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Abstract In this work, we explore the possibility that quan-
tum fluctuations induce a topology change, in the context
of Gravity’s Rainbow. A semiclassical approach is adopted,
where the graviton one-loop contribution to a classical energy
in a background spacetime is computed through a variational
approach with Gaussian trial wave functionals. The energy
density of the graviton one-loop contribution, or equivalently
the background spacetime, is then let to evolve, and conse-
quently the classical energy is determined. More specifically,
the background metric is fixed to be Minkowskian in the
equation governing the quantum fluctuations, which behaves
essentially as a backreaction equation, and the quantum fluc-
tuations are let to evolve; the classical energy, which depends
on the evolved metric functions, is then evaluated. Analyz-
ing this procedure, a natural ultraviolet cutoff is obtained,
which forbids the presence of an interior spacetime region,
and this may result in a multiply connected spacetime. Thus,
in the context of Gravity’s Rainbow, this process may be
interpreted as a change in topology, and in principle it results
in the presence of a planckian wormhole.

1 Introduction

It was John A. Wheeler [1,2] who first conjectured that space-
time could be subjected to a topological fluctuation at the
Planck scale, meaning that spacetime undergoes a deep and
rapid transformation in its structure. The changing space-
time is best known as spacetime foam, which can be taken as
a model for the quantum gravitational vacuum. Wheeler also
considered wormhole-type solutions as objects of the space-
time quantum foam connecting different regions of space-
time at the Planck scale [2,3]. These Wheeler wormholes
were obtained from the coupled equations of electromag-
netism and general relativity and were denoted “geons”, i.e.,
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gravitational-electromagnetic entities. However, these solu-
tions were singular and were not traversable [4]. In fact, the
geon concept possesses interesting properties, such as the
absence of charges or currents and the gravitational mass
originates solely from the energy stored in the electromag-
netic field, i.e., there are no material masses present. These
characteristics gave rise to the terms “charge without charge”
and “mass without mass”, respectively.

Paging through history, one finds that these entities were
further explored by several authors in different contexts.
Indeed, Ernst analyzed idealized spherical “geons” using a
simple adaptation of the Ritz variational principle [5], and
furthermore explored toroidal geons, where the electromag-
netic vector potential is vanishingly small except within a
toroidal region of space [6]. In fact, the electromagnetic field
physically consists of light waves circling the torus in either
direction, so that the torus of electromagnetic field energy
was denoted a toroidal geon. It was shown that toroidal geons
of large major radius to minor radius ratio may be studied
using an approximation of linear geons, where the electro-
magnetic field energy is confined to an infinitely long circular
cylinder rather than to a torus. Indeed, the electromagnetic
field potentials of a toroidal geon or of a linear geon pos-
sess the same general nature as the electromagnetic field
potentials encountered in the solution of classical toroidal
and cylindrical wave guide problems. Thus, these results pro-
vided the foundation material for a proposed later treatment
of toroidal geons.

Later, Brill and Hartle [7] extended the previous analysis
to the case where gravitational waves are the source of the
geon’s mass energy, where the background spherically sym-
metric metric describes the large-scale features of the geon. It
was shown that the waves superimposed on this background
have an amplitude small enough so that their dynamics can be
analyzed in the linear approximation. However, their wave-
length is so short, and their time dependence so rapid that their
energy is appreciable and produces the strongly curved back-
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ground metric in which they move. It was also found that the
large-scale features of the spherical gravitational geons are
identical to those of the spherical electromagnetic geons ana-
lyzed previously. In fact, later work by Anderson and Brill [8]
showed that the geon solution is a self-consistent solution to
Einstein’s equations and that, to leading order, the equations
describing the geometry of the gravitational geon are identi-
cal to those derived by Wheeler for the electromagnetic geon.

Komar [9] showed that there exist solutions of the vac-
uum Einstein field equations with the property that exterior
to the Schwarzschild radius, the solution appears to be that
of a static spherically symmetric particle of mass m, whereas
interior to the Schwarzschild radius the topology remains
Euclidean and the solutions have the property of a bundle
of gravitational radiation so intense that the mutual gravita-
tional attraction of the various parts of the bundle prevent the
radiation from spreading beyond the Schwarzschild radius.
Komar also argued that no singularity can ever be observed
exterior to the Schwarzschild radius. However, it was shown
that the Komar bootstrap gravitational geon solution does in
fact display a singular behavior along portions of an axis in
the regions in which the solution deviates from the standard
Schwarzschild solution [10].

An interesting geon solution was explored by Kaup [11] in
the context of the Klein–Gordon Einstein equations (Klein–
Gordon geons), which reveal that these geons have properties
that are different from the other gravitating systems studied
previously. Indeed, the equilibrium states of these geons seem
analogous to other gravitating systems, but it was shown that
adiabatic perturbations are forbidden, when the stability is
considered from a thermodynamical viewpoint. The reason
for this is that the equations of state for the thermodynam-
ical variables are not algebraic equations, but instead they
are differential equations. Consequently, the usual concept
of an equation of state breaks down when Klein–Gordon
geons are considered. When the question of stability is recon-
sidered in terms of infinitesimal perturbations of the basic
fields, it was then found that Klein–Gordon geons will not
undergo spherically symmetric gravitational collapse. Thus,
the Klein–Gordon geons considered by Kaup are coun-
terexamples to the conjecture that gravitational collapse is
inevitable.

In fact, much work was done over the decades, but due to
the extremely ambitious program and the lack of experimen-
tal evidence the geon concept soon died out. However, it is
interesting to note that Misner inspired by Wheeler’s geon
representation, found wormhole solutions to the source-free
Einstein equations [12], and with the introduction of multi-
connected topologies in physics, the question of causality
inevitably arose. Thus, Wheeler and Fuller examined this sit-
uation in the Schwarzschild solution and found that causal-
ity is preserved [13], as the Schwarzschild throat pinches
off in a finite time, preventing the traversal of a signal from

one region to another through the wormhole. Nevertheless,
Graves and Brill [14], considering the Reissner–Nordström
metric, also found wormhole-type solutions possessing an
electric flux flowing through the wormhole. They found
that the region of minimum radius, the “throat”, contracted,
reaching a minimum and re-expanded after a finite proper
time, rather than pinching off as in the Schwarzschild case.
The throat, “cushioned” by the pressure of the electric field
through the throat, pulsated periodically in time.

In the context of the quantum gravitational vacuum, some
authors have investigated the effects of such a foamy space
on the cosmological constant, for instance, one example is
the celebrated Coleman mechanism, where wormhole con-
tributions suppress the cosmological constant, explaining its
small observed value [15]. Nevertheless, how to realize such
a foam-like space and also whether this represents the real
quantum gravitational vacuum is still unknown. However, it
is interesting to observe that Ellis et al. considered a foam-like
structure built in terms of D-branes to discuss phenomeno-
logical aspects [16–19]. Wheeler when discussing the quan-
tum fluctuations in the spacetime metric [2] considered that
a typical fluctuation in a typical gravitational potential is
of the order �g ∼ (hG/c3)1/2/L which become appre-
ciable for small length scales L . A fundamental question
is whether a change in topology may be induced by large
metric fluctuations. In fact, Wheeler has argued in favor of a
topology change and recently researchers in quantum grav-
ity have accepted that the notion of spacetime foam leads to
topology-changing quantum amplitudes and to interference
effects between spacetimes of different topologies [20].

Indeed, a classical spacetime can be modeled by a sin-
gle Lorentzian manifold, which is sliced into a set of spatial
hypersurfaces by a natural definition of a time parameter
(see also Ref. [21] relating neutron star interiors and topol-
ogy change). We can mention some results about topolog-
ical constraints on the classical evolution of general rela-
tivistic spacetimes. These were summarized in two points by
Visser [20]:

1. In causally well-behaved classical spacetimes the topol-
ogy of space does not change as a function of time.

2. In causally ill-behaved classical spacetimes the topology
of space can sometimes change.

From the quantum point of view we can separate the
problem of topology change generated by a canonical quan-
tization approach and a functional integral quantization
approach. The Hawking topology change theorem is thus
enough to show that the topology of space cannot change
in canonically quantized gravity [22]. In the Feynman func-
tional integral quantization of gravitation things are different.
Indeed, in this formalism, it is possible to adopt an approach
to spacetime foam where we know that fluctuations of topol-
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ogy become an important phenomenon at least at the Planck
scale [23].

As discussed in Ref. [24], the Casimir energy approach
involving quasi-local energy difference calculations may
reflect or measure the occurrence of a topology change, and
in particular, the Casimir energy was used as an indicator of
topology change between wormholes and dark energy stars
[25]. More specifically, the quantity

EDS
ADM − EWormhole

ADM =
(

EDS
ADM − EFlat

ADM

)

−
(

EWormhole
ADM − EFlat

ADM

)
� 0, (1)

was used to understand which configuration is preferred with
respect to the Arnowitt–Deser–Misner (ADM) energy. It was
found that the classical term was not able to predict the
appearance of a wormhole or the permanence of a dark energy
star. Therefore one was forced to compute quantum effects.
The implicit subtraction procedure of Eq. (1) can be extended
in such a way that we can include quantum effects: this is the
Casimir energy or in other terms, the zero point energy (ZPE).
It is interesting to note that the same Casimir energy indicator
described in Eq. (1) has been used in Refs. [26–34] to build
a model of spacetime foam based on wormholes of differ-
ent nature, namely Schwarzschild, Schwarzschild–de Sitter,
Schwarzschild–anti-de Sitter and Reissner–Nordström-like
wormholes. In particular one finds that if the whole universe
is filled with Schwarzschild-like wormholes, one finds an
agreement with the Coleman mechanism on the behavior of
the cosmological constant [26].

In the present paper, we are interested in the possibility
that quantum fluctuations induce a topology change, in the
context of Gravity’s Rainbow [35–37]. The latter is a dis-
tortion of the spacetime metric at energies comparable to the
Planck energy, and a general formalism, denoted as deformed
or doubly special relativity, was developed in order to pre-
serve the relativity of inertial frames, maintain the Planck
energy invariant and impose the requirement that in the limit
E/EP → 0, the speed of a massless particle tends to a univer-
sal and invariant constant, c. Here, we adopt a semiclassical
approach, where the graviton one-loop contribution to a clas-
sical energy in a background spacetime is computed through
a variational approach with Gaussian trial wave functionals.
In fact, it has been shown explicitly that the finite one-loop
energy may be considered as a self-consistent source for a
traversable wormhole [38]. In addition to this, a renormal-
ization procedure was introduced and a zeta function regu-
larization was involved to handle the divergences. The latter
approach was also explored [39] in the context of phantom
energy traversable wormholes [40–42]. It was shown that the
latter semiclassical approach prohibits solutions with a con-
stant equation of state parameter, which further motivates the
imposition of a radial dependent parameter, ω(r), and only

permits solutions with a steep positive slope proportional to
the radial derivative of the equation of state parameter, evalu-
ated at the throat [39]. Using the semiclassical approach out-
lined above, exact wormhole solutions in the context of non-
commutative geometry were also analyzed, and their physi-
cal properties and characteristics were explored [43]. Indeed,
wormhole geometries have been obtained in a wide variety
of contexts, namely, in modified theories of gravity [44–51],
electromagnetic signatures of accretion disks around worm-
hole spacetimes [52,53], etc. (we refer the reader to [54] for
a review). The semiclassical procedure followed in this work
relies heavily on the formalism outlined in Ref. [38]. Rather
than reproduce the formalism, we shall refer the reader to
Ref. [38] for details, when necessary.

In this work, we explore an alternative approach to the
semiclassical approach outlined above. Note that the tra-
ditional manner is to fix a background metric and obtain
self-consistent solutions. Here, we let the quantum fluctua-
tions evolve, and the classical energy, which depends on the
evolved metric functions, is then evaluated. A natural ultravi-
olet (UV) cutoff is obtained which forbids an interior space-
time region, and which may result in a multiply connected
spacetime. Thus, in the context of Gravity’s Rainbow, this
process may be interpreted as a change in topology, and con-
sequently results in the presence of a planckian wormhole.

This paper is organized in the following manner: In Sect. 2,
the semiclassical approach is briefly outlined, and the gravi-
ton one-loop contribution to a classical energy is computed
through a variational approach with Gaussian trial wave func-
tionals. In Sect. 3, the self-sustained equation is interpreted in
a novel way, where the quantum fluctuations are let to evolve
and the classical energy is then computed, consequently one
arrives at solutions which may be interpreted as a change in
topology. Finally, in Sect. 4, we conclude.

2 The classical term and the one-loop energy
in Gravity’s Rainbow

2.1 Effective field equations in a spherically symmetric
background

In this paper, using a semiclassical approach, we explore the
possibility to directly compute a topology change and in par-
ticular the birth of a traversable wormhole. The starting point
is represented by the semiclassical gravitational Einstein field
equation given by

Gμν = κ
〈
Tμν

〉ren
, (2)

where
〈
Tμν

〉ren is the renormalized expectation value of the
stress-energy tensor operator of the quantized field, Gμν is
the Einstein tensor and κ = 8πG.
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The semiclassical procedure followed in this work relies
heavily on the formalism outlined in Ref. [38], where the
graviton one-loop contribution to a classical energy in a
traversable wormhole background was computed, through
a variational approach with Gaussian trial wave function-
als [38,55]. (Note that our approach is very close to the
gravitational geon considered by Anderson and Brill [8],
where the relevant difference lies in the averaging proce-
dure). More specifically, the metric may be separated into
a background component, ḡμν and a perturbation hμν , i.e.,
gμν = ḡμν + hμν . The Einstein tensor may also be split
into a part describing the curvature due to the background
geometry and that due to the perturbation, i.e., Gμν(gαβ) =
Gμν(ḡαβ) + �Gμν(ḡαβ, hαβ), where �Gμν(ḡαβ, hαβ) may
be considered a perturbation series in terms of hμν . If the
matter field source is absent, one may define an effective
stress-energy tensor for the fluctuations as

〈
Tμν

〉ren = − 1

κ

〈
�Gμν

(
ḡαβ, hαβ

)〉ren
. (3)

From this point of view, the equation governing quantum
fluctuations behaves as a backreaction equation. If we fix our
attention to the energy component of the Einstein field equa-
tions, we need to introduce a time-like unit vector uμ such
that uμuμ = −1. Then the semiclassical Einstein equations
(2) projected on the constant time hypersurface 	 are given
by

1

2κ

∫

	

d3x
√

3ḡGμν

(
ḡαβ

)
uμuν = −

∫

	

d3xH(0)

= − 1

2κ

∫

	

d3x
√

3ḡ
〈
�Gμν

(
ḡαβ, hαβ

)
uμuν

〉ren
, (4)

where we have integrated the projected Einstein field equa-
tions over 	 and where

H(0) = 2κGi jkl π i jπkl −
√

ḡ

2κ
R (5)

is the background field super-hamiltonian, Gi jkl is the
DeWitt super-metric [56], and R is the curvature scalar.

In a series of papers [35–37,57–59], a distortion of the
gravitational metric known as Gravity’s Rainbow was intro-
duced as a tool to keep the UV divergences under control.
Briefly, the situation is the following: one introduces two
arbitrary functions g1 (E/EP ) and g2 (E/EP ), denoted as
Rainbow’s functions, with the only assumption that

lim
E/EP→0

g1 (E/EP ) = 1 and

lim
E/EP→0

g2 (E/EP ) = 1. (6)

On a general spherical symmetric metric, such functions
come into play in the following manner:

ds2 = −N 2 (r)
dt2

g2
1 (E/EP )

+ dr2
[
1 − b(r)

r

]
g2

2 (E/EP )

+ r2

g2
2 (E/EP )

(
dθ2 + sin2 θdφ2

)
, (7)

where N (r) is the lapse function and b(r) denotes the shape
function.

It is clear that the classical energy on the l.h.s. of Eq. (4)
is modified to the following expression [59]:

H (0)
	 =

∫

	

d3x H(0) = − 1

16πG

∫

	

d3x
√

g R

= − 1

2G

∞∫

r0

dr r2

√
1 − b(r)/r

b′(r)

r2g2 (E)
. (8)

For simplicity, we consider N (r) = 1 throughout this work.
Note that to be a wormhole solution the following conditions
need to be satisfied at the throat b(r0) = r0 and b′(r0) <

1; the latter condition is a consequence of the flaring-out
condition of the throat, i.e., (b−b′r)/b2 > 0 [60]; asymptotic
flatness imposes b(r)/r → 0 as r → +∞.

2.2 The one-loop energy in Gravity’s Rainbow

Note that the r.h.s. of Eq. (4) is represented by the fluctu-
ations of the Einstein tensor, which in this context, are the
fluctuations of the hamiltonian which are evaluated through
a variational approach with Gaussian trial wave functionals.
The divergences are treated with the help of the Rainbow’s
functions avoiding therefore the use of a regularization and
renormalization procedure. We find that the total regularized
one-loop energy is given by

ET T = −1

2

∑
τ

g1 (E)

g2
2 (E)

[√
E2

1 (τ ) +
√

E2
2 (τ )

]
, (9)

where Ei (τ ) are the eigenvalues of

(
�̃m

Lh̃⊥)
i j

= E2

g2
2 (E)

h̃⊥
i j , (10)

with the condition that E2
i (τ ) > 0, h⊥ is the traceless-

transverse component of the perturbation, and �̂m
L is defined

by

(
�̂m

Lh⊥)
i j

=
(
�Lh

⊥)
i j

− 4Rk
ih

⊥
k j + 3 Rh⊥

i j . (11)
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The operator �L is the Lichnerowicz operator, which is given
by

(�L h)i j = �hi j − 2Rik jlh
kl + Rikhk

j + R jkhk
i , (12)

with � = −∇a∇a . We refer the reader to Ref. [38] for further
details.

With the help of the Regge–Wheeler representation [61],
the eigenvalue equation (10) can be reduced to

[
− d2

dx2 + l (l + 1)

r2 + m2
i (r)

]
fi (x) = E2

i,l

g2
2 (E)

fi (x) ,

(13)

with i = 1, 2. In Eq. (13) we have used reduced fields of
the form fi (x) = Fi (x) /r and defined two r -dependent
effective masses m2

1 (r) and m2
2 (r)

⎧⎪⎪⎨
⎪⎪⎩

m2
1 (r) = 6

r2

[
1 − b(r)

r

]
− 3b′(r)

2r2 + 3b(r)

2r3

m2
2 (r) = 6

r2

[
1 − b(r)

r

]
− b′(r)

2r2 − 3b(r)

2r3

(r ≡ r (x)) ,

(14)

where we have implicitly defined the variable x with the help
of the following relationship: dx = dr/

√
1 − b(r)/r .

In order to use the WKB approximation, from Eq. (13) we
can extract two r -dependent radial wave numbers

k2
i

(
r, l, ωi,nl

) = E2
i,nl

g2
2 (E)

− l (l + 1)

r2 − m2
i (r) i = 1, 2 .

(15)

It is useful to use the WKB method implemented by ‘t Hooft
in the brick wall problem [62], by counting the number of
modes with frequency less than ωi , i = 1, 2. This is given
approximately by

g̃ (Ei ) =
lmax∫

0

νi (l, Ei ) (2l + 1) dl, (16)

where νi (l, Ei ), i = 1, 2 is the number of nodes in the mode
with (l, Ei ), such that (r ≡ r (x))

νi (l, Ei ) = 1

π

+∞∫

−∞
dx
√

k2
i (r, l, Ei ). (17)

The integration with respect to x and l is taken over those
values which satisfy k2

i (r, l, Ei ) ≥ 0, i = 1, 2. With the help
of Eqs. (16) and (17), the self-sustained equation becomes

H (0)
	 = − 1

π

2∑
i=1

+∞∫

0

Ei
g1 (E)

g2
2 (E)

dg̃ (Ei )

dEi
dEi . (18)

The explicit evaluation of the density of states yields

dg̃(Ei )

dEi
=
∫

∂ν(l,Ei )

∂ Ei
(2l + 1)dl

= 4

3π

+∞∫

−∞
dxr2 d

dEi

(
E2

i

g2
2 (E)

− m2
i (r)

) 3
2

. (19)

Substituting Eq. (19) into Eq. (18) and taking into account
the energy density, we obtain

1

2G

b′(r)

r2g2 (E)
= 2

3π2 (I1 + I2) , (20)

where the integrals I1 and I2 are, respectively, given by

I1 =
∞∫

E∗
E

g1 (E)

g2
2 (E)

d

dE

[
E2

g2
2 (E)

− m2
1 (r)

] 3
2

dE

= 3

∞∫

E∗
E2 g1 (E)

g3
2 (E)

√
E2

g2
2 (E)

− m2
1 (r)

d

dE

(
E

g2 (E)

)
dE,

(21)

and

I2 =
∞∫

E∗
E

g1 (E)

g2
2 (E)

d

dE

[
E2

g2
2 (E)

− m2
2 (r)

] 3
2

dE

= 3

∞∫

E∗
E2 g1 (E)

g3
2 (E)

√
E2

g2
2 (E)

− m2
2 (r)

d

dE

(
E

g2 (E)

)
dE ,

(22)

where E∗ is the value which annihilates the argument of the
root. In I1 and I2 we have assumed that the effective mass
does not depend on the energy E . The purpose of this paper is
to show that the self-sustained equation (20) is also a source
of a topology change.

3 Topology change

Now, Eq. (20) can be read off in a twofold way. The tradi-
tional manner is to fix the same background on both sides and
verify the existence of a consistent solution on the remain-
ing parameters, e.g., the wormhole throat, establishing the
existence of a self-sustained traversable wormhole [38,39].
However, one may also adopt an alternative approach, where
one fixes the background on the r.h.s. of Eq. (20) and con-
sequently let the quantum fluctuations evolve, and then one
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verifies what kind of solutions we can extract from the l.h.s.
in a recursive way. To fix ideas, Eq. (20) should be read off
in the following manner:

1

2G

(
b′(r)

)(n)

r2g2 (E)
= 2

3π2

[
I1

(
b(n−1)(r)

)
+ I2

(
b(n−1)(r)

)]
,

(23)

where n is the order of the approximation. In this way, if we
discover that the l.h.s. has solutions which topologically dif-
fer from the fixed background of the r.h.s., we can conclude
that a topology change has been induced from quantum fluc-
tuations of the graviton for any spherically symmetric back-
ground on the r.h.s. of Eq. (20). Of course, it is not a trivial
task to realize multiple topology changes, even if Eq. (23) is
interpreted in this way.

The simplest way to see if Eq. (23) allows a topology
change is to fix the Minkowski background on the r.h.s. This
means that b(r) = 0 ∀r and for n = 1, so that the r.h.s. of
Eq. (23) reduces to

1

2G

b′(r)

r2g2(E)
= 4

π2

∞∫

E∗
E2 g1(E)

g3
2 (E)

√
E2

g2
2(E)

− 6

r2

d

dE

×
(

E

g2(E)

)
dE . (24)

Then all one has to do is determine the output of the l.h.s. of
Eq. (24), namely the classical energy in Gravity’s Rainbow.
Nevertheless the result is strongly dependent on the choices
that we impose on the Rainbow’s functions. We will discuss
two specific examples which, of course, do not exhaust all
the possible choices. Nevertheless, these specific cases show
that in principle if we adopt the alternative approach outlined
above, one arrives at a solution that can be interpreted as a
change in topology. Note that Eq. (23) is strictly related to
the “Ricci flow” which is a good tool to detect and compute a
topology change [63,64]. A Ricci flow is defined as follows:

∂gμν (xρ, λ)

∂λ
= −2Rμν

(
xρ, λ

)
, (25)

where Rμν is the Ricci curvature; λ is an evolution param-
eter which has the dimension of (length)2 and xρ are the
local coordinates on a manifold M . The indices μ, ν, ρ run
from 1 to n = dim M . Nothing forbids to consider only the
spatial part of the metric appearing in Eq. (25) assuming the
following form:

dl2 = dr2

1 − b(r,λ)
r

+ r2
(

dθ2 + sin2 θdφ2
)

. (26)

In this way the whole topology change information is
encoded in the shape function b (r, λ). In order to make a

connection between the Ricci flow and Eq. (23), it is conve-
nient to consider the following setting:

λ → E/EP Rμν

(
xρ, λ

) → CG Rμν

(
xρ, E/EP

)
, (27)

where C is a dimensionless constant and G is the Newton
constant. Thus, by contracting Eq. (25) with gi j

(
xk, E/EP

)
,

one gets

EP
gi j
(
xk, E/EP

)
∂gi j

(
xk, E/EP

)

∂ E
= −2R

(
xk, E/EP

)

= −4
b′(r, E/EP )

r2 . (28)

Multiplying both sides of the previous equation by 1/(
8G2g2 (E/EP )

)
, we find

EP

8G2g2 (E/EP )

gi j
(
xk, E/EP

)
∂gi j

(
xk, E/EP

)

∂ E

= − Cb′(r, E/EP )

2Gg2 (E/EP ) r2 . (29)

Comparing the r.h.s. of Eq. (29) with the l.h.s. of Eq. (23)
we can see that the one-loop contribution of the graviton
in the r.h.s. of Eq. (23) can be connected to the contracted
Ricci flow. However, a detailed analysis on the connection
between the Ricci flow and the iterative procedure exposed in
Eq. (23) is beyond the scope of this paper. To see if a topology
change appears, in the next sections we will discuss specific
examples.

3.1 Specific example I:
g1 (E/EP ) = exp(−α E2

E2
P
), g2 (E/EP ) = 1

Following Ref. [57,58], we consider the following choice for
the Rainbow’s functions:

g1 (E/EP ) = exp(−α
E2

E2
P

),

g2 (E/EP ) = 1; α > 0 ∈ R. (30)

then the integrals I1 and I2 take the following form:

I1 = I2 = 3

∞∫

E∗
exp

(
−α

E2

E2
P

)
E2

√
E2 − 6

r2 dE

= 3

2
E4

P

∞∫

√
6/r

exp(−αx)
√

x

√
x − 6

(r EP)2 dx

= 3E4
P

2
√

π

(
6

α (r EP)2

)
�

(
3

2

)
exp

(
− 3α

(r EP)2

)
K1

×
(

3α

(r EP)2

)
, (31)
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where we have used the change of variables E = √
x and

the following relationship:

∞∫

u

(x − u)μ−1 xμ−1 exp (−βx) dx = 1√
π

(
u

β

)μ−1/2

� (μ) exp

(
−βu

2

)
Kμ−1/2

(
βu

2

)
Re μ > 0

Re βu > 0
. (32)

Equation (24) can be rearranged in the following way:

1

2G

b′(r)

r2

= E4
P

π2

[
6

α (r EP )2 exp

(
− 3α

(r EP )2

)
K1

(
3α

(r EP)2

)]
,

(33)

where K1 (x) is a modified Bessel function of order 1. Note
that it is extremely difficult to extract any useful informa-
tion from this relationship, so that in the following we con-
sider two regimes, namely the cis-planckian regime, where
r EP � 1 and the trans-planckian regime, where r EP � 1.

In the cis-planckian regime, expanding the right hand side
of Eq. (33), we find that the leading term is given by

1

G

b′(r)

r2 � E4
P

π2

[
4

α2 − 12

α (r EP)2 +O
(
(r EP)−4

)]
,

(34)

which can be rearranged to give

b′(r) = 1

π2

[
4r2

α2G
− 12

α

]
, (35)

where we have used the definition G = E−2
P = l2

P . Restrict-
ing our attention to the dominant term only, we find that

b(r) = rt + 4E2
P

3π2α2

(
r3 − r3

t

)
− 12

α
(r − rt ) , (36)

which does not represent an asymptotically flat wormhole
geometry, as the condition b(r)/r → 0 when r → +∞,
is not satisfied. On the other hand, in the trans-planckian
regime, i.e., r EP � 1, we obtain the following approxima-
tion:

b′(r)

r2 � E2
P

2
√

α3π3

[
exp

(
−α

6

(r EP)2

) √
6

r EP
+ O (r EP )

]
.

(37)

Note that in this regime, the asymptotic expansion is domi-
nated by the Gaussian exponential so that the quantum cor-
rection vanishes. Thus, the only solution is b′(r) = 0 and
consequently we have a constant shape function, namely,

b(r) = rt . In the next two examples, we will consider differ-
ent forms of the Rainbow’s functions, in order to verify if a
topology change may occur.

3.2 Specific example II:
g1(E/EP ) = g2(E/EP ) = g(E/EP )

Reintroducing the Planck scale EP explicitly, we consider
the specific choice

g1(E/EP ) = g2(E/EP ) = g(E/EP), (38)

then the integrals I1 and I2 take the following form:

I1 = I2 = 3

∞∫

E∗

(
E

g2 (E/EP )

)2
√(

E

g2 (E/EP )

)2

− 6

r2

× d

dE

(
E

g2 (E/EP )

)
dE

= 3E4
P

x∞∫

√
6/r

x2

√
x2 − 6

r2 dx, (39)

and consequently Eq. (24) simplifies to

b(r)

g (E/EP )
= 8G E4

P

π2

∫
⎡
⎢⎣

x∞∫

√
6/r ′

x2

√
x2 − 6

r ′2 dx

⎤
⎥⎦ r ′2dr ′+C,

(40)

where C is an arbitrary constant fixed by boundary conditions
and where we have defined the following parameters:

x = E/EP

g (E/EP )
and x∞ = lim

E/EP→∞
E/EP

g (E/EP )
.

(41)

The integration inside the square brackets, in Eq. (40),
is straightforward to calculate and one finally arrives at(

G = E−2
P

)

b(r)

g (E/EP )
= 2E2

P

π2

∫ ⎡
⎣x∞

√(
x2∞ − 6

(EPr ′)2

)3

+ 6x∞
(EPr ′)2

√
x2∞ − 6

(EPr ′)2

− 18

(EPr ′)4 ln

(
x∞ +

√
x2∞ − 6

(EPr ′)2

)

+ 18

(EPr ′)4 ln

(√
6

(EPr ′)2

)⎤
⎦ r ′2dr ′+C. (42)
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Now, we have to fix the form of g(E/EP ). As a working
hypothesis, consider

g(E/EP ) = 1 + (E/EP )α (43)

with α > 0, where the factor x∞ is given by

x∞ = lim
E/EP→∞

E/EP

g (E/EP )
=
⎧
⎨
⎩

+∞ α < 1
1 α = 1
0 α > 1

. (44)

Due to the divergence present in α < 1, and as α > 1
leads to an imaginary result, the only possible choice is
given by α = 1. Note that the case under consideration has
been extensively studied in inflationary cosmology [65–67].
By using the explicit form of g(E/EP ), Eq. (42) reduces
to

b(r)

1 + E/EP
= 2E2

P

π2

∫
h
(
r ′) r ′2dr ′ + C, (45)

where

h
(
r ′) = 1

(EPr ′)3

⎧⎨
⎩
[(

EPr ′)2 − 6
] 3

2 + 6
[(

EPr ′)2 − 6
] 1

2

− 18

EPr ′ ln

⎡
⎣ EPr ′

√
6

+
((

EPr ′)2
6

− 1

) 1
2
⎤
⎦
⎫⎬
⎭ . (46)

It is immediate to observe that there is a natural UV cut-
off which forbids the use of an interior region [0,

√
6/EP ].

Indeed, below the point r = √
6/EP , the integrand becomes

imaginary. The integration in the interval
[
0,

√
6/EP

]
can

be thought of as a trans-planckian contribution to the shape
function which is also suppressed by a factor E/EP . On
the other hand in the cis-planckian region, g(E/EP) � 1
and

b(r) = 2E2
P

π2

∫
h
(
r ′) r ′2dr ′ + C. (47)

Thus, the natural UV cutoff which forbids the use of an
interior region, may be interpreted as a topology change. Now
we have to verify if this change has produced a wormhole
solution. The throat condition is satisfied by definition if one
imposes the condition that b(r0) = r0 =√

6/EP = C . When
r ′ � √

6/EP , we can write

h
(
r ′) � 1 − 3

(EPr ′)2 − 9

2 (EPr ′)4 , (48)

and one finds

b(r) = 2E2
P

π2

r∫

r0

(
1 − 3

(EPr ′)2 − 9

2 (EPr ′)4

)
r ′2dr ′ + r0

= 2E2
P

π2

[
r3 − r3

0

3
− 3

E2
P

(r−r0) + 9

2E4
P

(
1

r
− 1

r0

)]

+ r0. (49)

To be a wormhole solution, the flaring-out condition
at the throat, i.e., b′(r0) < 1, needs to be obeyed. The
radial derivative of the shape function is given by b′(r) =
12
π2

[(
r
r0

)2 − 1
2 − 1

8

( r0
r

)2], which reduces to b′(r0) = 9
2π2

at the throat, so that the flaring-out condition is satisfied. Note
that the resulting space is not asymptotically flat, but rather
asymptotically de Sitter; therefore the condition b(r)/r → 0
when r → ∞ is not satisfied. However, in principle, one may
match this interior solution to an exterior vacuum much in
the spirit of Refs. [68–73].

3.3 Specific example III: g2 (E/EP ) = 1 + E/EP and
g1 (E/EP ) = g (E/EP ) (1 + E/EP )6

A second interesting example can be proposed starting from
Minkowski space with the choice

g2 (E/EP ) = 1 + E/EP , (50)

which is necessary in order to avoid divergent or imaginary
values of the integral. Thus, we obtain I1 = I2 = I , and the
integral I is given by

I = E2
P

∞∫

E∗
E2 g1 (E/EP )

(1 + E/EP )3

√(
E/EP

1 + E/EP

)2

− 6

(EPr)2

× d

dE

(
E/EP

1 + E/EP

)
dE

= E4
P

∞∫

E P
√

6

r E P −√
6

g

(
E

EP

)(
1 + E

EP

)(
E

EP

)2

×
√(

E/EP

1 + E/EP

)2

− 6

(EPr)2 d

(
E

EP

)
, (51)

where we have set

g1

(
E

EP

)
= g

(
E

EP

)(
1 + E

EP

)6

, (52)

and inserted explicitly the value of E∗. The term r EP bec-
omes relevant when r ∼ E−1

P and integrating over r one gets
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b(r)

1 + E/EP
= 2E2

P

π2

∫
⎡
⎢⎢⎢⎢⎣

∞∫

E P
√

6

r ′ E P −√
6

g

(
E

EP

)(
1+ E

EP

)(
E

EP

)2

×
√(

E/EP

1 + E/EP

)2

− 6

(EPr ′)2 d

(
E

EP

)
⎤
⎥⎥⎥⎥⎦

× r ′2dr ′ + C. (53)

In this case, we also have a short distance cut off located
at r ′ = √

6/EP , below which the energy E becomes neg-
ative and the argument under square root becomes imag-
inary. Thus, by repeating the same steps we did for the
example I, we find that the integration over the first inter-
val can be interpreted as a trans-planckian region and there-
fore also suppressed by a factor E/EP . Thus, we are left
with

b(r) = 2E2
P

π2

∫
⎡
⎢⎢⎢⎢⎣

∞∫

E P
√

6

r ′ E P −√
6

g

(
E

EP

)(
1 + E

EP

)(
E

EP

)2

×
√(

E/EP

1 + E/EP

)2

− 6

(EPr ′)2 d

(
E

EP

)
⎤
⎥⎥⎥⎥⎦

×r ′2dr ′ + C. (54)

Assuming that the throat is located at r0 = √
6/EP , the

condition b(r0) = r0 = C is automatically satisfied. It is
important to observe that the factor 6/

(
EPr ′)2 is highly sup-

pressed in the region
[√

6/EP , r
]
. Therefore Eq. ( 54) can

be approximated to give

b(r) = 2E2
P

π2

∫ r

r0

⎡
⎢⎢⎢⎣

∞∫

√
6

r ′ E P

g

(
E

EP

)(
E

EP

)3

d

(
E

EP

)
⎤
⎥⎥⎥⎦ r ′2dr ′

+ r0. (55)

For simplicity, fixing g (E/EP ) = exp (−αE/EP ) (1+
βE/EP ) with β ∈ R, one obtains

b(r) = 2E2
P

π2

r∫

r0

⎡
⎢⎢⎢⎣− d3

dα3

∞∫

√
6

r ′ E P

exp (−αE/EP ) d

(
E

EP

)

+β
d4

dα4

∞∫

√
6

r ′ E P

exp (−αE/EP ) d

(
E

EP

)
⎤
⎥⎥⎥⎦ r ′2dr ′ +r0

= 12E2
P

π2α

r∫

r0

exp

(
− α

√
6

EPr ′

)
h(α, β, r ′)dr ′ + r0, (56)

where

h(α, β, r ′) = 1

α3 +
√

6

E Pr ′α2 + 3

E2
Pr ′2α

+
√

6

E3
Pr ′3

+β

(
6

E4
Pr ′4 + 4

√
6

r ′3αE3
P

+ 12

r ′2α2 E2
P

+ 4
√

6

r ′α3 EP
+ 4

α4

)
.

(57)

After the integration over r ′, for large values of r , one obtains

b(r) = r0 + 2E2
P

π2

[
2

α5 (4β + α) r3 − 2
√

6

eα E3
Pα

5

×
[(

α3 (3 + eα
)+ 12

(
2+2α + α2

))
β

+
(
α3 (3 + eαα

)+ 6α (1+α)
)]

+ 9

E4
Pr

+ 18
√

6

5r2 E5
P

(β − α)

]
+ O

(
r−3

)
. (58)

Contrary to the previous case, when we set β = −α/4, the
de Sitter behavior is eliminated. Plugging such a choice of
parameters into the shape function, one finds the following
asymptotically flat solution:

b(r) = r0+ 3
√

6

π2 EP eαα

{
1 − exp

[(
1 −

√
6

EPr

)
α

]}
. (59)

The resulting space is asymptotically flat, i.e., b(r)/r → 0
when r → ∞ is satisfied. The radial derivative of the shape

function is given by b′(r) = − 3r2
0

πeαr2 exp
[(

1 − r0
r

)
α
]
. Thus,

the latter evaluated at the throat reduces b′(r0) = −3/(πeα),
which satisfies the flaring-out condition at the throat, i.e.,
b′(r0) < 1 for all values of α. One can observe that the topol-
ogy change could have been approached also distorting the
one-loop graviton by means of a noncommutative geometry
like in Ref. [74–76], where the classical Liouville measure
has been modified into [74]

dni = d3xd3k

(2π)3 exp

(
−θ

4

(
ω2

i,nl − m2
i (r)

))
, i = 1, 2.

(60)

m2
i (r) are the effective masses described in (14) and θ is the

noncommutative parameter. What has been obtained is that
the usage of the distorted Liouville measure (60) produces a
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wormhole which is traversable in principle but not in practice,
but from the topology change point of view it is immediate
to see that a noncommutative approach is less flexible with
respect to Gravity’s Rainbow because of the θ parameter.
On this ground one could be interested to see how different
distortions can produce a topology change like in a Hořava–
Lifshitz (HL) theory. Needless to say that in a HL theory,
the first step is to see if traversable wormholes are allowed
in the more general setting of a HL theory without detailed
balanced condition. In this framework the large number of
coupling constant allows a certain degree of flexibility, which
is actually under investigation [77].

4 Summary and discussion

In this paper we have studied the problem of topology change
induced by vacuum fluctuations on a fixed background. The
calculation has been realized computing the graviton one-
loop contribution in a semiclassical approach. The method
is based on a variational approach with Gaussian trial wave
functionals, which is closely related to the Feynman path
integral approach. From this point of view, our result is not
in contrast with the Hawking conjecture forbidding a topol-
ogy change. It is interesting to note that the usual UV diver-
gences are kept under control using a distortion of the usual
gravitational background metric known as Gravity’s Rain-
bow which is activated at the Planck scale, where it is sup-
posed that the structure of spacetime begins to become foamy.
In practice, the energy density of the graviton one-loop con-
tribution, or equivalently the background spacetime, is left
to evolve, and consequently the classical energy is deter-
mined. More specifically, the background metric is fixed to be
Minkowskian in the equation governing the quantum fluctu-
ations, which behaves essentially as a backreaction equation,
and the quantum fluctuations are left to evolve. The classi-
cal energy, which depends on the evolved metric functions,
is then evaluated. Analyzing this procedure, a natural UV
cutoff is obtained, which forbids the presence of an interior
spacetime region, and this may result in a multiply connected
spacetime. Note that one could interpret the UV cutoff as a
failure of the WKB approximation because the interior region
becomes imaginary. However, this appears only in examples
II and III, where the Rainbow’s functions do not quickly
eliminate the divergent behavior as the example I shows. It is
important also to remark that the validity range of the WKB
approximation is in the high energy sector which is well sat-
isfied by the trans-planckian regime which we are probing.
However, let us assume that one must include the interior
region producing an imaginary contribution. From the impo-
sition that b (r) must be real, this imaginary contribution is
automatically cut off. Moreover, let us suppose that the Grav-
ity’s Rainbow argument does not apply to this case, then to

have finite results one could impose a UV cutoff by hand in
Eq. (24) to have finite results. This UV cutoff simply becomes

r ≥
√

6

�U V
, (61)

which means that one cannot impose the Minkowski space as
a reference space and therefore there is no a topology change.
However, Gravity’s Rainbow allows one to consider �U V →
∞. This means that the previous inequality simply reduces
to r ≥ 0, namely Minkowski space. Thus, in the context
of Gravity’s Rainbow, this process may be interpreted as a
change in topology, and consequently results in the presence
of a planckian wormhole.

Note that in principle, one can adopt other backgrounds
including a positive cosmological constant, i.e., a de Sitter
spacetime, or a negative cosmological constant, namely an
anti-de Sitter spacetime concluding that a hole can be pro-
duced by Zero Point Energy quantum fluctuations. Finally
using the Casimir energy indicator [24], one can conclude
that the presence of holes in spacetime seems to be favored
leading therefore to a multiply connected spacetime. It is also
interesting to note that one could compute the transition from
Minkowski to a de Sitter spacetime or anti-de Sitter space-
time. It is important to remark that once the topology has
been changed nothing can be said on the classical/quantum
stability of the new spacetime because the whole calculation
has been performed without a time evolution. It would also
be interesting to consider solutions with charge. Indeed in
[78,79], the Wheeler–DeWitt equation was considered as a
device for finding eigenvalues of a Sturm–Liouville prob-
lem. In particular, the Maxwell charge was interpreted as
an eigenvalue of the Wheeler–De Witt equation generated
by the gravitational field fluctuations. More specifically, it
was shown that electric/magnetic charges could be gener-
ated by quantum fluctuations of the pure gravitational field.
It would also be interesting to consider the presence of elec-
tric/magnetic charges in the solutions outlined in this paper,
and work along these lines is currently under way.
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