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Abstract

Gravity models are used to explain bilateral flows related to the sizes of bilateral
partners, a measure of distance between them and other influences on interaction costs.
The underlying idea is rather simple. The greater the masses of two bodies and the smaller
the distance between them, the stronger their attraction. Even though their basic idea
is rather simple, gravity models can become complex regarding the choice of models and
estimation methods. As especially for gravity beginners it is difficult to get an overview of
the different methods and implement them in R, the package gravity provides a wrapper
of different standard estimation methods. By considering the descriptions and codes of
these methods, users can get a comprehensive and application-oriented access, see which
method may be suitable for certain research questions or types of data, and extend the
code available for their specific research projects.

Gravitationsmodelle werden verwendet, um bilaterale Ströme zu erklären. Dabei wer-
den sowohl Größen und Distanz der jeweiligen Partner als auch weitere Einflussfaktoren
zur Erklärung herangezogen. Die zugrundeliegende Idee dieser Modelle beruht auf dem
Gravitationsprinzip. Je schwerer zwei Körper und je kleiner deren Distanz zueinander,
desto stärker ist ihre gegenseitige Anziehungskraft. Auch wenn die zugrundeliegende Idee
von Gravitationsmodellen zunächst intuitiv erscheint, kann deren Schätzung je nach theo-
retischem Hintergrund und verwendeter Schätzmethode komplex werden. Da es insbeson-
dere für Nutzer, die sich neu mit Gravitationsmodellen beschäftigen, schwierig ist einen
Überblick über die verschiedenen Methoden zu erhalten und diese direkt selbst anzuwen-
den, bietet das Paket gravity einen Wrapper verschiedenster Standard-Schätzmethoden
für Gravitationsmodelle. Durch die Beschreibung sowie die direkte Anwendbar- und
Vergleichbarkeit dieser anhand des beigefügten Datensatzes können Anwender einen an-
wendungsorientierten Überblick über die Methoden, ihre Anwendbarkeit für verschiedene
Forschungsfragen und Voraussetzungen an Daten gewinnen und den zugrundeliegenden
Code für ihre eigenen Forschungsfragen erweitern.

Keywords: gravity model, international trade, migration, R.

1. Introduction

Gravity models in their naive form trace back to the work of Tinbergen (1962) and Ravenstein
(1889). They owe their popularity to high explanatory power and relatively robust results
across many datasets and different scientific works (Anderson 2011). As Baier and Bergstrand
(2010) argue, the topics addressed by gravity models, such as international trade, migration

http://www.ajs.or.at
http://www.ajs.or.at/
http://dx.doi.org/10.17713/ajs.v47i4.688
www.osg.or.at


Austrian Journal of Statistics 17

flows or foreign direct investment, are of high political relevance. The most widespread appli-
cation, however, is for international trade flows (Möhlmann, Ederveen, de Groot, and Linders
2010). In consequence of a sound theoretical basis (for trade mainly thanks to the contribu-
tion of Anderson and van Wincoop (2003)) the popularity of gravity models rose within the
last twenty years and they can nowadays be found in many variations and applications.

Even though the basic idea of gravity models is rather simple, they can become complex when
it comes to the choice of models or estimation methods. For the choice of a specific gravity
model and its theoretical background, see the literature referred to in this article. Some
estimation methods can be burdensome to understand and program for researchers starting
to work with gravity models. In order to provide users of gravity models and R with a wrapper
of some of the most common used methods for estimating gravity models, we implemented
the package gravity. The functions included in the package are listed in Table 1.

Table 1: Functions of the package gravity

Algorithm Function Section

Ordinary Least Squares OLS() 4.2
Fixed Effects Fixed_Effects() 4.3
Double Demeaning DDM() 4.4
Bonus vetus OLS with simple averages BVU() 4.5
Bonus vetus OLS with GDP weights BVW() 4.5
Structural Iterated Least Squares SILS() 4.6
Tetrads Tetrads() 4.7
Tobit Tobit() 4.8
ET-Tobit, Eaton and Tamura (1994) ET_Tobit() 4.9
EK-Tobit, Eaton and Kortum (2001) EK_Tobit() 4.10
Poisson Pseudo Maximum Likelihood PPML() 4.11
Gamma Pseudo Maximum Likelihood GPML() 4.12
Negative Binomial Pseudo Maximum Likelihood NBPML() 4.13
Nonlinear Least Squares NLS() 4.14

They can be subdivided into two types of estimation methods: those estimating gravity models
in their log-log form, such as Ordinary Least Squares (OLS), Fixed Effects, Double Demean-
ing (DDM), Bonus vetus OLS with simple averages (BVU) and with GDP-weights (BVW),
Structural Iterated Least Squares (SILS), Tetrads, and different Tobit style methods (Tobit,
ET-Tobit, and EK-Tobit). These methods are partly complex to understand and program
and thus a comparison of them is not straightforward. Therefore the package aims at easing
an overview of the different methods combined with a direct application. Furthermore, except
for the Tobit style methods, these methods are not capable of handling zero values in the de-
pendent variable just like that. A second type of estimation methods estimates gravity models
in their multiplicative form via generalized linear models with a log-link using different distri-
bution families. These methods are relatively easy to compute and added for completeness.
They contain the methods Poisson Pseudo Maximum Likelihood (PPML), Gamma Pseudo
Maximum Likelihood (GPML), Negative Binomial Pseudo Maximum Likelihood (NBPML),
and Nonlinear Least Squares (NLS). As they estimate the gravity equation in its multiplica-
tive form, all of them but GPML are capable of utilizing datasets with zero values in the
dependent variable. The functions of the package all differ with respect to their underlying
assumptions and prerequisites concerning data, their ability to handle missing values, as well
as their capability of including different effects in the estimation. By considering the descrip-
tions of the estimation methods, users can see which method and data may be suited for
certain research questions. In order to have a straightforward application of all methods, the
package comes with two example datasets (Gravity_no_zeros and Gravity_zeros, see Section
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3). Examples utilizing these datasets are included in the descriptions of the methods. The
user can for example see how the results of the estimation methods may differ even though
they are applied to the same dataset. As the range of gravity models and their suitable esti-
mation methods is huge and specific to data and research question at hand, the functions are
kept simple such that researchers can get familiar with them and utilize them as a starting
point of their research.

In the following we describe gravity models in general as well as the example datasets and
present the different estimation methods in the R package gravity.

2. Gravity models

Gravity models in their traditional form are inspired by Newton’s (1729) law of gravitation:

Fij = G
MiMj

D2
ij

. (1)

The force F between two bodies i and j with i 6= j is proportional to the masses M of these
bodies and inversely proportional to the square of their geographical distance D. G is a
constant and as such of no major concern.

The underlying idea of a traditional gravity model, shown for international trade, is equally
simple (based on Anderson 2011):

Xij = G
Y β1
i Y β2

j

Dβ3
ij

. (2)

Let interaction in form of trade flows be X and let Yi and Yj be the masses of the exporting
and importing country, usually approximated by a measure of GDP. Following equation (2),
the greater the GDPs of two countries and the smaller the geographical distance Dij between
them, the more they trade with each other. Similar to Newton’s model in equation (1), the
coefficients for countries’ incomes were often found to be close to unity (see for example Head
and Mayer 2014). As unitary income elasticities are in line with theoretical foundations like
Anderson and van Wincoop (2003), it is therefore sometimes assumed that the income elastic-
ities are equal to unity (see for example Anderson 2010), meaning β1 = β2 = 1. Besides these
basic parts of a gravity model all other variables determining the trade volume or interaction
between two countries can be added to the model as proxies for transaction costs. Tinber-
gen (1962) mentions trade agreements, historical backgrounds, political situations, common
languages, religion or cultural similarities between bilateral partners as potential dummy
variables. We can define a term t in equation (3) catching the transaction costs between two
countries. Dummy variables can be added in t, e.g. contig for common borders or rta for
regional trade agreements.

tij = Dije
contigijertaij = exp(logDij + contigij + rtaij) (3)

After estimating the coefficients of the transaction costs, one can for example compare theo-
retical and real trade flows and thereby reveal trade barriers. Gravity equations can be easily
transformed from a multiplicative to an additive form by taking the logarithm. The gravity
model in equation (2) added by the transaction costs in equation (3) can therefore be written
in an additive form as:

logXij = β0 logG+ β1 log Yi + β2 log Yj + β3 logDij + β4contigij + β5rtaij . (4)

A gravity equation in its additive form can be estimated by standard estimation methods
such as OLS. For inference problems arising when estimating a logged variable, see Manning
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(1998). He presents potential retransformations when a variable of interest is estimated on
its logged-scale even though the real interest is in its unlogged-scale with focus on the case of
heteroscedasticity.

Baier and Bergstrand (2010) state that the main disadvantage of traditional gravity models,
such as (2) and (4), is the negation of the rest of the world. Baldwin (2007) calls this nega-
tion the gold medal mistake. The traditional model only captures transaction costs between
bilateral partners and ignores transaction costs to the rest of the world and can therefore
lead to implausible results and does not allow for comparative statics (see Anderson and van
Wincoop (2003) for further information). In order to incorporate the effects other countries
can have on the trade volume of bilateral partners, a measure of multilateral resistance (MR)
is usually included in gravity models.

Anderson (1979) includes the rest of the world in the theoretical basis of gravity models
to allow the exports from i to j to be influenced by other demands for the goods of i and
other suppliers for the goods of j. The term MR is used in later work of Anderson and van
Wincoop (2003). They describe how the trade volume between two countries can decrease as
a consequence of changing relative trade barriers of the two countries to their other trading
partners. Anderson and van Wincoop (2003) define MR as the average trade barrier for the
importing and exporting country. They furthermore find that small countries, which trade
much with the rest of the world, react stronger to changes in trade barriers than bigger
countries.

For the theoretical basis of a gravity model including MR terms, also called structural gravity,
see Anderson and van Wincoop (2003) and Anderson (1979). Anderson and van Wincoop
(2003) set up a gravity model with MR terms as:

Xij =
YiYj
Y

t1−σij

P 1−σ
j Π1−σ

i

(5)

with

Π1−σ
i =

∑
j

t1−σij

P 1−σ
j

Yj
Y

(6)

and

P 1−σ
j =

∑
i

t1−σij

Π1−σ
i

Yi
Y
. (7)

Just like in the traditional gravity models, the exports Xij from i to j are determined by the
supply factors in i, Yi, the demand factors in j, Yj , as well as the transaction costs tij from i
to j. Next to information on bilateral partners i and j, information on the rest of the world
is included in the gravity model (5). Y with Y =

∑
i Yi =

∑
j Yj represents the worldwide

sum of incomes. σ represents the elasticity of substitution between all goods with σ > 1
in order to account for the preference for a variation of goods. The MR terms are included
via the terms P , inward MR, and Π, outward MR. The outward MR Πi is a function of the
transaction costs of i to all trade partners j and their demand, Pj vice versa. The MR terms
(6) and (7) dependent on each other.

Under the assumption of symmetrical trade costs, tij = tji, and thereby Pi = Πi one obtains
a symmetric gravity model (Anderson and van Wincoop 2003):

Xij =
YiYj
Y

t1−σij

P 1−σ
j P 1−σ

i

. (8)
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Due to the MR terms, the estimation of structural gravity models is more complex. See for
example Head and Mayer (2014) or Gómez-Herrera (2013) for information on the development
of gravity models for trade data.

Apart from the application to international trade, gravity models can be used for many
purposes such as migration (see for example Orlova and Jost 2006), traffic (see for example
Wang 2011), Foreign Direct Investment (FDI) (see for example Leibrecht and Riedl 2014),
or the estimation of political action such as trade unions (see for example Mart́ınez-Zarzoso,
Nowak-Lehmann D., and Vollmer 2007). Head and Mayer (2014) give an overview about
these different applications. Anderson (1979) describes gravity models as flexible concerning
data used and Bergeijk and Brakman (2010) highlight the advantages of the possibility to use
different levels of aggregation.

Datasets for gravity models often contain a huge amount of trade flows equal to zero. In
data for international trade flows, these zeros can occur if two countries do not trade with
each other, the trade flow between countries is so small that it rounds to zero or the trade
flows were not observed. As Metulini, Patuelli, and Griffith (2016) highlight, it is nowadays
- especially considering sector disaggregated flows - widely recognized that the level of trade
between two entities can in fact be zero. The econometric models behind the gravity equation
used should therefore reflect the possibility of zero trade flows (see e.g. the discussion about
zeros in Anderson (2010)). Next to the theoretical background, also the estimation method
used should be capable of handling zero value. Estimation methods utilizing gravity models in
their logged form, such as OLS, Fixed Effects, DDM, BVU, BVW, SILS, and Tetrads cannot
handle zero trade flows without further ado as the log of zero is not defined. In addition,
also GPML is not capable of handling zeros flows as such. One simple solution would be to
add a small constant to the flow values such that the zeros disappear and all flows can be
logged. This, however, is criticized by many authors (see e.g. the discussion by Head and
Mayer (2014)) as not only the theoretical foundation of this transformation is missing, but
results can be highly volatile with respect to the magnitude of the constant. In order to see
how volatile the estimation outcomes are with respect to the chosen constant, a possibility
would be to estimate a chosen model with differently scaled constants and see whether the
results change much by choice of the constant.

Another type of methods estimating the gravity equation in its additive form, but explicitly
designed for a handling flows equal to zero are Tobit style models. Tobit models are used for
censored data, where instead of the observed data a latent variable is modeled. The function
Tobit adds a constant (default constant is 1) to the dependent variable and utilizes a Tobit
regression with the censoring value equal to log(constant) for the logged dependent variable,
which in case of constant = 1 is 0. For the threshold Tobit model by Eaton and Tamura
(1994), called ET-Tobit, on the other hand, this constant, or threshold, is estimated from
the data. For the estimation of the threshold we follow Carson and Sun (2007), who show
that taking the minimum positive flow value as the threshold is super-consistent and that
using this threshold estimate ensures that the parameter maximum likelihood estimates are
asymptotically normal with the asymptotic variance identical to the variance achieved when
the threshold is known. In addition, there is the Eaton and Kortum (2001) Tobit model,
called EK-Tobit. In EK-Tobit, all observations of the dependent variable are redefined as
intervals. The positive observations have both interval bounds equal to their original value.
For zero flows the interval is left open. The right border of the interval is set to the log of
the minimum trade flow of the respective importing country. Then, an interval regression is
applied. For a short comparison of the three methods, see e.g. Head and Mayer (2014).

The estimation methods estimating the gravity equation in its multiplicative form (except
for GPML), i.e. PPML, NBPML, and NLS, on the other hand, can utilize zero trade val-
ues. Nevertheless, these estimation methods can often not explain the great amount of zeros
in data, but only part of it. Possible solutions for both estimation methods utilizing the
multiplicative or logged form of the gravity equation when zero trade flows are frequent, e.g.
censored, truncated, and zero-inflated methods, are proposed by many authors. See e.g. Mar-
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tin and Pham (2015), Burger, Van Oort, and Linders (2009), Kareem, Martinez-Zarzoso, and
Brümmer (2016), Anderson (2011), Gómez-Herrera (2013), Linders and De Groot (2006), and
Head and Mayer (2014) for further information.

We refer the user to the Gravity Cookbook website1 for more information on gravity models
in general. Head and Mayer (2014) provide a comprehensive and accessible overview of the
theoretical and empirical development of the gravity literature as well as the use of gravity
models and the various estimation methods, especially their merits and potential problems
regarding applicability as well as different gravity datasets.

3. Example datasets

In order to illustrate the different estimation methods, the package gravity includes two
dataset called Gravity_zeros and Gravity_no_zeros. These datasets on international trade
are obtained by editing the gravity dataset “col_regfile09.dta” available at the Gravity
Cookbook website2. In order to have dataset suited for most functions, the datasets are
limited to cross-sectional data. All incomplete rows and observations with missing trade
flows were excluded from the dataset. In addition, for Gravity_no_zeros observations with
trade flows equal to zero were deleted.

The dataset was downloaded and transformed in the following way:

1 > # Reading in the datase t
2 > l i b r a r y ( f o r e i g n )
3 > c o l r e g f i l e 0 9 <− read . dta ( ”c o l r e g f i l e 0 9 . dta ”)
4 > # I s o l a t i o n o f one year
5 > data06 <− c o l r e g f i l e 0 9 [ c o l r e g f i l e 0 9 $ year == 2006 , ]
6 > # Choosing v a r i a b l e s ( s e l e c t columns )
7 > data06 <− data06 [ , c (2 , 3 , 6 , 8 , 12 , 27 , 34 , 4 , 5 , 29) ]
8 > # Transforming data
9 > # I s o l a t i o n o f complete ca s e s

10 > data06 <− data06 [ complete . c a s e s ( data06 ) == TRUE, ]
11 > # Exclus ion o f t rade f l ows equal to 0
12 > Gravity z e r o s <− data06 [ data06$ f low != 0 , ]
13 > row . names ( Gravity z e r o s ) <− 1 : l ength ( row . names ( Gravity z e ro s ) )
14 > # Divide GDPs by 1 ,000 ,000 f o r s c a l i n g purposes
15 > Gravity z e r o s $gdp o <− Gravity z e ro s $gdp o / 1000000
16 > Gravity z e r o s $gdp d <− Gravity z e ro s $gdp d / 1000000

For Gravity_no_zeros the following line is added

1 > # Exclus ion o f t rade f l ows equal to 0
2 > Gravity no ze ro s <− data06 [ data06$ f low != 0 , ]

The resulting datasets consist of 22.588 (Gravity_zeros) and 17.088 (Gravity_no_zeros) ob-
servations respectively. Both include the following variables, exemplary shown for Gravity_zeros:

1 l i b r a r y ( g rav i ty )
2 data ( Gravity z e r o s )
3 s t r ( Gravity z e ro s )

1 ' data . frame ' : 22588 obs . o f 10 v a r i a b l e s :
2 $ i s o o : chr ”AFG” ”AFG” ”AFG” ”AFG” . . .
3 $ i s o d : chr ”ARG” ”AUS” ”AUT” ”AZE” . . .
4 $ distw : num 15341 11086 4567 1822 5849 . . .
5 $ gdp o : num 0.0084 0 .0084 0 .0084 0 .0084 0 .0084 . . .
6 $ gdp d : num 0.214058 0.768178 0.322444 0.020122 0.000807 . . .
7 $ r ta : i n t 0 0 0 0 0 0 0 0 0 0 . . .
8 $ f low : num 0.061 0 .4055 0 .1649 0 .0016 0 . . .
9 $ cont i g : i n t 0 0 0 0 0 0 0 0 0 0 . . .

10 $ comlang o f f : i n t 0 0 0 0 0 0 0 0 0 0 . . .
11 $ comcur : i n t 0 0 0 0 0 0 0 0 0 0 . . .

The descriptions of the variables are provided in Table 2.

1https://sites.google.com/site/hiegravity/
2http://econ.sciences-po.fr/sites/default/files/file/tmayer/data/col regfile09.zip

https://sites.google.com/site/hiegravity/
https://sites.google.com/site/hiegravity/
http://econ.sciences-po.fr/sites/default/files/file/tmayer/data/col_regfile09.zip
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Table 2: Description of the variables in the Gravity dataset

name description

iso o ISO-Code of country of origin
iso d ISO-Code of country of destination
distw weighted distance (see Mayer and Zignago 2011)
gdp o GDP of country of origin in trillion dollars
gdp d GDP of country of destination in trillion dollars
rta dummy for a regional trade agreement
flow trade flow in million dollars
contig dummy for regional contiguity
comlang off dummy for a common official language
comcur dummy for a common currency

4. Gravity functions

4.1. Structure of the functions

On the Gravity Cookbook website3 Keith Head and Thierry Mayer provide Stata code the
most common estimation methods for gravity models. Where possible the functions were
designed and tested to lead similar results when choosing the option of robust variance es-
timation (default). Compared to the Stata code available, the functions presented in this
package provide users with more flexibility regarding the type of estimation (robust or not
robust), the number and type of independent variables as well as the possible data and are
directly applicable to the dataset included in the package.

As the functions were - where possible - tested to lead the same results as the provided
Stata code for cross-sectional data, it is up to the user to ensure that the functions can
be applied to panel data. In order to be comparable, the functions of the package include
distance as an independent variable. If panel data are used, time-invariant effects, such as
geographical distance, may have to be excluded. The most common challenges when using
panel data with gravity models arise because of missing trade flows, unbalanced panels, and
computational difficulties. For a comprehensive overview see Egger and Pfaffermayr (2003),
Gómez-Herrera (2013) and Head, Mayer, and Ries (2010) as well as the references therein.
Egger and Pfaffermayr (2003) provide some comparison of cross-sectional and panel models
and show differences when using different variables. Depending on the panel dataset and the
variables - specifically the type of fixed or random effects - included in the model, it may easily
occur that the model is not computable. Also, note that by including bilateral fixed effects
such as country-pair effects, the coefficients of time-invariant observables such as distance can
no longer be estimated. Depending on the specific model, the code of the respective function
may has to be changed by hand in order to exclude the distance variable from the estimation.
When using panel data, the parameter and variance estimation of the models may have to be
adjusted accordingly. To our knowledge at the moment, there is no explicit literature covering
the estimation of a gravity equation by Double Demeaning (DDM), Structural Iterated Least
Squares (SILS) or Bonus vetus OLS (BVU, BVW) using panel data. Therefore, we do not
recommend to apply these methods in this case.

The functions in gravity all estimate gravity models, but they do so in different ways. They
differ in whether they estimate gravity equations in their additive or multiplicative form, their
requirements with respect to data, their handling of Multilateral Resistance (MR) terms as
well as their possibilities concerning the inclusion of unilateral independent variables, such as
GDPs or population sizes. Therefore, they usually lead to different estimation results.

To execute the functions in gravity, a square gravity dataset with all pairs of countries, ISO-

3https://sites.google.com/site/hiegravity/

https://sites.google.com/site/hiegravity/
https://sites.google.com/site/hiegravity/
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codes for the country of origin and destination, a measure of distance between the bilateral
partners as well as all information that should be considered as dependent and independent
variables is needed. Missing bilateral flows as well as incomplete rows should be excluded
from the dataset. Depending on the method used, zero values in the dependent variable may
have to be excluded.

The functions listed in Table 1 generally have the same structure. Table 3 lists variables
common to all functions. Additional arguments for specific functions are listed in the section
describing the respective function.

Table 3: Function variables

Variable Usage

y name (type: character) of the dependent variable in the dataset data,
e.g. trade flows. It should not yet be logged. For functions estimating
gravity equations in their additive form, y is logged automatically.

dist name (type: character) of the distance variable in the dataset data con-
taining a measure of distance between all pairs of bilateral partners. It
should not yet be logged. For functions estimating gravity equations in
their additive form dist is logged automatically.

x vector of names (type: character) of bilateral variables in the dataset
data that should be taken as the independent variables in the estimation.
If an independent variable is a dummy variable, it should be of type
numeric in the dataset. If an independent variable is defined as a ratio,
it should be logged.

inc_o variable name (type: character) of the income of the country of origin
in the dataset data.

inc_d variable name (type: character) of the income of the country of destina-
tion in the dataset data.

vce_robust robust (type: logic) determines whether a robust variance-covariance
matrix should be used for the standard errors. The default is set to
TRUE. If set TRUE the estimation results are similar to the Stata results
for robust estimation.

data name of the dataset to be used (type: character). To estimate gravity
equations, a square gravity dataset including bilateral flows defined by
the argument y, ISO-codes (called iso_o for the country of origin and
iso_d for the destination country), a distance measure defined by the
argument dist and other potential influences given as a vector in x are
required. All dummy variables should be of type numeric. Missing trade
flows as well as incomplete rows should be excluded from the dataset.
Note that for some functions, zero flow values have to be excluded or
transformed, see the descriptions of the respective functions. When
using panel data, a variable for the time may be included in the dataset.
Note that the variable for the time dimension should be of type: factor.

In order to show users how the functions can be applied, each description of a function comes
with an example of how to apply it using an example dataset in gravity including the resulting
output. As our main aim is to provide R users with a wrapper of different estimation methods
for gravity models and we would like to illustrate all functions using simple examples, the
variables chosen to be included in x as well as the choice of setting vce_robust to TRUE or
FALSE are arbitrary. In order to execute the functions, the package and the example datasets
have to be called first:

1 > i f ( ! ”g rav i ty ” %in% i n s t a l l e d . packages ( ) ) i n s t a l l . packages ( g rav i ty )
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2 > l i b r a r y ( g rav i ty )
3 > data ( Gravity z e r o s )
4 > data ( Gravity no ze ro s )

4.2. OLS

The function OLS estimates gravity models in their traditional form via Ordinary Least Squares
using the lm function implemented in R. MR terms are not considered by this function;
see the gold medal mistake described in Baldwin (2007). As OLS is limited to (log-)linear
relationships, gravity equations are estimated in their additive form. The user has to pay
attention that no zero trade flows are allowed in the dataset. Simple OLS is implemented
in gravity as it is the traditional way of estimating gravity equations and was used by e.g.
Tinbergen (1962). Baier and Bergstrand (2010) argue that the possibility to estimate gravity
equations by simple OLS was a major contribution to the popularity of gravity models. As
the estimated coefficients for the country’s incomes were often found to be close to unity (see
for example Head and Mayer 2014) and unitary income elasticities are in line with theoretical
foundations like Anderson and van Wincoop (2003), it is sometimes assumed that the income
elasticities are equal to unity (see for example Anderson 2010). In order to allow for the
estimation with and without the assumption of unitary income elasticities, the option uie is
built into the function OLS with the default set to FALSE; see Table 4.

Table 4: Additional variables for OLS

Variable Usage

uie Unitary Income Elasticities (type: logic) determines whether the pa-
rameters are to be estimated assuming unitary income elasticities. The
default value is set to FALSE. If uie is set TRUE, the flows in the depen-
dent variable y are divided by the product of the country-pairs’ incomes
before the estimation. If uie is set to FALSE, the income variables are
logged and taken as independent variables in the estimation. The vari-
able names for the incomes should be inserted into inc_o for the country
of origin and into inc_d for the destination country.

An example of how to apply the function OLS to an example dataset in gravity and the
resulting output is shown in the following:

1 > OLS(y=”f low ” , d i s t=”distw ” , x=c ( ”comlang o f f ” , ”r ta ” , ”comcur ” , ”cont i g ”) ,
2 + inc o=”gdp o ” , inc d=”gdp d ” , u i e=FALSE, vce robus t=TRUE,
3 + data=Grav i ty no ze ro s )
4

5 Cal l :
6 y l og ˜ d i s t l o g + comlang o f f + rta + comcur + cont i g + i n c o l o g +
7 i n c d l o g
8

9 Res idua l s :
10 Min 1Q Median 3Q Max
11 −20.265 −1.226 0 .182 1 .521 9 .976
12

13 Co e f f i c i e n t s :
14 Estimate Std . Error t va lue Pr(>| t | )
15 ( I n t e r c ep t ) 17.700041 0.262079 67 .537 <2e−16 ∗∗∗
16 d i s t l o g −1.171616 0.028801 −40.679 <2e−16 ∗∗∗
17 comlang o f f 1 .194314 0.054077 22 .085 <2e−16 ∗∗∗
18 r ta 0 .885798 0.060390 14 .668 <2e−16 ∗∗∗
19 comcur −0.003384 0.151723 −0.022 0 .982
20 cont i g 1 .118794 0.106636 10 .492 <2e−16 ∗∗∗
21 i n c o l o g 1.232566 0.008466 145.596 <2e−16 ∗∗∗
22 i n c d l o g 0.910198 0.008192 111.103 <2e−16 ∗∗∗
23 −−−
24 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
25
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26 Res idua l standard e r r o r : 2 .451 on 17080 degree s o f freedom
27 Mult ip l e R−squared : 0 .6461 , Adjusted R−squared : 0 .646
28 F−s t a t i s t i c : 4875 on 7 and 17080 DF, p−value : < 2 .2 e−16

4.3. Fixed effects

To account for MR terms, Feenstra (2002) and Feenstra (2004) propose to use importer and
exporter fixed effects. Due to these effects, all unilateral influences such as GDPs can no longer
be estimated. A disadvantage of the use of fixed effects is that, when applied to panel data,
the number of country-year or country-pair fixed effects can be computationally too high for
estimation. In addition, no comparative statics are possible with fixed effects as the MR terms
are not estimated explicitly. Nevertheless, Head and Mayer (2014) highlight the importance of
the use of fixed effects. Country specific fixed effects are considered by incorporating "iso_o"
and "iso_d" in fe (see Table 5) next to other possible bilateral variables. When applying the
function Fixed_Effects to panel data, country-pair fixed effects or interaction effects with
the time variable may be applied, but the function and especially the inclusion of distance as
an independent variable may have to be changed depending on the effects used. See Section
1’s part on panel data for further information. The function Fixed_Effects estimates gravity
models in their additive form.

Table 5: Additional variables for Fixed_Effects

Variable Usage

fe vector of names (type: character) of fixed effects. The default is set to
the unilateral identifiers "iso_o" and "iso_d" for cross-sectional data.
When using panel data, interaction terms of the iso-codes and time may
be added in either fe or x.

An example of how to apply the function Fixed_Effects to an example dataset in gravity
and the resulting output is shown in the following:

1 > F ix ed E f f e c t s ( y=”f low ” , d i s t=”distw ” , f e=c ( ” i s o o ” , ” i s o d ”) ,
2 + x=c ( ”comcur ”) , vce robus t=TRUE, data=Grav i ty no ze ro s )
3

4 Cal l :
5 y l og ˜ d i s t l o g + comcur + i s o o + i s o d
6

7 Res idua l s :
8 Min 1Q Median 3Q Max
9 −20.2169 −1.0732 0 .1016 1 .2322 9 .7312

10

11 Co e f f i c i e n t s :
12 Estimate Std . Error t va lue Pr(>| t | )
13 ( I n t e r c ep t ) 12.419632 0.411761 30 .162 < 2e−16 ∗∗∗
14 d i s t l o g −1.937231 0.024921 −77.735 < 2e−16 ∗∗∗
15 comcur 0.407666 0.153327 2 .659 0.007850 ∗∗
16 iso oAGO 1.425700 0.537372 2 .653 0.007983 ∗∗
17 iso oALB −0.851948 0.429502 −1.984 0.047320 ∗
18 .
19 .
20 .
21 iso dCOL 2.161471 0.315343 6 .854 7 .41 e−12 ∗∗∗
22 iso dCOM −1.981948 0.397469 −4.986 6 .21 e−07 ∗∗∗
23 iso dCPV −2.306427 0.393837 −5.856 4 .82 e−09 ∗∗∗
24 [ reached getOption ( ”max . p r i n t ”) −− omitted 133 rows ]
25 −−−
26 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
27

28 Res idua l standard e r r o r : 2 .153 on 16755 degree s o f freedom
29 Mult ip l e R−squared : 0 .7321 , Adjusted R−squared : 0 .7268
30 F−s t a t i s t i c : 162 .3 on 332 and 16755 DF, p−value : < 2 .2 e−16
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4.4. Double demeaning (DDM)

A further method to estimate gravity models in their additive form is the usage of Double
Demeaning, DDM, as introduced by Head and Mayer (2014). By subtracting importer and
exporter averages on the left and right hand side of the respective gravity equation, all uni-
lateral influences including the MR terms vanish. Therefore, no unilateral variables may be
added as independent variables for the estimation. The function DDM first logs the dependent
variable and the distance variable. Afterwards, the dependent and independent variables are
transformed in the following way (exemplary shown for trade flows, Xij):

(logXij).DDM = (logXij)− (logXij).origin.mean

−(logXij).destination.mean+ (logXij).mean.
(9)

One subtracts the mean value for the origin country and the mean value for the destination
country and adds the overall mean value to the logged trade flows. This procedure is repeated
for all dependent and independent variables. The transformed variables are then used for the
estimation. DDM is easily applied, but, as shown in Head and Mayer (2014), very sensitive
to missing data.

An example of how to apply the function DDM to an example dataset in gravity and the
resulting output is shown in the following:

1 > DDM(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ”comcur ” , ”cont i g ”) ,
2 + vce robus t=TRUE, data=Grav i ty no ze ro s )
3

4 Cal l :
5 y log dd ˜ d i s t l o g dd + rta dd + comcur dd + cont ig dd − 1
6

7 Res idua l s :
8 Min 1Q Median 3Q Max
9 −20.9612 −1.2462 0 .2849 1 .5018 8 .4425

10

11 Co e f f i c i e n t s :
12 Estimate Std . Error t va lue Pr(>| t | )
13 d i s t l o g dd −1.60215 0.03217 −49.799 <2e−16 ∗∗∗
14 r ta dd 0.82253 0.06390 12 .872 <2e−16 ∗∗∗
15 comcur dd 0.11431 0.13275 0 .861 0 .389
16 cont ig dd 0.97793 0.10620 9 .209 <2e−16 ∗∗∗
17 −−−
18 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
19

20 Res idua l standard e r r o r : 2 .318 on 17084 degree s o f freedom
21 Mult ip l e R−squared : 0 .2542 , Adjusted R−squared : 0 .254
22 F−s t a t i s t i c : 1772 on 4 and 17084 DF, p−value : < 2 .2 e−16

4.5. Bonus vetus OLS (BVU, BVW)

Baier and Bergstrand (2009) and Baier and Bergstrand (2010) argue that on the one hand,
the non-linear least squares (NLS) approach in Anderson and van Wincoop (2003) is in line
with the theory and capable of conducting comparative statics, but on the other hand is too
computationally costly and complex and therefore received little attention in the literature.
On the other hand, fixed effects estimation, while incorporating MR terms and being easily set
up, does not allow for comparative statics. Therefore, Baier and Bergstrand (2010) suggest a
modification of the simple OLS that is easily implemented, allows for comparative statics and
yields results close to those of NLS, called Bonus vetus OLS (BVU and BVW). They estimate
gravity models in their additive form. For the theoretical foundation of their estimation
method see Anderson and van Wincoop (2003) and Anderson and van Wincoop (2004). As
unilateral income elasticities are assumed, flows are divided by the product of unilateral
incomes. The dependent variable for the estimation is therefore log(y/(inco ∗ incd)). By
applying a Taylor-series expansion and the assumption of symmetrical, bilateral trade costs,
they develop a reduced gravity model in which multilateral and worldwide resistance enter
exogenously. Baier and Bergstrand (2010) distinguish two types of Bonus vetus estimations
depending on how the Taylor-series is centered. One method, called BVU, uses simple averages
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while the other, called BVW, uses GDP weights. Depending on which method is used, the
transaction costs are weighted differently. For advantages and disadvantages of both methods
see Baier and Bergstrand (2009) and Baier and Bergstrand (2010).

To give an example with simple averages (BVU), distance would be transformed to Multilateral
and World Resistance, MWR, of distance in the following way:

MWR.Dij =
1

N

(
N∑
i=1

logDij

)
+

1

N

 N∑
j=1

logDij

− 1

N2

 N∑
i=1

N∑
j=1

logDij

 (10)

with Dij denoting the bilateral distance, N the number of countries and MWR.Dij the
transformed variable adjusted for multilateral resistances.

When using BVW, the simple averages are replaced by GDP weights. The transformed
variables are included as independent variables in the estimation. The resulting equation can
be estimated by simple OLS. For an application of a method close to Bonus vetus on panel
data, see Kareem et al. (2016).

An example of how to apply the functions BVU and BVW to an example dataset in gravity and
the resulting output is shown in the following:

1 > BVU(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ”comlang o f f ”) , i n c o=”gdp o ” ,
2 + inc d=”gdp d ” , vce robus t=TRUE, data=Grav i ty no ze ro s )
3

4 Cal l :
5 y i n c l o g ˜ d i s t l o g mr + rta mr + comlang of f mr
6

7 Res idua l s :
8 Min 1Q Median 3Q Max
9 −20.2613 −1.2170 0 .2941 1 .5725 9 .4282

10

11 Co e f f i c i e n t s :
12 Estimate Std . Error t va lue Pr(>| t | )
13 ( I n t e r c ep t ) 7 .47331 0.01910 391.192 <2e−16 ∗∗∗
14 d i s t l o g mr −1.66196 0.03431 −48.436 <2e−16 ∗∗∗
15 rta mr 0.64216 0.07011 9 .159 <2e−16 ∗∗∗
16 comlang of f mr 0.95722 0.06749 14 .183 <2e−16 ∗∗∗
17 −−−
18 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
19

20 Res idua l standard e r r o r : 2 .497 on 17084 degree s o f freedom
21 Mult ip l e R−squared : 0 . 236 , Adjusted R−squared : 0 .2359
22 F−s t a t i s t i c : 2053 on 3 and 17084 DF, p−value : < 2 .2 e−16

1 > BVW(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ”comlang o f f ” , ”cont i g ”) , i n c o=”gdp o ” ,
2 + inc d=”gdp d ” , vce robus t=TRUE, data=Grav i ty no ze ro s )
3

4 Cal l :
5 y i n c l o g ˜ d i s t l o g mr + rta mr + comlang of f mr + cont ig mr
6

7 Res idua l s :
8 Min 1Q Median 3Q Max
9 −19.4113 −1.3282 0 .4197 1 .7021 10.5317

10

11 Co e f f i c i e n t s :
12 Estimate Std . Error t va lue Pr(>| t | )
13 ( I n t e r c ep t ) 7 .50636 0.02150 349 .11 <2e−16 ∗∗∗
14 d i s t l o g mr −0.56606 0.02838 −19.94 <2e−16 ∗∗∗
15 rta mr 1.27323 0.06559 19 .41 <2e−16 ∗∗∗
16 comlang of f mr 0.93975 0.05901 15 .93 <2e−16 ∗∗∗
17 cont ig mr 1.13429 0.11159 10 .16 <2e−16 ∗∗∗
18 −−−
19 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
20

21 Res idua l standard e r r o r : 2 .667 on 17083 degree s o f freedom
22 Mult ip l e R−squared : 0 . 129 , Adjusted R−squared : 0 .1288
23 F−s t a t i s t i c : 682 .1 on 4 and 17083 DF, p−value : < 2 .2 e−16
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4.6. Structural iterated least squares (SILS)

The function SILS, structural iterated least squares, aims at estimating the MR terms (6)
and (7) explicitly. The procedure was introduced by Anderson and van Wincoop (2003) using
non-linear least squares and adapted by Head and Mayer (2014). See Egger and Staub (2016)
for a comparison of iterative estimation methods and fixed effects methods. The function
utilizes the dependencies between the MR terms and the transaction costs. The transaction
costs influence the transactions between two countries in a direct and an indirect way by their
effect on the MR terms. It estimates gravity equations in their additive form. SILS performs
the following steps (Head and Mayer 2014):

• The unknown terms Πi and Pj are initially set equal to 0.

• The particular gravity equation is estimated in its additive form via OLS to obtain
estimates for the parameters determining the transaction costs. The dependent variable
for the estimation equals log(Xij/(Yi ∗ Yj ∗Πi ∗ Pj)).

• Given the newly estimated parameters, a contraction mapping algorithm is used to
update Πi and Pj .

• These steps are repeated until the estimated parameters stop changing significantly.

Table 6 contains the additional variables for the function SILS. They are used to restrict
the maximum iterations in the inner and outer loop of SILS as well as the stopping rule.
Compared to the other estimation methods, SILS can be very time consuming. When using
it, the updated coefficients for every iteration are shown. When the iteration stops, summary
statistics for the last iteration are shown.

Table 6: Additional variables for SILS

Variable Usage

maxloop maximum number of iterations. The default is set to 50.
maxloop2 maximum number of inner loop iterations. The default is set to 50.
dec_places number of decimal precision. The default is set to 4.
verbose verbose (type: logic) determines whether the estimated coefficients of

each iteration should be printed in the console. The default is set to
FALSE.

An example of how to apply the function SILS to an example dataset in gravity and the
resulting output is shown in the following:

1 > SILS (y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ”cont i g ”) ,
2 + inc o=”gdp o ” , inc d=”gdp d ” , maxloop=50, maxloop2=50, d e c p l a c e s =4,
3 + vce robus t=TRUE, verbose = TRUE, data=Grav i ty no ze ro s )
4 This i s round 0
5 The c o e f f i c i e n t s are −0.9228275 1.116234 1 .6975
6 This i s round 1
7 The c o e f f i c i e n t s are −1.163416 1.761599 0.8989856
8 This i s round 2
9 The c o e f f i c i e n t s are −1.150725 2.009707 0.7149999

10 This i s round 3
11 The c o e f f i c i e n t s are −1.137014 2.08095 0.6847332
12 This i s round 4
13 The c o e f f i c i e n t s are −1.131941 2.099618 0.6807216
14 This i s round 5
15 The c o e f f i c i e n t s are −1.130408 2.104251 0.6804536
16 This i s round 6
17 The c o e f f i c i e n t s are −1.129989 2.105352 0.6805352
18

19 Cal l :
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20 l og (d [ y ] [ , 1 ] ) − l og ( ( d [ i n c o ] [ , 1 ] ∗ d [ inc d ] [ , 1 ] ) /( d$P i ∗
21 d$P j ) ) ˜ d i s t l o g + rta + cont i g
22

23 Res idua l s :
24 Min 1Q Median 3Q Max
25 −21.1974 −1.5555 0 .3106 1 .8511 10.2038
26

27 Co e f f i c i e n t s :
28 Estimate Std . Error t va lue Pr(>| t | )
29 ( I n t e r c ep t ) 12.59105 0.29222 43 .087 < 2e−16 ∗∗∗
30 d i s t l o g −1.12999 0.03302 −34.217 < 2e−16 ∗∗∗
31 r ta 2 .10535 0.06841 30 .776 < 2e−16 ∗∗∗
32 cont i g 0 .68054 0.11854 5 .741 9 .58 e−09 ∗∗∗
33 −−−
34 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
35

36 Res idua l standard e r r o r : 2 .858 on 17084 degree s o f freedom
37 Mult ip l e R−squared : 0 . 211 , Adjusted R−squared : 0 .2108
38 F−s t a t i s t i c : 2144 on 3 and 17084 DF, p−value : < 2 .2 e−16

4.7. Tetrads

In order to use the fixed effects method with panel data, a huge number of dummy variables
has to be included into the estimation. Thus, estimating these models can lead to signifi-
cant computational difficulties. Head et al. (2010) present Tetrads as an estimation method
circumventing this problem. They exploit the multiplicative form of the gravity equation to
form the ratio of ratios. In doing so, both MR terms drop out of the equation. Table 7 shows
the additional arguments for the function Tetrads.

Table 7: Additional variables for Tetrads

Variable Usage

k reference importing country, default is set to ”USA”.
l reference exporting country, default is set to ”JPN”.
multiway_vcov (type: logic) optional; determines whether a function implementing the

multi-way clustering of variance-covariance matrices of Cameron, Gel-
bach, and Miller (2011) in the package multiway vcov is used for the
estimation. In case multiway_vcov=TRUE, the cluster.vcov function is
used. The default value is set to TRUE.

A reference importer and a reference exporter have to be chosen. Preferably, these reference
countries should have very few (if any) zero trade flows. The default importing country k
is the United States, while the default exporting country l is Japan. Only those exporters
trading with the reference importer and importers trading with the reference exporter will
be included in the estimation. Tetrads can be used for both, cross-sectional and panel data.
Here, the notation for panel data as shown in Head et al. (2010) is used.

The two ratios (R) are calculated as:

Ri{jk}t =
Xijt

Xikt
=

(Yjt/Pjt)tijt
(Ykt/Pkt)tikt

(11)

and

Rl{jk}t =
Xljt

Xlkt
=

(Yjt/Pjt)tljt
(Ykt/Pkt)tlkt

. (12)

In a second step, the ratio of ratios is computed as:

r{il}{jk}t =
Ri{jk}t

Rl{jk}t
=
Xijt/Xikt

Xljt/Xlkt
=
tijt/tikt
tljt/tlkt

. (13)
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The equation is then estimated in its additive form. To account for a possible correlation
between the error terms, a three-way-clustering - it, jt, and ij - can be applied using the
method of Cameron et al. (2011) with multiwayvcov=TRUE. Due to the transformation of
data, it is not possible to estimate the influences of unilateral effects. If Tetrads is used for
panel data, the user has to exclude time-invariant effects, such as geographical distance.

An example of how to apply the function Tetrads to an example dataset in gravity and the
resulting output is shown in the following:

1 > Tetrads (y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ”comcur ” , ”cont i g ”) ,
2 + k=”USA” , e l l=”JPN” , multiway vcov=TRUE, data=Grav i ty no ze ro s )
3

4 Cal l :
5 y l o g r a t ˜ d i s t l o g r a t + r t a r a t + comcur rat + con t i g r a t
6

7 Res idua l s :
8 Min 1Q Median 3Q Max
9 −18.3732 −1.2976 0 .2886 1 .6030 11.8736

10

11 Co e f f i c i e n t s :
12 Estimate Std . Error t va lue Pr(>| t | )
13 ( I n t e r c ep t ) −0.2988 0 .1381 −2.164 0.03051 ∗
14 d i s t l o g r a t −1.4974 0 .1133 −13.215 < 2e−16 ∗∗∗
15 r t a r a t 0 .5749 0 .2102 2 .736 0.00623 ∗∗
16 comcur rat 0 .6579 0 .6026 1 .092 0.27497
17 c on t i g r a t 0 .7539 0 .4041 1 .866 0.06210 .
18 −−−
19 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
20

21 Res idua l standard e r r o r : 2 .785 on 16466 degree s o f freedom
22 Mult ip l e R−squared : 0 .2941 , Adjusted R−squared : 0 .2939
23 F−s t a t i s t i c : 1791 on 4 and 16466 DF, p−value : < 2 .2 e−16

4.8. Tobit

In many cases, data values underlie natural boundaries. Tobin (1958) analyzes how to properly
model this kind of data where on the one hand a substantial amount of observations equals
the boundary value and on the other hand the observations exceeding the boundary do so
to a large extend. As an example, he uses household expenditures and the Engel curve. As
a binary regression model would be suitable for modeling whether an observation equals or
exceeds the boundary and linear regression would be suitable for those values exceeding the
boundary, the two approaches are combined in a so called Tobit model. In a Tobit model
where the dependent variable is bounded by 0, a latent variable y∗i is modeled and the observed
values of the dependent variable yi are assumed to either equal this variable when they exceed
threshold 0 or 0 elsewise, see (14). The model is therefore also known as censored regression
model.

yi =

{
y∗i if y∗i > 0

0 else
(14)

Tobit models exist in various forms with possible upper or lower boundaries, which not nec-
essarily equal 0. As a combination of a binary and linear regression is modeled, the interpre-
tation of the estimated coefficients has to take this into account. Therefore, as stated in e.g.
Baldwin and Nino (2006), the marginal effects of an explanatory variable on the expected
value of the dependent variable, i.e. the estimated coefficient, equals the product of both
the probability of the latent variable exceeding the threshold and the marginal effect of the
explanatory variable on the expected value of the latent variable. As gravity datasets for
trade flows often contain a great number of values equal to zero, the Tobit approach can be
suitable for this kind of data, especially if zeros arise from rounding small trade volumes.
This approach of adding an arbitrary constant to the data is criticized, e.g. by Head and
Mayer (2014). They argue that an underlying economic theory is missing and the estimates
are volatile with respect to the choice of the constant. For more information about Tobit
models in the context of gravity models for trade, see e.g. Kareem et al. (2016).
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The Tobit function implemented in the package gravity represents a left-censored Tobit
model with a censoring threshold assumed to be known. In order to provide users with the
possibility to set the threshold to a certain number, the function comes with the argument
added_constant described in Table 8.

Table 8: Additional variables for Tobit

Variable Usage

added_constant scalar (type: numeric); represents the constant to be added to the de-
pendent variable. The default value is 1. The minimum of log(y +
added constant) is taken as the left boundary in the Tobit model. In
the often used case of added_constant=1, the dependent variable is left
censored at value 0 as log(1) = 0.

An example of how to apply the function Tobit to an example dataset in gravity and the
resulting output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > Tobit ( y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + added constant = 1 , data=Grav i ty ze ro s )
6

7 Cal l :
8 y p l u s 1 l o g ˜ d i s t l o g + rta + lgdp o + lgdp d
9

10 Observat ions :
11 Total Left−censored Uncensored Right−censored
12 22588 5500 17088 0
13

14 Co e f f i c i e n t s :
15 Estimate Std . e r r o r t va lue Pr(> t )
16 ( I n t e r c ep t ) 14.044188 0.153214 91 .66 <2e−16 ∗∗∗
17 d i s t l o g −0.852024 0.016592 −51.35 <2e−16 ∗∗∗
18 r ta 1 .002807 0.042651 23 .51 <2e−16 ∗∗∗
19 l gdp o 0.814971 0.004956 164 .43 <2e−16 ∗∗∗
20 lgdp d 0.667020 0.004893 136 .34 <2e−16 ∗∗∗
21 logSigma 0.437644 0.005428 80 .62 <2e−16 ∗∗∗
22 −−−
23 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
24

25 Newton−Raphson maximisation , 4 i t e r a t i o n s
26 Return code 1 : g rad i ent c l o s e to zero
27 Log−l i k e l i h o o d : −34603.75 on 6 Df

4.9. ET-Tobit

The main critic of the Tobit model described in Section 4.8 is that the censoring value is
arbitrarily chosen and this choice can have a great influence on the parameter estimates. In
contrast to that approach, in the Eaton and Tamura (1994) Tobit model, also called threshold
Tobit model, the censoring value or threshold is assumed to be unknown and therefore has
to be estimated from the data. It is for example used in Martin and Pham (2015) and
Santos Silva and Tenreyro (2011). Compared to the usual ET-Tobit approaches, in this
package, the estimation of this threshold is done before the other parameters are estimated.
We follow the approach in Carson and Sun (2007), who show that taking the minimum positive
flow value as an estimate of the threshold is super-consistent and that using this threshold
estimate ensures that the parameter maximum likelihood estimates are asymptotically normal
with the asymptotic variance identical to the variance achieved when the threshold is known.
Hence, in the function ET_Tobit first the threshold is estimated as the minimum positive
flow. This threshold is added to the flow variable. It is logged afterwards and taken as the
dependent variable in a left-censored regression with the left boundary equal to the smallest
logged value. Even though this approach is more elaborate than the Tobit approach with an
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arbitrarily set threshold, Head and Mayer (2014) criticize it for a lacking compelling structural
interpretation. Furthermore, in their study Santos Silva and Tenreyro (2011) find very large
bias for ET-Tobit.

An example of how to apply the function ET_Tobit to an example dataset in gravity and the
resulting output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > ET Tobit ( y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) , data=Grav i ty ze ro s )
5

6 Cal l :
7 y p lu s f l ow min l og ˜ d i s t l o g + rta + lgdp o + lgdp d
8

9 Observat ions :
10 Total Left−censored Uncensored Right−censored
11 22588 5500 17088 0
12

13 Co e f f i c i e n t s :
14 Estimate Std . e r r o r t va lue Pr(> t )
15 ( I n t e r c ep t ) 36.381290 0.774607 46 .97 < 2e−16 ∗∗∗
16 d i s t l o g −2.842963 0.084288 −33.73 < 2e−16 ∗∗∗
17 r ta 1 .098953 0.221564 4 .96 7 .05 e−07 ∗∗∗
18 l gdp o 2.609596 0.024256 107 .58 < 2e−16 ∗∗∗
19 lgdp d 2.009061 0.024310 82 .64 < 2e−16 ∗∗∗
20 logSigma 2.096474 0.005822 360 .11 < 2e−16 ∗∗∗
21 −−−
22 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
23

24 Newton−Raphson maximisation , 6 i t e r a t i o n s
25 Return code 2 : s u c c e s s i v e func t i on va lue s with in t o l e r an c e l im i t
26 Log−l i k e l i h o o d : −65571.15 on 6 Df

4.10. EK-Tobit

In addition to the two Tobit approaches presented in Section 4.8 and 4.9, the Eaton and
Kortum (2001) Tobit approach utilizes import country specific censoring values. Compared
to ET-Tobit, instead of taking the minimum positive flow as an estimate of the threshold
for all countries, for each importing country the minimum positive threshold is taken as an
estimate of its country specific threshold. Using the function EK_Tobit, all values of the
dependent variable are redefined as intervals. The positive observations have both interval
bounds equal to their original value. For zero flows the interval is left open. The right border
of the interval is set to the log of the minimum positive trade flow of the respective importing
country. The transformed data is then used in an interval regression with observation specific
boundaries. Head and Mayer (2014) highlight this method in comparison to the other two
Tobit approaches due to its applicability and interpretability.

An example of how to apply the function EK_Tobit to an example dataset in gravity and the
resulting output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > EK Tobit ( y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + vce robus t=TRUE, data=Grav i ty ze ro s )
6

7 Cal l :
8 d ta i n t ˜ d i s t l o g + rta + lgdp o + lgdp d
9 Value Std . Err ( Naive SE) z p

10 ( I n t e r c ep t ) 25 .98 0 .48553 0.45021 53 .5 0 .00 e+00
11 d i s t l o g −1.92 0 .05304 0.04893 −36.2 1 .63 e−287
12 r ta 1 .17 0 .11649 0.12776 10 .1 8 .87 e−24
13 l gdp o 1 .82 0 .01408 0.01422 129 .6 0 .00 e+00
14 lgdp d 1 .41 0 .01435 0.01420 98 .1 0 .00 e+00
15 Log ( s c a l e ) 1 .54 0 .00906 0.00568 170 .3 0 .00 e+00
16

17 Sca l e= 4 .68
18

19 Gaussian d i s t r i b u t i o n
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20 Log l ik (model )= −55298.3 Log l ik ( i n t e r c e p t only )= −64459.4
21 Chisq= 18322.09 on 4 degree s o f freedom , p= 0
22 ( Log l i k e l i h ood assumes independent obs e rva t i on s )
23 Number o f Newton−Raphson I t e r a t i o n s : 6
24 n= 22588

4.11. Poisson pseudo maximum likelihood (PPML)

Poisson Pseudo Maximum Likelihood, PPML, is recommended in the influential paper of
Santos-Silva and Tenreyro (2006). They argue that estimating gravity equations in their
additive form by OLS leads to inconsistency in the presence of heteroscedasticity. Due to
Jensen’s inequality E(log Y ) 6= logE(Y ), Santos-Silva and Tenreyro (2006) advise researchers
to estimate gravity models in their multiplicative form. Furthermore, as trade flows are not
logged, one major drawback of many other estimation methods diminishes, namely the han-
dling of trade flows equal to zero. They can remain in the dataset. Following Santos-Silva and
Tenreyro (2006), heteroscedasticity likely occurs in trade data, with 0 ≤ Xij , as the variance
var(Xij) is decreasing the closer trade flows are to zero. On the other hand, the greater the
trade flows become, the higher the variance becomes as well. In order to utilize the pseudo
ML estimates, the option vce_robust=TRUE by default in analogy to the vce(robust) in Stata.
When choosing PPML the Poisson family is used with log-link. Similar methods utilizing the
log-link, but different underlying distributions are Gamma PML (GPML), Negative Binomial
PML (NBPML), and Nonlinear Least Squares (NLS), see Section 4.12, 4.13, and 4.14. See
Manning and Mullahy (2001) or Gómez-Herrera (2013) who compare the performance of these
methods under different data generating processes and their usage in the literature. Under
consideration of zeros and heteroscedasticity, Santos-Silva and Tenreyro (2006) argue that the
PPML estimator would be preferable over GPML or NLS. See also Santos Silva and Tenreyro
(2011) for an extension of their simulation study in Santos-Silva and Tenreyro (2006). Martin
and Pham (2015) tests the PPML estimator among others under different economically-based
data generating processes, also with a focus on heterogenous data containing many zero val-
ues, and also finds it to have a good performance. For extensions of PPML, see for example
Burger et al. (2009).

In order to illustrate all estimation methods using the same example dataset, the function
PPML is also applied to data restricted to positive trade flows even though it would allow trade
flows to be zero. An exemplary output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > PPML(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + vce robus t=TRUE, data=Grav i ty ze ro s )
6

7 Cal l :
8 y ˜ d i s t l o g + rta + lgdp o + lgdp d
9

10 Weighted Res idua l s :
11 Min 1Q Median 3Q Max
12 −221.53 −5.14 −2.02 −0.63 1738.13
13

14 Co e f f i c i e n t s :
15 Estimate Std . Error z va lue Pr(>| z | )
16 ( I n t e r c ep t ) 16.02083 0.65478 24 .47 <2e−16 ∗∗∗
17 d i s t l o g −0.85450 0.07278 −11.74 <2e−16 ∗∗∗
18 r ta −0.10610 0.18300 −0.58 0 .562
19 l gdp o 0.80813 0.02179 37 .09 <2e−16 ∗∗∗
20 lgdp d 0.86062 0.03296 26 .11 <2e−16 ∗∗∗
21 −−−
22 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
23

24 Res idua l standard e r r o r : 35 .89 on 22583 degree s o f freedom
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4.12. Gamma pseudo maximum likelihood (GPML)

For the main description of the kind of estimation method used for Gamma Pseudo Maximum
Likelihood, GPML, see Section 4.11. The estimation method is similar to PPML, but utilizes
the gamma instead of the poisson distribution, thereby implies different assumptions to the
data structure and does not allow for zero trade values. Even though Santos-Silva and Ten-
reyro (2006) argue in favor of PPML instead of GPML, especially in case of heteroscedasticity,
Head and Mayer (2014) highlight that depending on data structure there exist cases where
GPML is preferable to PPML.

An example of how to apply the function GPML to an example dataset in gravity and the
resulting output is shown in the following:

1 > Grav i ty no ze ro s$ l gdp o <− l og ( Grav i ty no zeros$gdp o )
2 > Grav i ty no ze ro s$ lgdp d <− l og ( Grav i ty no zeros$gdp d )
3 >
4 > GPML(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + vce robus t=TRUE, data=Grav i ty no ze ro s )
6

7 Cal l :
8 y ˜ d i s t l o g + rta + lgdp o + lgdp d
9

10 Res idua l s :
11 Min 1Q Median 3Q Max
12 −1.00 −0.98 −0.83 −0.35 505 .68
13

14 Co e f f i c i e n t s :
15 Estimate Std . Error z va lue Pr(>| z | )
16 ( I n t e r c ep t ) 16.14322 0.75713 21 .322 < 2e−16 ∗∗∗
17 d i s t l o g −0.94013 0.08387 −11.210 < 2e−16 ∗∗∗
18 r ta 0 .47097 0.10676 4 .412 1 .03 e−05 ∗∗∗
19 l gdp o 0.80919 0.01965 41 .188 < 2e−16 ∗∗∗
20 lgdp d 0.66129 0.03620 18 .269 < 2e−16 ∗∗∗
21 −−−
22 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
23

24 Res idua l standard e r r o r : 6 .405 on 17083 degree s o f freedom

4.13. Negative binomial pseudo maximum likelihood (NBPML)

For the main description of the kind of estimation method used for Negative Binomial Pseudo
Maximum Likelihood, NBPML, see Section 4.11. The estimation method is similar to PPML,
but utilizes the negative binomial instead of the poisson distribution and thereby implies
different assumptions to the data structure. It also allows for zero values in the dependent
variable. See e.g. De Benedictis and Taglioni (2011) for an application of this method and
Head and Mayer (2014) for critics.

In order to illustrate all estimation methods using the same example dataset, the function
NBPML is also applied to data restricted to positive trade flows even though it would allow
trade flows to be zero. An exemplary output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > NBPML(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + vce robus t=TRUE, data=Grav i ty ze ro s )
6

7 Cal l :
8 y ˜ d i s t l o g + rta + lgdp o + lgdp d
9

10 Weighted Res idua l s :
11 Min 1Q Median 3Q Max
12 −0.53 −0.50 −0.42 −0.23 421 .63
13

14 Co e f f i c i e n t s :
15 Estimate Std . Error z va lue Pr(>| z | )
16 ( I n t e r c ep t ) 17.12430 0.86571 19 .781 < 2e−16 ∗∗∗
17 d i s t l o g −1.01850 0.09513 −10.706 < 2e−16 ∗∗∗
18 r ta 0 .60926 0.11726 5 .196 2 .04 e−07 ∗∗∗
19 l gdp o 0.91558 0.01783 51 .356 < 2e−16 ∗∗∗
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20 lgdp d 0.73991 0.03693 20 .037 < 2e−16 ∗∗∗
21 −−−
22 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
23

24 Res idua l standard e r r o r : 4 .23 on 22583 degree s o f freedom

4.14. Nonlinear least squares (NLS)

For the main description of the kind of estimation method used for Nonlinear Least Squares,
NLS, see Section 4.11. The estimation method is similar to PPML, but utilizes the negative
binomial instead of the poisson distribution and thereby implies different assumptions to the
data structure. It also allows for zero values in the dependent variable. As the method may
not lead to convergence when poor starting values are used, the output of the PPML function
is used for the starting values. For a comparison of different types of NLS to other methods,
see e.g. Martin and Pham (2015) or Manning and Mullahy (2001). For critics see e.g. Head
and Mayer (2014).

In order to illustrate all estimation methods using the same example dataset, the function
NLS is also applied to data restricted to positive trade flows even though it would allow trade
flows to be zero. An exemplary output is shown in the following:

1 > Grav i ty ze ro s$ l gdp o <− l og ( Grav i ty zeros$gdp o )
2 > Grav i ty ze ro s$ lgdp d <− l og ( Grav i ty zeros$gdp d )
3 >
4 > NLS(y=”f low ” , d i s t=”distw ” , x=c ( ”r ta ” , ” lgdp o ” , ”lgdp d ”) ,
5 + vce robus t=TRUE, data=Grav i ty ze ro s )
6

7 Cal l :
8 y ˜ d i s t l o g + rta + lgdp o + lgdp d
9

10 Weighted Res idua l s :
11 Min 1Q Median 3Q Max
12 −83262 −1 0 4 210893
13

14 Co e f f i c i e n t s :
15 Estimate Std . Error z va lue Pr(>| z | )
16 ( I n t e r c ep t ) 11.79801 1.26431 9 .332 < 2e−16 ∗∗∗
17 d i s t l o g −0.45502 0.14666 −3.103 0.001919 ∗∗
18 r ta 1 .04830 0.30710 3 .414 0.000641 ∗∗∗
19 l gdp o 0.90474 0.08423 10 .742 < 2e−16 ∗∗∗
20 lgdp d 1.16900 0.07440 15 .713 < 2e−16 ∗∗∗
21 −−−
22 S i g n i f . codes : 0 ' ∗∗∗ ' 0 .001 ' ∗∗ ' 0 .01 ' ∗ ' 0 .05 ' . ' 0 .1 ' ' 1
23

24 Res idua l standard e r r o r : 3328 on 22583 degree s o f freedom

5. Conclusion

As Head and Mayer (2014) or Mart́ınez-Zarzoso (2013) point out there is no best estimation
method for gravity models. Depending on the dataset at hand, the research question as well as
robustness checks, it is up to the researcher to decide which method(s) to use. As especially
for gravity beginners it is difficult to get an overview of the different possible estimation
methods as well as to implement the methods in R, the package gravity provides a wrapper
of different standard estimation methods for gravity models. Next to the more complicated
methods DDM, BVU, BVW, SILC, Tetrads, and EK-Tobit which were programmed to lead
identical results to the Stata code provided on Gravity Cookbook website4 by Keith Head
and Thierry Mayer, other common estimation methods for gravity models are added, namely
OLS, Fixed Effects, PPML, GPML, NBPML, NLS, ET-Tobit, and Tobit. By considering
the descriptions and codes of the estimation methods, users can get a comprehensive and
application-oriented overview of the different methods, see which method may be suitable
for certain research questions or type of data, and extend the code available in order to fit

4https://sites.google.com/site/hiegravity/

https://sites.google.com/site/hiegravity/
https://sites.google.com/site/hiegravity/
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their research projects. Furthermore, users can directly apply all methods to the example
datasets Gravity_no_zeros or Gravity_zeros. For more advanced gravity models, e.g. the
use of panel data, see the literature referred to in sections 1 and 2. Future work is to expand
the functions to the needs of panel data, i.e. implementing grouped fixed effects as shown
in Guimarães and Portugal (2009) in order to circumvent high dimensional fixed effects in
large scale longitudinal applications. Contributions, extensions and error corrections are very
welcome. Please do not hesitate to contact us.
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