the (1/r) -term of ¢ coincides with the Newtonian potential, ¢ = - G1V1/r, and that 
the Yukawa potentials are of sufficiently short range. It is convenient to treat two 
cases separately according as the parameters, ai (i = 1, 2, · · ·, 6), are finite or not. 

(i) The case that the parameters ai are all finite 

When m, and m 0 vanish, the strength of the Yukawa potentials vanishes 
because of the factors, (m2) 2 and (m 0) 2 , in R, and R 0• Therefore, the first term 
of ¢, - A1/16rrar, must coincide with the Newtonian potential, irrespectively of 
whether m 2 and m 0 are vanishing or not. We thus choose the parameter a as 

a= 1/2tc, tc = 8rrG. (3 ·11) 

The remaining two terms of ¢ are possible corrections to the Newtonian potential, 
and they should be sufficiently small compared with the first term for macro­
scopic distances. So we choose the remaining parameters as follows: (1) The 
masses, m 2 and m 0 , are large enough to ensure that the exponential factors of the 
Yukawa potentials rapidly die out, or (2) the coefficients, R, and R 0 , are suf­
ficiently small. In view of (3·10a and b), we see that the Yukawa potentials 
are attractive or repulsive according as -a (a-\- 2aj:3) and (] ((]- 2aj3) are positive 
or negative, respectively. It should be mentioned that, for example, the massive 
spin-2 particle with a (a+ 2a/3) >O yields the repulsive force and becomes ghost.*) 

The case of a= 0 deserves special care, since it is assumed in (3 · 9) that 
the parameter a is nonvanishing. By letting the parameter a tend to zero in 
(3 · 6) and then solving the resulting equation with respect to h 00 , we have the 
following gravitational potential, 

1 
¢= --hoo = 

2 
(3 ·12) 

which contains the linearly rising jJotential in addition to the (1/ r) -potential :4 l.5J 

This linearly rising potential stands for the characteristic feature of the case of 
a= 0 with ai finite. As the basic postulate we demand that the space-time around 
a static localized source should be asymptotically flat. This requires that the 
linearly rising potential should be vanishing, 

1 1 --+--- =0. 
3a2 + 2a 5 4 ( a 5 + 12a6) 

(3 ·13) 

Furthermore, smce h -r("" h1'" is given by 

*J The massive particles of spin 2 and spin 0 are normal particles with positive-definite energy 
and positive mass, when the parameters satisfy the conditions, 

:cla 2+ 2a,>O, a(a+ 2a/3) <O for the spin-2 particle, 

a,+ 12a,>O, {3({3-2a/3) >O for the spin-0 particle. 

This will be shown in a next paper (see §4 of IV). 
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Gravity from Poincare Gauge Theory of the Fundamental Particles 1443 

h= 

we must put 

M Mr 
~ 

6-rr/]r 

1 
~=0. 

a5 + 12aG 

(3 -14) 

(3. 15) 

Equations (3 -13) and (3 -15) contradict the assumption that the parameters a; 

are finite numerical constants. Consequently, we conclude that when the par­
ameters ai are finite the case of a= 0 should be disregarded. *l 

(ii) The case of ai = oo (i = 1, 2, · ··. 6) 

This case is just New General Relativity2l as was shown in § 4 of II. Since 
m 2 and m 0 are vanishing with R 2 and R 0 finite, all the three terms of the gravita­
tional potential (3 · 9) behave like 1/r, giving the following gravitational p8tential, 

(3. 16) 

which coincides with the Newtonian potential if we put 

ct + 4;5' + 9a/3tc = 0. (3. 17) 

This is just the Newtonian approximation condition m New General Relativity. 
(See also (II. 4 · 22) .) 

Since we have studied the latter case in Ref. 2), we shall assume henceforth 
throughout this series (unless otherwise stated explicitly) that the parameter a is 
given by (3 -11). 

§ 4. Propagation of the torsion field 

Let us now derive the field equations for the torsion field by usmg Eqs. 
(2·18) and (2·19) in the linearized field equation for the Lorentz gauge field 
(2 -10) with (2 -12). For this purpose, it is more convenient to rewrite (2 -10) 
by decomposing P,P, into three irreducible parts, PL;;, P,, cvl and P1, <al, in the same 

manner as the spin tensor (see the Appendix of II for the decomposition scheme 
of the spin tensor). Denoting the irreducible parts of the spin tensor as SL;;, 
S1, cvl and S,, Cal, we have 

*l This conclusion is due to our assumption that the parameters a; are finite numerical con­
stants independent of space-time points. If it happens that the parameters a, are finite only in the 
inside of a bounded region around the source due to some, yet unknown mechanism,'' then the 
gravitational potential (3 ·12) is compatible with asymptotic flatness of the space-time. 
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1444 K. Ifayashi and T. Shirafuji 

(3 -' 2 ) { 1 (G0 > -"- GC1> 2Gm ) ·--- a2 1- a5 4 .l..v' p. I /LV'),~ AJ1, 1.1 

__ _!_ ('YI iJ G(l) + 'YI iJ G(l)- 2'YI iJ G(l)) 
12 'ih I' 'II'> A 'IAJ' > 

- 1 set) 
---- ).f-!J.I' 

2 
(4' 1) 

(4·2) 

·t- 4 (' ·.- 3a) __ 1 S (a) - J-c- i/A--· -- A • 

3 2 2 
(4· 3) 

A. Reduct ion of Eq. ( 4 · 2) 

Using (2 · 20) in the divergence of ( 4 · 2), ·we get 
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Gravit:: from Poincare Gauge Theor_v of the Fundamental Particles 144fl 

(4. 4) 

Jno = {~a_(§_ ~-2~3_2_1( 1;2 

(3 ( a 5 -:- 12aG) ' 
(4. 5) 

( 4. 6) 

The field IJ describes a massive particle having spinvarity .r = 0'. The mass of 
the 15 coincides with m 0 defined by (3·3b), showing that the Yukawa potential with 
the range 1/m 0 in the gravitational potential (3 · 9) is clue to If-exchange. 

By virtue of ( 4 · 4) and the divergence of (2 ·18), Eq. ( 4 · 2) can be rewritten 
as 

[D --m/]v"=J~"'v), 

where v,. m,, and ) 1,'"
1 are defined by 

_ f 9 (a+ 2aj3) (/1- 2aj3) ) 112 
JJl.v --~ . --· --~---- ---------------------------( ' 

I 2(a-i-$)(a 1+a5) J 

( 4. 7) 

(4 ·8) 

(4. 9) 

(4·10) 

The field V1 , is divergenceless in vacuum by virtue of (4- 4) (see also the Appen­
dix), so it describes a mass1ve particle with JP = 1 . 

B. Reduction of Eq. ( 4 · 8) 

The divergence of (4 · 3) g1ves 

[C -mi] B=/s1 

Jlls= {- 2(r_+3a/2))I;z, 

3(ai + a 3) i 

The field B describes a massive particle with .Y = 0 

Using (2·19) and (4·11) in (4·3), we have 

With a I" Ilia and ) 1, (a) defined by 

(:!·11) 

( 4 ·12) 

( 4 ·13) 

(4·14) 
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1446 K. Hayashi and T. Shirafuji 

(4·15) 

(4 ·16) 

. caJ = __ 3ma2 S caJ + 1 __ e f)PTCacJ _ (Jn ) -2() ·cBJ 
J,. 8(r+3a/2) " 3(a-4r/9) "P"" s ,.J · 

(4 ·17) 

The field a1, is divergenceless in vacuum (see the Appendix), and therefore it 

describes a massiYe particle with JP = 1 +. 

C. Reduction of Eq. (4·1) 

Use of (2 ·18) in the divergence of ( 4 ·1) with respect to v gives after a 

straightforward calculation, 

where ;c,, m, and jj,~l are given by 

X,.,=fJPtp(fov) + 3-~~~22~/3)-fJc~'V"J' 

m,= J_?a((t+2a/3)} 11', 
l a (3a 2 -t- 2a 5) 

'(Z) = - (~1!_z) 2 (rJP s(t) _l_f) scv))·. - - as_+l?a_6_ f) f) T 
)I" 6(ct+2a/3) avp 3 (f" v) 18a(3a,+2a,) I' v 

- 1 __ JoT -- 1 (· D-;;, ;;, ) T .L .. . 2a ;;, ;;,p;;,as } 

6al (fov) 3r;i'" ui'u" '3(a+2aj3)uc,.uu v)pa 

-~2cr/3_(m) _,8 f) jC"l. 

3(a+2a/3) 0 
'" "· 

(4 ·18) 

(4·19) 

(4· 20) 

(4·21) 

The field x~, is symmetric by definition, and furthermore it is traceless and diver­

genceless in vacuum (see the Appendix): Consequently, the x~, describes a mas­

sive particle with .Y = 2 . The mass of x~, coincides with m, defined by (3 · 3a), 

and so the Yukawa potential with the range 1jm, in the graYitational potential 

(3. 9) is clue to x-exchange. 

The field X"" is the "traceless" and "clivergenceless" part of fJPtP<~vl: As for the 

antisymmetric field fJPtP[~vJ• Eq. (2 ·19) shows that it is represented by v~' and a", 

and so we need not be concerned with it. 

Next, let us extract the "traceless" and "divergenceless" part of t 1 ~,. This is 

performed by the following three steps: (i) Eliminate Gi1J and G(J) in ( 4 ·1) by 

USing (2 ·18), (ii) represent f)Pfp(pvlo f)Pfp[~v] and V~ in terms of x~vo V p and ap, and 

finally, (iii) revvrite a resulting expression for (4·1) by using the Klein-Gordon 

equations for f.p, VI, and al, so that it becomes a Klein-Gordon equation. As a 

result, we have 
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[0 2]- - "(t) -mt t,~,-),~v, 

where t 1 ~., mt and j 1 ~~ are defined by ~ 

l,l',= t,l',- Cm2) - 2 (X,,, "+X~'"' ,-2x,p, ,) 

(3- 2a/3 { 1 ( ,., + ,., 2 - ) + -2 c- - ) } + - r;,,vl' 1/p;u,- r;,pvv 1nv v,,,p-v(l,p)v 
a+2a/3 6 

r+3a/2 -2c ~ ~ )~r-a + m,. S:~vpaup+S:pvpaUI U a , 
3(a+2aj3) 

1nt = {3(a+2a/3)} 112 , 
3a2+4aa 

·<tl _ 1 [ s<tl 3a2+2as (T T 2y ) )IIIV-3 4 - lpv+ 4 ~ (lv),p+ (!'v),l- (lp),v 
a2+ aa a 

(4· 22) 

(4. 23) 

(4· 24) 

{3-2aj3 [ 1 ( ·<•l ·(u) ) 1 ( 0 0 2 f)) "(d)] 
- 2 /3 --2 )(I' p)v-Jv 'lp +~6--(-~--~)2 r;,, 1'+1/pv I-· 1/lp ' J 

a+ a mv mo 

+ r + 3a/2 (c fj f}PJ"(a)d + S: fj f}PJ"(a)d). 

3m,.2 (a+ 2aj3) lvpa " pvpa I 
(4· 25) 

The field t 111V is symmetric with respect to A and p, and satisfies the cyclic identity, 

(4. 26) 

As for the trace and divergence, it is traceless and divergenceless in vacuum 

(see the Appendix) : Therefore, the field t ~~· involves f1ve independent degrees of 

freedom, and describes a massive particle with JP=2-. For a particle at rest, we 

have 

(4 ·27) 

and the space-components taPr (a, (3, 7= 1, 2, 3) are expressed in terms of five inde-
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1448 K. Hayashi and T. Shirafuji 

pendent quant1t1es, for example, 731!, t 312 , t 321> t 331 and t 33z.*l 

We have thus seen that the torsion field can be decomposed into the si.r 
indejJendent fields, l,., %1m v,, a,, 15= ()Pvp and B= ()Pap, all of which obey the 
Klein-Gordon equations: Each of these fields is irreducible in the sense that it is 
traceless and divergenceless in vacuum, thus describing a massive particle with 
definite spin-parity. It is still to be clarified, however, whether these six classes 
of the irreducible fields are normal (with positive mass and positive energy) or 
abnormal (with imaginary mass and/or negative energy). The energy of these 
irreducible fields will be calculated in a next paper of this series (see § 4 of IV). 

§ 5. The massless graviton field 

We shall now extract from h1, the massless graviton field. For this purpose, 
we write (2 ·18) in terms of the irreducible torsion fields ;( 1, and IT, 

(5 ·1) 

Let us define hIt~ by 

- - 6(a+2a/3) 2(/3-2a/3) . _2 h* =h +-------% -- --(-----)2-- (1/,.v- (mo) iJ,.()v)rJ, 101 
fo"' a(nl 2) 2 "'"' a 11l 0 

(5·2) 

and rewrite (5 ·1) by using TiP~ 111 place of h,.". It follows from (2 · 8) and the 
above definition of hIt~ that the fields X ~tv and (j appear in (5 ·1) in the forms, 
{0- (mz) 2}xli"' {[J- (m 0)'} rJ and ()PXrv. showing that %~tv and 15 can be eliminated 
by means of their field equations, ( 4 · 4) and ( 4 ·18) : The terms with ()PXrv are 
eliminated by using (A·8). We then get the following field equation for TiP~: 

___ l_Tcsyml _ (l5+12as( 0 -8 () )T 
I'" 6 z "flp.v I p. v 

a a 

(5. 3) 

where T1~ym) is g1ven by (3 · 5). The source term of (5 · 3) can be simplified by 
introducing the new field variable rP~tv by 

*l For the spin component J, along the :lrd axis, J,~,±2 for {lau:i:(i,2)(lw+lm):, J, 
= cl:l for (l,"±il,,,) and J,=O for Clm--lm). 
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_ {3-2a/3"" ·<~l 
( ) 

2 .,,,) 

a mo 

with x,~ defined by 

In fact, it can be shown that the field ¢,. obeys 

D¢"'.-fJP(fJ,.¢.P +fJ,¢P.P) +1Jp.v()PfJ~¢P~= _ _!_y;~r) 
a 

(5·4) 

(5· 5) 

(5·6) 

where we have used (3 ·11) in the last term. This equation (5 · 6) is just the 

linearized Einstein equation, and so we can interpret the .field rf;,. as the massless 

graviton field of spin 2. 

It follows from the field equation for x,. that the field x,~ obeys the following 

Fierz-Pauli equation: 

D x:,- aP (a p.x,',';, + a.x;p) + 1J p.vfJPa~ X~- (m2) 2X:v 

= -G(a(:;l~/:3) {r;~ym) + ~~ Tcp.•)} + ~~~- 2 {1 +t::~::} 1J"'.T 

(5·7) 

in which the source term does not involve second-order derivatives of T, .. but only 

OT through j'"l. By rewriting the Klein-Gordon equation for t.J'"' (4·18), into 

a form similar to (5 · 7), on the other hand, we see that the source term of %"' 

contains OT,. as well as 0 2T. Since higher derivative terms in the source are 

dangerous in quantized theory, the field x~~~ seems to be preferable to x_, .. as the 

dynamical field variable. 

The field equation (5 · 6) is invariant under gauge transformations, 

(5·8) 
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1450 K. Hayashi and T. Shirafuji 

with A" small but otherwise arbitrary four functions. Owing to this gauge free­
dom, we can set the divergenceless condition, 

(5. 9) 

Then Eq. (5 · 6) becomes the d' Alembert equation, 

(5 ·10) 

The weak gravitational field h", is represented as a linear sum of the three 
classes of fields, ¢"" x); and 1], 

1- --"- +_lac_£3a2_:±-~as)' *. ';3(as+12a6) c- - ( )-2;::,;::, )"'" Z f-1.-J.! ~ ¥'#"' - -2 -- --·--- Xro; 1---- _____ 2 ___ -- I) fH! lflo u #u"' u 
a a 

showing that the field h", is the multimass field. This is also the reason why hi, 
obeys the fourth-order field equation (3 · 6). 

§ 6. Conclusion 

We have applied the weak field approximation to the most general gravitational 
field equations derived in Poincare gauge theory with the linear and quadratic 
Lagrangian densities. Adopting the conventional method, the linearized field eq ua­
tion for the linearized gravitational field hi, was of fourth order, showing that hi, 
is the multimass field, which is given by the graviton with m=O, and the particles 
with m = m 2 and m = m 0• This fact was also viewed from the Newtonian approxi­
mation method, where there are two Yukawa potentials in addition to the famous 
Newtonian potential. 

On the other hand, there are the six irreducible fields in the torsion field, 
which have ,Y=spinparity as z+, z-, 1~, 1-, O" and o-, eachofwhichsatisfies the 
Klein-Gordon equation. Thus, the previous mul timass field can be redefined as the 
purely genuine field ¢", of spin 2 and mass 0, obeying the usual wave equation of 
second order, whose source term is exactly the symmetrized energy-momentum 
tensor appearing in the linearized Einstein field equation: So we call it the 
massless graviton field of spin 2. The two additional fields are called X"' and u, 
which have JP=2' and mass 1n2 and JP=0 7 and mass m 0, respectively. We denote 
in Table I the massless graviton field in terms of h"" X"" and u, and the six 
irreducible torsion fields in terms of the original irreducible torsion fields, t"""' v" 
and aw 

These irreducible torsion fields might be normal (i.e., the energy is positive­
definite and the mass is positive) or abnormal, depending on parameters a, involved. 
This issue will be reported in a forthcoming paper of this series; IV. Mass and 
energy of particle spectrum. 
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Table I. Massless and Massive fields in Poincare gauge theory. In the definition of¢,, 

the matter terms are omitted here (see (5 · 4)). 

Fields 

6(a+2a/3) 
¢r,=Ji,, + {l(~;j2Xr" 

- _2_(13 - 2a/3) (r; -- aJ)_,_ ) (j 
a(mo) 2 "' (mo) 2 

(Mass) 2 

() 

(mo)' = 2a(/1---2a/3) 
!1 (a,+ 12as) 

m 2 =9(a-+:_2a/~)(/1~~<Y3_l 

" 2 (a,+ as) (a+ i1) 

(m,)'= _2a(a+2a/3) 

a(3a,+2a,) 

" 2(r+3a/2) 
1JlBw=·- 3(al+;s_)_ 

2 2(a+2a/3) Cr+3ai2) 
tnn =- (~;+-a-,.j-(a·-4r)9)-

m 2 = :J(a-f:2a/3) 
t. 3a2+4aa 

Appendix 

0' 

l 

--Divergence and Trace of the Irreducihle Fields, v~. a", z11 , and t, 11,--

(i) The fields VII and a,,: 

Taking the divergence of ( 4 ·10) and ( 4 ·17), we get 

(F'j/'> = - [0- m,!]/"> / (mo) 2 , 

Therefore, fF'v 11 and a'"a,, are frozen at the place of matter, given by 

(ii) The field z,,: 

It follows from (4·21) that 

rt'.i;,;) = - [0- (m,) 2] -- __ (~:=-~'/ 3 ) jC"l 

3 (a+ 2a/3) (mof 

(A ·1) 

(A·2) 

(A·3) 

(A·4) 

(A·5) 
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1452 K. Ha::-.,ashi and T. Shirafuji 

and 

(A·6) 

showing that 7/~vXpv and a'x,, cannot propagate 1Il vacuum: 

(A·7) 

(A·8) 

(iii) The fie] d l i~v: 

From (4·25) we have 

(A-9) 

(A·lO) 

_ 2_(/3- 2a(3) { + ( _2 ____ 3 \a a ·<•J} J 
' 7j I'' · 2 2) I' v.J · (m 0)" (m2) mv · 

(A ·11) 

Since [ r::::-1- m/] is factored out in these expressions, the trace and the divergence 
of l ipv. i.e., r;'Pl ipv. a' l i[pv] and o'l i<tJVl! are frozen at the place of matter: The 
expressions for them can easily be derived from (A· 9) ~(A ·11). 
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