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S U M M A R Y
The temporal variation in the density structure associated with convective motions in the outer
core causes a change in the Earth’s gravity field. Core flows also lead to a gravity change through
the global elastic deformations that accompany changes in the non-hydrostatic pressure at the
core–mantle boundary (CMB). In this work, we present predictions of the gravity changes
from these two processes during the past century. These predictions are built on the basis of
flows at the surface of the core that are reconstructed from the observed geomagnetic secular
variation. The pressure-induced gravity variations can be reconstructed directly from surface
core flows under the assumption of tangential geostrophy; predicted variations in the Stokes
coefficients of degree 2, 3 and 4 are of the order of 10−11, 3 × 10−12 and 10−12, respectively,
with a typical timescale of a few decades. These correspond to changes in gravity of 70, 30
and 15 nGal, and to equivalent geoid height variations of 0.15, 0.05 and 0.02 mm, respectively.
The density-induced gravity variations cannot be determined solely from surface core flows,
though a partial recovery is possible if flows with important axial gradients dominate the
dynamics at decadal timescales. If this is the case, the density-induced gravity signal is of
similar amplitude and generally anti-correlated with the pressure-induced signal, thus reducing
the overall amplitude of the gravity changes. However, because we expect decadal flows to be
predominantly axially invariant, the amplitude of the density-induced gravity changes should
be much smaller. Our prediction also allows to determine upper bounds in pressure change at
the CMB and density change within the core that have taken place during the past 20 yr such
that observed gravity variations are not exceeded; for harmonic degree 2, we find a maximum
pressure change of approximately 350 Pa and a maximum departure from hydrostatic density
of approximately 1 part in 107. Although the predicted gravity changes from core flows are
small, they are at the threshold of detectability with high-precision gravity measurements from
satellite missions such as GRACE. The most important challenge to identifying a core signal
will be the removal of interannual gravity variations caused by surface processes which are an
order of magnitude larger and mask the core signal.

Key words: Gravity anomalies and Earth structure; Time variable gravity; Dynamo: theories
and simulations; Core, outer core and inner core.

1 I N T RO D U C T I O N

Gravity variations recorded at the Earth’s surface occur over a wide
range of timescales. At a diurnal timescale, tidal interactions with
the Moon, the Sun and other planets are responsible for the observed
variations (e.g. Agnew 2007). At a timescale of a few years and
shorter, the variations are dominantly caused by mass displacements
induced by ocean currents and atmospheric circulation, as well
as those occurring in the cryosphere and hydrosphere (e.g. Chen
& Wilson 2003). Gravity variations occurring over a timescale of
thousands of years are caused by postglacial rebound (e.g. Tamisiea
et al. 2007). On a much longer timescale of millions of years,
sufficiently long that over the accessible time span of observation
the gravity signal appears static, the largest variations are from mass
displacements involved in mantle convection (e.g Hager et al. 1985).

Observations indicate that gravity variations also occur over in-
terannual and decadal timescales (e.g. Cox & Chao 2002; Chen &
Wilson 2003). Some of these observed changes are undoubtedly
the result of surface processes. However, it is possible that decadal
variations may comprise a part induced by fluid motion in the outer
core. Indeed, inversions of geomagnetic secular variation reveal the
presence of core flows that vary on a timescale of decades (Bloxham
& Jackson 1991; Holme 2007). Should these flows have the ability
to generate density variations, decadal gravity variations from these
can be expected.

The most straightforward way by which core flows create density
variations is simply through the displacement in time of density
heterogeneities within the core that they induce. The latter are ei-
ther directly entrained by core flows or related to them through an
evolving force balance. Displaced mass in the core results in a global
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636 M. Dumberry

Figure 1. Gravitational potential variations at the surface caused by time-dependent core flows. In all three figures, the deflection of the surface of constant
gravitational potential is depicted by the warped thick solid curve above the Earth’s surface (the unperturbed gravitational potential is represented by the dashed
line). Similarly, deflections of the CMB and Earth’s surface are shown as warped solid lines (dashed lines represent their unperturbed geometry). Dark and light
grey areas represent positive and negative density changes, respectively. (a) Gravitational potential variations from density perturbations in the core. Positive
density anomalies (‘+’) produce an upward deflection and negative anomalies (‘−’) lead to a downward deflection. (b) The density variations induced by
global elastic deformations contribute to an additional perturbation in gravity. Shown on the figure are the density perturbations resulting from the deflection of
the CMB and the Earth’s external surface. The deflection of density surfaces within the mantle and core also contribute to the density perturbations but are not
shown. The total gravitational potential at the surface (thick solid line) is the sum of that from the imposed density change in the core (thin solid line) and that
from the associated global elastic deformations. We note that the sign and amplitude of the surface deflections and potential change shown on the figure are for
the purpose of illustration only; they are non-trivial functions of the radial profiles of hydrostatic density and elastic moduli as well as on the wavelength and
depth of the density perturbation within the core. (c) Gravitational potential variations resulting from horizontal pressure gradients at the CMB. The change in
the normal surface force on the CMB, shown by the black arrows, perturbs the mechanical equilibrium and lead to global elastic deformations which includes
deflection of the CMB and the Earth’s surface (shown on the figure) as well as deflections of the density surfaces within the mantle and core (not shown). The
potential change at the surface results from the integrated density perturbation of these elastic displacements.

change in gravity, including at the Earth’s surface (Fig. 1a). This per-
turbation of the internal gravity field must be accompanied by global
elastic deformations, taking place in order to maintain the mechan-
ical equilibrium of the planet. These entrain a secondary density
perturbation, also contributing to the change in gravity (Fig. 1b).

Core flows also lead to density variations through their inter-
action with the inner core and mantle. First, a change in core
flows involves a change in the non-hydrostatic pressure inside the
core. This entrains a change in the normal surface force acting on
the core–mantle boundary (CMB), thereby altering the mechani-
cal equilibrium, leading to global elastic deformations and, conse-
quently, to changes in gravity (Fig. 1c, e.g. Merriam 1988). The
same process occurs at the inner core boundary (ICB). Second,
flows near the CMB and ICB can lead to torques on the mantle
and inner core. Subject to a torque, the inner core will undergo a
differential rotation with respect to the mantle. Because the inner
core density structure is not spherically symmetric, this entrains
gravity variations as viewed in the mantle frame. This is the case
for an equatorial rotation of the elliptical geometric figure of the
inner core (Dumberry 2008), and also for an axial rotation of the
inner core if its density is not axially symmetric (e.g Mound &
Buffett 2003). Additionally, the change in mantle rotation imposed
by the requirement of angular momentum conservation through
these torques lead, by mechanical deformation, to a secondary
change in its moment of inertia, and thus to a change in gravity.

The focus of the present study is on gravity variations induced by
time-dependent density heterogeneities within the fluid core as well
as those caused by changes in pressure at the CMB. Our goal is to
attempt a recovery of these variations on the basis of temporal vari-
ations in core flows near the CMB that are themselves reconstructed
from the observed geomagnetic secular variation.

The prospect of recovering the pressure-induced gravity varia-
tions is better than that for the density-induced part. This is because
if one assumes that the horizontal force balance near the surface of
the core is tangentially geostrophic (Hills 1979; Le Mouël 1984),
horizontal pressure gradients are directly related to core flows.
The axially symmetric component of gravity changes inferred from

this method have already been investigated by Fang et al. (1996),
Dumberry & Bloxham (2004) and Greff-Lefftz et al. (2004). Here,
we extend this investigation to also include non-axisymmetric grav-
ity variations.

The gravity signal caused by decadal changes in density hetero-
geneities within the core is more difficult to constrain from ob-
servations. First, this is because we require knowledge of density
heterogeneities not only near the CMB but also deeper in the core. To
infer the latter from surface core flows requires additional dynamic
assumptions which may not be valid. Second, and more importantly,
the recovery of density heterogeneities depends on the radial shear
of the flow near the CMB. This part of the core flow cannot be
constrained robustly with geomagnetic observations (Jault & Le
Mouël 1991; Whaler & Davis 1997). Thus, we expect the density-
induced gravity variations to be less reliably determined than the
pressure-induced part.

Gravity variations from these processes are expected to be small.
For instance, variations in the elliptical component of the gravity
field, J 2, caused by pressure changes at the CMB are expected
to be on the order of 10−11 (Dumberry & Bloxham 2004; Greff-
Lefftz et al. 2004). This corresponds to a change of approximately
150 nGal at the surface, or a corresponding change in geoid height
of 0.3 mm, and is an order of magnitude smaller than some of the
observed variations (Cox & Chao 2002; Chao et al. 2003). As for
the density-induced gravity, given that departures in density from
the hydrostatic reference state are expected to be of the order of one
part in 109 (Stevenson 1987), one may be tempted to neglect this
contribution entirely. However, as shown in the study of Jiang et al.
(2007), and as we will show in the present study, despite their small
size, they can lead to gravity variations of the same order as those
from pressure.

Although small, variations at the longest wavelength from core
processes are larger than the accuracy of superconducting gravime-
ters (Hinderer et al. 2007) and of the same order as that of the
GRACE satellite mission (Tapley et al. 2004). With the anticipation
of future improvements in gravity observations, it may eventually
become possible to recover a gravity signal from the core. Since this

C© 2009 The Author, GJI, 180, 635–650

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/180/2/635/687430 by guest on 21 August 2022



Gravity variations induced by core flows 637

gravity signal is connected to core flows, it would open the prospect
of using gravity observations to confirm or further constrain core
flows inverted from geomagnetic observations.

The main objective of our study is to build a prediction of the
gravity changes induced by core flows. This requires first to estab-
lish the theoretical framework appropriate to do so; this is done in
Section 2. Predictions based on this theory and on time-dependent
models of core surface flows are presented in Sections 3 and 4. In
Section 3, we investigate the gravity variations in the time interval
1900–1990. This allows to determine the amplitude of the decadal
gravity variations that result from core flows. In Section 4, we focus
on the more recent time interval of 1985–2005, where we can also
compare our predictions with actual observations of gravity varia-
tions. The prospect of detecting core-flow induced gravity variations
and the conditions required to do so can then be assessed. The ob-
served gravity variations also allow to establish tentative bounds on
pressure and density changes within the core that have occurred in
the past two decades. This is an important issue in the light of a re-
cent suggestion that time-dependent heterogeneities in the core can
be inferred seismically (Dai & Song 2008). If one wants to invoke
density heterogeneities as a preferred explanation for these seismic
anomalies, one must make sure that the predicted gravity signal
from these do not exceed the observed signal. Finally, in Section 5,
we conclude with a summary and a discussion of our results.

2 T H E O RY

2.1 Gravity variations

As shown in Fig. 1(a), density perturbations ρ ′ with respect to the
background hydrostatic density ρo in the core result in a change in
gravitational potential everywhere inside the Earth. This potential,
which we denote by V 1, perturbs the internal force balance and
small elastic deformations take place in order to maintain the global
mechanical equilibrium. The global density change that results from
the latter produces an additional contribution to the gravitational
potential, as depicted in Fig. 1(b), which we denote by V 2.

Changes in the horizontal gradient of the non-hydrostatic pres-
sure field p at the CMB result in a change in the normal force
applied on the CMB. This perturbs the mechanical equilibrium and
consequently, global elastic deformations must take place. These
deformations cause a change in the gravitational potential (Fig. 1c)
and we denote this contribution to the potential by V 3.

The density heterogeneities ρ ′ and the non-hydrostatic pressure p
in the core are both associated with core flows. Temporal variations
in these flows lead to changes in ρ ′ and p and thus to temporal
variations in the gravitational potential V = V 1 + V 2 + V 3. Our
aim is to build a prediction of V at the surface of the Earth based
on time-dependent variations ρ ′ and p in the core.

Let us write the gravitational potential at the surface (radius
r = re) as an expansion of surface spherical harmonics,

V (re) =
∞∑

l=2

l∑
m=0

[
cφ

m
l cos mφ + sφ

m
l sin mφ

]
Pm

l (cos θ ) , (1)

where (r , θ , φ) are spherical polar coordinates and Pm
l (cos θ ) are

associated Legendre polynomials. Given a model of ρ ′ within the
core and p at the CMB, expanded, respectively, as

ρ ′(r ) =
∞∑

l=2

l∑
m=0

[
cρ

m
l (r ) cos mφ + sρ

m
l (r ) sin mφ

]
Pm

l (cos θ ) ,
(2)

p =
∞∑

l=2

l∑
m=0

[
c�

m
l cos mφ + s�

m
l sin mφ

]
Pm

l (cos θ ) , (3)

our task is to determine the coefficients cφ
m
l and sφ

m
l of the gravi-

tational potential in terms of the coefficients c ρm
l (r ), s ρm

l (r ), c�
m
l

and s�
m
l . Note that in (1), (2) and (3), the summation does not in-

clude terms with l = 0 and 1; we assume in this study that mass is
conserved and that core motions do not change the location of the
centre of mass. [Degree-one perturbations in gravity are considered
in the study of Greff-Lefftz & Legros (2007).]

We further specify that the associated Legendre polynomials are
normalized such that∫ [

Pm
l cos mφ

]2
d� =

∫ [
Pm

l sin mφ
]2

d� = 4π

2l + 1
. (4)

Using this so-called Gauss–Schmidt normalization is convenient
because it follows the usual convention employed in geomagnetism.
This choice will facilitate the relationship between coefficients of
density and pressure with those of core flows that are retrieved from
the geomagnetic secular variation.

In geodesy, the usual convention is different: the associated Leg-
endre polynomials are normalized such that the right-hand side of
(4) is equal to 4π . The gravitational potential V (r) at a radius r above
the Earth’s surface is commonly reported in terms of the following
spherical harmonic expansion,

V (r ) = − G M

r

[
1 +

∞∑
l=2

l∑
m=0

(re

r

)l
V lm

]
, (5)

where M is the mass of the Earth and

Vlm = (Clm cos mφ + Slm sin mφ) P̄m
l (cos θ ) . (6)

The coefficients Clm and Slm are known as Stokes coefficients, and
P̄m

l (cos θ ) are related to our Gauss–Schmidt normalized Pm
l (cos θ )

by P̄m
l (cos θ ) = √

2l + 1Pm
l (cos θ ).

For convenience, we will use the expansion of the potential given
by eq. (1) in the development of the next two subsections. Ulti-
mately, it will be necessary to transform the predicted changes in
the coefficients cφ

m
l and sφ

m
l into changes in terms of Stokes coef-

ficients Clm and Slm.

2.1.1 Gravity changes from density heterogeneities in the core

Let us suppose a density perturbation in the core concentrated in
a thin radial surface of thickness dr at radius r and expressed in
terms of a surface mass density σ (r ). We expand σ (r ) in terms of a
spherical harmonic decomposition as in (1) with coefficients σα(r ).
Here, we have introduced a short-hand notation, where we write
σα(r ) to represent a single spherical harmonic coefficient with a
specific combination of l and m and subscript c or s. The surface
mass density causes a change in the gravitational potential V 1 at
the Earth’s surface and the coefficients of these two quantities are
related by (e.g. Kaula 1968)

φ(1)
α = − 4πG

2l + 1

r l+2

r l+1
e

σα(r ), (7)

where G is the gravitational constant. Fig. 2 shows how φ(1)
α changes

as a function of the radius at which the surface mass density is
applied for harmonic degrees l = 2– 6. In these calculations, the
amplitude of the surface mass density coefficients is constant and
chosen such that φ(1)

α = 1 at the CMB for l = 2. Fig. 2 illustrates
how density perturbations with long wavelength and near the CMB

C© 2009 The Author, GJI, 180, 635–650

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/180/2/635/687430 by guest on 21 August 2022



638 M. Dumberry

Figure 2. Amplitude of the gravitational potential at the Earth’s surface as
a function of the radius at which a surface mass density is applied within
the outer core for spherical harmonic degree l = 2 (black), l = 3 (red),
l = 4 (blue), l = 5 (green) and l = 6 (purple). Solid lines show the potential

for a rigid Earth (no elastic deformations, φ
(1)
α as given by eq. 7). Dashed

lines show the potential when the contribution from elastic deformations is

included (φ(1)
α + φ

(2)
α ). The amplitude of the applied surface mass density

is constant, with an amplitude chosen such that φ
(1)
α = 1 at the CMB for

l = 2.

Figure 3. The contribution to the gravitational potential at the surface of
the Earth caused by elastic deformations, κ l(r ), as a function of the radius
in the fluid core at which the surface mass density is applied, for spherical
harmonic degree l = 2 (black), l = 3 (red), l = 4 (blue), l = 5 (green) and
l = 6 (purple).

lead to a comparatively larger change in gravitational potential than
density perturbations with shorter wavelength or seated deeper in
the core.

To the potential V 1, we must add the contribution from elastic
deformations V 2 with coefficients φ(2)

α . For small density perturba-
tions in the core, the density variations from elastic deformations
are also small and the coefficients φ(2)

α are linearly related to the
coefficients φ(1)

α through

φ(2)
α = κl (r ) φ(1)

α . (8)

The factor κ l(r ) characterizes the response of the Earth to an applied
internal load. Its numerical value represents the relative importance
of φ(2)

α compared to that of φ(1)
α for a surface mass density of har-

monic degree l located at radius r within the core. Note that it does
not depend on spherical order m. In Fig. 3, we show how κ l(r ) varies
as a function of the radius r at which the surface mass density is
applied and for l = 2– 6. These values have been calculated in a
manner similar to that detailed in Dumberry & Bloxham (2004) but
adapted for the present problem; a brief summary of this method is
given in the Appendix. For l = 2, elastic deformations increase the

amplitude of the gravitational potential at the surface by approxi-
mately 30 per cent. For l > 2, elastic deformations contribute to
a change of approximately 10 per cent or less compared to a rigid
Earth. We note that κ l(r ) can be both positive or negative: whether
elastic deformations contribute to an increase or decrease in the
resulting potential at the surface is a complex function of the radial
profile of the hydrostatic density and elastic parameters and depends
also on the harmonic degree and location of the imposed density
perturbation. A case in point is κ3(r ), which is positive when the
density perturbation is deep in the core, but negative when it is close
to the CMB.

For a given coefficient of surface mass density, the combined
change in the gravitational potential is the sum of (7) and (8)

φα = φ(1)
α [1 + κl (r )] . (9)

We show in Fig. 2 how the gravitational potential at the Earth’s
surface is changed by the inclusion of the contribution from elastic
deformations (dashed lines). While elastic deformations modify the
gravitational potential significantly for l = 2, their effect are less
important for l > 2.

For a general density distribution, the change in gravitational
potential at the Earth’s surface is then obtained by an integration
over the thickness of the fluid core,

φα = − 4πG

2l + 1

1

r l+1
e

∫ r f

ri

ρα(r ) [1 + κl (r )] r l+2 dr , (10)

where σα(r ) = ρα(r )dr and ri and rf are the radii of the inner core
and fluid core, respectively.

The strategy that we have employed to take into account the
elastic response of the Earth to applied internal loads is equivalent
to that used to explain the static part of the gravitational potential
in terms of mantle density heterogeneities (e.g. Richards & Hager
1984; Defraigne et al. 1996). The difference here is that our load
numbers are calculated for density perturbations taking place within
the core as opposed to within the mantle.

In terms of changes in Stokes coefficients, density variations
expressed by the coefficients defined in (2) lead to the following
changes in �Clm and �Slm,

�Clm = 4π

(2l + 1)3/2

1

Mrl
e

∫ r f

ri

cρ
m
l (r ) [1 + κl (r )] r l+2 dr , (11)

�Slm = 4π

(2l + 1)3/2

1

Mrl
e

∫ r f

ri

sρ
m
l (r ) [1 + κl (r )] r l+2 dr . (12)

Thus, �Clm, �Slm vary as (rf /re)l(2l + 1)−3/2 ≈ 2−l(2l + 1)−3/2

with harmonic degree l; a density change in the core of the same
amplitude but higher degree results in smaller gravity variation at
the surface.

2.1.2 Gravity changes from pressure variations at the CMB

A change in non-hydrostatic pressure at the CMB perturbs the me-
chanical equilibrium. The induced global elastic deformations lead
to global density variations and to an associated change in grav-
itational potential. To determine the gravitational potential at the
Earth’s surface that results from a given change in pressure at the
CMB, it is necessary to solve the set of elastic-gravitational equa-
tions for small displacements in the whole Earth. Details of how this
is done can be found in Dumberry & Bloxham (2004) and Greff-
Lefftz et al. (2004). Given a pressure field at the CMB expanded
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Table 1. Parameters used in calculations.

Parameter Value

Gravitational constant G = 6.67 × 10−11 m3 kg−1 s−2

Mass of the Earth M = 5.97 × 1024 kg
Radius of Earth re = 6.371 × 106 m
Radius of the core rf = 3.480 × 106 m
Mean density ρ̄ = 5515 kg m−3

Density of core at CMB ρf = 9 903 kg m−3

Gravitational acceleration at CMB gf = 10.682 m s−2

Rotation frequency � = 7.292 × 10−5 s−1

Elastic coefficients k̄2 = 1.116 × 10−1

k̄3 = 3.304 × 10−2

k̄4 = 1.156 × 10−2

k̄5 = 4.560 × 10−3

k̄6 = 1.957 × 10−3

in spherical harmonics with coefficients �α , the change in gravita-
tional potential at the surface can be expressed in a concise manner
as

φ(3)
α = − k̄l�α

ρ̄
, (13)

where ρ̄ is the mean density of the Earth. The coefficients k̄l allow
to relate a pressure change of degree l at the CMB to the change
in gravitational potential of the same degree at the surface. Their
numerical values have been computed by Dumberry & Bloxham
(2004) and Greff-Lefftz et al. (2004) and are listed in Table 1.

The change in the Stokes coefficients are then related to the
pressure coefficients given in (3) by

�Clm = k̄l√
2l + 1

re

G M ρ̄
c�

m
l , (14)

�Slm = k̄l√
2l + 1

re

G M ρ̄
s�

m
l . (15)

Thus, �Clm, �Slm vary as kl(2l + 1)−1/2 ≈ 3−l(2l + 1)−1/2 with
harmonic degree l; as for the density-induced gravity, a change in
pressure at the CMB of the same amplitude but higher harmonic
degree results in a smaller gravity change at the Earth’s surface.

2.2 Core dynamics

Knowledge of the temporal variations in density in the core and
pressure at the CMB allow a prediction of gravity variations at the
surface from (11)–(12) and (14)–(15). Changes in both the density
and pressure are related to core flows. Our goal is to recover these
changes based on flows at the surface of the core, the part that can
be retrieved from the geomagnetic secular variation. This is the task
on which we concentrate in this section. To do so, an excursion into
core dynamics is necessary.

2.2.1 Geostrophic pressure at the CMB

The pressure at the CMB can be related to fluid motions u on the
basis of the Navier–Stokes equation, which in its Boussinesq form
is (e.g. Gubbins & Roberts 1987)

ρo

(
∂u

∂t
+ u · ∇u + 2� × u

)
= −∇ p + J × B − ρ ′gor̂

+ ρoν∇2u ,
(16)

where t is time, B is the magnetic field, J is the current density, go is
the scalar gravitational acceleration, ν is the kinematic viscosity and
� = �ẑ is the Earth’s rotation vector pointing in the axial direction
ẑ. In writing (16), we have assumed the flow to be incompressible,
an approximation that applies for the whole of this study.

An order of magnitude analysis suggests that inertial and vis-
cous forces are small compared to other terms, leaving a so-called
magneto-geostrophic balance between the Coriolis acceleration,
pressure gradients, the Lorentz force and buoyancy (e.g. Gubbins
& Roberts 1987),

2ρo� × u = −∇ p + J × B − ρ ′gor̂ . (17)

Based on the amplitude of the observed magnetic field at the Earth’s
surface downward continued to the CMB, the Lorentz force near the
surface of the core is expected to be small (e.g. Bloxham & Jackson
1991; Jault & Le Mouël 1991). If this assumption is correct, the
flow in the outermost part of the core (in the free stream, outside
the thin viscous boundary layer adjacent to the CMB) should then
be governed by

2ρ f � ẑ × u = −∇ p − ρ ′g f r̂ , (18)

where ρ f is the hydrostatic density on the core-side of the CMB
and gf is the gravitational acceleration at the CMB. Taking r̂× (18),
with ur = 0, we obtain (Le Mouël 1984)

2�ρ f cos θ uh = r̂ × ∇h p , (19)

relating horizontal flows uh = uh (θ , φ) to horizontal pressure gra-
dients, where ∇h = ∇ − r̂ ∂

∂r .
Condition (19) is known as tangential geostrophy. On the basis

of this condition, the coefficients of pressure at the CMB, as defined
in (3), can be related directly to core flow coefficients and closed
form relationships between them are presented in Gire & Le Mouël
(1990). By using (14) and (15), a prediction of temporal gravity
variations induced by pressure changes at the CMB can be obtained
directly from a time-dependent model of core flows.

The amplitude of the gravity changes at the surface of the Earth
caused by this process can be determined based on a simple order
of magnitude calculation. From (19), a typical change in pressure
at the CMB is related to a typical change in the amplitude of core
flows U by,

p ∼ 2�ρ f r f U . (20)

Assuming U = 1 km yr−1 (∼0.03 mm s−1), typical of changes over
a decade inferred from geomagnetic secular variation, and using the
parameter values listed in Table 1, we expect pressure variations of
the order of 150 Pa. From (14) and (15), such a pressure change at
degree 2, 3 and 4 would lead to changes in Stokes coefficients of
2.2 × 10−11, 5.6 × 10−12 and 1.6 × 10−12, respectively, consistent
with the findings of Dumberry & Bloxham (2004) and Greff-Lefftz
et al. (2004). These estimates also give a sense of the trend of
the gravity change as a function of harmonic degree, decreasing
by approximately an order of magnitude for an increase of two in
harmonic degree.

2.2.2 Lateral density heterogeneities in the core inferred
from a thermal wind balance

A diagnostic equation relating density heterogeneities to core flows
can be obtained by taking ∇ × (17), which gives

−2�ρoẑ · ∇u = gor̂ × ∇hρ
′ + ∇ × (J × B) . (21)
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640 M. Dumberry

Figure 4. (a) Illustration of a thermal wind flow for the specific case of a density gradient (ρa > ρb) in the latitudinal direction. This density gradient supports
an azimuthal flow (black arrows) with a gradient in z, as prescribed by eq. (22). (b) Illustration of a geostrophic flow or the leading order s − φ component
of a quasi-geostrophic flow. The cylindrical outline represents closed contours of the axially invariant flow (black arrows) in the s − φ direction. This flow is
supported by an axially invariant pressure gradient in the s − φ direction (pa < pb) as prescribed by eq. (26). In both figures, � is the Earth’s rotation vector
and the thick grey line represents the CMB.

The left-hand side of (21) only involves gradients in the flow along
the rotation axis, which we refer to as non-rigid flows. In a magneto-
geostrophic balance, non-rigid flows can result either from lateral
variations in density or from the Lorentz force. If the Lorentz force
near the surface of the core is small, as we approximated in the
previous section, and with ur ≈ 0, then we recover a thermal wind
balance

−2�ρ f

g f
ẑ · ∇uh = r̂ × ∇hρ

′ . (22)

An illustration of a thermal wind flow is shown in Fig. 4(a).
Based on (22), lateral density variations near the CMB can

be reconstructed from horizontal flows and their axial gradients
(e.g. Hulot et al. 1990; Jackson & Bloxham 1991). Indeed, eq. (22)
has been used to connect the steady part of core flows to lateral tem-
perature variations in the lower mantle (Bloxham & Jackson 1990;
Kohler & Stevenson 1990; Amit & Olson 2006). In this scenario, it
is assumed that the pattern of lateral density variations in the core is
imposed by lateral temperature gradients at the base of the mantle.
The amplitude of ρ ′ is linearly related to lower mantle temperature
by a proportionality constant and decays with depth inside the core.

For our present purpose, we are not interested in the steady part
of the thermal wind balance but in its decadal variation. In this
‘thermal wind’ scenario, decadal changes in non-rigid flows would
reflect decadal changes in ρ ′ that are not controlled by the lower
mantle but instead related to convective core dynamics.

A simple estimate of the density change associated with core
flows is obtained from (22). For a typical change in flow amplitude
U , there should be an associated change in density of

ρ ′ ∼ 2�ρ f

g f

Lh

Lz
U , (23)

where Lz is a typical length scale of the shear of U in the z-direction
and Lh is a typical length scale of the horizontal gradient in ρ ′.
An order of magnitude estimate of the gravity variations resulting
for such density heterogeneities is obtained from (11) and (12).
Let us assume that density variations are concentrated in a layer of
thickness δ at the top of the core. Typical changes in the Stokes
coefficients are then

�Clm ∼ 4π

(2l + 1)3/2

(
r f

re

)l 2�ρ f r 2
f

Mg f

δ Lh

Lz
U . (24)

Using U = 0.03 mm s−1, Lh = rf , δ/Lz = 1 and the parameter
values in Table 1, we expect a change in Stokes coefficients of
10−11, 3 × 10−12 and 10−12 for degrees 2, 3 and 4, respectively.
As for the pressure part, the density-induced gravity changes fall

by approximately one order of magnitude for an increase of two in
harmonic degree. This simple order of magnitude estimate suggests
that, provided a thermal wind balance holds for decadal variations
near the top of the core, gravity variations associated with density
heterogeneities may be of the same order of magnitude as those
from pressure changes at the CMB.

Furthermore, we expect gravity variations from density and pres-
sure to be related. This relationship is brought out by taking the
z-component of (18), yielding (Hulot et al. 1990; Jault & Le Mouël
1991)

ρ ′ = − 1

g f cos θ

∂p

∂z
,

= − 1

g f

∂p

∂r
+ tan θ

r g f

∂p

∂θ
.

(25)

Since (11) and (12) involve integrals in radius, the contribution from
the first term on the right-hand side of (25) to the density-induced
gravity variations is then directly proportional to the pressure at the
CMB, with the negative sign indicating that the pressure and density
contributions must partly cancel one another. The presence of the
second term in (25) implies a deviation from a simple one-to-one
relation between the gravity variations from pressure and density.
Nevertheless, we expect the gravity signals from each contribution
to be related and partly cancelling one another.

However, several objections on the reconstruction of ρ ′ from
(22) can be raised. First, we expect the Lorentz force to be more
important deeper in the core so that density can no longer be related
simply to core flows. This may not completely invalidate the above
approach since the integral in eqs (11) and (12) involves a factor
r l+2 and thus gravity variations should be dominated by density
heterogeneities in the outermost part of the core.

A second objection, and a more fundamental one, is that by taking
the curl of the magneto-geostrophic balance, geostrophic flows are
removed. These flows are rigid (invariant in z) and supported by
non-axial pressure gradients,

2�ρou = ẑ × ∇ p . (26)

An illustration of a geostrophic flow is shown in Fig. 4(b). In rapidly
rotating fluids, we expect rigid flows to dominate the dynamics.
And based on this, observed decadal changes in core flows should
include an important component of rigid motions. Relating density
to flows through (22) amounts to make a de facto assumption that
all observed changes in core flows are carried by non-rigid motions,
which is contrary to our expectation of the dynamics.

If one assumes purely rigid flows, Lz → ∞, and based on (23),
decadal core flows should not involve any density variations: there
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Gravity variations induced by core flows 641

should be no density-induced gravity variations. As we will see in
the next subsection, core flows cannot be purely rigid, and decadal
variations in density are thus expected. Nevertheless, this illustrates
that if decadal changes in the flow are predominantly rigid, our
estimate of the density-induced gravity signal based on a simple
thermal wind balance is likely to be grossly overestimated and
inaccurate.

The difficulty of separating the flows at the surface of the core
into its rigid and non-rigid contributions is ultimately the limiting
factor in trying to recover density variations. As we discuss fur-
ther in section 3, the shear of the flow near the CMB cannot be
constrained robustly with geomagnetic observations, preventing a
resolution of this issue from the observed secular variation. In con-
trast, the pressure at the CMB determined from (19) does not involve
radial flow gradients; it can be determined from core surface flows
regardless of the relative importance of rigid and non-rigid flows.
For this reason, the pressure-induced gravity changes can be more
reliably determined than the density-induced gravity changes.

Although this is outside the scope of the present work, we
note that density heterogeneities determined on the basis of a
thermal wind balance may be appropriate for estimating gravity
variations taking place over a timescale of a thousand years. This is
the timescale corresponding to one convection overturn and thus the
timescale at which large scale reorganization of the density structure
is expected. Over such a timescale, the magnetic field is expected
to organize itself such that its shear by the flow is minimal, result-
ing in a quasi-steady flow pattern predominantly controlled by a
thermal wind balance (e.g. Aubert 2005). Millennial timescale fluc-
tuations in this balance would involve non-rigid flows as large as
rigid flows, as indeed may be tentatively supported by observations
(e.g Dumberry & Bloxham 2006).

2.2.3 Lateral density heterogeneities inferred from
quasi-geostrophic flows

As mentioned in the preceding subsection, motions in the core
are expected to be dominated by rigid, geostrophic flows. Such
columnar flows appropriately describe convective motions near on-
set (e.g. Busse 1970; Dormy et al. 2004) and also describe reason-
ably well the flow regime in fully developed convection capable of
maintaining a dipolar magnetic field (Olson et al. 1999; Christensen
& Aubert 2006). This motivates us to consider a perhaps more real-
istic description of the dynamics, one which takes into account the
predominance of geostrophic motions, in order to relate density to
flow.

We thus consider core flows in the quasi-geostrophic (QG) ap-
proximation limit. Details on the QG flows and the QG approxima-
tion for the dynamics can be found for instance in Cardin & Olson
(1994), Aubert et al. (2003) and Gillet & Jones (2006). QG motions
are more aptly described in a cylindrical reference frame (s, φ, z).
The leading order flow u0 = u0 (s, φ) is invariant in z and satisfies
a geostrophic balance,

2�ρou0 = ẑ × ∇ p . (27)

The leading order quasi-geostrophic flow is thus identical to the
geostrophic flow illustrated in Fig. 4(b).

Since in a spherical geometry such flows cannot satisfy the con-
dition of impermeability at the boundaries, a secondary flow u1 is
required. This flow involves an axial component u1

z which is purely
non-rigid (∂u1

z /∂z 
= 0). The force balance at the next order gives
the dynamic evolution of u0 in relation to the secondary flow u1.

It is written as an equation for the evolution of the axial vorticity
ζ = ẑ · ∇ × u0,

Dζ

Dt
− 2�ρo

u1
z (H )

H
= g f

r f

∂[ρ ′]z

∂φ
+ [ẑ · ∇ × (J × B)]z , (28)

where

D

Dt
≡ ∂

∂t
+ u0 · ∇e , ∇e ≡ ∂

∂s
+ 1

s

∂

∂φ
, (29)

and where we have used the notation

[X ]z = 1

2H

∫ H

−H
X dz , (30)

with H = √
r 2

c − s2. The no-penetration condition at the CMB
allows to relate the axial flow u1

z (H ) to the s-component of the
leading order flow by u1

z (H ) = − su0
s /H . Thus,

Dζ

Dt
+ 2�ρo

s u0
s

H 2
= g f

r f

∂[ρ ′]z

∂φ
+ [ẑ · ∇ × (J × B)]z . (31)

Eq. (31) allows us to retrieve the axially averaged density struc-
ture in the core, provided we know u0 and B. If we neglect the inertial
and Lorentz terms, we retrieve a simple relationship between core
flows and density heterogeneities,

2�ρo

g f

s us

H 2
= 1

r f

∂[ρ ′]z

∂φ
. (32)

Taking againU as a typical change in flow amplitude and Lh a typical
horizontal length scale of density heterogeneities, the balance (32)
should lead to a change in the axially averaged density of

[ρ ′]z ∼ 2�ρ

go

Lhs

H 2
U . (33)

Taking s ∼ H ∼ rf , the density change from this estimate differs
from that of the “thermal wind” scenario (eq. 23) by a factor Lz/rf .
If we assume Lz ∼ rf , we retrieve a similar estimate of density
variations.

Because of the alignment in the density structure in z in the
QG scenario, the integration in the radial direction in eqs (11)
and (12) involves a mixture of the different harmonic components
of the density determined at the CMB. However, because of the
factor r l+2 in the gravity integrals, density heterogeneities in the
outermost part of the core should dominate gravity variations. For
the lowest harmonic degrees, whether the projection of the CMB
density is radial or axial should not alter the amplitude of the gravity
prediction significantly. We will see in the next section that this is
indeed the case.

The problem with neglecting inertia and the Lorentz force in
(31) is that it amounts to assuming that changes in the QG flows
are entirely driven by changes in the secondary, non-rigid axial flow
in response to fluctuations in the axially averaged density. In other
words, assuming (32) is equivalent to assuming once more that the
non-rigid flow dynamics dominates observation. This is contrary to
the underlying assumption of QG motions. Indeed, even in the ab-
sence of the Lorentz force, convective QG flows involve a balance
between inertia, the Coriolis term and buoyancy in (31) (e.g. Gillet
& Jones 2006). Hence, it is difficult to justify removing the inertial
term. For the balance appropriate for the Earth’s core, there is also no
justification to remove the Lorentz force. Furthermore, the addition
of the Lorentz force allows Alfvén waves and Magnetic–Coriolis
(MC) waves to propagate. These waves do not involve density
and may comprise an important part of the decadal core flow
variations.
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642 M. Dumberry

With inertia and the Lorentz force actively contributing to the
force balance, the unfortunate implication is that it becomes much
more difficult to relate ρ ′ simply in terms of core flows. A dynamic
relationship between ρ ′ and core flows accounting for the Lorentz
force may be derived, but non-uniqueness is likely to be a serious
issue and this is outside the scope of this work. For lack of a better
way, we use (32) in the next section to obtain estimates of density
variations. However, it will have to be kept in mind that using this
balance gives an upper bound for possible density heterogeneities
in the core that are compatible with core flows. We expect that, in a
QG scenario, they should be much smaller.

3 P R E D I C T E D VA R I AT I O N S I N
G R AV I T Y F RO M T H E S E C U L A R
VA R I AT I O N O F T H E M A G N E T I C F I E L D

We now present an attempt at reconstructing gravity variations from
core flows that have taken place between 1900 and 1990. We follow
the traditional approach in geomagnetism: we recover core flows
from the secular variation of the geomagnetic field based on the
approximation of frozen flux (Roberts & Scott 1965; Backus 1968).
At the CMB, where we impose the condition ur = 0, the poloidal
component of the induction equation under the frozen flux approx-
imation is

∂BP

∂t
= ∇ × (u × Bp) , (34)

where Bp is the poloidal part of the magnetic field at the CMB.
The latter is known from a downward continuation of the field at
the surface of the Earth to the CMB. The radial component of this
equation is

∂ Br

∂t
= −∇h · (Br uh) , (35)

where Br is the radial component of the magnetic field.
Gravity variations require the knowledge of the variations in

pressure at the CMB and the variations in density inside the core.
To recover the pressure at the CMB from (19), only the knowl-
edge of uh is required and can be obtained by inverting (35). To
recover density, one strategy is to assume that the observed decadal
changes in uh reflect changes in non-rigid flows driven by density
variations (the ‘thermal wind’ scenario). In this case, density vari-
ations can be obtained from (22), which requires the knowledge
of axial gradients in the flow. These can be obtained by inverting
both the radial and horizontal components of the poloidal induction
equation in (34) simultaneously. This was the strategy adopted by
Jackson & Bloxham (1991) in order to recover the steady thermal
wind component of the flow.

A second strategy to recover density variations is to assume in-
stead that decadal variations in core flows are described by QG
motions. In this case, the geometry of the flow inside the core is
entirely determined by the flow at the surface of the core. Both the
pressure variations at the CMB (from eq. 19) and the axially aver-
aged density variations (from eq. 32, if one neglects inertia and the
Lorentz force) can be retrieved from uh, which is obtained from an
inversion of (35) alone.

3.1 The thermal wind scenario

Let us first consider the thermal wind scenario. Solutions to (34) suf-
fer from non-uniqueness. A part of this non-uniqueness is alleviated
by constraining the flows and the shear to satisfy conditions deriv-
ing from the assumption of tangential geostrophy near the surface

of the core. Taking ∇h · (19) leads to

∇h · (uh cos θ ) = 0 (36)

whereas taking ∇h · (22) leads to,

∇h · (u′ cos θ ) = ∇h · (sin θ∇h · uhθ̂ ) , (37)

where u′ = ∂u
∂r . A discussion on the uniqueness of the flow and shear

solutions derived from these constraints is presented in Jackson &
Bloxham (1991). However, with this scheme, the shear of the flow is
not really constrained by the secular variation through (34); rather,
it is simply related to the flow through (37). This is because the
poloidal magnetic field can be defined in terms of a potential V
through B =−∇V . Since the evolution of V can be determined from
the radial part of the induction equation alone (eq. 35), no additional
information can be expected from the tangential part of (34) (Jault
& Le Mouël 1991; Whaler & Davis 1997, A. Jackson, personal
communication, 2009). Thus, applying the above constraints does
not constitute a true recovery of the shear, but instead determines
the shear such that it is consistent with the purely non-rigid flows
of the thermal wind scenario.

We could have chosen to reduce the non-uniqueness by using
different constraints than (36) and (37), for example that the flow
must be toroidal (e.g. Whaler 1980) or helical (Amit & Olson 2004).
Details on the different flow constraints can be found in many
studies, notably in the review articles by Bloxham & Jackson (1991)
and Holme (2007). The advantage of the above choice is one of self-
consistency; the assumptions used to derive the flows and and shear
are the same as those which allow to relate them to p and ρ ′.

We construct solutions at fixed epochs between 1900 and 1990
by following the method described in Jackson & Bloxham (1991).
Our solutions are based on the geomagnetic field model gufm1 of
Jackson et al. (2000). Besides conditions (36) and (37), we constrain
the flow and the shear to satisfy regularization conditions on spatial
gradients at the CMB, applying the same damping parameter for
both. We chose the damping parameter such that the time-averaged
flow and shear during the interval 1960–1980 are similar to the
solution presented in (Jackson & Bloxham 1991, their fig. 4).

Based on this flow model, we retrieve the temporal changes in
pressure at the CMB from (19). Associated variations in gravity
are determined from (14) and (15). Similarly, temporal changes in
density near the surface of the core are obtained from (22). The
associated variations in gravity can be determined from (11) and
(12), though here we need the density changes deeper in the core, not
only near the CMB. Because we do not know how the shear in the
flow varies deeper in the core, we make the simplest possible choice:
we assume that density is radially invariant in a layer of thickness δ

and identically zero below that depth. This is equivalent to assuming
that the integrated gravity signal from density anomalies below a
distance δ from the CMB cancels itself out.

We select a value of δ equal to 1000 km. This choice is motivated
by the fact that the amplitude of the gravity signal increases approx-
imately linearly with δ up to a depth of approximately 1000 km, at
which point a further increase in δ no longer leads to substantial
increase in gravity. Choosing δ = 1000 km then allows to get an
approximate upper bound for the gravity signal, while making it
easy to scale the predicted gravity signal for smaller values of δ.

Fig. 5 shows the predicted variations in Stokes coefficients of
degrees 2, 3 and 4 between 1900 and 1990 based on our inverted
flow and shear model. On all plots, a time-averaged value has been
subtracted. Because of the non-uniqueness of core flows and as-
sumptions built into the inversion method, the predictions on Fig. 5
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Gravity variations induced by core flows 643

Figure 5. Predicted changes in Stokes coefficients Clm and Slm for degree 2, 3 and 4 between 1900 and 1990. The predictions shown are those from pressure
variations at the CMB computed from (14) and (15) for the thermal wind scenario (thick red lines) and for QG flows (thin darker red lines), and those from
density heterogeneities in the core computed from (11) and (12) for the thermal wind scenario (thick blue lines) and for QG flows (thin darker blue lines). A
time-averaged component has been subtracted from all plots. The horizontal axis for all plots is calendar year.

should be viewed as representing an approximate indication of the
expected variations rather than an accurate prediction.

A part of the geomagnetic secular variation occurs with a typical
timescale of a few decades and therefore, our reconstructed core

flows have typical variations on the same timescale. These lead to
the predicted decadal variations in gravity in Fig. 5. The pressure-
induced variations in the Stokes coefficients on Fig. 5 (thick red
lines) are of the order of 10−11, 3 × 10−12 and 10−12 for harmonic
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degrees 2, 3 and 4, respectively. This is in broad agreement with our
estimates in Section 2.2.1 These represent equivalent geoid height
variations of approximately 0.15, 0.05 and 0.02 mm, and changes
in gravity of 70, 30 and 15 nGal, respectively. The decrease in
amplitude with increasing harmonic degree is dominantly caused
by the progressively smaller values of k̄l ; the pressure variations at
the CMB are of the same order, approximately 100 Pa, for degrees
2, 3 and 4.

Typical gravity variations caused by density heterogeneities
(thick blue lines on Fig. 5) are of the same order as those from
pressure, though smaller by approximately a factor 2. This is again
in broad agreement with our estimate in Section 2.2.2 These gravity
variations are function of our choice of δ: for δ < 1000 km, their
amplitude decrease approximately linearly with δ.

We also note that the gravity signal from pressure and density
tend to be anticorrelated, though this is not always the case. This
is expected from the relationship between pressure and density in
(25). The anticorrelation is also expected on physical grounds. Re-
gions of low (high) density in the core should correspond to up-
wellings (downwellings) and to regions of high (low) pressure at
the CMB. Thus, areas of negative (positive) gravity anomalies from
low (high) density should coincide with areas of positive (negative)
gravity anomalies caused by the uplift (depression) of the CMB and
associated elastic deformations. This is analogous to the gravity
anomalies associated with mantle convection, where topographic
highs (lows) at density discontinuities are dynamically maintained
by the upwelling (downwelling) associated with low (high) density,
leading to anticorrelated gravity signals from the volumetric den-
sity part and topography part (Hager et al. 1985, 1989; Defraigne
et al. 1996). In the case of mantle convection, the topography de-
fections are maintained by viscous stresses; CMB deflections from
core flows are instead maintained by pressure gradients. Because of
this anticorrelation, in a thermal wind scenario, the overall gravity
signal induced by core flows is smaller than its individual contribu-
tions from pressure and density.

We note that although the anticorrelation is consistent with our
physical intuition, this should not be taken as an indication that
the shear component of the flow that we have retrieved is correct.
Rather, it merely illustrates that the shear is consistent with the
imposed constraints.

3.2 The quasi-geostrophic scenario

Let us now consider gravity variations when motions in the core
are approximated by QG flows. In this case, non-uniqueness in the
flows inverted from (35) is reduced by requiring the flow to satisfy
the condition of tangential geostrophy but also to constrain flows
outside the tangent cylinder to be symmetric with respect to the
equator. Flows inside the tangent cylinder, above and below the
inner core, are separated by the latter and are not imposed to be
equatorially symmetric. Details of these constraints and of their
implementation in an inversion scheme can be found in Pais & Jault
(2008).

We use here a QG flow model, based on gufm1, representing an
average of many inversions that take into account in a stochastic
manner the interaction between core flows and hidden small scale
magnetic field at the CMB. More details on similar flow models can
be found in Gillet et al. (2009).

The QG pressure is determined from tangential geostrophy
(eq. 19). If we neglect inertia and the Lorentz force, the internal
density structure is directly related to internal core flows by (32).

(A slightly altered form is used inside the tangent cylinder to take
into account the presence of the inner core.) Since in the QG approx-
imation the flow geometry everywhere inside the core is specified
by surface core flows, the integral over density in the core (11 and
12) can be evaluated from the ICB to the CMB. It has to be kept in
mind though that the retrieved QG density is the axially averaged
component, so an assumption about the axial distribution of density
is nonetheless required. We make the simplest possible choice and
assume that the density is axially uniform.

The gravity variations predicted on the basis of the QG flow
solution is shown on Fig. 5: the pressure-induced variations are de-
picted by the thin dark red lines, and the density-induced variations
by the thin dark blue lines. The gravity predictions are different
than those obtained in the thermal wind scenario. This is because of
the different constraints imposed on core flows. The most notable
difference concerns coefficients of harmonics that are equatorially
anti-symmetric, such as (l = 2, m = 1), (l = 3, m = 0), (l = 3, m =
2), etc. The geometry of the QG flows forces the CMB pressure and
the density structure outside the tangent cylinder to be symmetric
about the equator. As a consequence, predicted gravity variations
are very small for equatorially antisymmetric coefficients (they are
not exactly zero because the equatorial symmetry is broken by flows
inside the tangent cylinder).

Other than this main difference, while some Stokes coefficients
predictions remain very different from those derived using the ther-
mal wind scenario (e.g. S44), some are very similar (e.g. S22) both
in amplitude (confirming the order of magnitude analysis of Sec-
tion 2.2.3) and in the details of the variations. This is perhaps sur-
prising, especially for the density-induced part, given that they are
derived from different diagnostic equations (eq. 22 versus eq. 32).
This illustrates how the condition (32) is similar to condition (22).
Since the latter is derived with the built-in assumption that decadal
variations are dominated by non-rigid flows, the implication is that
(32) is appropriate when the dynamics in the QG case are also con-
trolled by the non-rigid part of the flow. In other words, that in both
cases, decadal flow changes are purely driven by changes in density.

As in the thermal wind scenario, the pressure and density contri-
butions to the gravity signal are generally anticorrelated. The phys-
ical reasoning is the same. Hence, if decadal density changes are
important, and dominantly responsible for changes in core flows, the
pressure-induced and density-induced gravity contributions partly
cancel one another. If, however, geostrophic flows dominate the dy-
namics at decadal timescales (e.g. Jault 2008), our confidence in
the density retrieved from (32) is very low. We expect the grav-
ity variations from density to have a smaller amplitude than those
shown in Fig. 5. Thus, the gravity signal should be dominated by
the contribution from pressure changes at the CMB.

The gravity predictions that are presented in Fig. 5, for both sce-
narios, are based on a purely elastic mantle. However, the lowermost
mantle (D′′) may deform viscously on a decadal timescale on ac-
count of its higher temperature than the rest of the mantle (e.g. Lay
et al. 2008). Allowing for viscous deformations, one expects larger
deformations of the CMB, and thus a larger gravity signal, for a
given pressure change at the CMB. To obtain an estimate of this in-
crease, we have modelled the entire D′′ region as a fluid and moved
the solid–fluid boundary to the top of D′′. For such an earth model,
the computed values of k̄l are larger, though only modestly; we found
an increase in k̄2 of 23 per cent. The changes are not larger because,
although a larger displacement of the CMB is allowed when D′′ is
fluid, deformations remain elastic in the lower mantle and this limits
the amplitude of the CMB displacement. Since viscous deforma-
tions in D′′ over decadal timescales are likely much smaller than for
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our fluid D′′ scenario, they should not lead to significant increase in
gravity. This also suggests that gravity variations produced by core
flows cannot be used to monitor the anelastic properties of D′′.

3.3 Zonal gravity variations

A few words are in order for the zonal components of the gravity
changes expressed by the coefficients Cl0. These are related to time-
dependent zonal flows at the surface of the core. This is the part of
the flow for which we have the greatest confidence; changes in the
core angular momentum calculated on their basis correspond well
with those required to explain the observed variations in the length
of day (LOD) (Jault et al. 1988; Jackson et al. 1993). One assump-
tion that enters this calculation is that these time-dependent flows
are geostrophic, that is, purely rigid inside the core. If this is so,
they are supported by axially symmetric radial pressure variations
alone. Thus, there should be no contribution to the gravity varia-
tion from axially symmetric density. In fact, this emerges naturally
under the QG approximation: the right-hand side of (32) is zero
for the axially symmetric density and thus it cannot contribute to
flow.

The zonal part of the tangentially geostrophic flows that we have
used in the thermal wind scenario in Fig. 5 is not symmetric about
the equator. This can be seen for instance in the pressure contri-
bution to C30, which would be zero for purely rigid flows (it is
almost zero for the QG flow). This is perhaps evidence of non-rigid
variations on decadal timescale in the core, though this could also
simply reflect imperfections of the flow model. Since the presence
of non-rigid flows can improve the fit with the LOD variations and
would indicate that decadal motions in the core depart from quasi-
geostrophy, determining the relative contributions from rigid and
non-rigid parts of the zonal flow is an important issue.

This could be settled by gravity observations. Dominantly rigid
flows would result in odd-degree zonal Stokes coefficients much
smaller than the even degree ones. In addition, since rigid flows
are only supported by pressure changes, the prediction of gravity
variations that they produce can be much more reliably determined.
A comparison between observed and predicted zonal gravity varia-
tions of even degree should then further help to confirm the nature
of the zonal flows in the Earth’s core.

3.4 C21, S21 coefficients and polar motion

The coefficients C21 and S21 are directly related to the change in the
moment of inertia tensor of the Earth. These changes lead to vari-
ations of the orientation of the Earth’s rotation vector with respect
to the mantle or, more simply, to polar motion. Indeed, the idea that
pressure variations at the CMB may entrain polar motion through a
combination of a change in the moment of inertia and an equatorial
torque on the mantle (by topographic coupling at the CMB) has
been investigated by many authors (e.g. Hinderer et al. 1987, 1990;
Greff-Lefftz & Legros 1995; Hulot et al. 1996; Hide et al. 1996).
The general conclusion of these studies is that the predicted polar
motion is too small by approximately a factor 5–10, in the best of
cases, to explain the observed decadal variations in polar motion.

We do not wish to present here an updated calculation of the polar
motion. The amplitude of our predicted variations in C21 and S21

in the thermal wind scenario, together with the torque at the CMB,
would lead to a decadal polar motion of the same order of magnitude
as found in the above studies. In fact, it should be even smaller, for
these above studies did not consider the density contribution to the

changes in the moment of inertia and only the study of Hulot et al.
(1996) discussed the density part of the torque between the core
and mantle. Since for both the moment of inertia and the torque the
density contribution should partly cancel the pressure contribution,
the resulting polar motion should be smaller.

It is worth pointing out that if core flows are close to being quasi-
geostrophic, the equatorial symmetry of such flows implies that the
resulting C21 and S21 variations should be much smaller, as can be
seen in Fig. 5. The equatorial topographic torque on the mantle, of
which the dominant part is from the interaction between l = 2, m = 1
pressure interacting with the equatorial bulge, would also be much
smaller than in the thermal wind scenario. Interactions between
equatorially symmetric flows and equatorially antisymmetric parts
of the CMB topography, h A, can still generate a topographic torque
(e.g. Hinderer et al. 1990), though smaller by a factor of h A over the
amplitude of the equatorial bulge at the CMB. Thus, if core flows
are approximately quasi-geostrophic, the polar motion that they can
produce would be too small by at least two orders of magnitude to
explain the observed decadal variations.

4 P R E D I C T E D V E R S U S O B S E RV E D
G R AV I T Y C H A N G E S

Surface processes are responsible for interannual gravity changes of
approximately 5 × 10−11 in the Stokes coefficients of low harmonic
degrees (e.g. Chen & Wilson 2005, and also Fig. 6). However,
according to the work of Chen et al. (2005), surface processes cannot
explain the variations in the degree 2 coefficients at a timescale of
10 yr and more. This may be due to modelling deficiencies, but
it may also indicate that the signal is from a different origin. In
order to verify whether a gravity contribution from core flows can
be detected in gravity observations, and perhaps even explain a part
of the observed signal, we need to compare our prediction with a
model of observed gravity variations.

A model of the temporal variations in Clm and Slm for harmonic
degree 2 and 3 as determined by Satellite Laser Ranging (SLR) is
shown in Fig. 6 (grey lines). This model is an updated version of
the one presented in Cox et al. (2004), and after a correction for
the IB-NCEP atmospheric gravity series (C. M. Cox, personal com-
munication, 2006). The Stokes coefficients in this model represent
monthly averages, with errors of the order of 10−11.

Annual variations of approximately 10−10 in amplitude are clearly
visible for all Stokes coefficients. This signal is driven by a com-
bination of atmospheric, oceanic, and hydrological seasonal mass
variations (Cox & Chao 2002; Chen & Wilson 2003). Interannual
variations of up to a few years, with an amplitude of the order of
2 × 10−11 are also caused predominantly by mass variations at the
Earth’s surface (Chao et al. 2003; Chen et al. 2005). Also observed
are longer temporal trends, most clearly in the coefficients C20 and
S21. The secular trend in C20 is a result of the change in the elliptic-
ity of the Earth caused by postglacial rebound (Yoder et al. 1983;
Rubincam 1984; Mitrovica & Peltier 1993). The secular trend in
S21 (and in C21 though it is less visible) correspond to the change in
the Earth’s moment of inertia from postglacial rebound (Peltier &
Jiang 1996) and also mantle convection (Steinberger & O’Connell
1997).

Variations at a timescale of 5–10 yr and of the order of 5 ×
10−11 are also clearly visible in Fig. 6. These ‘decadal’ variations
are shown by the black curves, obtained by applying a third order
low-pass Butterworth filter with a period threshold of 5 yr to the
SLR model.
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646 M. Dumberry

Figure 6. Temporal variations in Stokes coefficients Clm and Slm of degree 2 and 3 between 1985 and 2005 based on a model reconstructed from SLR tracking
by Cox et al. (2004) (grey lines). Decadal variations (black lines) are obtained by applying a third order low-pass Butterworth filter with a period threshold of
5 yr to the SLR model. Also shown are predictions of the variations from pressure changes at the CMB, based on tangentially geostrophic flow model (red
lines) and a QG flow model (blue lines). To improve visibility, these two predictions have been multiplied by a factor 10. A time-averaged component has been
subtracted from all plots. The horizontal axis for all plots is calendar year.

Predictions from core flows are also shown on Fig. 6. Since the
gravity signal from density heterogeneities is less reliably retrieved
than that from pressure changes at the CMB, and likely smaller,
to simplify, we computed only the pressure-induced gravity pre-
diction. The red lines on Fig. 6 are predictions from a core flow
model constrained to satisfy tangential geostrophy. The blue lines
are predictions based on a QG flow model. The latter is an average
flow from many inversions that incorporate a small-scale magnetic
field in a stochastic manner (Gillet et al. 2009). Both flow models
are inverted using (35) and based on the geomagnetic model CM4
(Sabaka et al. 2004), which covers the period 1960–2002.

To render more visible the details of these two predictions on
the scale of Fig. 6, they have been multiplied by a factor 10. The
predicted variations are smaller than the observed variations by an
order of magnitude for degree 2, and smaller by an even larger
factor for degree 3. Moreover, there is no indication of a correlation
between the predicted and observed signals.

If interannual gravity variations were caused by core flows, we
expect a decrease in their amplitude for increasing harmonic degree.
This is not the case: the amplitude of the observed interannual
variations on Fig. 6 are similar for degree 2 and 3 (and also degree
4, not shown). This is evidence that the interannual gravity variations
of the order of 5 × 10−11 are most likely caused by surface processes
rather than by pressure changes at the CMB.

This implies that it is at present not possible to use gravity data
to determine the relative contributions of rigid and non-rigid parts
of the zonal flows at the surface of the core, as we suggested in
Section 3.3. Similar conclusions had been reached by Dumberry &
Bloxham (2004) and Greff-Lefftz et al. (2004).

Though the observed interannual gravity changes in Fig. 6 are
unlikely to be caused by core flows, they can be used to place upper
bounds on the interannual pressure variations of low degree at the
CMB, as was first attempted two decades ago by Merriam (1988).
The largest observed variations in the Stokes coefficients of degree 2
over the last 20 yr, discounting the secular change in the moment of
inertia responsible for the changes in C21 and S21, are approximately
5 × 10−11. This corresponds to a pressure change at the CMB of
approximately 350 Pa. In order to produce such a pressure change,
variations in the flow at the surface of the core of approximately
0.07 mm s−1, or 2.2 km yr−1 are required. Taking 5 yr as a typical
time for the observed interannual gravity changes, this corresponds
to accelerations of 0.44 km yr−2. This is well within the bounds of
the flow determined from the secular variation. Larger accelerations
over a 5 yr time span would lead to larger than observed gravity
variations. It is important to stress that this upper bound estimate on
the change in flow is purely based on the observed gravity variations
and is completely independent of that obtained from the observed
geomagnetic secular variation.
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Since the pressure-induced gravity signal vary approximately as
3−l(2l + 1)−1/2 with increasing harmonic degree l, similar upper
bounds for higher degrees are less useful as the allowed change
in flow speed becomes rapidly orders of magnitude larger than
that derived from the secular variation. For instance, at degree 3,
the upper bound on interannual pressure changes are approxi-
mately 1400 Pa corresponding to a maximum change in the flow of
0.28 mm s−1, or 8.5 km yr−1. This means that gravity variations
cannot be used to constrain the amplitude of small scale flows at
the CMB which may participate in the observed large scale secular
variation of the magnetic field (e.g Eymin & Hulot 2005).

A similar exercise allows us to estimate the largest density varia-
tions within the core that have taken place in the past two decades.
We calculate this estimate by using radially invariant density hetero-
geneities in the integrals of (11) and (12). At degree 2, the observed
change of 5 × 10−11 in the Stokes coefficients imposes an upper
bound of ρ ′ ∼ 10−3 kg m−3, or ρ ′/ρo ∼ 10−7. If there are large
cancellations in the gravity integral, or if the heterogeneities are
concentrated in the deeper part of the core, larger density anomalies
are allowed. Since the density-induced gravity signal varies approx-
imately as 2−l(2l + 1)−3/2 with increasing harmonic degree l, the
higher the spherical harmonic degree, the larger the density hetero-
geneity can be: at degree 3, we find ρ ′ ∼ 4 × 10−3 kg m−3. We note
that these estimates do not depend on any dynamic assumptions.

5 D I S C U S S I O N A N D C O N C LU S I O N

In this work, we have computed predictions of gravity changes
during the past century caused by pressure variations at the CMB
and by temporal variations in density heterogeneities within the fluid
core. Both of these predictions are based on temporal variations of
flows at the surface of the core reconstructed from the geomagnetic
secular variation.

Our results suggest that typical gravity variations from pressure
changes over decade timescales are expected to be of the order of
70, 30 and 15 nGal for harmonic degrees 2, 3 and 4, respectively.
These correspond to equivalent changes in geoid height of 0.15,
0.05 and 0.02 mm, respectively. The amplitude of the gravity vari-
ations from decadal variations in density within the core is more
difficult to evaluate solely based on flows at the surface of the core.
If these flows are predominantly driven by decadal density varia-
tions, the amplitude of the density-induced gravity variations should
be similar than that from pressure. We also expect the two contri-
butions to be anticorrelated because regions of low (high) density
in the core should correspond to upwellings (downwellings) and be
associated with a high (low) pressure at the CMB. Thus, regions
of negative (positive) density-induced gravity anomaly should co-
incide with regions of positive (negative) pressure-induced gravity
anomaly caused by the uplift (lowering) of the CMB. The overall
gravity variations resulting from core flows would then be much re-
duced than the above quoted values. However, if decadal core flows
reflect primarily the dynamics of axially invariant geostrophic mo-
tions, the density-induced gravity variations should be significantly
smaller than the pressure-induced part.

To gain a better understanding of the role of density in time-
dependent core flows, one option is to use numerical models of
the geodynamo. This is the strategy followed in the study of Jiang
et al. (2007), where gravity variations from CMB pressure and den-
sity variations in the core are computed based on one such model.
They find that the pressure contribution dominates for axisymmetric
harmonics, but that the contributions from density and pressure are

approximately equally important for the non-axisymmetric harmon-
ics. Though their results apply for gravity anomalies at the CMB,
and not at the Earth’s surface, the implication is that non-zonal
core flows in the model appear to be primarily driven by density
changes. Applying these conclusions to Earth, we should then ex-
pect the gravity signal from pressure and density to largely cancel
one-another. However, care has to be taken when relating the results
of such simulations to Earth. The large contribution from density
to the total gravity signal in the model may reflect an inappropriate
scaling of density heterogeneities. Additionally, the timescale of the
variations in the model, when scaled to the Earth, correspond to a
few thousand years. The gravity variations investigated by Jiang
et al. (2007) thus pertain to a much longer timescale than that of
decades, our timescale of interest in the present study. Variations in
non-rigid flows are expected to occur in the Earth over a timescale
of a few thousand years (e.g. Aubert 2005; Dumberry & Bloxham
2006). If their amplitude is as large as that of rigid flows, we indeed
expect that the gravity contribution from density may be similar
to that from pressure, as suggested by our order of magnitude es-
timate in Section 2.2.2 Further numerical efforts are required to
determine the relative importance of pressure and density-induced
gravity variations.

The observed interannual variations in the Stokes coefficients
of low degrees for the interval 1985–2005 are of the order of
5 × 10−11 as shown on Fig. 6. These are most likely produced by
surface processes rather than induced by core flows. Nevertheless,
these observed variations allow to place upper bounds in pressure
change at the CMB and density change within the core that have
taken place during the past 20 yr. For degree 2, we find a max-
imum pressure change of approximately 350 Pa and a maximum
departure from hydrostatic density of approximately 1 part in 107,
though this latter value could be larger if there are significant radial
variations in the non-hydrostatic density. Both of these estimates
are derived solely from gravity observations; they do not dependent
on dynamic assumptions or on the observed magnetic field secular
variation.

The estimate for density variations is important in the context
of the recent study by Dai & Song (2008), where the presence
of heterogeneous, time-dependent outer core structures is pos-
tulated in order to explain the observed temporal variations in
the waveform of earthquake doublets. For large-scale structures
(∼1000 km), variations of seismic wave speed of the order of
0.01 per cent are required to explain observations. If these are caused
by a change in density, this would correspond to variations of ρ ′/ρo

∼ 10−4 (much larger than our above upper bound of 10−7) and asso-
ciated changes in Stokes coefficients of the order of 5 × 10−8, three
orders of magnitude larger than the observed gravity changes. Thus,
if the seismically inferred time-dependent outer core structures are
real, they cannot be explained simply in terms of density variations
as the gravity variations that these would produce are too large to
be compatible with observations.

The amplitude of the predicted variations in Stokes coefficients
from core flows (Fig. 5) is much smaller than the typical variations
caused by surface processes, which are of the order of 10−10 (see
Fig. 6). In fact, the predicted changes that we have computed at
degree 4 are below the level of precision obtained with the satellite
mission GRACE, which is of the order of a fraction of 1 mm in
geoid height (e.g. Tapley et al. 2004). Therefore, there is little hope
that variations of degree 4 and larger caused by pressure changes at
the CMB can be detected by GRACE.

However, at least in theory, GRACE may be capable to retrieve
the gravity signature at degree 2 and 3 from pressure changes at the

C© 2009 The Author, GJI, 180, 635–650

Journal compilation C© 2009 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/180/2/635/687430 by guest on 21 August 2022



648 M. Dumberry

CMB. Of course, since the gravity signal from the core is expected
to vary over a decadal timescale, GRACE-like quality observations
over a similar time span are required to do so. The greater challenge
though would be to explain and remove the larger gravity variations
that are caused by surface processes. Only once this is achieved, and
to a level of precision of an equivalent geoid height of 0.1 mm, can
we hope to observe the signal from the core.

Future improvements in gravity observations and in the mod-
elling of surface processes may allow the contribution to gravity
variations from core flows to be detectable. If so, predictions such
as those presented in this work may provide further knowledge on
core surface flows of low harmonic degree. Thus, gravity variations
may eventually provide a way to confirm or constrain core flows re-
covered from the geomagnetic secular variation, thereby alleviating
a part of the non-uniqueness in core flow models.
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A P P E N D I X A : E L A S T I C
C O N T R I B U T I O N T O T H E
G R AV I TAT I O NA L P O T E N T I A L
AT T H E S U R FA C E

In this appendix, we describe how the parameters κ l(r ) are cal-
culated. These characterize the elastic response of the Earth to a
density perturbation ρ ′(r ) concentrated in a thin radial surface of
thickness dr at radius r in the fluid outer core. Accordingly, we
express this density perturbation in terms of a surface mass density
σ (r ) = ρ ′(r ) dr and, following the notation introduced in the main
text, σα(r ) is used to denote a single spherical harmonic coefficient
of σ (r ).

The perturbation in gravitational potential at the surface, φα ≡
φα(re), due to the presence of σα(r 1) at a specific radius r 1 in the fluid
core is comprised of two parts: that from the density perturbation,

φ(1)
α = − 4πG

2l + 1

r l+2
1

r l+1
e

σα(r1) , (A1)

and a part denoted by φ(2)
α from the density variations that result

from global elastic deformations in response to the presence of
σα(r 1). For small perturbations, φ(2)

α is linearly related to φ(1)
α and

we express this relationship by

φ(2)
α = κl (r1) φ(1)

α , (A2)

such that

φα = φ(1)
α [1 + κl (r1)] . (A3)

The procedure to find the parameters κ l(r 1) is very similar to that
described in Dumberry & Bloxham (2004, hereinafter referred to
as DB), and where further references to the literature can be found.
For brevity, the procedure is not repeated in detail here. Instead, we
refer the reader to the equations and notation given in DB, and point
out the important modifications.

The presence of σα(r 1) represents a forcing that perturbs the
global hydrostatic equilibrium between stress and gravity. This forc-
ing leads to small displacements which, in turn, perturb the stress
and gravity field. A new mechanical equilibrium is reached, in which
the forcing is balanced by the sum of the forces induced by the small
displacements. To find this new equilibrium, we must solve the mo-
mentum equation jointly with Poisson’s equation. The combined
equations can be written as a set of elasto-gravitational equations.
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Perturbations in the mantle and inner core must satisfy the set
of elasto-gravitational equations given, respectively, by eqs (14)
and (18) of DB but with no externally applied body force (i.e.
f = f s = 0). Perturbations in the fluid core, when hydrostatic equi-
librium is assumed to be maintained in the deformed state and
deformations are assumed divergence-free, are simpler than those
in the solid Earth: only Poisson’s equation must be solve and the
deformed surfaces of constant gravitational potential, density and
pressure remain in alignment. This is expressed by eq. (30) of DB.

The forcing from σα(r 1) is introduced by imposing continuity of
the gravitational potential and gravitational flux at the radial surface
r 1. In the notation of DB, these conditions are expressed by

y5(r+
1 ) = y5(r−

1 ) , (A4)

y6(r+
1 ) = y6(r−

1 ) + 4πGσα , (A5)

where G is the gravitational constant and the superscripts ‘+’ and
‘−’ refer to quantities evaluated above and below r 1, respectively.
This procedure follows that which is used to model elastic deforma-
tions caused by density heterogeneities in the mantle (e.g. Defraigne
et al. 1996). We note that, unlike in the mantle, additional bound-
ary conditions on displacement and stress are not required at r 1;

hydrostatic equilibrium is assumed to be maintained in the deformed
state, in which case the (Eulerian) displacement of the equipotential
surfaces and change in (Eulerian) pressure are simply related to the
change in gravitational potential (eqs 24 and 25 of DB, with pg =
0).

The mechanical equilibrium of the deformed state in the whole
Earth is then solved by integrating the elasto-gravitational equa-
tions from a small radius to the surface, propagating the solution
across each interface, including r 1, according to specified boundary
conditions. The boundary conditions at r → 0 are given by eq. (45)
of DB; the boundary conditions at the ICB are given by eqs (42)–
(44) of DB [with �0

n(c) = 0]; those at the CMB are given by eq. (41)
of DB [with �0

n(b) = 0]; at the surface, the conditions in eq. (46)
of DB are employed.

The perturbation in gravitational potential at the surface from
this procedure, denoted by y5(re), represents the total perturbation,
the sum of φ(1)

α and φ(2)
α . The value of κ l(r 1) at a spherical harmonic

degree l is then given by

κl (r1) = −1 + y5(re)

φ
(1)
α

. (B6)

The procedure is repeated for different values of r 1 between the ICB
and the CMB.
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