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GRAVITY HARMONICS FROM A RESONANT TWO-HOUR SATELLITE

James P. Murphy

Isabella J. Cole

ABSTRACT

The semimajor axis of an artificial satellite can undergo long term

variations if its mean motion and the rotational speed of the Earth are nearly

commensurable. A theoretical expression for this variation is obtained for

satellites with a twelve to one such commensurability by considering twelfth

order harmonics of degree twelve through fifteen. The TIROS IX satellite is

in such a near resonant orbit. From this single satellite, only two pairs of

resonant gravity harmonics of twelfth order can be estimated. One pair must

be of even degree while the other is of odd degree. The values obtained were;

10 7 X 1412 =1.01.4

10 7 X 14,12 = 2.1 1.4

101xEl5,12	-1.71.2

10 7 x 515.12 = 2.1 ± .2

These values must be considered to be in some sense composite harmonics

since all harmonics whose order is divisible by twelve are nearly rc 3onant.

These values will however serve as estimates with widest application to orbit

prediction for satellites with orbit characteristics similar to those of

TIROS IX.
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f true anomaly
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n' speed of rotation of the earth

pn,rn (x) associated Legendre function
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(r, 4, h) spherical coordinates

U potential function for the earth

NP (e) Hansen coefficient
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GRAVITY HARMONICS FROM A RESONANT TWO-HOT TR SATELLITE

INTRODUCTION
I

When the mean motion of a satellite orbit and the rotation rate of the Earth are nearly com-
mensurate, the perturbations due to a particular pair or set of pairs of tesseral or sectorial har-
monics (C,,,m , „ gym ) are magnified. In principle, this enables one to deduce these harmonics from
the observed perturbations in the motion of such satellites. The difficulty arises in trying to sepa-
rate the effects due to the various nearly resonant harmonics.

The THOS IX satellite is in an orbit whose period is in a twelve to one commensurability
with the rotational period of the Earth. In this report an analysis of the motion of TIROS TK is
carried out and a determination of some "composite" twelfth order gravity harmonics is made
from this two-hour satellite. The term "composite" has a special meaning. Since all harmonics
of order twelve produce perturbations of the same or nearly the same periods, the problem of
separating the effects of many such harmonics of degree twelve or larger on the motion of a single
satellite is nearly impossible. However, the perturbations due to twelfth order gravity harmonics
of even degree are of slightly different periods than those due to odd degree harmonics. It is there-
fore possible, at least in principle, to obtain values for 'two pairs of gravity harmonics from the
observed perturbations in the semimajor axis of the TIROS IX satellite. The analysis will be
similar to that followed in a previous paper, Murphy and Victor (1968), for satellites with two to
one commensurabilities. The harmonics so obtained in this case must be considered to be
"composite" harmonics.

THE DISTURBING FUNCTION

The recommended form for the potential of the Earth at an exterior point with spherical
coordinates (r, 0, X) as given by Hagihara ( 1962) is

Ur1 * (7)Qn Pn,m (sin¢) (Cn m cos m,\ + Sn,m Sin m,\ ^^)
n m oo

.where µ is the product of the gravitational constant G and the mass of the Earth M., ; aq is the mean
equatorial radius of the Earth, and Pn,m is the asf;a)ciated Legendre funct on defined by

Pn,m (X) = 1(1 X2)m/2 d n +m (x2 - 1)n
(2)

2"n!dXn +m

The portion of the potential function of the Earth that is dependent upon spherical harmonics

of order twelve (m = 12) is considered to be the disturbing function, R, for this analysis. The for-

mulation developed in this report will consider all the harmonics of order twelve and degree less

1
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than or equal to fifteen (n . 15). The disturbing function is then transformed from spherical

coordinates to a function of the orbital parameters of the satellite by applying standard formulae,

Equations. (3), from elliptic motion, The geometry connected with this transformation is described

in Figure 1.

f

(Greenwich)

Figure 1-The Geometry of a Satellite Orbit

sin 0 z silt I sin (f +CO)

cos cos X =1414 	+cos I) cos (f +w+4-Q K) +( I -cos I) cos (f +W_n +Ba))	 (3)
c

i

i

cos sin X	1 *cos I sin f +w4-9	1-cos I sin f +W -S2+6 J

Next, the disturbing function is transformed to express terms involving the true anomaly, f

as a function of the mean anomaly. However, only the resonant terms of order e2 or larger will

be kept in this analysis. This transformation is accomplished by means of the following relation-

ships given by Tisserand (1960);

2
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tr ^^ coy " ,u 
X^	

coy	
1) M,	 (4)

where M is the mean anomaly of the satellite and x-P-p (e) is the Hansen coefficient. Let k •^ - ^,,

m x q. and t1 + I x	Thenp if I > in

X^ «m
 ) 

x	J . m (1 §2)-k- I  J 
-m ( ).m +pl_m+L Q, 02 +

p1-M+2 Q
2'84 +

and if J m ,

X J, m (a) x (-1)
o- t (1 + ,62)-k-i A M -) (Qm -^ + Q^. ^ + t 1', an ^ ^^» 1 +^ ^^ 84 +

where

P^xk.. 1

P x(k-m+1)(k-m) - k	v	Y2

11 + 17

P	
(k - in + 1) (k - in) (k - m - 1) - (k - in + 1) (k - m) v

1,2. 1,T

k - m+l v 2	v3

1 1.2 1.2, 3
and so on; and

(s)

(7)

(8)

and so on. Also,

Q  
k

*
m+1 v
11

(k+ m*1)(k +m)	k+in*1 vv2
^^ -


F+1T " 172

43^(k+ in +1)(k+ in) (k+m-1) 

+ 

(it +m+1)(k+in) v
1,2,3  'f

k + to + 1 v 2	v3

	

*1.21.2 
+ 

1.2

1+

v ^7

3

(9)
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The disturbing function, R, then becomes

	R x 1 »	.$4891633 o to (1 +C)2 X 
13,2 [EI12)coo EM +2w+1^2 (n - K)) + g J 12) min [M+2w+12 (n-8,)^^^

X1 13

+ .64040239 s12 X; 13.0 [ Z!J 12 ) Coll EM+12(x.-^^ ) ^ +9f M sin EM+1.2 (fl-$4)111

+ 1.23768775 sic (1-c) (1 t 13 c) X ' 14,-1
1114 1-

x [NU sin EM-w+12(12 - 4q)] -5J32) Cos EM - sue+12(12-6,,)1^^

+ .23768775 o il (1 +c) (1-130) X;14,1

x	3} sin [ M +cu+ 12 (n-8s)] - 2> cos [M + w+ 12(x - ,^)^

+ .17826582 sn (1 +c) 3 (3-130) Xi 14.3

;<	in [M+3w + 12(S2 -0K)l "Si ll ) cos [M+ 3w+ 12 (12.-
Os)1]

	

+. 1..,16653168 $ 10 (1 +0) 2 (1 + 18 a -630 3 ) Xi 1s,2

	

A ts	̂ 

X [CJ142) cos [ M + 2w+12(it-Bg )J +SJA 2) sin LMt2w + 12(12-00)]1

+ .44408448 s 12 (1 -27 c 2 ) X4 15,0 CCJg 2) cos [ M+12(12-6g ) ] +Sla2> sin CM+12(i2-Bg)1I}

+gib -̂ 
2
 I

5826763s" (1 - c) (1 + 13c -29c2-145c3) X-"--i

X [ CJ 1
5

2 ) sin [M-w+12 ( Q - 6g ) 7 - 515 2) cos [M- w +12 (x - 9)j j

i . 25826763 s" (l +c) (1— 13 c — 29 c n + 145 c a ) X T"' I

x^Ci12) sin [ M +w+12(12-01)] - 5,1 2 ) cas fM +w +12 (52-04)11

+ ,028696403 s9 (1 +G)3 (13+21c .-609 c 2 +1015 c 3) X  16,3

X ^G 12) sin [M+3w+12(41-0;1)1 Si12) cas [M+3ry+12(12-Bg)^'
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where

s= sin I

C s cos I

It should be noted that unnormalized gravity harmonics (cn,m Sn, m) appear in the expression

for the potential function, Equation ( 1), while normalized gravity harmonics appear in the expres-

sion for the disturbing function, Equation ( 10). The relationship between normalized and unnormal-

ized harmonics is

(Cn,m' sn,m) 
= Nn,m (Ca , m, Sn, m) (11)

where, for in X o,

Nn

2(2n+1)(n-m)! —1/Z	
(13),m ` ^(n + m)I

i

THE EQUATION FOR THE SEMIMAJOR. AXIS

The semimajor axis of the orbit of an artificial satellite is usually free of long term per-

turbations ( i.e. perturbations whose period is .not of the same order as the orbital period but con-

siderably longer). This type of perturbation can c;ccur from two sources. First, if the orbit is

not circular, an accumulative perturbatio 1 mru! , ig due to solar radiation pressure for satellites in

orbits that pass through the Earth ' s shadomr, Second, the longitude dependent part of the potential

function of the Earth can cause long term perturbations in the semimajor axis if the mean motion

of the satellite ' s mean anomaly and the speed of the rotation of the Earth are very nearly com-

mensurate. For the TIROS IX satellite, both of these effects are present. The first of these

effects causes periodic perturbations that range in period from about one hundred days to about

five hundred and fWy days while the second produces periodic perturbations with periods ranging

from twelve days to eighteen days. The solar radiation pressure perturbation was eliminated

from the observed variation in the semimajor axis by applying a method given by Murphy (1966).

This method was used to compute the quantity, s a sp , discussed in the section on numerical results.

The equation for the semimajor axis is now obtained to use in the determination of some of

the gravity harmonics. The rate of change of the semimajor axis is

a = 2

	

BR
(13)

n a Tm

After obtaining the disturbing function R, Equation (10), and substituting into Equation (13) taking

the partial derivative and integrating, the equation for the semimajor axis i s obtained.. It is

	

a=ao+Sa
	

(14)
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where

Sa =Tt (E12,12 Cos (M +2w +1251-128,) +§12,12 sin (M+2w +1251 -1290)

+T2 (012,12 cos (M+12n-1260 +$12,12 sin (M+1252-1290)

+T3 (ut3,12 stn (M- w +1212-1280  813,12 coo (M- w +121-120g))

+T4 (013,12 Sin (M+ w +12 11- 120,) -513,12 cos (M+ w +12 11- 12 00))

+T5 {Ct3,12 sin (M +3w+1252- 129,) -§13,12 Cos (M+3w+1211-1280)

+ra (E14,12cos (M+2w+1252-129x) 
+814,12 sin (M+2w+12f2-120,))

+'r, (014,12 cos (M +120-120m) sin (M +1251-120,))

+TS (E15, 12 sin (M- w +1212-1204) -515,12 cos (M- w +12n-120,))

+T9 (015,12 sin (M+ w +1211-120,) -515,12 cos (M+ w +1211-120,))

+T10 (015,12 sin (M+3w+1211-12Om)  -515,12 cos (M+3w+12f2-1200) (15)

r

and where

n s to aao 
(1 

+ c)2 Xi 13, 2 (e)
T1 = 1,09783,17

all 0+2w+1212 -12n')

n s it af 0 X'1 3,0 (e)

r2 c 1. 2808048
a ll (n+1252-12n')

,47537550
n sll a! I (1 -c) (1 + 13c) Xi 14, -1 (e)

^

a 12 (n- w +1211 -12n')

n s11 acl ( 1 + c ) ( 1 - 13 c) Xi 14,1 (e)
T4 = .47537550

212 (n+w+12R-12n')

n s9 ae1 (1 +c)3 (3_- 13c) X- 14,3 (e)
T5 = .35653164 al  (n +3^s+1232-12 n')

n s10 a! 2 (1+c) 2 (1+18c-63c2) Xi15,2 (e)
T6 =  . . 33306330

a13 (n+2w+122 - 12 n')

n s12 a.12 ( 1 -27 c
2) X1 15,0 (e)

T7 = .88816896
a13 (n+12h-12 n')
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.

n s 1 . 1 4 13 (1- c) (1+13c-29 C 2 -145 C a) Xi 16, - 1 (e)

r® ^ - .51653526
014 (n- w+ 122-12n')

n s l1 03 (1 +C) (1-13 c - 2 9C 2 +1450)  X7 16 ,1 (e)

ry ,^ ,51653526
014 (n+c^+12n-12 n')

n s 9 a43 ( 1 +c) 3 (13+21c-609 c2 +1015c3) X1 16,3 (e)
r1 p = ,057392806 ,

a14 (n+3w +12n -12 n')

NUMERICAL RESULTS

The orbit of Tiros IX was determined using a general perturbation theory, Brouwer (1959),

from three day arcs of Minitrack observations in the following manner. Mean elements for a three

day arc were obtained. Next the first days data was deleted and an additional days data was added

and the epoch advanced one day. Then mean elements for this epoch were obtained. This process

was repeated several times. From the mean semimaj axis, a" , a computed perturbation due to
solar radiation pressure, "RP , was subtracted. If the zonal harmonics considered in Brouwer's

theory and solar radiation pressure were the only forces acting on this satellite, then a" - SaRp

would be a constant to first order for all time. However, a periodic variation was observed. This

observed variation has the same periods present as in the theoretical expression for sa presented

above. Computed va)';ues of the near resonant periods appears in Table 1.

It should, be noted that when elements were obtained for one day arcs with no overlap the

same periods were gjiserved. This data was not analyzed for gravity harmonics however, since

the fewer number- of observations causes some degree of scatter in the plot of a" - SaRp .

Table 1

s

(16)

Periods of Near Resonant Terms, M+ qw + 12 (0 - Bg )
V

q Period in Days

1 -1 12.291
0 13.265

k 1 14.407
4 2 15.764
5 3 17.402

The satellite orbit for TIROS IX has the following set of average values.

a = 8018.6 kilometers

e = .11697

I 96.404 degrees

7
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These average values were used in the evaluation of the -r I s in $a over the time period con-

sidered here. Owing to the substantial value of the eccentricity of this satellite orbit, twelfth order

gravity harmonics of both even and odd degree are present in the perturbation equation for the

semimajor axis. Each harmonic of odd degree results in aperturbation with the same set of periods.
The same is true of terms of even degree. Further, the periods present in these two sets of peri-

ods are close. This fact makes the task of trying to attribute the observed perturbation in the

semimajor ,axis of a single satellite as being due to a specific harmonic or set of harmonics diffi-

cult. The narrow separation is clearly seen from Equation (15) and Table 1. All the possible

solutions for the gravity parameters appearing in Equation (15) taken individually and taken pair-

wise with one even degree and one odd degree term were made by least squares fit to forty-three

values of the semimajor axis. The best fit was obtained when the fourteenth and fifteenth degree

harmonics were solved for. These values obtained were the following.

107xC14,12= 1.0k,4

10 7 x 514,12 = 2,l k ,4

107xC1512=- 1,71.2

10 7 x 515,12 = 2.1 :h ,2

In Figure 2 there appears a plot of the A" - 8aR, p , together with a plot of the resid ,dls of the

solution above added to the mean value of the semimajor axis, ao . The solid curves in this figure

are drawn in for purposes of illustration.

In Table 2 there appears a list of some previous determinations of twelfth order gravity

harmonics (see list of references).

P

Table 2

Twelfth Order Gravity Harmonics*

Source 012,12 912,12 L13,12 513,12 C14,12 914,12 -15,12 515,12

Gaposchkin (1966) -.31 .008 -.59 .50 .94 -.28 -.619 .578

Kohnlein (1967) -.1 -.1 -.2 .6 .5 -.3 -.7 .5

Fischer (1968) .25 .24 -.64 -.08

Kaula (1968) -1.1 -.1 -.8 .8 -.5 -.4 -.8 .1

Gaposchkin and -,31 .008 -.6769 .6245 .0261 -.2457 -.7473 -.1026

Veis (1967)

*Unit -10-7

,s
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Figure 2— Somimajor Axis of TIROS IX

DISCUSSION

The expression for the perturbation in the semimajor axis, Sa , of a two hour satellite due to

nearly resonant gravity harmonics, Equation (15), includes twelfth order harmonics of degree twelve

through fifteen. In actual fact twelfth order harmonics of even higher degree than fifteen may have

some non-negligible effect. They are, however, neglected in this analysis. All of the harmonics

present in the expression for Sa could be determined if a solution were made involving several

satellites of near two hour periods. Such a solution might be made from an analysis of the motion

of TIROS IX, GEOS I, Alouette II and the Echo t Rocket in a combination solution since all of these

satellites are in different orbits but with dearly two-hour periods.

The best fit to the mean semimajor axis was obtained when the twelfth order harmonics of

degrees fourteen and fifteen were solved for. The results so obtained are given in the previous

section of this report. The residuals from this fit appear in Figure 2 plotted about the mean value

of the ,mean semimajor axis. It is interesting to note that these residuals appear to be periodic.

This period appears to be approximately a little less than two-thirds the period of a" - SaR.P

This would be very nearly the period one would expect if any of the resonant twenth-fourth order

harmonics in the geopotential were significant contributors to the perturbation of the TIROS IX

9
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orbit. Notes of caution must be made. The original data reduction involved only a few zonal har-

monics (Brouwer Theory), the radiation pressure reduction was very approximate, overlapping

data arcs were used in reduction, and the programs used were single precision (eight decimal

digits). If, however, this apparent effect is genuine, one would make a "rough" order of magni-

tude estimate of the size of say a composite twenty-fourth order sectorial harmonic. The con-

clusion would then be that 
J24,24 

= 0 (lo- g). A more comprehensive reduction of the Minitrack

observations using double precision programs will reveal, more clearly, the presence of any true

twenth-fourth order harmonics.

REFERENCES	 .

Brouwer, D., (1959) Astr. J. (64), 378

Fischer, I., (1968) Army Map Service Geodetic Memorandum No. 1624

Gaposchkin, E. M., (1966) Smithsonian Astrophysical Observatory Special Report 200 Volume 2

Gaposchkin, E. M., and Veis, G. (1967) Paper delivered at COSPAR meeting, London.

Hagihara, Y., (1962) Astr. J. (67), 137

Kaula, W., (1968) Publication No. 656, Institute of Geophysics and Planetary Physics,

University of California

Kohnlein, W., (1967) Paper prepared for XIV General Assembly of the IUGG, Lucerne

Murphy, J. P. (1966) NASA Goddard Space Flight Center Report X-547-66-260

Murphy, J. P. and Victor, E. L., (1968) Planet. Space Sci. (16), 195

Tisserand, F. (1960) Tratte de Mechanique Celeste, Ganthier-Villers, Paris

A

r

I

10


	GeneralDisclaimer.pdf
	1969007359.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf


