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ABSTRACT: The generation of internal gravity waves from an initially geostrophically balanced flow is diagnosed in
nonhydrostatic numerical simulations of shear instabilities for varied dynamical regimes. A nonlinear decomposition
method up to third order in the Rossby number (Ro) is used as the diagnostic tool for a consistent separation of the
balanced and unbalanced motions in the presence of their nonlinear coupling. Wave emission is investigated in
an Eady-like and a jet-like flow. For the jet-like case, geostrophic and ageostrophic unstable modes are used to
initialize the flow in different simulations. Gravity wave emission is in general very weak over a range of values for
Ro. At sufficiently high Ro, however, when the condition for symmetric instability is satisfied with negative values
of local potential vorticity, significant wave emission is detected even at the lowest order. This is related to the
occurrence of fast ageostrophic instability modes, generating a wide spectrum of waves. Thus, gravity waves are
excited from the instability of the balanced mode to lowest order only if the condition of symmetric instability is satis-
fied and ageostrophic unstable modes obtain finite growth rates.

SIGNIFICANCE STATEMENT: We aim to understand the generation of internal gravity waves in the
atmosphere and ocean from a flow field that is initially balanced, i.e., free from any internal gravity waves.
To examine this process, we use simulations from idealized numerical models and nonlinear flow decomposi-
tion method to identify waves. Our results show that a prominent mechanism by which waves can be generated
is related to symmetric or ageostrophic instabilities of the balanced flow possibly occurring during frontogene-
sis. This process can be a significant mechanism to dissipate the energy of the geostrophic flow in the ocean.

KEYWORDS: Gravity waves; Inertia-gravity waves; Internal waves; Shear structure/flows; Waves, atmospheric; Waves,

oceanic

1. Introduction

Gravity wave generation from a balanced flow by internal
mechanisms and the importance of spontaneous loss of
balance in the atmospheric and oceanic flows still poses
open questions. Gravity wave emission seen in observations
(e.g., Plougonven and Zhang 2014), laboratory experiments
(e.g., Williams et al. 2008), and numerical simulations (e.g.,
Plougonven and Snyder 2007) is often attributed to spontaneous
loss of balance of the balanced flow. However, to correctly asso-
ciate the generated waves to a particular mechanism, an exact
description and diagnosis of balanced flow are important, but this
remains theoretically and practically challenging. In this paper,
we extend our diagnosis from Eden et al. (2019a) to detect grav-
ity wave emission from an initially balanced shear flow using
higher-order nonlinear decomposition for a range of Rossby
number (Ro) in idealized nonhydrostatic model simulations, and
elucidate wave generation by ageostrophic instabilities of the bal-
anced flow.

The challenges associated with the precise diagnosis of
the balanced state, and hence the detection of gravity wave'
signals, results from the nonlinearity coupling the wave and
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balanced (or vortical or geostrophic) mode of the linear
system. While the former mode is fast and satisfies the gravity
wave dispersion relation, the latter evolves only slowly (or even
not at all). The numerical methods implemented for the decom-
position of balanced and unbalanced flow range from linear to
nonlinear methods. Diagnosing only the linear modes does not
take into account the nonlinearity of the interactions between
balanced and unbalanced motions, which hampers a precise
diagnosis of the flow field. Nonlinear decomposition methods,
on the other hand, include the nonlinear interactions between
the balanced and unbalanced motions, and can thus provide a
consistent diagnosis of the two motions. However, the practical
implementation of the nonlinear methods can at times be
numerically challenging. Such methods are often based on
modal expansion, e.g., Machenhauer (1977), Baer and Tribbia
(1977), and Warn et al. (1995), but there are exceptions, e.g.,
Viidez and Dritschel (2004) and Masur and Oliver (2020).
Although the mathematical existence of an exact decomposition
is under dispute, the practical implication of the nonexistence of
a balanced mode might be minor. For simple surrogate models

! The term “internal gravity wave” or “gravity wave” in this arti-
cle also includes inertia—gravity waves.
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it can be in fact shown that an exact decomposition into slow (bal-
anced) and fast (wave) manifolds is not possible (Vanneste 2013),
although such a proof for the more complex and relevant system
is still missing.

Nonlinear methods such as nonlinear normal mode initializa-
tion techniques, e.g., by Machenhauer (1977), implemented in
Chouksey et al. (2018), and by Baer and Tribbia (1977), imple-
mented in Kafiabad and Bartello (2016, 2018), include the nonli-
nearity of the flow field. However, the diagnosed unbalanced
part based on these nonlinear methods is accurate only to first
order in Ro. This residual signal, interpreted as the unbalanced
part, can in fact still be related to the so-called slaved modes as
shown by higher-order nonlinear decomposition by Eden et al.
(2019a) based on the higher-order expansion in Ro as in Warn
et al. (1995). The slaved mode is part of the balanced flow—so it
is slowly evolving—but consists of linear wave modes, and is
related to the nonlinear coupling between both modes (Vanneste
2013). It is highly possible that gravity waves apparently found in
previous model (e.g., Plougonven and Snyder 2007) and labora-
tory (e.g., Williams et al. 2008) experiments are in fact related to
such slaved modes. Nonlinear decomposition methods going
beyond first order are therefore important to diagnose and inter-
pret gravity wave generation from balanced flow, even though
the balanced mode might not exist in a strict mathematical sense.

In Eden et al. (2019a), gravity wave emission from the
balanced flow is diagnosed up to fourth order in Ro using non-
linear modal decomposition, implemented in a single layer
model and a primitive equation model. In both the cases the
true wave-related signal only appears at higher orders in Ro
from the decomposition method, thus showing very weak
wave emission (or none at all). The wave signal only gets more
prominent for cases with higher Ro. At the first order in Ro,
which is equivalent to quasigeostrophic balanced state and the
balanced mode obtained by Machenhauer (1977), the diagnosed
apparently unbalanced motion comprises of the so-called slaved
modes, and the actual “real” wave signal is in fact negligible for
small values of Ro in Eden et al. (2019a). The residual wave
signal seen at larger Ro is shown to be related to convective or
symmetric instability, rather than spontaneous loss of balance.

Here, we revisit the generation of gravity waves in a balanced
sheared flow as in Eden et al. (2019a) and focus on the role of
convective and symmetric instability for wave generation. To
allow for a more realistic simulation of those instabilities, we
use a nonhydrostatic model instead of a primitive equation
model as in Eden et al. (2019a). In this respect, we also need to
report that an error occurred in Eden et al. (2019a): the scaled
condition for static instability is not 9,6 < —1 but 9,6 < —1/Ro,
where b denotes scaled buoyancy. That means that in the simu-
lations of Eden et al. (2019a) showing gravity wave emission,
static instability was in fact absent, but symmetric instability was
important. Therefore, we investigate such cases with gravity
wave emission in more detail here. To explain the gravity wave
emission we detect in the model experiments, we compare with
nonhydrostatic stability analysis featuring ageostrophic unstable
modes which obtain finite growth rates at large Ro.

Section 2 describes the stability analysis applied on the classical
Eady case with vertical shear and on a jet-like case with both

JOURNAL OF PHYSICAL OCEANOGRAPHY

VOLUME 52

vertical and lateral shear. This is followed by section 3, where the
modes obtained from linear stability analysis are balanced up to
second order in Ro using nonlinear decomposition, and the result-
ing balanced state is used to initialize the experiments with jet-
like mean flow. In another set of experiments, the jet-like mean
flow is also initialized with ageostrophic unstable modes. The
diagnosed unbalanced residual is used to quantify wave energy
and obtain energy spectra. The results are followed by section 4
that concludes the article with a discussion and summary.

2. Stability analysis

We discuss in this section some results from a stability analysis
of the mean flow used in the simulations of shear instability in
Eden et al. (2019a). We begin the discussion with the classical
vertical shear instability case considered, e.g., by Eady (1949),
Stone (1966), and Molemaker et al. (2005), and include later
lateral shear as in Eden et al. (2019a). The starting point of the
discussion is the momentum equation in Boussinesq approxi-
mation which is given by

du+ fu+Vp=—(u-Vu+wiu), w+adp—>

—(u - Vw + wa,w). 1)

Note that a factor pg is absorbed in the pressure p, that all
vectors here are two-dimensional (except eigenvectors below),
and that the hook operator in u denotes anticlockwise rotation
of u by 90°. Mass conservation reduces to V- u + d,w = 0 and
simplification of the thermodynamics of the fluid under consider-
ation leads to a conservation equation for buoyancy b given by

ab + wN? = —(u - Vb + wa,b). )

The constant stability frequency N results from the stratifica-
tion of a mean flow. Friction and mixing are ignored here for
simplicity.

Introducing L, H as vertical and horizontal scales, 7' = 1/() as
time scale, where () is the magnitude of the Coriolis parameter f,
and U as horizontal velocity scale, using the hydrostatic and geo-
strophic balance for the scaling of buoyancy and pressure, the
continuity equation for the scaling of w, and dropping primes, we
obtain the scaled Boussinesq equations as

ou + fu + Vp = —Ro(u - Vu + wo.u), 3)
aw + (9;p — b)/8* = —Ro(u - Vw + wa,w), 4)
a:b + N>°w = —Ro(u - Vb + wa,b), 5)

supplemented by the diagnostic relation V- u + 9,w = 0, with
the Rossby number Ro = U/(LQ)) and N = Ro/Fr = L,/L,
where Fr denotes the Froude number Fr= U/(NH) and
L, = NH/Q the Rossby radius. f = 1 was kept for reference,
and we also set N = 1 throughout the following. The aspect
ratio 6 = H/L is assumed to be small but independent of
Ro. The scaled background stratification b(z) is given by
N?z/Ro. The linear system of Egs. (3)—(5) supports gravity
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FIG. 1. (a) Zonal velocity of the Eady-like mean flow. (b) Zonal velocity of the jet-like mean flow.

waves with frequencies 1 = |w| = 1/§ and the geostrophic
mode with w = 0.

a. Eady-like mean flow

For a stability analysis as, e.g., in Eady (1949) and Stone
(1966), it is common to define a vertically sheared mean flow
such as u, = (Uyz — Uy2, 0, 0)™ with constant Uyand 0 < z < 1,
and buoyancy and pressure in thermal wind and hydrostatic bal-
ance with u,. Such a mean flow is shown in Fig. 1a. Adding a per-
turbation to the Eady-like mean flow, followed by linearization,
then applying the ansatz u = Wi(z)expi(k.x + k,y — wt), etc. to
the perturbed variables, and solving for the most unstable mode
with largest Im(w)leads to the classical vertical shear instability
solution. Using the scaled Boussinesq equations Egs. (3)—(5), the
growing modes for small Ro are very similar to the classical solu-
tion by Eady (1949) based on the quasigeostrophic equations
(obtained for Ro << 1 and § << 1, but fixed relation Ro ~ Fr,
L, ~ L, see below),

w/ke = ROUo\/}1 + d? — dcothl/d (6)

with d = |f|/(N,/k% + k2) and with a maximal growth rate

(scaled by Ro) Im(w)/Ro = 0.3U, at a zonal wavenumber
k. ~ 1.6 (for f= N = 1). Accordingly, this mode is balanced
and slow with frequencies Re(w) =~ 0, and is often called
the geostrophic unstable mode. This unstable mode corre-
sponds to the classical baroclinic instability. Figures 2a and 2b
shows the growth rate Im(w) for small Ro evaluated numerically
for the Boussinesq equations for the mean state shown in Fig. 1a.
For small Ro it is almost identical to the quasigeostrophic version
with vanishing, thus slow (intrinsic) frequency Re(w).

For larger Ro, the maximum Im(w) and corresponding
k, get slightly smaller in the Boussinesq equations compared
to Eq. (6), but more importantly, another unstable mode
appears: Figs. 2c and 2d shows the growth rate (scaled by Ro)
Im(w)/Ro for Ro = 0.5 and U, = 2. For this value of U, and Ro,
the potential vorticity of the mean flow Q = f[1 — Ro?(9.u)*/N?]
just vanishes (while Q > 0 for smaller U, or Ro), i.e., the condi-
tion for symmetric instability is satisfied. Besides the large

growth rates Im(w)/Ro of the geostrophic unstable mode
with frequencies Re(w) ~ 0, another growing mode appears
for large zonal wavenumbers k, which is fast, i.e., with the
possibility of large positive and negative frequencies Re(w)
as seen in Fig. 2d. Note that for a balanced mode, a frequency
|[Re(w)| > Ro would be inconsistent with the time scale separa-
tion between fast and slow modes, which we assume in the bal-
anced flow definition of Warn et al. (1995). This fast unstable
mode in the Eady-like mean flow for large Ro is not present in
the quasigeostrophic case Eq. (6), and was accordingly called the
ageostrophic unstable mode by Molemaker et al. (2005). The
maximal growth rate Im(w)/Ro of the ageostrophic unstable
mode is also shown as a function of Q and Ro in Fig. 2e and
Fig. 2f, respectively. Note that the growth rates of this mode are
much smaller for Q > 0, i.e., for smaller Ro or U, but stay finite
(Fig. 2e). We hypothesize that the ageostrophic unstable mode is
related to the gravity wave emission in the model simulations of
Eden et al. (2019a).

b. Jet-like mean flow

We aim to make now the Eady-like mean flow a little more
general (more complex) by using a jet-like mean flow, where we
add also lateral shear to the vertical shear in the mean flow. The
jet-like mean flow is shown in Fig. 1b and is given by
u,(y,2) = {exp[— (y — 1.25)2/szet -y - 3.75)2/szet],0}Tcos(27Tz)
with Lie; = 0.16 if not otherwise noted, and 0=z = 1,0=y = 4.
This mean state is similar to the one used in Eden et al. (2019a),
but with different (larger) amplitude. The added lateral shear, in
addition to the vertical shear, might be seen as a representation of
geostrophic flow after frontogenesis, allowing us to investigate the
wave generation from instabilities in the full three dimensions of
the flow. Instead of rigid lids at the top and bottom as in the
Eady-like situation, we use here triple periodic boundary condi-
tions. Due to the lateral shear, the meridional gradient of poten-
tial vorticity of the mean flow 9,0 has several zero crossings in
the jet-like mean flow, such that the necessary condition for insta-
bility is satisfied (while in the Eady-like case 9,0 = 0 and the
necessary condition is satisfied by the vertical boundary condi-
tions). Because of the lateral shear, we also use the ansatz
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FIG. 2. (a) Largest growth rate Im(w)/Ro as function of k, and k, for the Eady-like mean flow and Ro = 0.05.
(b) Im(w)/Ro for k, = 1 as function of k, and frequency Re(w). (c) Largest growth rate Im(w)/Ro as function of
k. and k, for the Eady-like mean flow and Ro = 0.5. (d) Im(w)/Ro for k, = 4 as function of k, and frequency Re(w).
Black dashed lines in (a) and (c) indicate the slices at k, taken for (b) and (d). (e),(f) Maximal Im(w)/Ro with [Re(w)| > 0.2
[marked by black dashed lines in (d)] as a function of Q and Ro.
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u = li(y, z)expi(kx — wt), etc. for the perturbations. The method
to obtain w and #(y, z) is detailed in the appendix.

Figure 3 shows that the largest growth rates are still
Im(w)/Ro ~ 0.5 and occur for frequencies Re(w) ~ 0, but
now for larger zonal wavenumber with a maximal growth
rate at k = 5. The larger k compared to the Eady case is
mostly due to the different vertical shear. However, it
appears that there are also plenty of other modes present
with finite growth rates Im(w)/Ro and also with frequencies
|[Re(w)| > Ro for Ro = 0.2 (Figs. 3g,h). As stated earlier, a
frequency |Re(w)| > Ro for the balanced mode would be
inconsistent with the definition of the balanced flow that we
assume here. Going from Ro = 0.2 to Ro = 0.3 the condi-
tion for symmetric instability in the mean flow is given, i.e.,
Q < 0. The fast unstable modes with [Re(w)| > Ro for Ro = 0.2
appear to correspond to the ageostrophic unstable modes in the
Eady-like case.

For the limit of Ro << 1 and 6 << 1 (but fixed relation
Ro ~ Fr, L, ~ L), the quasigeostrophic approximation is
valid and yields from Eq. (3) to Eq. (5) a single governing
equation 9,qqe = —RoV - Vqq, with quasigeostrophic
potential vorticity g4, = V2 + (f/N?9,i) and the quasigeo-
strophic streamfunction ¢ with Y Y =uand o, = b. Using
the jet-like mean flow, linearization and solving numerically
for the fastest growing modes (also shown in Fig. 3) yields
similar growth rates and frequencies as for the nonhydro-
static case with small Ro. The finite (extrinsic) Re(w) are
only due to a Doppler shift by the mean flow and do not
indicate the emergence of a fast mode which is excluded in
the quasigeostrophic approximation. Going to larger Ro in
the nonhydrostatic case, however, the growth rates differ.
We therefore interpret the unstable modes for large Ro, not
seen in the quasigeostrophic case, as the equivalent of the
ageostrophic unstable modes in the Eady-like case.

3. Nonlinear model experiments

We now use the mean flow and the geostrophic unstable
mode with small amplitude as initial condition in a fully nonlin-
ear model and use the flow decomposition by Warn et al.
(1995) to detect gravity wave generation, as implemented in
Eden et al. (2019a). The numerical model solves the Boussinesq
system Egs. (3)-(5) on a triple periodic domain with extent of
4 X 4 X 1. We use 1000 X 1000 X 120 grid points and small
biharmonic friction and mixing in the horizontal and vertical
direction with horizontal and vertical parameters of RoAx” and
RoAZ?, respectively, and a spectral solver for the pressure. We
use different values of Ro, no forcing, and as initial conditions the
jet-like mean state shown in Fig. 1b, where a small perturbation is
superimposed, which is taken from the eigenvector with
corresponding eigenvalue shown in Fig. 3 as small circles at
Ro(w)/Ro = 0, i.e., the geostrophic unstable mode. The
eigenvector with largest growth rate Im(w) close to the middle of
the white circle at k = 5 is chosen. The eigenvector from the
stability problem is interpolated on the finer grid of the numerical
model, and afterward balanced up to second order in Ro using
the method by Warn et al. (1995) that is also used in Eden et al.
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(2019a). This is done to guarantee that no gravity waves are
excited by the initial conditions, but only (eventually) due to the
growing geostrophic unstable mode. There is, however, only a
small adjustment to the perturbation by the balancing method
necessary. We may call this perturbation the near optimal
geostrophic unstable mode for the numerical simulations.

a. Initialization with the geostrophic unstable mode

The geostrophic unstable mode quickly grows in all simula-
tions as predicted by the stability analysis. Figure 4 shows the
distribution of scaled potential vorticity

fRo

O=f+ N d:b + Ro(d,v — dyu)
Ro? i
+ W[(a"v = dyu)d;b — (9:v)0xb + (9;u)d,b]
22
+ RO [0,myned — @)y ™

at all grid points in three simulations with different Ro after the
onset of the baroclinic instability at # = 6/Ro. While for Ro = 0.1,
all values of Q stay larger than 0.5, for Ro = 0.2 the smallest
values of Q become small, and for Ro = 0.3 even negative values
of Q occur, indicating symmetric instabilities of the flow. Note
that the condition for static instability 9,6 < —1/Ro is never
satisfied in the simulations.

Figure 5 shows the vertical velocity w at mid depth in the
domain after the onset of the baroclinic instability at = 6/Ro
for different Ro. The geostrophic unstable mode leads to a
meandering of the mean flow, which is clearly seen also in w.
The vertical velocity w is small and of the order of Ro in all
three simulations in accordance with quasigeostrophic scaling.
The lower row of Fig. 5 shows the first-order vertical velocity
wy of the balanced mode estimated using the method by Warn
et al. (1995) as in Eden et al. (2019a), which is almost identical
to the actual w for all three Ro. Note that w; corresponds
to the first-order vertical velocity in the quasigeostrophic
approximation.

Figure 6 shows the difference between the actual w and w;
for all three simulations, which is as expected on the order of
Ro? in all cases. For Ro = 0.1, the second-order vertical veloc-
ity w, of the balanced mode is still almost identical to w — wy,
such that it still corresponds entirely to the balanced mode,
i.e., no gravity waves can be detected up to Ro® The same
remains true for the third order (not shown). For Ro = 0.2,
however, a small difference between w — wy and w, begins to
show up, which is even more pronounced in the simulations
with Ro = 0.3. This means that even though we have initial-
ized the model with a balanced flow and the geostrophic
unstable mode, gravity waves are generated during the insta-
bility at large Ro. We relate this small gravity wave genera-
tion at Ro? to the symmetric instability and the ageostrophic
unstable mode, which is not present in the initial conditions
but excited by the fully developed instability.

To quantify the energy associated with the wave generation
in the experiments initialized with the geostrophic unstable
mode (Figs. 5 and 6), the residual kinetic energy is shown for
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FIG. 3. (a) Largest growth rate Im(w)/Ro for frequency Re(w) ~ 0 as a function of zonal wavenum-
ber k (x axis) and Ro= 0.01 (black), 0.05 (blue), 0.1 (gray), 0.2 (cyan), 0.3 (magenta), 0.4 (green) for
the jet-like mean flow. The largest Im(w)/Ro corresponds to the smallest Ro. Im(w)/Ro for the quasi-
geostrophic case is shown by the red line. (b) Im(w)/Ro for the quasigeostrophic (QG) case. Im(w)/Ro
does not depend on Ro in the quasigeostrophic case. (c)—(h) Largest growth rate Im(w)/Ro as function
of zonal wavenumber k (x axis) and frequency Re(w)/Ro (y axis) for different Ro.
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FIG. 4. Normalized distribution of scaled potential vorticity Q at
t = 6/Ro in the jet-like simulations with different Ro (solid blue:
Ro = 0.1, dashed black: Ro = 0.2, dotted red: Ro = 0.3).

different Ro and for different orders in Fig. 7. The figure shows
the volume integral of the scaled residual kinetic energy,
computed as [(u — I, u,-)2 + 8w — >t w,-)z]/(ZRoz") for
n =0, 1,2, ie., for the first, second, and third order, where u;
and w; are the balanced components at order i. Clearly, the
residual energy related to the waves appears more strongly for
higher Ro and is enhanced at higher orders. The dependency of
the wave emission on Ro appears to be exponential for this con-
figuration, for Ro > 0.15, the function 0.9exp[(Ro — 0.15)/0.08]
fits well the highest-order residual in the figure.

b. Initialization with the ageostrophic unstable mode

Figure 8 shows simulations at different Ro initialized with
modes different from the geostrophic unstable mode used before,
indicated by the small circles in Fig. 3 with Re(w)/Ro # 0. The
model state using such eigenvectors is still balanced up to second
order in Ro using the method by Warn et al. (1995), but the
intention of these experiments is to come closer to the unstable
ageostrophic modes with the initial conditions, while still elimi-
nating all gravity waves at ¢ = 0. While for Ro = 0.1 we still see
no gravity waves at first order in Ro, in the case of Ro = 0.2 and
in particular for Ro = 0.3 we begin to see gravity waves at lowest
order.

The wavenumber spectra of the residual energy are shown in
Fig. 9 for the experiment with Ro = 0.3, where Fig. 8 indicates
strong gravity wave activity. The wavenumber spectra of the
residual horizontal kinetic energy (u — Zf’zlu,-)2 /2, residual
potential energy (b — Z;‘:Obi)z /2N, and residual vertical kinetic
energy 82w — Z?:Ob,-)z/Z atz =03and forn =0,1,2 as a
function of horizontal wavenumber k = | [k2 + k7 are shown for

different orders (first, second, and third). All curves are scaled
with the integral of kinetic energy at n = 0 and shown in variance
preserving form. The peaks in the residual vertical kinetic energy
and potential energy spectra at higher wavenumbers affirm the
prominent wave activity in this regime seen in Fig. 8.
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Further, Fig. 9d shows wave frequency w estimated from the
ratio of vertical to horizontal kinetic energy R = w?/(u® + %)
[cf. Olbers et al. (2012), section 7.2], i.e.,

W2 0)2 (1)2 _ fZ

R T e P P N

®)

The generated waves appear to be near inertial at small k,
but at larger wavenumbers the waves appear with larger fre-
quencies reaching up to midfrequencies (maximal frequency is
NI8). The energy across different wavenumbers indicate that
the full spectrum of the waves is excited during the process
in the experiments shown in Fig. 8. This makes it difficult to
relate the genesis mechanism and the excited waves for a given
wavenumber. This further suggests that the initial ageostrophic
imbalance at k = 6 in these experiments may not be directly
related to the waves excited across all wavenumbers, and
requires further investigation.

It is thus possible to excite gravity waves by an instability of
the balanced mode to lowest order, if the condition of symmetric
instability is close to be satisfied and ageostrophic unstable
modes obtain finite growth rates. This is the main conclusion of
this study.

4. Summary and discussion

In this study, we have diagnosed gravity wave emission of
vertical and horizontal shear instability in idealized nonhydro-
static model simulations using the nonlinear decomposition
method up to third order in Rossby number (Ro) based on
Warn et al. (1995) and as implemented in Eden et al. (2019a).
In case of geostrophic instability of a well-balanced initial
state similar to the classical Eady model, i.e., classical baro-
clinic instability, the wave emission is negligible up to third
order over a range of values for Ro. Only when the
model is initialized with a mean flow closer to the so-called
ageostrophic instability mode with larger (i.e., faster) fre-
quencies—but still well balanced up to third order in
Ro—we do see significant gravity wave emission at the low-
est order. This residual wave energy is enhanced at higher
orders and for higher Ro, and the dependency of the wave
energy emission on Ro appears to be exponential. A wave-
number spectrum of the residual wave energies reveals that
a rich spectrum of waves is excited in the flow when initial-
ized with the ageostrophic unstable mode, dominated by
inertial to midfrequency waves. The wavenumber of the
generated waves and that of the balanced instabilities are
thus not related in a straightforward way. The presence of
the ageostrophic instability mode with significant growth
rates comes along with vanishing (or even negative) poten-
tial vorticity of the mean flow, indicative of the possibility of
symmetric instability. Thus, we conclude here that gravity
waves are only emitted by balanced shear flow to a signifi-
cant amount in our experiments, if its potential vorticity
becomes small or negative, and symmetric and ageostrophic
instabilities become possible. This result also points to the
weak importance of spontaneous loss of balance for wave
generation.
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FIG. 5. (top) The w/Ro at z = 0.3 and ¢ = 6/Ro in the jet-like simulations with different Ro: (a) Ro = 0.1, (b) Ro = 0.2, (c) Ro = 0.3, and
initialized with the near optimal geostrophic unstable mode. (d)—(f) As in (a)—(c), but for wy/Ro.

Besides the role of ageostrophic and shear instabilities, dis-
cussed here as well as in Eden et al. (2019a), another mechanism
has previously been discussed for spontaneous loss of balance:
wave emission in the sense of classical Lighthill radiation (Ford
et al. 2000). In a rotating shallow water configuration with small
Fr and Ro > 1, Ford et al. (2000) show that Lighthill radiation
can indeed occur at high orders, where resonant interactions
between waves and the balanced flow can lead to energy transfer.
However, the process is only relevant for Ro > 1 and small Fr

a) (w—w)/Ro’

b) (w—wy)/Ro®

(Saujani and Shepherd 2002), a dynamical regime which we have
not considered here. It can be shown that for Ro < 1, the relevant
resonant triad (first order) interactions between waves and bal-
anced flow for the two-dimensional (2D) shallow water equations
(as considered by Ford et al. 2000) are exactly vanishing (Eden
et al. 2019b). In the ocean and atmospheric flow regimes, values
of Ro and Fr are mostly not such that Lighthill radiation can
occur, making it a weak candidate mechanism for internal gravity
wave generation, although locally Ro may exceed unity while Fr

c) (w—w)/Ro®
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FIG. 6. (top) The (w — w;)/Ro* at z = 0.3 and ¢ = 6/Ro in the jet-like simulations with different Ro: (a) Ro = 0.1, (b) Ro = 0.2,
(c) Ro = 0.3, and initialized with the near optimal geostrophic unstable mode. (d)~(f) As in (a)—(c), but for w,/Ro>.
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Scaled residual kinetic energy
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FIG. 7. Volume integral of the scaled residual kinetic energy
[(u— Z]l'.‘zou,»)2 + &(w — Zf’zow,-)z]/(ZRoz") for n = 0, 1, 2 for the
first (green), second (red), and third (blue) order, for the experi-
ments initialized by the geostrophic unstable mode shown in Fig. 5
and Fig. 6. All curves are scaled with their values at Ro = 0.05.

stays small, and Lighthill radiation may become relevant. The
importance of Lighthill radiation thus still needs quantification.
Other processes can also lead to energy transfers between
waves and balanced flow, such as stimulated wave emission
(Gertz and Straub 2009), or interaction with boundaries
(Dewar and Hogg 2010; Chouksey 2018). The latter we do
not discuss here. In the former, a preexisting wave field inter-
acts with the balanced flow. In such a stimulated emission sce-
nario, Gertz and Straub (2009) find large energy transfers
from the 2D to the three-dimensional (3D) circulation at large

CHOUKSEY ET AL.

1359

Ro, where the 3D (2D) flow field is interpreted as unbalanced
(balanced) motion. By further exploring the process of stimu-
lated emission, Rocha et al. (2018) substitute the 2D circula-
tion with a quasigeostrophic model, excluding ageostrophic
instabilities as discussed here. Instead of a full model, they
use a phase-averaged wave equation model interacting with
the quasigeostrophic flow and still find significant energy
transfers between waves and mean flow. Barkan et al. (2017)
also reports notable energy transfer from balanced flow to
near-inertial waves by stimulated emission, where the preex-
isting near-inertial waves are externally forced by winds at the
inertial frequency.

Eden et al. (2019b) find only weak energy transfer between
waves and balanced flow for Ro < 1 and initially vanishing
wave energy in 3D flow in a numerical evaluation of the scat-
tering integral, generated also only by nonresonant triad
interactions. Stimulated wave emission related to a preexist-
ing gravity wave field appears thus also difficult to happen by
resonant triad interactions because of the large frequency of
gravity waves. If so, this may only be possible at large Ro as
for Lighthill radiation. The analysis in Eden et al. (2019b),
our own preliminary analysis (not shown), and the study by
Savva et al. (2021) indicate that there is in fact no resonant
triad interaction of waves and balanced flow to first order, but
only elastic scattering which redistributes energy within the
wave field. A preexisting wave field, driven by external forces,
may thus drain energy from the balanced flow only by nonre-
sonant triad interactions, but the rate and sign of the transfer
at which this might happen remain unclear.

In any case, we want to stress that careful diagnosis is
necessary to evaluate spontaneous or stimulated wave emission in
model simulations, laboratory experiments, or even observations.
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FIG. 8. (top) The w/Ro at z = 0.3 and (a) Ro = 0.1 att = 10/Ro, (b) Ro = 0.2 at r = 10/Ro, (c) Ro = 0.3 at t = 7.5/Ro in the jet-like sim-
ulations with different Ro and initialized with the modes with nonzero Re(w)/Ro as indicated in Fig. 3 and detailed in the text. (d)—(f) As

in (a)-(c), but wy/Ro.
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FIG. 9. Wavenumber spectra for the residual velocities for the experiment with Ro = 0.3 shown in Fig. 8c. (a) Residual

horizontal kinetic energy (1 — Zf’:lui)z /2, (b) potential energy (b — Zf‘:()b,-)2 /2N, and (c) vertical kinetic energy
S (w — f‘=0b,-)2 /2 at z = 0.3, shown as function of wavenumber modulus k= [k2 + kﬁ for n = 0, 1, 2 for the first

(green), second (red), and third (blue) order. Shown is energy E in variance preserving form as kE. All curves are scaled
with the integral of kinetic energy at n = 0. (d) An estimate of the wave frequency obtained from the ratio

R = w2 + ).

Often the signal seen in vertical velocity or the divergence field as
in, e.g., Plougonven and Snyder (2007) is not related to actual
wave motion but to the slaved mode as in our Fig. 5, which is still
part of the balanced mode.

This article is a follow up of our previous article Eden et al.
(2019a), that investigates the gravity wave emission from an
initially balanced sheared flow of similar structure as here but
for a primitive equation model. In this study we have extended
this analysis of wave emission from a simplified model setup to
the more realistic nonhydrostatic model setup, and examine the
role of symmetric and ageostrophic instabilities for the wave
emission in more detail. In Eden et al. (2019a) we reported that
when the flow becomes convectively unstable, we see significant

gravity waves emission in the primitive equation model.
However, the condition for static instability which we used in
Eden et al. (2019a) is not correct and the correct condition was
never satisfied in the simulations. The gravity waves seen there
are not caused by static instability but in fact by symmetric insta-
bility, similar to the case we find here. Therefore, this article rein-
forces the conclusion from our previous work Eden et al. (2019a):
spontaneous wave emission is in general very weak and only sym-
metric or ageostrophic instability of the mean flow appears to be
able to trigger significant wave generation at the lowest order.
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APPENDIX

Numerical Stability Analysis

The method to obtain the eigenvalue w and eigenvectors
of the stability analysis follows the one used in Thomsen
et al. (2014). We add to the system Egs. (3)-(5) the scaled
pressure equation

ap=—cV-u+a.w) (A1)
with the scaled sound speed ¢ = Ro/Ma and the Mach
number Ma = Ule, << Ro, where ¢, = (dp/ap)” 2 is the
actual sound speed related to the compressibility of seawater.
This prognostic pressure equation replaces the diagnostic con-
tinuity equation. We use an artificially reduced value of
¢ = 50 and found no sensitivity of the results on this choice.

Defining a mean flow as stated above for the Eady-like
case with u, = [U(z), 0, 0]T in thermal wind balance, linear-
ization, and using the ansatz expi(kx + ly — ot) for the per-
turbation variables yields the system

kRoU if —-iRod,U 0 k
—if  kRoU 0 0 l
Ma = wa, M(z) =| 0 0 kRoU  i/8* —id, /8
0  iRofo,U —iN*> kRoU 0
’k A2l — ic%a, 0 0
(A2)

for the vector a(z) = (u, v, w, b, p)*. Discretization in z
with N = 100 points from z,—; to z,—n, yields a sparse
algebraic eigenvalue problem, which can be solved for given
wavenumber vector (k, [). Variables p,, u,, v, and b, are at
positions z,,, while the vertical velocity w,, is between p, and
Pn+1- Grid spacing is constant and given by A, = z,11 — Z,.
We use horizontally double periodic boundary conditions and
rigid lids at top and flat bottom for the Eady-like case. The
rank of the resulting square matrix for which eigenvalues and
eigenvectors need to be found is SN. Eigenvalues related to
sound (and Lamb) waves in the system are easily identified
due to their large frequency and sorted out.

The procedure for the jet-like case follows closely the Eady-
like case; the difference being that the ansatz expi(kx — wt) for
the perturbations leads to M = M(y, z), and that we use triple
periodic boundary conditions. Discretization in z with N, = 24
points from z,-; to z,=n, and in y with N,, = 100 points from
Yj=1 to yj=n,, yields an algebraic eigenvalue problem, which
can be solved for given wavenumber k. Discrete variables p;,,
u;, and b, are at the discrete positions z, and y; Vertical
velocity wy,, is at vertical position between p;,, and p;,, 1, while
v, is at meridional position between p;,, and pj.;, Grid
spacing is constant and given by A, = Zz,4; z, and
A, = yj+1 — y;. The rank of the resulting square matrix for
which eigenvalues and eigenvectors need to be found is SN_N,.
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Note that the computational time to find eigenvalues scales
with the cube of the rank of the matrix, i.e., with (SNZNy)3,
therefore only a rather coarse grid is feasible.

The quasigeostrophic version of the stability analysis is based
on the potential vorticity equation 9,gqs = —RoV - Vgq,
instead of Egs. (3)-(5), with quasigeostrophic potential vorticity
Gqg = V2 + fIN*,. and the streamfunction s with Vi=u
and fo,y = b. Defining again the jet-like mean flow with
u,,(y, z), linearization, using the ansatz ¢ = Jexpi(kx — wt) for
the perturbations, and discretization in y and z leads to a similar
algebraic system as before but with reduced rank of NyN..
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